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Image Captioning 

Visuo-Linguistic QA

Visual Question Answering
Q: how many people are waiting for bus?

A: Two?  or Three?

Physical 
Constraints!

Semantic 
Constraints???

from Internet



Visual Recognition as Pattern Matching: 

“Visual recognition is a cognitive process 
that involves identification of a visible 
CATEGORY from previous encounters ”

Visual Recognition as it is: 

“Visual recognition is a cognitive process that involves identification 
of a visible CONCEPT from previous encounters or KNOWLEDGE.”

What is a concept?

“… A theory of concepts should describe the kind of knowledge 
stored in concepts, the way they are used in agents’ cognitive 
processes, their format, their acquisition, and their neural 
localization… ”

Categories ≠ Concepts

≠



BUT,  before we move on… we need benchmarking tasks… to validate our ideas…
From the community: 

Image Captioning 
(Flickr 8k, MSCOCO, etc.)

Video Captioning (MSR-VTT, VATEX, etc.)

Visual Question Answering 
(VQA, VQA-CP, etc.)

Visual Navigation 
(House3D (FAIR), AI2THOR, 

RxR etc.)



linguistic contextual information -> Explicit Knowledge Representation: Scene Description Graphs (SDGs) 

ACS 16’
DeepIU Scene Description Graph (SDGs)

CVIU 17’
Image Under. w/ SDG

SDGs project webpage:
https://adityasomak.github.io/publication/sdg_cviu/

Semantic 
Constraints

EMNLP 11’ 
Sen. Gen. from Img, Captioning



Explicit Knowledge Representation Pros: 
- Compatible with explicit reasoning over multiple knowledge resources;
- A direct decoding yields explicit explanations for end users (for explainable AI). 

AAAI 18’
Explicit  Reasoning  f/ VQA

UAI 18’
Knowledge & Reasoning for Image Puzzles



Explicit Knowledge Representation Limitations: 
- Even with soft reasoning engines such as 

(Probabilistic Soft Logic), the lingering 
inconsistencies among multiple knowledge 
resources could still hurt the overall 
performance. 

- High fidelity requirement and low error 
tolerance towards knowledge sources. Especially 
when dealing with noisy detection inputs from 
the visual pathway. 

- Computationally expensive (even with an 
accelerated & approximate PSL engine), the 
inferencing time is still comparatively much 
slower than end-to-end approaches.

IJCAI 19’
Integrating Know. & Rea. 
f/ Image Under.



Explicit Knowledge Representation has limitations, so what’s next? 
• Observation: VQA models cannot comprehend NEGATION, CONJUNCTION, and DISJUNCTION
• Solution: Explicit Knowledge Distillation with Data Re-engineering to improve VQA robustness?

NEGATION

Tan & Bansal, LXMERT: Learning Cross-Modality Encoder Representationsfrom Transformers, EMNLP 2019

Intelligence?! 

Never mind…



Q1 : Is there beer?
VQA 

Model

Q2 : Is the man wearing shoes?
VQA 

Model

Q1 ^ ¬Q2 : Is there beer and is the man
not wearing shoes?

VQA Model

LOGICAL COMPOSITION



VQA-Compose
Compositions of questions from VQA-v2
For each pair of questions, we use 10 propositional formulae to generate logically composed 
questions, and their ground-truth answer



VQA-Supplement
Created using objects, antonyms, and captions



● Fréchet Inequlities bound the probabilities of events involving logical operations 
[Fréchet, 1935].

● In our case, we can use Fréchet Inequalities, with events being the answers to the 
questions.

● We define Fréchet Mean mA to be the average of the left and right Fréchet bounds;  
mA = (bL + bR)/2.

● Then, the Fréchet-Compatibility Loss is given by

How to design semantic constraints or regularizations that can help leverage the data re-engineering? 



Cross-
Modal 

Feature 
Encoder

Question
Attention

Logical
Attention

Answering
Module

Is there beer and
is the man not
wearing shoes?

logical connectives 
= “and”, “not” 

question-type 
= “yes/no” 

Frechet 
Compatibility 

Loss

Semantic 
Constraints!



