
Where-Provenance for Bidirectional Editing in
Spreadsheets

Jack Williams
Microsoft Research

jack.williams@microsoft.com

Andrew D. Gordon
Microsoft Research

& University of Edinburgh
adg@microsoft.com

Abstract—We explore the idea of adding bidirectionality to
spreadsheet formulas, so that editing the output can directly
affect the input. We introduce portals: a portal is a value paired
with its where-provenance, that is, one or more links to its
origin. When a portal is the result of a formula in a cell, that
cell inherits the capability to edit the locations described by
the provenance of the portal. The simplicity of portals makes
them amenable to implementation in an existing spreadsheet
system. We analyse the list of functions provided by a widely-used
commercial spreadsheet system and find that many frequently
used functions work with portals with no modification.

Index Terms—spreadsheets, bidirectional editing, provenance

I. INTRODUCTION

In a spreadsheet we take for granted that formulas compute
values, and those values cannot be edited because they are
computed by the formula. In this paper we explore the idea of
adding bidirectionality to spreadsheet formulas, so that editing
the output can directly affect the input.

Consider the spreadsheet in Figure 1 where a user writes
the formula SORT(UNIQUE(B2:B6)) in D2 and the computed
values spill into the cells below. The formula reveals that the
data is messy with different spellings of the same location.

The user intends to normalise the capitalisations and cell D3
intuitively represents the values in cells B5 and B6. Wouldn’t
it delight the user if they could fix both mistakes at once
simply by changing “england” to “England” in the output of
the formula? We tell users that they cannot edit the output of
a formula, only its inputs. But with portals, they can!

A portal is a value paired with its where-provenance [3],
[11], that is, one or more links to its origin in the spreadsheet.
Users can edit a portal and the change is propagated back to
the origin. In our example, the value in cell D3 is the portal,
written 〈{B5,B6}, “england”〉, which consists of the value
“england” annotated with the where-provenance {B5,B6}.
When a portal is the result of a formula in a cell, that cell
inherits the capability to edit the locations described by the
provenance of the portal. So editing the output at D3 to be
“England”, does the same to the inputs B5 and B6.

Spreadsheets are touted as a canonical example of a user in-
terface built using functional reactive programming (FRP) [4],
[16], [19] or Model-View-Update (MVU), and yet, until now,
direct control over the spreadsheet interface was out of reach
for users. Our work shows that ideas going back to the

Fig. 1. Normalising Values Using Portals and Formulas

view-update problem for databases [17], [20] can bridge the
host interface capabilities and the hosted formula language,
transforming how users interact with spreadsheets.

Prior approaches to bidirectional editing often focus on
the expressiveness of the updates, rather than how it can be
integrated into an existing system. The central idea of this
paper is to show that portals, or where-provenance, provides
a remarkably simple but effective way to support bidirectional
editing in spreadsheets. To support the central idea we make
the following contributions:
• We validate the utility of portals by example. Whilst por-

tals are technically modest, we show that they are capable
of solving problems faced by hundreds of thousands of
spreadsheet users (Section II-B and Section II-C).

• We add portals to a spreadsheet calculus and prove that
portals satisfy the core property of where-provenance
(Theorem 1).

• We evaluate the viability of where-provenance based
bidirectional transformation in spreadsheets. First, we
measure all Excel spreadsheet functions that are concep-
tually capable of propagating where-provenance. Second,
we examine the source code of Calc.ts1 to categorise
which functions support our portal technique with no
additional modification, some modification, or significant
modification. From the Enron spreadsheet corpus [29],

1Calc.ts is the client-side calculation engine used by Excel for the
Web (https://www.microsoft.com/en-us/garage/wall-of-fame/calc-ts-in-excel-
for-the-web/). Screenshots are from PROTO, a TypeScript-based spreadsheet
research prototype.

978–1–6654–4592–4/21/$31.00 © 2021 IEEE

https://www.rarnonalumber.com/en-us/garage/wall-of-fame/calc-ts-in-excel-for-the-web/
https://www.rarnonalumber.com/en-us/garage/wall-of-fame/calc-ts-in-excel-for-the-web/

Fig. 2. PROTO Implementation with Cell Inspector

five of the fifteen most used functions support portals
with no modification.

