
DYLE: Dynamic Latent Extraction for Abstractive Long-Input
Summarization

Ziming Mao∗ 1 Chen Henry Wu∗ 2 Ansong Ni1 Yusen Zhang3

Rui Zhang3 Tao Yu4 Budhaditya Deb5

Chenguang Zhu5 Ahmed H. Awadallah5 Dragomir Radev1

1 Yale University 2 Carnegie Mellon University 3 Penn State University
4 The University of Hong Kong 5 Microsoft Research

ziming.mao@yale.edu, henrychenwu@cmu.edu

Abstract

Transformer-based models have achieved
state-of-the-art performance on short text sum-
marization. However, they still struggle with
long-input summarization. In this paper, we
present a new approach for long-input summa-
rization: Dynamic Latent Extraction for Ab-
stractive Summarization. We jointly train an
extractor with an abstractor and treat the ex-
tracted text snippets as the latent variable. We
propose extractive oracles to provide the ex-
tractor with a strong learning signal. We in-
troduce consistency loss, which encourages
the extractor to approximate the averaged dy-
namic weights predicted by the generator. We
conduct extensive tests on two long-input sum-
marization datasets, GovReport (document)
and QMSum (dialogue). Our model signif-
icantly outperforms the current state-of-the-
art, including a 6.21 ROUGE-2 improvement
on GovReport and a 2.13 ROUGE-1 improve-
ment on QMSum. Further analysis shows that
the dynamic weights make our generation pro-
cess highly interpretable. Our code will be
publicly available upon publication. 1

1 Introduction

Transformer-based (Vaswani et al., 2017) pre-
trained language models (PLMs), e.g., BART
(Lewis et al., 2020a) and T5 (Raffel et al., 2020),
have achieved state-of-the-art performance on short
text summarization. However, due to the high mem-
ory complexity of the full self-attention mecha-
nism (Tay et al., 2020a), PLMs still struggle to
handle long inputs (Rohde et al., 2021). Model
efficiency and summary quality present a pair of
challenges for long input summarization (Huang
et al., 2021): models need to capture information
scattered across the long input while maintaining a
low computational cost.

∗Equal Contributions.
1https://github.com/Yale-LILY/DYLE

GeneratorExtractor

Oracle loss
Consistency loss Generation loss

Document

Query

Query

Dynamic weights

Figure 1: Graphical overview of our approach. The
input is a document X and an optional query q, where
each x ∈ X is a sentence, and the output is a summary
y of length T .

Prior models tackled long input summarization
mostly following four ways. First, sparse attention
(Child et al., 2019; Beltagy et al., 2020; Tay et al.,
2020b) is used to reduce the memory complexity
of the Transformers so that they can attend to more
tokens. Second, extract-then-generate methods ex-
tract salient texts from the input and then summa-
rize based on the extracted texts. Extractors are
either independently trained with full supervision
(Zhong et al., 2021b) or optimized using Reinforce-
ment learning (Williams, 1992; Chen and Bansal,
2018; Bae et al., 2019). Third, models are pro-
posed to divide source text into sections (Gidiotis
and Tsoumakas, 2020; Wu et al., 2021) which are
individually summarized and combined to form a
full summary. Fourth, hierarchical models (Rohde
et al., 2021; Zhu et al., 2020) attempt to improve
summarization by capturing sentence or discourse
level dependencies. We elaborate on these four
directions and their drawbacks in Section 5.

We believe that the extract-then-generate ap-
proach mimics the way a person would handle
long-input summarization: identify important in-
formation in the text and then summarize them.
This approach reduces the source inputs to a fixed

ar
X

iv
:2

11
0.

08
16

8v
1

 [
cs

.C
L

]
 1

5
O

ct
 2

02
1

https://github.com/Yale-LILY/DYLE

pre-set length, which addresses the main challenge
of model not being able to handle longer input be-
yond a certain limit. However, previous separately-
trained extract-then-generate approaches are lim-
ited as they break contextual dependencies between
extracted chunks and suffer from cascaded errors
from the extractor to the generator. Though various
Reinforcement Learning techniques are introduced
to bridge the two steps, it has noticeable drawbacks
(explored in Section 2.3), and we argue that the na-
ture of long input makes this approach suboptimal.

In this paper, we propose a new approach
for long-input summarization: Dynamic Latent
Extraction for Abstractive Summarization (DYLE).
We jointly train an extractor with an abstractor
using the extracted text snippets as the latent
variable. For an output token, we compute its
probability conditioned on each input snippet sepa-
rately, and its generation probability is computed
by marginalizing over all input snippets under a
learned distribution assigned by the extractor. The
distribution over the input snippets is conditioned
on the previously generated tokens. Output tokens
are dynamically generated at each time step.

