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Abstract

Commonsense reasoning (CSR) requires the
model to be equipped with general world
knowledge. = While CSR is a language-
agnostic process, most comprehensive knowl-
edge sources are in few popular languages,
especially English. Thus, it remains unclear
how to effectively conduct multilingual com-
monsense reasoning (XCSR) for various lan-
guages. In this work, we propose to uti-
lize English knowledge sources via a translate-
retrieve-translate (TRT) strategy. For multilin-
gual commonsense questions and choices, we
collect related knowledge via translation and
retrieval from the knowledge sources. The
retrieved knowledge is then translated into
the target language and integrated into a pre-
trained multilingual language model via visi-
ble knowledge attention. Then we utilize a di-
verse of 4 English knowledge sources to pro-
vide more comprehensive coverage of knowl-
edge in different formats. Extensive results on
the XCSR benchmark demonstrate that TRT
with external knowledge can significantly im-
prove multilingual commonsense reasoning in
both zero-shot and translate-train settings, out-
performing 3.3 and 3.6 points over the pre-
vious state-of-the-art on XCSR benchmark
datasets (X-CSQA and X-CODAH).

1 Introduction

Commonsense reasoning (CSR) is one of the key
challenges in natural language understanding. It
requires a model to integrate world knowledge
into language modeling to produce answers. A
large number of tasks have been proposed to eval-
uate commonsense reasoning in English, such as
COPA (Roemmele et al., 2011a) and CSQA (Tal-
mor et al., 2019).

Most recently, multilingual commonsense rea-
soning (XCSR) begins to draw attention from the
community and a number of datasets emerged, e.g.,
X-CSQA (Lin et al., 2021), X-CODAH (Lin et al.,
2021), XCOPA (Edoardo M. Ponti and Korhonen,
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Figure 1: Number of total definitions per language.
The statistics are generated from Wiktionary 2021-10-
01 dump. There are 55 languages with 10,000 or more
definitions and we list top 20 languages by the defini-
tions count here.

2020). The goal of XCSR is to extend a model’s
commonsense capability beyond language barriers.

To solve commonsense reasoning tasks, it is
essential to fuse human created knowledge into
pre-trained language model (PLM) (Lin et al.,
2019; Feng et al., 2020; Yu et al., 2020; Xu et al.,
2021b). For example, DEKCOR (Xu et al., 2021b)
integrates knowledge from ConceptNet (Speer
et al., 2017) and Wiktionary ! into the ALBERT
model (Lan et al., 2020) for commonsense ques-
tion answering. However, most existing knowledge
sources are crafted in a few popular languages, es-
pecially English. For example, Figure 1 shows
the number of total definitions in English is much
more than any other languages based on the statis-
tics from Wiktionary 2021-10-01 dump. Thus, it
remains an open question how to tackle XCSR with
a lack of curated knowledge in the target language.

In this paper, we propose a translate-retrieve-
translate (TRT) solution to utilize English knowl-
edge sources for XCSR. Specifically, given a com-
monsense reasoning question (possibly concate-

"https://www.wiktionary.org/
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Figure 2: An overview of our framework for multilingual commonsense reasoning. Given the question and can-
didate answers in the target language (Chinese), we first translate it into English, then retrieve related knowledge
from four English knowledge sources and translate the retrieved knowledge back into the target language. The
retrieved knowledge, along with question and candidate answer, are fed into the multilingual pretrained language

model for answer prediction.

nated with a candidate answer) in the target lan-
guage, we first translate it into English. Next, we
retrieve related knowledge from English knowl-
edge sources. The retrieved knowledge is then
translated back into the target language. Finally,
the knowledge is integrated into a multilingual lan-
guage model via visible knowledge attention mech-
anism to answer the question.

Another contribution of our work is that we uti-
lize a diverse set of 4 English knowledge sources to
provide a more comprehensive coverage of knowl-
edge in different formats. Specifically, we utilize
unstructured text corpus (Open Mind Common
Sense (Singh, 2002)), structural knowledge graph
(ConceptNet (Speer et al., 2017)), dictionary (Wik-
tionary) and large-scale language model (GPT-3
(Brown et al., 2020)). Given an input query, we uti-
lize information retrieval, entity linking, and model
inference to obtain knowledge from corresponding
sources.