Visual Question Answering under the Lens of Logic
VQA-LOL



Comparison with Baseline models
on VQA test-set and logical samples



Explicit Knowledge Representation has limitations, so what’s next? 
• Observation: VQA models cannot comprehend NEGATION, CONJUNCTION, and DISJUNCTION
• Solution: Explicit Knowledge Distillation with Data Re-engineering to improve VQA model robustness?
• A continuation: VQA-LOL is with linguistic re-engineering, how about image re-engineering to improve 

model robustness? 

Intelligence?! 

Never mind…

A: Green

A: I think it is still green?...



• What color is the banana? Yellow (coz dataset, duh)

• What sport are the men Tennis  (coz dataset, duh)
playing?

VQA-CP Dataset: Agrawal et al. CVPR 2018



Concept of Input Mutations
Enable the mutation of inputs (questions and images) to expose the VQA
model to perceptually similar, yet semantically dissimilar samples.

Let X = (Q, I) denote an input to a VQA system with a true answer “a”.

A mutant input X* = , or X* = leads to a new answer “a*”.

Image Mutations: removal of objects, morphing of object colors
Question Mutations: word-masking, word-substitution, negation

(Q, I*) (Q*, I) 



Generating Input Mutations
Generative Image inpainting from : Yu et al. CVPR 2018



Generating Input Mutations
Template-based negation from -- VQA-LOL: Gokhale et al. ECCV 2020



VQA-MUTANT. Loss Functions
Traditional VQA Loss:

Answer Projection: 



Pair-wise Consistency:

X za_pred Xm zm
a_pred

A   “three” za_GT Am         “zero” zm
a_GT

VQA-MUTANT. Loss Functions

“distance between predictions for mutant sample and original sample, 
must be consistent with the distance between true answers for mutant 
and original samples” Semantic 

Constraints!



Traditional VQA Loss:

Answer Projection: 

Pair-wise Consistency:

VQA-MUTANT. Loss Functions



Results: VQA-CP Accuracy
UpDn: Anderson et al. CVPR 2018

LXMERT: Tan et al. EMNLP 2019



Analysis: Effect of Mutant Samples

Comparison of our best 
model when trained 
with: image mutations, 
question mutations, and 
both types of mutations.

UpDn: Anderson et al. CVPR 2018
LXMERT: Tan et al. EMNLP 2019

Comparison of Backbone 
models (UpDn, LXMERT) 
trained with VQA-CP data 
augmented with MUTANT 
samples.





• We distinguish LOL and MUTANT from data-augmentation, because the mutations 
can inform the design of semantic constraints or regularizations that can help 
leverage a pair of related inputs.

• Recent work in image classification (SimCLR, AugMix) shows that carefully designed 
input manipulations can benefit generalization.

SimCLR: Chen et al. ICML 2020
AugMix: Hendrycks et al. ICLR 2020 

Explicit Knowledge Representation has limitations, so what’s next? 
• Observation: VQA models cannot comprehend NEGATION, CONJUNCTION, and DISJUNCTION
• Solution: Explicit Knowledge Distillation with Data Re-engineering to improve VQA model robustness? 

Yes.
• A continuation: VQA-LOL is with linguistic re-engineering, how about image re-engineering to improve 

model robustness? Yes. 



Robustness in VQA has become an active area of research within the past few 
years, with many challenges and benchmarks being established

● Challenges such as VQA-CP aim to achieve generalization w.r.t. distributional shift in the answer-space.
● Selvaraju et al, CVPR 2020 tackle robustness to sub-questions.
● Ray et al, EMNLP 2019 tackle robustness to entailed questions.
● Ribeiro et al, ACL 2019 work on robustness to implied questions.
● Shah et al, CVPR 2019 use cycle-consistency for rephrased questions.



Explicit Knowledge Representation has limitations, so what’s next? 
• Observation: VQA models cannot comprehend NEGATION, CONJUNCTION, and DISJUNCTION
• Solution: Explicit Knowledge Distillation with Data Re-engineering to improve VQA model robustness? 