We propose to optimize the extractor using two
surrogate losses. First, we compute the extrac-
tive oracle based on the gold output using greedy
search. These oracle snippets are used as targets
to optimize the extractor. Second, we propose the
consistency loss, which encourages the extractor
to approximate the averaged dynamic weights pre-
dicted by the generator.

We conducted experiments on two long-input
summarizatoin datasets: GovReport (Huang et al.,
2021) for long document summarization and QM-
Sum (Zhong et al., 2021b) for long dialogue sum-
marization. Our method achieves state-of-the-
art results on both datasets and significantly out-
performs the currently best baselines. These ex-
periments demonstrate the generalizability of our
model to multiple long-input summarization tasks
of different domains. The dynamic weights in our
model improve the interpretability of the gener-
ation process and help denoise the extraction by
down-weighting irrelevant text snippets. Our con-
tributions are as follows.

• We introduce dynamic latent extraction for
the abstractive long-input summarization task,
a new approach that better captures informa-
tion in the long input, allows interpretable
dynamic weights, and reduces computational

complexity.

• We propose multiple auxiliary optimizations:
extractive oracle as a learning signal for the
extractor, consistency loss that bridges extrac-
tion and generation, hybrid training methods
that furthers generalizability of the extractor.

• Experimental results show that our approach
achieves state-of-the-art results on two long
input summarization datasets in documents
and dialogues. We also conducted detailed
analysis on the interpretability of our model.

2 Our Approach

An overview of our approach is shown in Fig-
ure 1. In Section 2.1, we formulate our task and
the extractor-generator framework. In Section 2.2,
we introduce our parameterization of the extractor
for long inputs. The extractor module could be
optimized with the consistency loss and the oracle
loss (Section 2.4). The overall training objective is
summarized in Section 2.5.

2.1 Extractor-Generator Framework

We start by formulating the task of our inter-
est. The input consists of L text snippets, X =
(x1, . . . , xL), and an optional query q for query-
based summarization tasks. In long-input summa-
rization, the number of text snippets, L, is usually
very large. The output is a summary y of length
T . For the dialogue summarization task, dialogue
turns (utterances by each speaker) are used as snip-
pets. For the long document summarization task,
we tokenize the input into sentences and use the
sentences as snippets. The goal is to learn a model
that generates the sequence of summary tokens y
given the input snippets X and the previously gen-
erated tokens y<t:

Pθ(y|q,X) =

T∏
t=1

Pθ(yt|q,X, y<t).

The extractor-generator framework is based on
the assumption that salient information useful for
summarization only occupies a small portion of
the input, which is a sensible assumption given the
long input length. Specifically, the extractor takes
the query and the document as input and outputs a
score si = Eη(q, xi) for each text snippet xi. Here
η denotes the extractor parameters. To extract K

RoBERTa RoBERTa

query query

Top-

Extracted snippets

Document

Figure 2: Extractor for long inputs. We divide the doc-
ument into chunks, each containing neighboring snip-
pets. A shared RoBERTa model encodes each chunk
independently.

snippets XK from the document X , we take the K
snippets with highest scores:

XK = top-K(Eη(q, xi), xi ∈ X). (1)

After retrieving XK from X , the extraction-
generation framework models the output proba-
bility by replacing X with XK , i.e.,

Pθ(y|q,X) = Pθ(y|q,XK)

=
T∏
t=1

Pθ(yt|q,XK , y<t).
(2)

Note that the top-K operation in Eq. (1) is non-
differentiable, and we do not propagate gradients
through top-K; instead, we propose methods to op-
timize the extractor in Section 2.3 and Section 2.4.

2.2 Extractor for Long Inputs
An interesting research question is how to design
the extractor for long inputs. Limited by GPU mem-
ory, it is impractical to concatenate all snippets
and encode them with a large pre-trained language
model. As shown in Figure 2, we group consecu-
tive snippets into chunks. We concatenate the query
q with each chunk and compute the encoded vec-
tor for each snippet within the chunk it belongs
to. We project the encoded vectors to scalar scores
si = Eη(q, xi) using an MLP.