In summary, compared to the state of the art for bidirectional
spreadsheets by Macedo et al. [33], our approach is simpler
to explain to the user and requires less work per-function to
implement, while still covering many use-cases. A detailed
discussion of provenance and lenses is given in Section VI.

The commercial adoption of array formulas, partly inspired
by the research proposal of arrays in cells [8], exemplifies
the idea that spreadsheets are code [28]. In tandem, there
is much recent research on spreadsheets as programming
languages [5], [9], [10], [37], [40], [44]–[46] or databases [6].
This paper presents and formalises the new programming
language concept of spreadsheet portals.

II. A NEW UNIVERSE OF SPREADSHEETS

Bidirectional program manipulation has been explored in
different guises including lenses [23], [33], output-directed
program manipulation [2], [15], [27], [36], and program syn-
thesis [25], [26]. We implement a spreadsheet-centric approach
to bidirectional editing using where-provenance that is capable
of transforming how users interact with spreadsheets across
many distinct tasks. We validate the versatility of portals with
three examples. The first two examples are implemented in
PROTO1 and demonstrate how our technique tightly integrates
into the spreadsheet paradigm. The last example extends be-
yond the features of PROTO and is illustrated using mock-ups.
Our examples directly draw on real tasks performed within
spreadsheets; Section II-B and Section II-C feature problems
addressed in spreadsheet video tutorials with hundreds of
thousands of views.

A. Example: Data Cleaning

Commercial spreadsheets have recently undergone a radical
transformation that allows a user to write a formula to ma-
nipulate and present ranges of data. When a cell’s formula
computes an array, that array spills out of the cell and into
the surrounding grid. 2 3 For a detailed presentation of spilled
arrays see the work by [45]. Where previously a user would

2https://aka.ms/excel-dynamic-arrays
3https://support.google.com/docs/answer/6208276?hl=en

have to invoke a command to sort or filter a range in-place,
now they just write a formula. Formulas and spilled arrays can
replace much of the ad-hoc functionality used to process grid
data, but without portals they lack the capability to update the
input data from the output of a transformation.

Figure 2 presents the same example from Figure 1, but ad-
ditionally, illustrates how we use where-provenance to explain
the effect of an update. The small floating blue rectangle in
Figure 1 is the minimised cell inspector; when the inspector
is clicked it expands and presents information about the active
cell, as illustrated in Figure 2. The inspector reveals that the
value in D3 is a portal with provenance that links the value to
the cells B5 and B6. Portals implement aggregated where-
provenance [41], where an annotated value can refer to a
set of locations. When UNIQUE finds a pair of portals that
point to the same value, the locations are aggregated. In this
example, portals 〈{B5}, “england”〉 and 〈{B6}, “england”〉 are
inputs to UNIQUE, and the portal 〈{B5,B6}, “england”〉 is the
aggregated value in the output. Aggregated where-provenance
lets the user update multiple cells simultaneously. When
the user types “England” in cell D3, both B5 and B6 will
be updated. The edits applied to each source location are
normal spreadsheet edits and trigger recalculation of formula
= SORT(UNIQUE(B2:B6)) in D2. There are now three
unique values: “brazil”, “England”, and “senegal”, that spill
into the cells below. The cell D3 will change to “England”,
the cell D4 will change to “senegal”, and the cell D5 will
become blank.

A feature of PROTO is that when the inspector is maximised
and the active cell contains a portal, the cells described by
the portal’s provenance are highlighted using coloured foils.
Highlighting cells is a familiar pattern to spreadsheets users,
typically used to indicate the cells referenced by a formula.
In our setting, the foils indicate the origin cells for values in
the output of a formula. The coloured foils present a clear
explanation of the effect of the bidirectional edit: when a user
makes an edit to the active cell, the edit is uniformly applied
to all highlighted cells.

B. Example: User Interface Controls

Another aspect of spreadsheets that makes them popu-
lar is their capability as a data presentation tool. A single
spreadsheet can combine data, calculation, and formatting to
build a presentation. With the addition of portals we provide
the capability to build interactive presentations that exploit
many existing spreadsheet features. Aspects of this example
are derived from a spreadsheet video tutorial4 with over
two hundred thousand views; the video shows how to bind
spreadsheet values to GUI controls such as buttons.