We conduct extensive evaluation of our model
on the multilingual commonsense reasoning bench-
mark X-CSQA and X-CODAH (Lin et al., 2021).
The results demonstrate the effectiveness of our
proposed translate-retrieve-translate solution with
multiple knowledge sources. For example, in the
zero-shot transfer setting, TRT with Wiktionary can
improve 1.9 and 2.7 points over the baselines. For
translate-train setting, TRT with Wiktionary and

OMCS outperform 1.6 and 1.0 over the baselines.

We summarize the main contributions of this
work as follows. (i) We propose a translate-
retrieve-translate (TRT) solution to utilize English
knowledge sources for multilingual commonsense
reasoning. (i7) We comprehensively explore four
knowledge sources in different formats and prove
their helpfulness for both X-CSQA and X-CODAH.
(731) We achieve the first place on XCSR leader-
board, outperforming 3.3 and 3.6 points over the
previous state-of-the-art works.

2 Related Work

Multilingual Commonsense Reasoning Model
ability of commonsense reasoning has been widely
explored by multiple downstream tasks. In early
works, Winograd schema challenge (Levesque
et al., 2012) is to disambiguate the reference of
a pronoun (Levesque et al., 2012) and Choice
of Plausible Alternatives (COPA) (Roemmele
et al., 2011b) is to select cause or result for a
premise. Later on, larger scale datasets, such
as SWAG (Zellers et al., 2018), CODAH (Chen
et al., 2019), and CommonsenseQA (Talmor et al.,
2019), have been constructed for commonsense
knowledge learning. Recently, commonsense rea-
soning tasks have been extended to multilingual
setting, such as X-CSQA (Lin et al., 2021), X-
CODAH (Lin et al., 2021), XCOPA (Edoardo



Knowledge Source Knowledge Format Query Format Retrieved Knowledge Retrieval Method
Wiktionary Dictionary Content Word Definition String Matching
ConceptNet Entity-Relation Triplets Entity Pair Entity-Relation Triplet Entity linking
OMCS Text in Sentences Sentences Sentences BM25

GPT-3 Parameters Unstructured Text Unstructured Text Conditional Generation

Table 1: Different knowledge resources for retrieval.

M. Ponti and Korhonen, 2020). In paper, we focus
on training model to learn commonsense knowl-
edge in multiple languages.

External Knowledge Fusion Knowledge bases
are the most important external sources to help
models learn the ability of commonsense reason-
ing. A wide range of knowledge resources, such as
ConceptNet (Speer et al., 2017), Wikipedia, Free-
base (Pellissier Tanon et al., 2016), and some KBs
in domain (Fader et al., 2011), can be fused into
the model. LoBue and Yates (2011) explored how
commonsense knowledge involved in recognizing
textual entailments. Guan et al. (2020) utilize com-
monsense knowledge to generate reasonable stories.
Bi et al. (2019) incorporate external Knowledge
into question answering. Xu et al. (2021b) fuse
the ConceptNet (Speer et al., 2017) and Wikionary
into the model for solving CommonsenseQA. In
this paper, we will follow this direction and have
a wider exploration of leveraging different sources
for multiligual commonsense reasoning.

3 Approach

In this section, we first formalize the multilingual
commonsense reasoning (XCSR) task (Section 3.1).
Then we describe more details about our common-
sense knowledge resources (Section 3.2). Next, we
introduce our proposed translate-retrieve-translate
(TRT) solution to obtain the multilingual knowl-
edge (Section 3.3). Finally, we introduce how to
fuse the obtained knowledge into multilingual pre-
trained language models by employing the visible
attention mechanism (Section 3.4). The overview
of the framework is illustrated in Figure 2.