2.3 Generator with Dynamic Weights
A simple way to use the extracted snippets is to
concatenate them into a single sequence and feed
this sequence to a seq2seq generator. However,
when applied to long-input summarization, it faces

query

Seq2Seq

LM head

Weight head dynamic weight

generation prob

Extracted snippets

Figure 3: At each decoding time step, our generator
predicts the dynamic weight and the generation proba-
bility for each extracted snippet.

two challenges. The first challenge is that the ex-
traction operation, i.e., top-K in Eq. (1), is non-
differentiable. One approach is to adopt RL-based
optimizations (Chen and Bansal, 2018; Bae et al.,
2019). However, this approach has three drawbacks
if applied to long input summarization. Firstly,
Reinforcement Learning for large action spaces
(i.e., extracting K out of L snippets when L is
very large) has high variances. The second chal-
lenge is that we cannot interpret how the gener-
ator utilizes the extracted snippets. For example,
one may want to know whether the generator is
leveraging extracted information at each decoding
time step. Thirdly, current methods in fine-tuning
extract-then-abstract models with RL either uses
sentence-level ROUGE (Chen and Bansal, 2018)
or summary-level ROUGE (Bae et al., 2019) as
rewards. Using sentence-level ROUGE could po-
tentially select sentences with overlapping contents
(Narayan et al., 2018), resulting in redundant final
summaries. Using a summary-level ROUGE as the
training reward leads to the sparsity of the training
signal, and longer input makes this approach even
harder to train.

To address these challenges, we propose a gen-
erator that dynamically assigns weights to every
extracted snippet at each time step. Different from
the extractor scores, which is independent of the
decoding time step, generator assigns different dy-
namic scores at different time steps. The dynamic
weights make the decoding process interpretable,
and it also provides training signals for the extrac-
tor using what we term as the consistency loss.

Generator formulation The overview of the
generator is shown in Figure 3. Specifically,
for each extracted snippet x, the generator pre-
dicts the generation probability Pθ(yt|q, x, y<t)
based on this snippet and a dynamic weight
Pθ(x|q,XK , y<t) for this snippet. Without loss
of generality, we assume that Pθ(·|q, x, y<t) is

computed by first mapping the input (q, x, y<t)
to a contextualized representation vector hxt . For
Transformers (Vaswani et al., 2017) and encoder-
decoder with attention models (Bahdanau et al.,
2015), hxt is usually the model’s output be-
fore the final language model head. The gen-
eration probability Pθ(yt|q, x, y<t) is computed
by feeding hxt into the language model head.
For the dynamic weight Pθ(x|q,XK , y<t), we
adopt a separate MLP to map each hxt to a
scalar logit lx, and Pθ(·|q,X, y<t) is defined as
softmax({lx}x∈X). The generation probability is
computed by marginalizing over all extracted snip-
pets:

Pθ(y|q,XK) =
T∏
t=1

∑
x∈XK

Pθ(yt|q, x, y<t)Pθ(x|q,XK , y<t).

(3)

The dynamic weight Pθ(x|q,XK , y<t) at each de-
coding time step t allows us to interpret how the
generator utilizes the extracted snippets. For exam-
ple, a larger weight to a particular snippet indicates
larger importance of the snippet to the current de-
coding time step. The generation loss is defined as
the NLL of the gold summary:

Lθgen = − logPθ(y|q,XK) (4)

where Pθ(y|q,XK) is defined in Eq. (2). Here we
do not propagate gradients of Lθgen to the extractor
parameters since top-K is non-differentiable.

Consistency loss We also leverage the dynamic
weights to provide training signal for the extrac-
tor. Since the dynamic weight of a snippet can be
interpreted as the importance of the snippet at a
particular time step. We can average the dynamic
weights over all decoding steps and view the aver-
aged weight as the overall importance of the snip-
pet. Based on this intuition, we propose what we
term as consistency loss, which measures the dis-
tance between the averaged weight distribution and
the extractor distribution. We want these two dis-
tributions to be close on an arbitrary subset of X .
For simplicity, we takeXK as the subset and define
the consistency loss as

Lηconsist = KL
[1
T

T∑
t=1

Pθ(·|q,XK , y<t) ||

softmax(Eη(q, xi), xi ∈ XK)
]
.

(5)

Note that the consistency loss is superscripted with
the extractor’s parameters η, which means that we
do not compute gradients for the generator’s param-
eters θ. Since we want the distributional distance
to be small on an arbitrary subset of X , we do not
propagate gradients through the top-K operator.

2.4 Leveraging Extractive Oracles

For long-input summarization, the extracted snip-
pets XK used during training are important for the
stable optimization. Instead of using the definition
of XK in Eq. (1), which is adopted at test time,
we propose to leverage extractive oracles during
training.

Greedy search for extractive oracles Extrac-
tive oracles denote a set of selected text snippets
whose concatenation maximizes the evaluation met-
ric given the gold summary. We implement the
extractive oracle using greedy search. Specifically,
we start with an empty set, and we iteratively select
a snippet from the input such that the concatenation
of that snippet and the already selected snippets
maximizes the average of ROUGE-1, ROUGE-2
and ROUGE-L scores given the gold summary. We
denote the extractive oracles as Xo.