Figure 3 presents an example calculation (left) spanning
range A1 :E6, and derived presentational views (middle and
right) both spanning range J14:K18. The literal value labelled
by 1 is a conversion rate, and the literal value labelled by 2

4https://web.archive.org/web/20210216032419if /https://www.youtube.
com/watch?v=qMQ0UB6WyKQ

https://aka.ms/excel-dynamic-arrays
https://support.google.com/docs/answer/6208276?hl=en
https://web.archive.org/web/20210216032419if_/https://www.youtube.com/watch?v=qMQ0UB6WyKQ
https://web.archive.org/web/20210216032419if_/https://www.youtube.com/watch?v=qMQ0UB6WyKQ

Fig. 3. Calculation and Interactive GUI Controls: Calculation (left), GUI controls (middle and right)

is used to enable a currency conversion. The cell labelled by
3 holds the formula = B2:B5 ∗ IF(D2,D1, 1). The formula

multiplies each cell in the range B2 :B5 by the conversion
rate when enabled, or 1 otherwise. The output is an array of
converted values which spill down. The cell labelled by 4
holds the formula = SUM(C2:C5).

Suppose the user wants to construct an interactive summary
of the data, as depicted by the grid in the middle of Figure 3.
Without portals, the summary must span the same inputs used
by the calculation (D1 and D2) otherwise there is no mecha-
nism to update the inputs, hence the logic and visualisation are
coupled. Systems such as Excel allow users to create floating
controls bound to cells, permitting some separation, however
the controls are not first-class values and therefore the interface
cannot be controlled formulas. With portals and formatting, a
user can create a decoupled and interactive visualisation. We
place the visualisation controls in a separate range on the same
spreadsheet, but they could also be on a separate spreadsheet.

The cell labelled by 5 holds the formula = D2 and is
formatted using a button format. A button format renders the
cell as a button, and when the button is clicked, an edit is
made to the formatted cell. For example, clicking the button
in the depicted state is equivalent to writing false into the cell.

The cell labelled by 6 holds the formula
= IF(D2,D1 : E1, ””). The cell labelled by 7 holds
the formula = IF(D2,SLIDER(D1, 0, 1, 0.01), ””). The
formula SLIDER(D1, 0, 1, 0.01) takes the portal obtained by
evaluating D1 and labels the portal with a slider format, with
minimum 0, maximum 1, and step 0.01.

When the user moves the slider the format writes numbers
to the cell, and those edits are then propagated back to D1 via
the portal. When the user clicks the button, as shown by 8 ,
false is propagated back to D2 via the portal. The formatted
controls are oblivious to portals, and the effect of the slider
controlling D1 is achieved through composition of edits. First,
the control applies an edit to the formatted cell, and then the
portal propagates that edit back. After clicking the button,
the spreadsheet recalculates and the formulas labelled 6 and
7 evaluate to blank values, hiding the controls for updating

the rate. The user has created a interactive visualisation with
conditional controls, using only formulas and formatting.

C. Example: Lightweight Database

Spreadsheets are frequently used as lightweight databases.
This example is derived from a spreadsheet video tutorial5

with over one million views; the video shows how to build an
inventory manager using a spreadsheet. The manager includes
a small form that lets the user add new records to a table in the
sheet. Implementing the form requires additional code written
in Visual Basic. We show how portals and a single formula
can implement the same behaviour.

Spreadsheets such as Excel allow tables in the grid. When
a table is created a name is defined that spans the table range
and users can refer to this name in formulas. The following
spreadsheet called Data (we display the sheet name in the top
left of the grid) includes a table in the range A1:C4; if the
table is named Sales, then the formula =Sales evaluates to
the range A1:C4. A table will expand as items are added to
the cells immediately below the table. When a user enters a
value into cell A5 the table’s range will expand, including the
range associated with name Sales.