3.1 Problem Formulation

We denote a language by [ € L, where L =
{en, fr,de, zh,- - - }. Given a commonsense ques-
tion ¢’ in the target language [, the goal is to
choose the correct answer from N candidates
{c,ch, - ,cﬁv}. We assume there are one or
more external knowledge sources to provide world
knowledge in various formats for commonsense

reasoning. Each time the model retrieves knowl-
edge using the question-candidate pair as query,

ie., pl =[d,d].
3.2 Commonsense Knowledge

Commonsense knowledge are critical to the perfor-
mance of a commonsense reasoning (CSR) model.
Previous methods for CSR primarily integrate
knowledge from one or two sources (Xu et al.,
2021b). In this work, we conduct comprehensive
experiments by leveraging commonsense knowl-
edge from 4 different resources: unstructured text
corpus (Open Mind Common Sense), knowledge
graph (KG) (ConceptNet), dictionary (Wiktionary),
and pre-trained language model (PLM) (GPT-3).
Open Mind Common Sense (OMCS) (Singh, 2002)
is a large commonsense knowledge base which has
accumulated millions of facts. ConceptNet (Speer
et al., 2017) is a semantic network built on top
of MOCS. Wiktionary provides the definitions for
all the words. GPT-3 (Brown et al., 2020) is a
large-scale pre-trained language model to generate
knowledge by feeding a query. These knowledge
resources are saved in quite diverse formats as the
analysis shown in Table 1. To retrieve the knowl-
edge, we will consider different query formats and
retrieval methods in the next section.

3.3 Knowledge Retrieval

Most large-scale knowledge sources in either
academia or industry are crafted in a few popular
languages, especially in English (see Figure 1 as an
example). To obtain knowledge for low-resource
languages, we propose a translate-retrieve-translate
(TRT) solution. In detail, we first use a machine
translation tool to translate the query in all lan-
guages into English. Then, we can retrieve knowl-
edge from English knowledge sources using the
translated query. The retrieved knowledge can be
then translated back into original languages for
model training.

As a knowledge source usually contains vast
amount of information, we need to retrieve and
leverage only the related knowledge for a given



query p'. Next we introduce the details of knowl-
edge retrieval for 4 knowledge sources.

Word definition retrieval from Wiktionary
Every word has its own definition but not all of
them are delivering knowledge for commonsense
reasoning. In this work, we mainly focus on re-
trieving the content words, such as nouns, verbs,
and adjectives, and the words harder to understand
by multilingual language models. In detail, after
part-of-speech tagging of the sequence, we select
the nouns, verbs and adjectives as the candidate
words. Then, we mask one word at a time and
compute its masked language model (MLM) prob-
ability by pre-trained multilingual language model,
XLM-RoBERTa (Conneau et al., 2019). We se-
lect top-N words with lowest MLM probability for
dictionary retrieval. If the original word is not in
Wiktionary, we try to find its lemmazied form. The
first definition entry in Wiktionary is the retrieved
knowledge.

Structured knowledge retrieval from Concept-
Net A knowledge graph can provide relation in-
formation between entities. We enumerate pairs of
candidate words from the input sequence and check
whether there exists a relation between them in the
knowledge graph ConceptNet. If so, we retrieve the
corresponding triplet as the external knowledge.

Unstructured text retrieval from OMCS Open
Mind Common Sense (OMCS) consists of knowl-
edge in natural language description. We first build
a search index 2 for all the sentences in OMCS.
Then, whenever a new query comes, we retrieve
the highest ranked sentence based on BM25 as the
external knowledge text.

Knowledge Generation with GPT-3 Previous
research shows that large-scale PLM contains rich
knowledge implicitly (Roberts et al., 2020; Kassner
et al., 2021). Thus, we use one of the largest PLM,
GPT-3 (Brown et al., 2020), to generate related
knowledge given the query. As GPT-3 requires a
prompt with input and output examples, we feed it
with a few examples with a query and the knowl-
edge in designated format. For example, given
the word and its definition along with the query,
GPT-3 will generate its version of definition of a
word it thinks important in the input query. For
the prompt that is not in English, we translate the
English prompt into the target language.

Zhttps://lucene.apache.org/pylucene/

3.4 Fusing Knowledge into Multilingual

Language Model
Given the question answer pair p' = [¢', ¢], we
use the retrieval techniques to collect K pieces of
retrieved knowledge text: S = [s1,- -, Sk].

The most intuitive way is to concatenate them
with p! as input to the multilingual pre-trained lan-
guage model (XPLM) for answer generation, i.e.,
the input would be I = [CLS] ¢’ ¢! [SEP] s; [SEP]

- sk [SEP].