Hybrid training We leverage the extractive or-
acles to define XK used during training. If the
number of oracles equals or exceeds K, we define
XK as the first K oracle snippets. If the number of
oracles is less than K, we define XK as the union
of Xo and the top snippets ranked by the extractor
that are not appearing in Xo. Such hybrid train-
ing has two benefits. First, compared with XK

defined in Eq. (1), it provides higher-quality inputs
to the generator. Second, it reduces the reliance
on the oracle and improves the generalizability of
our model beyond the training set. Specifically, it
is possible that there are other text snippets in the
source input that are omitted in the greedy oracle
extraction but could still help the generation. This
way, hybrid training allows our model to capture a
greater variety of source text snippets.

Oracle loss The extractive oracles Xo are used
as a supervision signal for the extraction part of
our model. The oracle loss Lηoracle is computed
from the cross-entropy loss between all chunks in
the extractor selected set and the extractive oracle.

Formally, the oracle Loss is computed as

Lηoracle = −
1

|Xo|
∑
x∈Xo

log
eEη(q,x)∑

xi∈X e
Eη(q,xi)

(6)

2.5 Training Objective

The overall training objective of our method is

Lθ,η = λgLθgen + λoLηoracle + λcLηconsist (7)

where λg, λo, and λc are hyperparameters to bal-
ance the loss components. Gradients are computed
for the superscripted parameters. Specifically, the
extractor is solely optimized with the consistency
loss and the oracle loss, and the generator is solely
optimized with the generation loss.

3 Experiments

3.1 Datasets and Baselines

QMSum (Zhong et al., 2021c) is a benchmark
for query-based multi-domain meeting summariza-
tion. It consists of meetings from three domains,
including AMI and ICSI, and the committee meet-
ings of the Welsh Parliament and Parliament of
Canada. The meetings in this dataset comprise of a
large number of turns uttered by multiple speakers.

GovReport (Huang et al., 2021) is a large-scale
long document summarization dataset, consisting
of about 19.5k U.S. government reports with expert-
written abstractive summaries. GovReport is a
good benchmark as it contains significantly longer
documents (average 9.4k words) and summaries
(553 words) than other long document datasets,
such as ArXiv, PubMed (Cohan et al., 2018), Bill-
Sum (Kornilova and Eidelman, 2019), and Big-
Patent (Sharma et al., 2019). The GovReport au-
thors also note that salient information is more
scattered across the documents. A comparison of
the datasets is presented in Table 1.

Baselines We used reported baselines. The base-
lines for the QMSum paper came from (Zhong
et al., 2021a). The baseline used for GovRe-
port came from the original paper (Huang et al.,
2021), which experiments with multiple encoder
self-attention, encoder-decoder attention patterns
on BART-large.

3.2 Implementation Details

The extractor is initialized with the pretrained
Roberta-base model (Liu et al., 2019). The genera-
tor is initialized with the BART-large (Lewis et al.,
2020a) model. Both models used Hugging Face
implementations. Training is done with the Adam
optimizer. We apply gradient checkpointing (Chen
et al., 2016) to both the extractor and the generator
to save memory. Each experiment is run on a single
NVIDIA Quadro RTX 8000 GPU. We set the batch
size as 8 (1 sample per forward pass with gradient
accumulation step set to 8).

ROUGE (Lin, 2004) is used as the automatic
evaluation metrics throughout all experiments. We
split the sentence in each generated summary to
obtain the full ROUGE-L scores.

3.3 Automatic Evaluation

For automatic evaluation, we report ROUGE-1,
ROUGE-2, and ROUGE-L. The results are summa-
rized in Table 2 and Table 3.

Our model DYLE achieved state-of-the-art per-
formance on both datasets. On the GovReport
dataset, we achieved 4.15 ROUGE-1 improvement,
6.21 ROUGE-2 improvement, and 4.00 ROUGE-L
improvement compared to the currently best model.

On the QMSum dataset, we achieved 2.13
ROUGE-1 improvement, 1.04 ROUGE-2 improve-
ment, and 1.93 ROUGE-L improvement compared
to the state-of-the-art model HMNet.

These results show that DYLE can be applied to
both the long document summarization and long
dialogue summarization tasks.

3.4 Evaluation of Auxiliary Optimizations

We conduct detailed studies to investigate the ef-
fectiveness of the auxiliary optimizations we in-
troduced. Specifically, we report the full model’s
performance after removing 1) hybrid training, 2)
consistency loss, 3) oracle loss. The results are
summarized in Table 4. Without the hybrid train-
ing optimization, only the extractive oracles will
be used to train the generator.