Yes. VQA-LOL.
• VQA-LOL is with linguistic re-engineering, how about image re-engineering to improve model 

robustness? Yes. VQA-MUTANT, because the mutations can inform the design of semantic constraints or 
regularizations that can help leverage a pair of related inputs.

• Can we distill explicit knowledge into a model to enrich generated outputs? (such as video captions). 

How does human understand the observed event? [1]

The person is eating.

event

cause

Because he is
hungry.

He is seen as
starving.

attribute

finish all the food 
on his plate

effect

1. Maarten Sap, Ronan Le Bras, Emily Allaway, Chandra Bhagavatula, Nicholas 
Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi . ATOMIC: 
An Atlas of Machine Commonsense for If-Then Reasoning? 

Semantic 
Constraints!



EMNLP 11’ 
Sen. Gen. from Img, Captioning

ACS 16’
DeepIU
Scene
Description
Graph (SDG)

CVIU 17’
Image Under.
w/ SDG

EMNLP 20’
V2C: Video to 
Commonsense

https://asu-active-perception-
group.github.io/Video2Commonsense/index.html

The 2020 Conference on Empirical Methods in Natural Language Processing
16th – 20th November 2020

https://asu-active-perception-group.github.io/Video2Commonsense/index.html


Our Datasets and Benchmarking tasks for 

https://imageriddle.wordpress.com/imageriddle/
UAI 2018

https://shailaja183.github.io/vlqa/
EMNLP 2020 findings

Shailaja Sampat

https://github.com/shailaja183/clevr_hyp
NAACL 2021 to appear

https://imageriddle.wordpress.com/imageriddle/
https://shailaja183.github.io/vlqa/
https://github.com/shailaja183/clevr_hyp


Lacks definite ground truth, thus evaluation is challenging… 

https://github.com/JoshuaFeinglass/SMURF
SMURF;  J. Feinglass and Y. Yang,  ACL 2021 

https://github.com/JoshuaFeinglass/SMURF


LOL, MUTANT, V2C… A common semantic augmentation service?

V

L

f(V)

g(L)
F(G(O))O

f: CV (AI)       g: NLP (AI)

Semantic 
Constraints!



https://github.com/JoshuaFeinglass/SMURF
WeaQA; P. Banerjee, et.al,  ACL 2021 Findings

https://github.com/JoshuaFeinglass/SMURF


Geometry cues (depth, surface normal, etc.) guided 
semantic constraints…
Under Review



Visual Recognition as Pattern Matching: 

“Visual recognition is a cognitive process 
that involves identification of a visible 
CATEGORY from previous encounters ”

Visual Recognition as it is: 

“Visual recognition is a cognitive process that involves identification 
of a visible CONCEPT from previous encounters or KNOWLEDGE.”

What is a concept?

“… A theory of concepts should describe the kind of knowledge 
stored in concepts, the way they are used in agents’ cognitive 
processes, their format, their acquisition, and their neural 
localization… ”

Categories ≠ Concepts

≠

Agents



Goal: Locate Music Instrument

Visual 
Navigation 

Model

Goal: Locate Coffee Mug

Visual 
Navigation 

Model

Action: TURN_RIGHT (45 degree)

Action: MOVE_FORWARD()

A



Visual Navigation (Robotic Object Search) as an Active Object Perceiver:

Motivation & Task:

Robot with vision that finds 
objects

Target Object
*E. Kolve, R. Mottaghi, D. Gordon, Y. Zhu, A. Gupta, and A. 
Farhadi, “AI2-THOR: An Interactive 3D Environment for Visual 
AI,” arXiv,2017.

BUT,  before we move on… we STILL need benchmarking tasks… to validate our ideas…



Why Robotic Object Search? 