Data A B C D
1 Customer Product Qty
2 Stuff Ltd. Widget 13
3 Robots Inc. Gizmo 10
4 Items Plc. Dongle 15
5
6

Using portals, any region of a spreadsheet can implement a
form for adding rows. In a separate sheet called Form a user
can write:

Form A B C
1 Customer Product Qty
2 = OFFSET(Sales,ROWS(Sales), 0, 1)

The formula OFFSET(Sales,ROWS(Sales), 0, 1) computes
the range for the row immediately below the table. In our
example the formula evaluates to the range Data!A5:C5 which
will spill portals into the grid:

Form A B C
1 Customer Product Qty
2 〈{Data!A5}, “”〉 〈{Data!B5}, “”〉 〈{Data!C5}, “”〉

5https://web.archive.org/web/20201024233423/https://www.youtube.com/
watch?v=-1N0L-FDWCs

https://web.archive.org/web/20201024233423/https://www.youtube.com/watch?v=-1N0L-FDWCs
https://web.archive.org/web/20201024233423/https://www.youtube.com/watch?v=-1N0L-FDWCs

ColumnName N ::= A | . . . | Z | AA | AB | . . .
m, n ∈ N1

Address a, b ::= Nm
Range r ::= a1 :a2

Literal L ::= c | ERR | {Li,j
i∈1..m,j∈1..n}

Formula F ::= L | r | IF(F1, F2, F3) |
fn(Fi

i∈1..n)
Sheet S ::= [ai 7→ Fi

i∈1..n]

Access = Address ∪ (N1 × N1)
Path π ∈ Access∗ (lists of Access)
PathSet α ⊆ Path

PortalValue P̂ ::= c | ERR | {Pi,j
i∈1..m,j∈1..n}

Portal P ::= 〈α, P̂ 〉
Scalar S ::= ε | c | ERR
ComputedValue V,W ::= S | {Vi,j i∈1..m,j∈1..n} | P
Grid γ ::= [ai 7→ Vi

i∈1..n]

Fig. 4. Syntax for Core Calculus

When the user edits the cells containing the portals, the edits
will be redirect to the end of the table, the table will expand to
include the new content, and the formula in A2 will evaluate
to the next empty row. The table will expand as soon as any
portal is updated; for best results, the user would manually
trigger recalculation once all fields are entered. In a similar
way, we can write formulas to build a form to lookup a row
by customer name and edit the contents.

III. A CORE CALCULUS WITH PORTALS

In this section we present a new spreadsheet calculus with
portals by augmenting and extending the calculus of [45]. We
show that portals implement where-provenance.

A. Syntax

The syntax of the core calculus is presented in Figure 4.
Let a and b range over addresses written in A1-style. An

address is composed from a column N and row m, where a
column index is a base-26 numeral written using the letters [A-
Z], and a row index is a decimal numeral. We number columns
left-to-right and rows top-to-bottom, so that the origin cell A1
is at the top-left of the grid. We use the terms address and cell
as synonyms. Let r denote a range which is a pair of addresses
a1 :a2. A range represents a rectangle in the spreadsheet. We
assume that ranges are normalised such that a1 is the top-left
corner and a2 is the bottom-right corner. Let L range over
literals. A literal is either a constant c, an error literal ERR, or
an array literal {Li,j

i∈1..m,j∈1..n}. If E is a piece of syntax,
we use Ei∈1..n to denote n expressions from syntax class E.
Let F range over formulas. A formula is either a literal, a
range, a conditional expression, or a function application. Let
f range over operators such as +, and worksheet functions
such as SORT. We write fn when function f has arity n. Let
S range over sheets. A sheet is a finite, hence partial, map from
addresses to formulas. Spreadsheet implementations make an

internal distinction between cells that contain literals and cells
that contain formulas. In our calculus we do not make these
two classes disjoint, but we do refer to an address that maps
to a formula consisting of a literal as a literal address, and
otherwise refer to the address as a formula address.

We now describe the first significant extension to the core
calculus. Let Access be the set of access elements, where
an element is an address a or pair of indices (m,n). Let
Path be the set of lists of access elements. Intuitively, a path
π describes some part of a literal in a sheet. Consider the
spreadsheet:

A B C
1 10 {5, 6} =A1 ∗ B1

Path A1 describes literal 10, path B1 describes literal {5, 6},
and path B1.(1, 2) describes literal 6. We use nil to represent
the empty path and π.π′ to represent the concatenation of
two paths. Concatenation is associative with nil as the identity
element. Let α range over sets of paths.