We see that excluding either of the hybrid train-
ing, consistency loss, and oracle loss optimization
leads to a performance drop. Training the model
without the supervision of the oracle leads to the
greatest decrease in model performance, showing
the importance of good supervision for the extrac-
tor. Removing the consistency loss also decreases
the model performance. This shows that there

Dataset Src. length Tgt. length

Document
GovReport (Huang et al., 2021) 9409 553
PubMed (Cohan et al., 2018) 3049 202
ArXiv (Cohan et al., 2018) 6030 273
BillSum (Kornilova and Eidelman, 2019) 1813 208
BigPatent (Sharma et al., 2019) 3573 117

Dialogue
QMSum (Zhong et al., 2021c) 9070 69
AMI (Carletta et al., 2005) 6008 297
ICSI (Janin et al., 2003) 13317 489
MediaSum (Zhu et al., 2021) 1554 14
SummScreen (Zhu et al., 2021) 6613 337

Table 1: Comparison of Document and Dialogue Summarization Dataset.

R-1 R-2 R-L

Bart-large variants
Full (1024) 52.83 20.50 50.14
Stride (4096) 54.29 20.80 51.35
LIN. (3072) 44.84 13.87 41.94
LSH (4096) 54.75 21.36 51.27
Sinkhorn (5120) 55.45 21.45 52.48

Bart-large + HEPOS
LSH (7168) 55.00 21.13 51.67
Sinkhorn (10240) 56.86 22.62 53.82

DYLE (ours) 61.01 28.83 57.82

Table 2: Automatic evaluation on GovReport, where R
stands for ROUGE metric

R-1 R-2 R-L

Baseline with Locator
PGNet (2048) 28.74 5.98 25.13
Bart-large (3072) 32.16 8.01 27.72
HMNet (8192) 32.29 8.67 28.17
Longformer (8192) 31.60 7.80 20.50
UNILM-base (5120) 29.14 6.25 25.46
UNILM-CP (5120) 29.19 6.73 25.52

With DialogLM Pretraining
DialogLM (5120) 34.02 9.19 29.77
DialogLM - Sparse (8192) 33.69 9.32 30.01

DYLE (ours) 34.42 9.71 30.10

Table 3: Automatic evaluation on QMSum.

could still be text snippets that can further improve
the summarization but are not included in the greed-
ily extracted oracles.

3.5 Analysis of Extracted Snippets

We are interested in the amount of salient infor-
mation passed to the generator. To investigate,
we report the decomposed precision and recall of
ROUGE scores in Table 5. We observe that the
extracted snippets have much higher recall than the
generated summaries, and the generated summaries

R-1 R-2 R-L

GovReport
Full 61.01 28.83 57.82
w/o hybrid 60.89 28.28 57.31
w/o consistency 60.59 28.48 57.49
w/o oracle 57.57 25.92 53.14

QMSum
Full 34.42 9.71 30.10
w/o hybrid 31.77 8.33 28.37
w/o consistency 32.51 8.77 28.94
w/o oracle 32.13 8.38 28.63

Table 4: Experiments on auxiliary optimizations.

have higher precision. It suggests that one way to
improve the overall performance is to increase the
information coverage (i.e., recall) of the extractor
and to more accurately identify the salient snippets
(i.e., precision) in the generator.

4 Discussion

Capacity to Summarize Longer Input This pa-
per demonstrates the effectiveness of latent extrac-
tion for abstractive summarization, in both long
document summarization and long dialogue sum-
marization. The first-step extraction picks out
salient information from the long input, thereby
greatly extending the input length that the model
can handle. Previous Bart-large-based baselines on
GovReport, even with sparse encoder self-attention
and encoder-decoder attention, are only able to pro-
cess up to 10,240 tokens. However, our model can
handle the long input at its full length.

Interpretability of Dynamic Weights Our ap-
proach is more interpretable than sparse attention
and two-step extraction-generation pipeline meth-
ods. Specifically, dynamic weights in the generator
show how the information is used throughout the

ROUGE-1 ROUGE-2 ROUGE-L

P R F1 P R F1 P R F1

GovReport
Extracted snippets 48.98 73.40 57.56 24.20 36.59 28.53 46.28 69.25 54.35
Generated summary 63.16 61.61 61.01 29.85 29.10 28.83 59.88 58.35 57.82

QMSum
Extracted snippets 4.25 76.90 7.74 1.36 28.41 2.49 3.99 72.83 7.26
Generated summary 29.78 45.64 34.42 8.39 13.06 9.71 26.14 39.70 30.10

Table 5: Precision-recall decomposition of ROUGE scores.

decoding process. In Figure 4, we visualize the dy-
namic weights for the extracted snippets assigned
by the generator during decoding. In each subfig-
ure, we visualize the dynamic weight matrices of
the generated summary and a random summary
from other samples in the validation set. The x-
axis and y-axis represent the index of the extracted
top-K snippets and the decoding time step, respec-
tively. Darker squares denote higher weights. For
each generated summary, we observe multiple con-
secutive high-weight areas, indicating alignments
between the extracted snippets and the generated
summary. By contrast, weights are uniformly dis-
tributed for random summaries.