Captioning; Dense Captioning;
Visual Question Answering;
Image/Video understanding;
Visual Commonsense Reasoning;
… 

…

Visual Navigation;
Visual Language Navigation;
Embodied Visual QA;
Embodied Commonsense Reasoning
… 



• How to define a good reward 
function?
 Reward Functions via Visual Understanding [1]

• How to learn in a sparse reward 
setting?
 Efficient Exploration with Hierarchical Policy [2]

• How to generalize across various 
instances?
 Task-relevant Features from State Observations [3]
 Goal Representation with Goals Relational Graph [4]
 Data-efficient Neural-symbolic Modeling

[1] Active Object Perceiver: Recognition-Guided Policy Learning for Object Searching on 
Mobile Robots. IROS 2018.

[2] Efficient Robotic Object Search via HIEM: Hierarchical Policy Learning with. Intrinsic-
Extrinsic Modeling. RA-L & ICRA 2021

[3] GAPLE: Generalizable Approaching Policy LEarning for Robotic Object Searching in 
Indoor Environment. RA-L & IROS 2019.

[4] Hierarchical and Partially Observable Goal-driven Policy Learning with Goals Relational 
Graph. CVPR 2021, to appear.

Vision-guided Policy Learning for Robotic Object Search



Active Object Perceiver:
Recognition-guided Action Policy Learning

IROS 18’
Active Object
Perceiver



Reward Functions via Visual Understanding

• Qualitative Examples

Reward Func. 2: the area of the target 
object bounding box Ours



Vision-guided Policy Learning for Complex tasks

• How to define a good reward 
function?
 Reward Functions via Visual Understanding [1]

• How to learn in a sparse reward 
setting?
 Efficient Exploration with Hierarchical Policy [2]

• How to generalize across various 
instances?
 Task-relevant Features from State Observations [3]
 Goal Representation with Goals Relational Graph [4]
 Data-efficient Neural-symbolic Modeling

[1] Active Object Perceiver: Recognition-Guided Policy Learning for Object Searching on 
Mobile Robots. IROS 2018.

[2] Efficient Robotic Object Search via HIEM: Hierarchical Policy Learning with. Intrinsic-
Extrinsic Modeling. RA-L & ICRA 2021

[3] GAPLE: Generalizable Approaching Policy LEarning for Robotic Object Searching in 
Indoor Environment. RA-L & IROS 2019.

[4] Hierarchical and Partially Observable Goal-driven Policy Learning with Goals Relational 
Graph. CVPR 2021.



Hierarchical Policy Learning: 



HIEM: Hierarchical Policy Learning: 
RA-L ICRA 21
HIEM

Low-level approaching policy:

Efficient Robotic Object Search via HIEM: Hierarchical Policy Learning with. Intrinsic-
Extrinsic Modeling. RA-L & ICRA 2021
GAPLE: Generalizable Approaching Policy LEarning for Robotic Object Searching in 
Indoor Environment. RA-L & IROS 2019.



Efficient Exploration with Hierarchical Policy

• Quantitative Results
• Dataset: House3D*
• Conclusions:

• The intrinsic rewards help to explore.

• Our intrinsic-extrinsic modeling tends to 
obtain a better performing policy.

• Early termination of the non-optimal low-
level policy is necessary.

SR: Success Rate; 
AS / MS: Average Steps / Minimal Steps over all successful cases; 
SPL: Success weighted by inverse Path Length; 
AR: Average discounted cumulative extrinsic Rewards.

* Wu et al. Building generalizable agents with a realistic and rich 3d environment. arXiv 2018.



Efficient Exploration with Hierarchical Policy

• Qualitative Examples (Ours)






• How to define a good reward 
function?
 Reward Functions via Visual Understanding [1]

• How to learn in a sparse reward 
setting?
 Efficient Exploration with Hierarchical Policy [2]

• How to generalize across various 
instances?
 Task-relevant Features from State Observations [3]
 Goal Representation with Goals Relational Graph [4]
 Data-efficient Neural-symbolic Modeling

[1] Active Object Perceiver: Recognition-Guided Policy Learning for Object Searching on 
Mobile Robots. IROS 2018.