Our last class of syntax is concerned with evaluation, and
where we introduce portals. Let P range over portals and P̂
range over portal values. A portal is a pair of a path set and
a portal value; a portal value is a constant, error, or array
of portals. Portals are literals that are recursively annotated
with path sets, and a portal is never immediately nested within
another portal. Let S range over scalar values, which can be
blank ε, a constant c, or an error ERR. Let V range over
computed values, which can be a scalar, an array of computed
values, or a portal. Let γ range over grids. A grid is a partial
and finite map from addresses to computed values.

Our presentation of literals and computed values is explicit.
Literals and formulas are things users write, hence literals
do not include blank (ε). Computed values are computed
by formulas, or returned by dereferencing an address. It is
possible to simplify our presentation by assuming all computed
values are portals, where a scalar is a portal with an empty
path set. We do not take this approach to be faithful to our
implementation where there is a distinction between computed
values with provenance, and computed values without. We
refer to computed values as values for short.

B. Operational Semantics

The operational semantics for the core calculus is presented
in Figure 5. The extension to the calculus of [45] is minor; we
highlight the changes to support portals using a grey box .

Write S ` F ⇓ V to show that in sheet S formula
F evaluates to value V . A literal evaluates to itself. A
conditional expression evaluates the condition and extracts a
non-portal value using enter which is defined in Figure 5;
the corresponding branch is then evaluated. Our semantics
is defined when the condition evaluates to a boolean, while
spreadsheet implementations typically used relaxed notions of
truthy and falsy. We omit these definitions because they are
orthogonal to portals. A function application evaluates each
argument and then applies the portal-aware semantics of f ,
written J·Kp and defined in Figure 5, to the arguments. A

Formula evaluation S ` F ⇓ V

S ` L ⇓ L

S ` F1 ⇓ V1 enter(V1) = TRUE S ` F2 ⇓ V2
S ` IF(F1, F2, F2) ⇓ V2

S ` F1 ⇓ V1 enter(V1) = FALSE S ` F3 ⇓ V3
S ` IF(F1, F2, F2) ⇓ V3

∀i ∈ 1..n. S ` Fi ⇓ Vi JfnKp(Vii∈1..n) = V

S ` fn(Fi
i∈1..n) ⇓ V

S ` a !V
S ` a:a ⇓ V

a1 6= a2 size(a1 :a2) = (m,n)
∀i ∈ 1..m, j ∈ 1..n. S ` (a1 + (i, j)) !Vi,j

S ` a1 :a2 ⇓ {Vi,j i∈1..m,j∈1..n}

Portal-aware interpretation [[fn]]
p

[[fn]]
p = λxi∈1..ni . [[fn]](enter(x

i∈1..n
i))

Address dereferencing S ` a !V

S(a) = L

S ` a ! path(a, L)

S(a) = F F 6= L S ` F ⇓ V
S ` a !V

a 6∈ dom(S)
S ` a ! ε

Sheet evaluation S ⇓ γ

S ⇓ γ def
= ∀a ∈ dom(S). S ` a ! γ(a)

Functions and operators
size : Range→ N1 × N1

size(N1m1 :N2m2) = (m2 −m1 + 1, N2 −N1 + 1)

(+) : Address× (N1 × N1)→ Address
Nm+ (i, j) = (N + j − 1)(m+ i− 1)

path : Path× Literal→ Portal
path(π, {Li,j

i∈1..m,j∈1..n}) =
〈{π}, {path(π.(i, j), Li,j)

i∈1..m,j∈1..n}〉
path(π, L) = 〈{π}, L〉 if L scalar

enter : ComputedValue→ ComputedValue \ Portal
enter(〈α, P̂ 〉) = P̂
enter(V) = V if V 6= P

(t) : (Portal2 ⇀ Portal) ∩ (PortalValue2 ⇀ PortalValue)
c t c = c
ERR t ERR = ERR

{P̂i,j
i∈1..m,j∈1..n} t {P̂ ′i,j i∈1..m,j∈1..n} =

{P̂ ′′i,j i∈1..m,j∈1..n}
if for all i ∈ 1..m, j ∈ 1..n.P̂i,j t P̂ ′i,j = P̂ ′′i,j

〈α1, P̂1〉 t 〈α2, P̂2〉 = 〈α1 ∪ α2, P̂3〉 if P̂1 t P̂2 = P̂3

Fig. 5. Operational Semantics for Core Calculus

singleton range evaluates by dereferencing the address. A non-
singleton range evaluates by dereferencing each address in the
range and constructing an array of the resulting values.