Comparison with RAG The generator of our
method is related to but differ significantly from
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020b). The similarity only lies in the idea
of marginalization over a set of text snippets. How-
ever, unlike our dynamic weights, the weights in
RAG remains static during decoding. Specifically,
using our notations, RAG decomposes the genera-
tion probability as:

Pθ(y|q,XK) =

T∏
t=1

Pθ(yt|q,XK , y<t)

=

T∏
t=1

∑
x∈XK

Pθ(yt|q, x, y<t)Pθ(x|q,XK).

(8)

The static weight Pθ(x|q,XK) in Eq. 8 is com-
puted based on q and XK , while our dynamic
weight Pθ(x|q,XK , y<t) is additionally condi-
tioned on the already generated tokens. Further-
more, RAG retrieves a set of documents, whereas
our extractor extracts text snippets from the input.

Effect of K in top-K We vary the value of K
of top-K in Eq. (1) and test it on both the GovRe-
port and QMSum datasets. We observe that model
performance generally increases as the value of K

R-1 R-2 R-L

GovReport
K=25 61.01 28.83 57.82
K=20 59.25 27.46 55.74
K=15 58.55 26.95 54.89
K=10 54.98 24.10 51.25

QMSum
K=25 34.42 9.71 30.10
K=20 33.10 8.69 29.62
K=15 31.78 8.36 28.31
K=10 33.30 9.18 29.53

Table 6: Experiments on different values of K.

R-1 R-2 R-L

GovReport
Extractor Output 61.01 28.83 57.82
Oracle 68.02 39.16 65.29

QMSum
Extractor Output 34.42 9.71 30.10
Oracle 39.80 14.74 36.06

Table 7: Experiments of feeding extractive oracles to
generator.

increases. Results are summarized in Table 6. Due
to the limitation of computational resources, the
largest K value we tried is 25.

Extractor performance We feed the extractive
oracle to the generator. The results are summarized
in Table 7. We observe that extractive oracle con-
tains more salient information than the text snippets
extracted by extractor.

Future Directions One future direction is to
adapt our approach to other long input generation
tasks, such as open-domain question answering and
response generation in multi-turn dialogue systems
when the dialogue history is long.

5 Related Work

Sparse Attention Mechanism The full attention
mechanism has a quadratic dependency on mem-

Generated summary

To
p-

K

Random summary

To
p-

K

(a) QMSum sample 1

Generated summary

To
p-

K

Random summary

To
p-

K

(b) QMSum sample 2

Generated summary

To
p-

K

Random summary

To
p-

K

(c) GovReport sample 1

Generated summary

To
p-

K

Random summary

To
p-

K

(d) GovReport sample 2

Figure 4: Dynamic weight visualization. We visualized the dynamic weight matrices of the generated summary
and a random summary from other samples in the validation set. x-axis: decoding time step; y-axis: index of the
extracted top-K snippets. Darker squares stand for higher weights.

ory. Prior research works have proposed differ-
ent sparse attention mechanisms that reduce the
memory cost. Longformer (Beltagy et al., 2020)
uses a dilated sliding window of blocks and task-
motivated global attention patterns. BigBird (Za-
heer et al., 2020) treats attention patterns as a graph
sparsification problem and employs sliding window
and random blocks to simplify attention complex-
ity. Reformer (Kitaev et al., 2020) makes use of
the locality-sensitive hashing to reduce the mem-
ory complexity. In addition to optimizing the en-
coder self-attention, Huang et al. (2021) proposes
head-wise positional strides to reduce the cost of
the encoder-decoder attention. However, sparse
attention diminishes the benefits of pretraining and
sacrifices parts of the receptive field.

Extract-then-abstract Method The model first
extracts salient text snippets from the input, fol-
lowed by rewriting them abstractively to generate a
concise overall summary. Most two-stage summa-
rization approaches (Zhang et al., 2019; Lebanoff
et al., 2019; Xu and Durrett, 2019; Bajaj et al.,
2021) are trained separately, which suffer from in-
formation loss due to the cascaded errors. Some

approaches attempt to reduce that loss by bridging
the two stages. Chen and Bansal (2018) adopts
an extract-then-rewrite approach using Reinforce-
ment Learning with a sentence-level policy gradi-
ent method. Bae et al. (2019) improves it by using
summary-level policy gradient. In addition to the
drawbacks explained in Section 2.3, our model is
different as we jointly train an extract-then-abstract
model for summarization using latent variables.