However, this simple way may divert the original
meaning of p' because of the introduced noise by
appending .S, as pointed out by Liu et al. (2020); Xu
et al. (2021a). To remedy this issue, we adopt the
visibility matrix (Liu et al., 2020; Xu et al., 2021a)
to limit the impact of knowledge set .S on the origi-
nal question-candidate pair p;. Specifically, in each
transformer layer of XPLM, an attention mask ma-
trix M is added to the self-attention weights before
softmax.

Suppose t; and t;, are the j-th and k-th tokens
from the input /. We set M, to zero to allow at-
tention from ¢; to ¢, and set M, to —oo to forbid
attention. My, is set to zero if: i) both tokens be-
long to the input p;, or ii) both tokens belong to
the same knowledge s;, or iii) ¢; is the token at the
start position of linked word in p; and ¢, is from
its correspond knowledge text. More formally, the
mask matrix M is

0 tity € pl
0 tj,tk € S;

M. l
0 tjep,tkesi

ik =

(D
—oo otherwise

For model training, let 2y € R?, the [CLS]
hidden state from the last layer, denotes the repre-
sentation of encoding the question, candidate, and
the corresponding retrieved knowledge. d is the di-
mension of the output vector of the encoder. Then
we calculate the prediction score g; for each can-
didate cﬁ with one linear layer, §; = W,zg, where
W, € R™?, followed by a softmax normalization
upon all candidates, § = softmax([9;,- -, In])s
where N is the number of candidate for each ques-
tion. The final loss function is the standard cross-
entropy loss.

4 Experiments

In this section, we perform extensive experiments
to explore the aforementioned TRT solution with



Dataset | Model | en de it es fr nl ru vi zh hi pl ar ja pt sW ur | avg
mBERT 388 29.6 364 353 338 326 327 222 378 21.1 272 277 314 341 218 237|304

XLMR-B | 51.5 44.1 421 448 440 433 395 42,6 40.6 346 402 384 375 434 296 33.0 | 406

X-CSQA XLMR-L | 66.7 56.1 582 595 603 568 521 514 527 487 539 484 500 599 416 452 | 538
MCP(RL) | 69.5 593 603 614 600 61.1 575 557 567 513 561 523 502 60.7 433 488 | 56.5

‘ TRT ‘ 710 612 63.0 651 651 628 578 589 563 561 594 562 547 646 510 539 ‘ 59.8

mBERT 429 331 335 338 352 337 319 228 380 265 310 348 340 372 308 315|332

XLMR-B | 50.1 458 444 442 452 420 441 432 446 381 419 378 420 441 356 346 | 424

X-CODAH | XLMR-L | 664 59.6 599 609 60.1 593 563 574 573 49.1 575 512 538 582 422 46.6 | 56.0
MCP(RL) | 699 607 619 60.7 614 60.7 586 623 619 537 590 541 547 60.8 446 480 | 583

| TRT | 69.1 653 625 644 643 645 618 646 633 571 627 576 61.6 643 525 551 | 619

Table 2: Overall test results on the multilingual commonsense reasoning

benchmark XCSR. Results of

mBERT (Devlin et al., 2019), XLMR-B, XLMR-R (Conneau et al., 2019), MCP(RL) (Lin et al., 2021) for X-CSQA
and X-CODAH are from XCSR leaderboard (Lin et al., 2021). We submit the test prediction with the best dev
result in table 4 to the XCSR leaderboard for evaluation. Leaderboard: https://inklab.usc.edu//XCSR/leaderboard

Dataset X-CSQA X-CODAH
Task Format QA Scene Completion
#Languages 16 16
#Options 5 4

#train 8888 8476

#dev 1000 300

#test 1074 1000

Table 3: Statistics of the two datasets in the multilin-
gual commonsense reasoning benchmark XCSR

four knowledge sources on the multilingual com-
monsense reasoning benchmark XCSR (Lin et al.,
2021).

4.1 Datasets

Table 3 lists the statistics for the two datasets in
XCSR. (i) X-CSQA (Lin et al., 2021) for com-
monsense question answering: given the human au-
thored question that describes the relation between
concepts from ConceptNet (Speer et al., 2017), the
model needs to choose the answer from five con-
cepts. (ii) X-CODAH (Lin et al., 2021) for Scene
Completion: given a prompt question and the sub-
ject of the subsequence sentence, the model needs
to choose from four candidate complements that
can be consistent with question in commonsense.