Interpretation JfnKp is defined by entering any argument
portals to extract the portal value, and then appealing to the
portal-oblivious interpretation JfnK that defines the underlying
semantics. The effect of JfnKp is to forget path information for
scalar arguments but preserve path information within array
arguments. The assumption is that functions derive new data
from scalar values, rather than copying, but may permute,
filter, or duplicate array elements. We discuss array functions
in Section III-C.

Write S ` a !V to show that in sheet S address a
dereferences to value V . There are three classifications for
an address with respect to a sheet: an address may be a literal
address, a formula address, or missing. Each classification has
a single rule. A literal address dereferences to a portal. The
operator path traverses the literal and promotes each sub-literal
to a portal with the relative path. For example, given S below,

A B C
1 10 {5, 6} =A1 ∗ B1

then S ` B1 ! 〈{B1}, {〈{B1.(1.1)}, 5〉, 〈{B1.(1, 2)}, 6〉}〉. A
formula address dereferences by evaluating the bound formula.
A missing address dereferences to the blank value ε. A portal
value is only constructed when we copy a literal from the
current sheet, rather than computing or synthesizing a value.
As a consequence, a portal is always able to point to where
in the sheet its literal originated.

Write S ⇓ γ to show that sheet S evaluates to grid γ.
A sheet evaluates to a grid if every address in the sheet
dereferences to the corresponding value in the grid.

C. Sort, Filter, and Unique

A motivation for portals is that an existing language needs
only minor modifications to support portals. The implemen-
tation of most functions is unchanged, only using [[·]]p to
uniformly remove portals. We assume our calculus supports
the array functions SORT, FILTER, and UNIQUE that are
available in spreadsheets. We omit their definitions but outline
their necessary extensions to support portals. In Section IV-A
we present a full account of the spreadsheet functions that are
compatible with portals.

a) Sort: To implement SORT we only need to modify
value comparison to accommodate portals. Portal path sets
have no effect on ordering and can be removed before the
comparison; wherever previously we used a comparison func-
tion [[compare2]], we now use [[compare2]]

p.
b) Filter: To implement FILTER we only need to modify

the predicate to accommodate portals. Most spreadsheets lack
first-class functions and therefore FILTER is implemented by
passing a boolean column vector that specifies the rows to
retain. The only necessary change is to ignore portals within
the column vector, which is achieved using [[·]]p. Assume
operator isTrue1, where [[isTrue1]] = λx.x = TRUE; wherever
previously we used [[isTrue1]], we now use [[isTrue1]]

p.

| · | : Portal ∪ PortalValue→ Literal
|〈α, P̂ 〉| = |P̂ |
|{Pi,j

i∈1..m,j∈1..n}| = {|Pi,j |i∈1..m,j∈1..n}
|P̂ | = P̂ if P̂ scalar

occur : Sheet ∪ ComputedValue→ P(Path× Literal)
occur(S) =

⋃
{occur(path(a, L)) | a ∈ dom(S),S(a) = L}

occur(〈α, P̂ 〉) = {(π, |P̂ |) | π ∈ α} ∪ occur(P̂)
occur({Vi,j i∈1..m,j∈1..n}) =

⋃
{occur(Vi,j) | ∀i ≤ m, j ≤ n}

occur(S) = ∅
Fig. 6. Where-provenance Definitions

c) Unique: We could implement UNIQUE similarly to
SORT by interpreting equality using [[·]]p, but while correct,
this would remove the capability to aggregate equal literals and
update them simultaneously. Each portal in the output would
only describe one location from the set of locations with equal
literals. Instead, we want to aggregate provenance. [41] defines
a Unique function on where-provenance annotated bags that
returns a set of tuples by removing duplicates after merging
annotations. Our goal is to construct a UNIQUE function
like [41], although we map arrays to arrays. Write P t P ′
and P̂ t P̂ ′ to be the partial join operator on portals and
portal values; the join aggregates provenance for equivalent
inputs modulo provenance. We tacitly assume that for non-
portal value V , P t V and V t P promotes V to a portal
where the path set is ∅. Two portals are equal iff P t P ′ is
defined. To implement UNIQUE we use t to determine the
equality of two portals, and the result of t is used in the
output. By using t, the combined provenance of two equal
portals appears in the output.