Divide-and-conquer Approach A common ap-
proach in long input summarization is divide-and-
conquer (Gidiotis and Tsoumakas, 2020; Grail
et al., 2021). This approach breaks a long input into
multiple parts, which are summarized separately
and later combined to produce a final complete
summary. However, these models do not capture
the contextual dependencies across parts and need
to assume a certain structure of the input (such as
paper sections).

Hierarchical Models Various hierarchical mod-
els have been proposed to handle the longer in-
puts. Cohan et al. (2018)’s model consists of a
hierarchical encoder that models the document dis-

course structure and an attentive discourse-aware
decoder to generate the summary. HAT-Bart (Ro-
hde et al., 2021) proposes a new Hierarchical Atten-
tion Transformer-based architecture that attempts
to capture sentence and paragraph level informa-
tion. HMNet (Zhu et al., 2020) builds a hierarchical
structure that includes discourse level information
and speaker roles. However, these models focus
mainly on model performance and not on reducing
the memory and computational cost.

Latent Retrieval in Open-domain QA RAG
(Lewis et al., 2020b) used a parametric memory
of the Transformer and a non-parametric memory
of Wikipedia vector index. It trains these compo-
nents in a probabilistic model end-to-end. REALM
(Guu et al., 2020) augments language model pre-
training with a latent knowledge retriever. Both
these papers are on open-domain Question Answer-
ing and little attention has been given to long input
summarization using latent variables.

6 Conclusions

In this paper, we propose the first framework that
jointly trains an extract-then-abstract model with
latent extraction for long input summarization. We
demonstrate its effectiveness by testing on the Gov-
Report and QMSum datasets. Our model signifi-
cantly outperforms the current state-of-the-art on
both, while having the advantages of being able to
process arbitrary long input, low memory cost, and
interpretable generator weights.

Acknowledgment

The authors would like to thank Ming Zhong and
Yixin Liu for their discussions. This work is sup-
ported in part by a grant from Microsoft Research.

References
Sanghwan Bae, Taeuk Kim, Jihoon Kim, and Sang-

goo Lee. 2019. Summary level training of sentence
rewriting for abstractive summarization. In Proceed-
ings of the 2nd Workshop on New Frontiers in Sum-
marization, pages 10–20.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ahsaas Bajaj, Pavitra Dangati, Kalpesh Krishna, Prad-
hiksha Ashok Kumar, Rheeya Uppaal, Bradford

Windsor, Eliot Brenner, Dominic Dotterrer, Rajarshi
Das, and Andrew McCallum. 2021. Long docu-
ment summarization in a low resource setting us-
ing pretrained language models. In Proceedings of
the ACL-IJCNLP 2021 Student Research Workshop,
ACL 2021, Online, JUli 5-10, 2021, pages 71–80.
Association for Computational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
CoRR, abs/2004.05150.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike
Flynn, Mael Guillemot, Thomas Hain, Jaroslav
Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa
Kronenthal, et al. 2005. The ami meeting corpus:
A pre-announcement. In International workshop on
machine learning for multimodal interaction, pages
28–39. Springer.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. CoRR, abs/1604.06174.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 1: Long Papers, pages 675–686. Association
for Computational Linguistics.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. CoRR, abs/1904.10509.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A discourse-aware attention
model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 615–621,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Alexios Gidiotis and Grigorios Tsoumakas. 2020. A
divide-and-conquer approach to the summarization
of long documents. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 28:3029–
3040.

Quentin Grail, Julien Perez, and Eric Gaussier. 2021.
Globalizing BERT-based transformer architectures
for long document summarization. In Proceedings
of the 16th Conference of the European Chapter
of the Association for Computational Linguistics:
Main Volume, pages 1792–1810, Online. Associa-
tion for Computational Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. REALM: retrieval-
augmented language model pre-training. CoRR,
abs/2002.08909.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://aclanthology.org/2021.acl-srw.7
https://aclanthology.org/2021.acl-srw.7
https://aclanthology.org/2021.acl-srw.7
http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
https://doi.org/10.18653/v1/P18-1063
https://doi.org/10.18653/v1/P18-1063
https://doi.org/10.18653/v1/P18-1063
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.1109/TASLP.2020.3037401
https://doi.org/10.1109/TASLP.2020.3037401
https://doi.org/10.1109/TASLP.2020.3037401
https://aclanthology.org/2021.eacl-main.154
https://aclanthology.org/2021.eacl-main.154
http://arxiv.org/abs/2002.08909
http://arxiv.org/abs/2002.08909

Luyang Huang, Shuyang Cao, Nikolaus Nova Parulian,
Heng Ji, and Lu Wang. 2021. Efficient attentions
for long document summarization. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 1419–1436. Associ-
ation for Computational Linguistics.