[2] Efficient Robotic Object Search via HIEM: Hierarchical Policy Learning with. Intrinsic-
Extrinsic Modeling. RA-L & ICRA 2021, under review

[3] GAPLE: Generalizable Approaching Policy LEarning for Robotic Object Searching in 
Indoor Environment. RA-L & IROS 2019.

[4] Hierarchical and Partially Observable Goal-driven Policy Learning with Goals Relational 
Graph. CVPR 2021.

Vision-guided Policy Learning for Complex tasks





Hierarchical Policy Learning with Goal Relational Graphs (GRGs) 

Semantic 
Constraints!

HRL-GRG
CVPR 21’

Hierarchical and Partially Observable Goal-driven Policy Learning with 
Goals Relational Graph. CVPR 2021, to appear.



State Representation: Unravelling the Unseen

• Goal Representation with Goals Relational Graph
• Quantitative Results on Grid-world Domain (goals relations are pre-defined)

The performance of all methods on the unseen gird-world maps.

SR: Success Rate
AS / MS: Average Steps / Minimal Steps over all successful cases 
SPL: Success weighted by inverse Path Length

Generalize especially well towards unseen goals!



State Representation: Unravelling the Unseen

• Goal Representation with Goals Relational Graph
• Quantitative Results for Robotic Object Search 

House3D
Wu et al. Building generalizable agents with a 
realistic and rich 3d environment. arXiv 2018.

AI2THOR
Kolve et al. AI2-THOR: An Interactive 3D 
Environment for Visual AI. arXiv 2017.

+: Performance boost to 
the  Random method
SR: Success Rate
SPL: Success weighted 
by inverse Path Length

Object Relations from Visual Genome
Yang et al. Visual semantic navigation using 
scene priors. ICLR 2019.



State Representation: Unravelling the Unseen
• Goal Representation with Goals Relational Graph

• Qualitative Results for Robotic Object Search (Unseen Environment Unseen Goal)

AI2THOR
Kolve et al. AI2-THOR: An Interactive 3D 
Environment for Visual AI. arXiv 2017.






State Representation: Unravelling the Unseen
• Goal Representation with Goals Relational Graph

• Qualitative Results for Robotic Object Search (Unseen Environment Unseen Goal)

House3D
Wu et al. Building generalizable agents with a 
realistic and rich 3d environment. arXiv 2018.






Model Attribution through 
Watermarking

• We studied the sufficient 
conditions of watermarks to 
guarantee attributability.

• I.e., with high probability, 
contents generated by one 
model will not be mistaken as 
by other models

131
[2]

Watermarks

Generated contents

Decentralized Attribution of Generative Models
Kim, Ren and Yezhou Yang. 2021
ArXiv: https://arxiv.org/pdf/2010.13974.pdf
To appear: ICLR 2021 (next talk)

https://arxiv.org/pdf/2010.13974.pdf


IROS 12’
Action Grammar
For Act. Und.

ICRA 12’ 
Lan. Guided
Action Recog. 

ECCV 10’ 
CoH, Visual 
Attention

ACMMM 09’
Grav. Modeling
For Visual 
Attention

ICCV 11’
Scene Recog.
w/ Vis. & Lan. 

EMNLP 11’ 
Sen. Gen. from 
Img, Captioning

CVPR 13’
MAC, Detection 
of Manipulation
Action 
Consequences 

IROS 13’
Minimalist 
Plans
For Mani. 
Action. 

ICRA 13’ 
Visual. 
Recog. 
Using NLP 

ACS 14’
Cog. Sys. for
Understanding
Mani. Actions
w/ MACFG

Humanoids 14’
Mani. Action
Tree Bank

AAAI 15’
Learning Mani.
Actions from Videos 
w/  MACFG

CVPR 15’
Grasp Type 
Revisited 

ACL 15’
Learning Semantics
Mani. Actions
w/ MACCG

ECCV 16’
Attri. Based
Visual Recog.
w/ HPV

ACS 16’
DeepIU
Scene
Description
Graph (SDG)

ICRA 15’
Learning 
Spatial
Semantics

ICRA 17’
Deep
Functional
Scene. Under.