D. Portals as Where-provenance

To a user, a portal represents an “exact copy” of one or
more input literals; in this section we formalise this intuition
by showing that portals implement where-provenance.

Where-provenance was first introduced by [11] in the con-
text of databases. Elements in an output relation are annotated
with locations from the input relation to identify where the
element originated from. Where-provenance has since been
adapted to programming languages. [3] develop a calculus
of provenance for a functional language TML which can be
instantiated to implement where-provenance. A TML program
evaluates and produces a trace which can be interpreted
with where-provenance. [21] extend Links with language-
integrated-provenance. Query expressions for a database can
be augmented to dynamically propagate where-provenance.
Our presentation draws on both systems. Like [3], we allow
provenance to annotate arbitrary literals in the program context
rather than databases. Like [21], we dynamically propagate
where-provenance rather than producing a trace. Unlike both
systems, we support aggregated where-provenance.

Across all systems the key result of where-provenance is
analogous, and when stated in the context of spreadsheets says

(A) No Additional Changes
SORT, SORTBY, FILTER, IF, IFERROR, IFNA, IFS, OFFSET,
TRANSPOSE, CHOOSE, HLOOKUP, VLOOKUP, LOOKUP,
SWITCH, XLOOKUP, INDEX, INDIRECT

(B) Minor Changes
UNIQUE, MIN, MINA, MINIFS, MAX, MAXA, MAXIFS, MODE,
MEDIAN, MODE.SNGL, MODE.MULT, DMIN, DMAX,
AGGREGATE, SMALL, LARGE, SUBTOTAL

(C) Significant Semantic Changes
LEFT, RIGHT, TRIM, MID, CONCAT, REPLACE, REPT,
SUBSTITUTE

Fig. 7. Spreadsheet Functions that Interact with Where-provenance

that the annotated literals in an evaluated formula are a subset
of the annotated literals from the input sheet.

Figure 6 presents the definitions for where-provenance.
Write |·| for the portal erasure operator. Write occur, analogous
to the definition by [3], for the operator that extracts (π, L)
provenance tuples from a value or sheet.

We now state our result for where-provenance: the set
of provenance tuples occur(V) obtained by evaluating any
address in sheet S is a subset of the provenance tuples
occur(S) for S.

Theorem 1 (Where provenance).
If S ` a !V then occur(V) ⊆ occur(S).

We omit the details of the full proof, which is an induction
on the derivation of S ` a !V .

IV. EVALUATING WHERE-PROVENANCE

In this section we evaluate where-provenance as a practical
basis for implementing bidirectional spreadsheets. Our oper-
ational semantics demonstrate that only a minor change to a
formula language is required to support portals, but we omit
detailed discussion about the built-in functions which form a
core part of spreadsheets. Here, we analyse the full breadth of
spreadsheet functions6 to measure how many could propagate
where-provenance, and hence support bidirectional updates,
and what modifications to each function are required.

A. Where-provenance Supported Spreadsheet Functions

For our evaluation we first classify the functions that could,
in theory, propagate where-provenance. Next, we analyse the
spreadsheet implementation Calc.ts to evaluate the extent to
which the functions we identify must be modified to support
our approach. We illustrate the need for a conceptual and prag-
matic analysis by example. There are functions such as MAX,
whose mathematical definition, or implementation in another
language such as Haskell or Python, would work with where-
provenance. However, when we analyse the implementation of
MAX in Calc.ts, we find that the aggregated maximum value is

6https://support.microsoft.com/en-us/office/excel-functions-alphabetical-
b3944572-255d-4efb-bb96-c6d90033e188

https://support.microsoft.com/en-us/office/excel-functions-alphabetical-b3944572-255d-4efb-bb96-c6d90033e188
https://support.microsoft.com/en-us/office/excel-functions-alphabetical-b3944572-255d-4efb-bb96-c6d90033e188

specialised to a number, rather than being the “largest” value
according to a generic comparator. Given our semantics in
Section III, this would result in the erasure of provenance.
In contrast, the implementation of TRANSPOSE propagates
where-provenance with no modification.