Adam Janin, Don Baron, Jane Edwards, Dan Ellis,
David Gelbart, Nelson Morgan, Barbara Peskin,
Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke,
et al. 2003. The icsi meeting corpus. In 2003 IEEE
International Conference on Acoustics, Speech, and
Signal Processing, 2003. Proceedings.(ICASSP’03).,
volume 1, pages I–I. IEEE.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In Inter-
national Conference on Learning Representations.

Anastassia Kornilova and Vladimir Eidelman. 2019.
Billsum: A corpus for automatic summarization of
us legislation. In Proceedings of the 2nd Workshop
on New Frontiers in Summarization, pages 48–56.

Logan Lebanoff, Kaiqiang Song, Franck Dernoncourt,
Doo Soon Kim, Seokhwan Kim, Walter Chang, and
Fei Liu. 2019. Scoring sentence singletons and pairs
for abstractive summarization. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2175–2189, Florence,
Italy. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020a. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of ACL 2020,
Online, July 5-10, 2020, pages 7871–7880.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020b. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. In NAACL-HLT.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Tobias Rohde, Xiaoxia Wu, and Yinhan Liu. 2021. Hi-
erarchical learning for generation with long source
sequences. arXiv preprint arXiv:2104.07545.

Eva Sharma, Chen Li, and Lu Wang. 2019. Bigpatent:
A large-scale dataset for abstractive and coherent
summarization. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2204–2213.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang
Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu
Yang, Sebastian Ruder, and Donald Metzler. 2020a.
Long range arena: A benchmark for efficient trans-
formers. arXiv preprint arXiv:2011.04006.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020b. Efficient transformers: A survey.
CoRR, abs/2009.06732.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 5998–6008.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8:229–256.

Jeff Wu, Long Ouyang, Daniel M Ziegler, Nissan Sti-
ennon, Ryan Lowe, Jan Leike, and Paul Christiano.
2021. Recursively summarizing books with human
feedback. arXiv preprint arXiv:2109.10862.

Jiacheng Xu and Greg Durrett. 2019. Neural extractive
text summarization with syntactic compression. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3292–
3303, Hong Kong, China. Association for Computa-
tional Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. In NeurIPS.

Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang.
2019. Pretraining-based natural language genera-
tion for text summarization. In Proceedings of the
23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 789–797.

https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.18653/v1/P19-1209
https://doi.org/10.18653/v1/P19-1209
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2009.06732
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.18653/v1/D19-1324
https://doi.org/10.18653/v1/D19-1324

Ming Zhong, Yang Liu, Yichong Xu, Chenguang Zhu,
and Michael Zeng. 2021a. Dialoglm: Pre-trained
model for long dialogue understanding and summa-
rization. arXiv preprint arXiv:2109.02492.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah,
Asli Celikyilmaz, Yang Liu, Xipeng Qiu, and
Dragomir R. Radev. 2021b. Qmsum: A new bench-
mark for query-based multi-domain meeting summa-
rization. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11,
2021, pages 5905–5921. Association for Computa-
tional Linguistics.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan, Asli Celikyil-
maz, Yang Liu, Xipeng Qiu, et al. 2021c. Qmsum:
A new benchmark for query-based multi-domain
meeting summarization. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5905–5921.

Chenguang Zhu, Yang Liu, Jie Mei, and Michael Zeng.
2021. Mediasum: A large-scale media interview
dataset for dialogue summarization. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5927–5934.

Chenguang Zhu, Ruochen Xu, Michael Zeng, and Xue-
dong Huang. 2020. A hierarchical network for ab-
stractive meeting summarization with cross-domain
pretraining. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: Findings, pages 194–203.

A Additional Dynamic Weight
Visualization

https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472
https://doi.org/10.18653/v1/2021.naacl-main.472

Generated summary

To
p-

K

Random summary

To
p-

K

(a) QMSum sample 1

Generated summary

To
p-

K

Random summary

To
p-

K
(b) QMSum sample 2

Generated summary

To
p-

K

Random summary

To
p-

K

(c) QMSum sample 3

Generated summary

To
p-

K

Random summary

To
p-

K

(d) QMSum sample 4

Generated summary

To
p-

K

Random summary

To
p-

K

(e) QMSum sample 5

Figure 5: Dynamic weights visualization on QMSum.

Generated summary

To
p-

K

Random summary

To
p-

K

(a) GovReport sample 1

Generated summary

To
p-

K

Random summary

To
p-

K

(b) GovReport sample 2

Generated summary

To
p-

K

Random summary

To
p-

K

(c) GovReport sample 3

Generated summary

To
p-

K

Random summary

To
p-

K

(d) GovReport sample 4

Generated summary

To
p-

K

Random summary

To
p-

K

(e) GovReport sample 5

Figure 6: Dynamic weights visualization on GovReport.