AAAI 18’
Explicit 
Reasoning 
f/ VQA

UAI 18’
Knowledge & 
Reasoning for
Image Puzzles

ICRA RA-L 17’
Long Mani.
Action Captioning

IJCV 17’
Pred. of 
Mani. Actions

CVIU 17’
Image Under.
w/ SDG

CVPR 18’
Transductive
Embedding 
f/ Zero Shot
Visual Recog.

MICCAI 18’
Wkly- Supervised
Feature Loc.  

ICRA 18’
Robot Grasp Slip
Control w/ DPM

IROS 18’
Active Object
Perceiver

IJCAI 19’
Integrating 
Know. & Rea. 
f/ Image Under.

WACV 19’
Spatial KD
f/ Visual
Reasoning

ICRA 19’
How Shall I Drive?

IROS RA-L 19’
GAPLE: Gene.
Appro. Policy 
f/ ROS 

RAS 19’
Learning Mani. 
Actions with 
overall Planning

CVPR 19’
Textual 
Grounding
f/ Counterfactual 
Resilience

WACV 20’
Temporal KD f/ Active 
Perception

EMNLP 20’
VQA-MUTANT: OOD Gene. f/ 
VQA

EMNLP 20’
VLQA: Visual-Linguistic
QA Challenge

EMNLP 20’
V2C: Video to 
Commonsense

ECCV 20’
VQA-LOL: under the Lens 
Of Logic

ECCV 20’
ViTAA: Vis.-Tex.
Alignment in
Person Search w/ NL

ICRA RA-L 20’
Modality Hallucination 
f/ Auto. Driving

IROS 20’
Learning Hie’ Behav. f/ 
Auto. Driving

…

VC-
Commons
ense

ZS-VQA
w/ LDS

…

Auto.
Driving

..
Beyond
Appear
-ances

Robotic
App.

Visual
Recog.

RoboCup
09’ 10’

ICLR 21’
SEED: Self-
supervised KD

ICLR 21’
GAN 
Attribution

…

HRL-GRG
CVPR 21’

ROS-HIEM
(RA-L/ICRA 21)

…



Thank you and Acknowledgements 

NSF CAREER 18’ VR-K

NSF RI SMALL

NSF NRI

NSF CPS

NSF CCRI (planning)

NSF I-Corps

DARPA KAIROS
LESTAT project

ONR Social 
Interaction

Machine Learning
Research Award 19’

and ASU close collaborating groups (Chitta Baral [KR & NLP], Max Yi Ren [Optimization & ML] …) 

… …



• Moving towards a “post-dataset/simulator era”?
• A. Efros, Imagining a post-dataset era, ICML’20 Plenary Talk.

• Breaking the vicious cycles of vision and language research (or even 
more general, all AI…) from a macro-historical view?

Exciting new challenge -> Performance saturation -> Repeating flaws identified (like language bias) -> 
Performance re-saturation again -> …

Captioning -> VQA -> VLN -> VCR…
Adversarial learning (AAAI 2021), self-supervised learning (ICLR 2021), and test-time adaptation, causal 
reasoning (@Damien Teney) might be (already have been shown to be) the ways to go.
Applying hypothetical actions and reason before and after an action is done? 
(CLEVR_HYP: A Dataset and Baselines for Visual Question Answering with Hypothetical Actions over Images, 
Shailaja Sampat, et. al. to appear NAACL-HLT 2021)

• Bridging Low-level Perception (such as Depth) with Visual Reasoning?
• Semantic Augmentation/modeling (LOL, MUTANT, GRGs, etc.) as a 

general tool set for new challenges, to pose novel semantic 
constraints? (many under review, maybe for the next talk?)

Moving forward… 



https://github.com/ASU-Active-Perception-Group/Robust-Vision-Language-Inference-using-STAT

https://github.com/ASU-Active-Perception-Group/Robust-Vision-Language-Inference-using-STAT


@Yezhou_Yang

Email: yz.yang@asu.edu

Open for ZOOM chat. Shoot me an email.
Or on Twitter City of V&L 

CV NLP

mailto:yz.yang@asu.edu
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