4.2 Baselines

For X-CSQA and X-CODAH datasets, we
mainly compare with the previous state-of-the-art
MCP (Lin et al., 2021) as well as other three multi-
lingual pretrained langauge models: mBERT (De-
vlin et al., 2019), XLM-RoBERTa (Conneau et al.,
2019) base and large models. MCP is based on
XLM-RoBERTa model and further enhanced by in-
termediate fine-tuning on the multiple-choice ques-
tion answering dataset MickeyProbe (Lin et al.,
2021).

4.3 Implementation Details

We use Microsoft Machine Translator 3 for all trans-
lations, including translating the given query, the
retrieved knowledge and English training data to
other 15 languages. We will release these transla-
tions for academic usage. For Wiktionary, we use
the dump of Wiktionary which includes 999,614
definitions. We empirically obtaining 6 words defi-
nitions from Wiktionary for X-CODAH (see Fig-
ure 3 (a)) and use the provided question concept
and answer as two candidate words for X-CSQA.
For ConceptNet, we use ConceptNet version 5.7.0
4 For GPT-3, we use the curie ° model.

Our model implementation is based on Hugging-
Face’s Transformers Library (Wolf et al., 2020).
We conduct all experiments on 8 Nvidia V100-
32GB GPU cards. We follow the configurations in
XCSR to pretrain the MCP model based on XLM
RoBERTa large except that the maximum sequence
length is 256 and batch size is 32. The accuracy
of the resulting MCP checkpoint on its dev set
is 87.4. We then initialize with this checkpoint
for further fine-tuning with different knowledge
sources. During finetuning, we set the training
epochs, batch size and gradient accumulation steps
as 10, 4 and 2 respectively. The total batch size
here is 64 by “batch size per device x # GPUs
x # gradient accumulation steps”. For hyper-
parameter search, we sweep over the learning rates
€ {le—5,3e—5,5e—5,3e—6,5¢—6} and report
the maximum results.

3https://azure.microsoft.com/en-us/services/cognitive-
services/translator/

*https://github.com/commonsense/conceptnet5

Shttps://beta.openai.com/pricing
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Dataset | Model | en de it es fr nl u vi zh hi pl ar ja pt SW ur | avg
Zero-shot transfer (models are trained on English data) and evaluate on the target language

\ MCP (RL) \ 69.0 576 572 579 599 561 552 56.0 56.6 48.8 564 525 508 583 425 474 \ 55.1
X-CSQA + Wikt. 707 59.5 602 614 595 585 56.6 556 583 512 560 556 520 606 468 49.1 | 57.0
+ Cpnt. 707 572 581 586 587 558 555 560 56.6 499 559 539 524 556 433 478|554
+OMCS | 70.5 599 593 605 600 568 553 561 573 489 564 534 51.6 59.0 467 48.0 | 56.2
+GPT-3 | 703 572 588 602 583 581 548 550 556 490 545 529 5211 579 429 476 | 553
\ MCP (RL) \ 69.7 630 623 630 647 647 550 550 59.7 543 61.7 523 570 550 403 493 \ 57.9
X-CODAH + Wikt. 720 653 630 650 660 660 587 593 580 543 640 557 613 607 470 53.0 | 60.6
+ Cpnt. 723 683 657 650 660 643 603 57.0 583 550 653 537 573 597 463 520 | 604
+OMCS | 73.0 67.0 640 637 630 620 573 600 620 530 637 560 577 593 440 493 | 59.7
+GPT-3 | 71.7 620 643 623 650 623 567 553 580 543 647 550 593 60.0 427 527 | 59.1

Translate-train (models are trained on English training data and its translated data) and evaluate on the target language
| MCP(RL) | 69.4 593 606 609 608 579 570 582 580 504 583 551 539 603 47.1 509|574
X-CSQA + Wikt. 700 61.7 612 61.1 609 598 598 593 59.6 538 59.7 581 543 605 518 528 | 59.0
+ Cpnt. 685 592 595 582 613 587 566 579 583 526 584 556 529 605 482 528|574
+OMCS | 71.7 61.1 63.6 628 603 586 581 593 585 51.7 581 561 542 604 48.6 534 | 585
\ MCP (RL) \ 71.0 707 663 69.7 707 667 637 623 623 603 647 593 597 677 570 577 \ 64.4
X-CODAH + Wikt. 720 717 680 693 69.7 670 653 660 63.0 610 650 583 627 680 580 583|652
+ Cpnt. 707 687 670 680 680 683 650 620 61.7 563 650 61.7 623 663 600 573 | 643
+OMCS. | 747 69.7 673 67.7 67.7 683 627 653 653 587 683 620 640 683 567 59.7 | 654

Table 4: Comparisons for TRT with different knowledge sources in the zero-shot transfer and translate-train setting

on the dev. Wikt. and Cpnt. are short for Wiktionary and ConceptNet.
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Figure 3: Effects of the number of word definitions and the visible attention mechanism on X-CODAH dataset.
Figure (a) shows the performance can be improved by increasing the number of definitions from 1 to 6. Figure (b)
shows visible attention can be helpful with all knowledge sources.

4.4 Experimental Results

Results on test set Table 2 summarizes our re-
sults on the hidden test set from XCSR leaderboard.
TRT outperforms all previous works by a signifi-
cant margin on both datasets, achieving the average
score of 59.8/63.7 with an absolute improvement
of 3.3/3.6 over previous state-of-the-art MCP(RL).
For some low-resource languages, like Swedish,
we observe even larger gains with 7.7 and 7.9 im-
provements on X-CSQA and X-CODAH.

Effectiveness of different knowledge sources
Table 4 list the detailed comparisons among dif-
ferent knowledge sources in both zero-shot and
translate-train setting. We observe the following
findings from these results: (i) Knowledge can
be helpful for multilingual commonsense reason-

ing. For example, in the zero-shot setting, TRT
with Wiktionary improve 1.9 and 2.7 points over
the MCP baseline on X-CSQA and X-CODAH.
In translate-train setting, there are 1.6 and 1.0 im-
provements. (i) Wiktionary helps the most among
all knowledge sources in both settings, except that
OMCS performs slightly better than Wiktionary on
X-CODAH in the translate setting. We hypothesize
that the difficulty of understanding hardness words
can be mitigated by incorporating additional knowl-
edge as context. (ii) The generated knowledge
from GPT-3 can also improve over the baseline,
without leveraging mahcine translation and explicit
knowledge, which demonstrate the rich implicit
knowledge in GPT-3. For example, for X-CODAH
dataset, GPT-3 can outperform the baseline about



1.2 point. However, there still exist the gap between
GPT-3 and designated knowledge format. We leave
this one as future work to bridge the gap.

Effectiveness of sorting definitions by MLM
probability In Section 3.3, we introduce using
masked language model (MLM) to select the top-N
hardness words with the lowest probability. There-
fore, we compare this strategy (w/ sorting) with ran-
domly choosing the words. As shown in Figure 3
(a), sorting by MLM probability can outperform the
random selecting, especially with a smaller number
of words, achieving the best performance with 6
words definitions.

Effectiveness of knowledge attention In Sec-
tion 3.4, we mention that simply appending knowl-
edge as additional context can be noise to some
tasks like X-CODAH, a scene completion tasks.
Therefore, here we compare the model perfor-
mance between full attention and visible knowl-
edge attention on different knowledge sources. As
shown in Figure 3 (b), knowledge attention (w/ vis.)
can consistently outperform full attention (w/o vis.)
on different knowledge sources. For example, there
are 2.3 and 1.6 points improvement between them
when integrating from Wiktionary and GPT-3.

5 Conclusion

In this work, we present the translate-retrieve-
translate (TRT) strategy for multilingual common-
sense reasoning that collects related knowledge
via translation and then retrieval from the knowl-
edge sources. We conduct extensive experiments
by utilizing a diverse of four English knowledge
sources, including Wiktionary, ConceptNet, OMCS
and GPT-3. By using TRT with different knowl-
edge sources, we achieve state-of-the-art results
on XCSR leaderboard which demonstrates the ef-
fectiveness of our proposed methods. Future work
includes more effective ways to incorporate the
diverse knowledge sources into pre-training and
fine-tuning stage for commonsense reasoning.
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