Figure 7 presents the list of functions available in spread-
sheet application Excel that we identify as potentially capable
of propagating where-provenance. The functions are split into
three classes based on the analysis of Calc.ts: (A) functions
that need no further changes beyond those we describe in
Section III, (B) functions that need additional minor changes,
and (C) functions that require significant semantic changes.

Class (A) consists of polymorphic array functions such
as TRANSPOSE and INDEX, lookup functions such as
VLOOKUP and HLOOKUP, control-flow functions such as
IF and SWITCH, and reference manipulation functions such
as INDIRECT and OFFSET.

Class (B) consists of functions that require further minor
changes, where we define minor changes as anything that
is confined to the core definition of the function. UNIQUE
is unique; changes are required to aggregate provenance for
equivalent values as we describe in Section III. The remaining
functions all extract values from a collection, but are included
here because they are specialised to aggregate numbers. Ad-
dressing the limitation requires portal-aware code to be added
to each function implementation to retain provenance; in most
cases the change is uniform across all the affected functions.

Class (C) consists of functions that are conceptually compat-
ible with where-provenance propagation but require substantial
changes—every function is a string manipulation function.
Functions LEFT and RIGHT are string specific implemen-
tations of the classic array-processing functions take and
drop respectively. If a string was represented as an array of
characters, which was then promoted to an array of portals
referring to characters, then take or drop would naturally
preserve the where-provenance of each character. However, in
Calc.ts strings are a primitive type and the interface does not
expose array-like functionality. Supporting where-provenance
at a character level would require changes to the function
implementations and the implementation of strings.

B. Function Usage in Practice

We now turn to existing research on spreadsheet usage to
understand whether the functions we identify are frequently
used in practice. We refer to the study by [31] that compares
two spreadsheet corpora: Enron [29] and EUSES [22]. From
Enron, seven of the fifteen most frequently used functions
are present in Figure 7, and five of the compatible functions
are from Class (A). From EUSES, six of the fifteen most
frequently used functions are present in Figure 7, and three
of the compatible functions are from Class (A). The functions
SORT, FILTER, and UNIQUE which we highlight in our
examples, were not available when Enron and EUSES were
curated. Omitted from the table are operators, which are
significantly more frequent than functions. In Enron, 71.4%
of all formulas contain an operator; in EUSES, 58.5% of

all formulas contain an operator [31]. However, whilst oper-
ators are used more frequently, this does not suggest making
operators bidirectional is more useful to spreadsheet users.
From our observations, many practical examples feature the
functions we describe in Figure 7—even back in 2004 7

and 2008 8 users were asking to directly edit the output of
a VLOOKUP formula! The variety of functions present in
Figure 7 suggests that where-provenance based bidirectional
spreadsheets provide a surprising amount of utility.

V. IMPLEMENTATION

Our implementation PROTO1 extends the user interface
and calculation engine of an existing TypeScript spreadsheet
prototype. Here we describe key aspects of our implemen-
tation and discuss important remaining questions. There are
two primary areas of implementation: formula evaluation
and the spreadsheet interface. We extend formula evaluation
with tagged values to represent portals. Function dispatch is
modified to strip tags from input values. The only function
implementation we modify is UNIQUE. A departure from our
formal presentation is that we do not eagerly annotate array
elements with provenance, instead we do so lazily. When
provenance is stripped from an array, we add provenance to
the elements.

Our modification to the underlying interface infrastructure is
minor. The existing implementation provides a setCell function
for modifying the model. We augment this function to inspect
the computed value of the target cell, and if the computed
value is a portal, we redirect the operation. One interface
challenge is disambiguating whether a user wants to perform
a portal update, or modify a cell’s formula. For example,
in Figure 1, if the user edits D2, does the edit apply to
the formula or to the value “Brazil” in B3? PROTO uses a
checkbox to distinguish editing the value from the formula,
however controls always edit the value. We envisage a more
sophisticated interface could employ a dedicated value editor.

Our core calculus and PROTO promotes every value read
from the grid to a portal. We do not measure the overhead
introduced by portals but we expect that it is not feasible
to universally promote values to portals in all spreadsheets
in practice. Even if performance is unaffected, users may
not want bidirectional editing. We envisage a model where
the user explicitly enables portals using a function such as
UPDATABLE that enriches a value with provenance; to enable
bidirectional editing, the formula in Figure 1 will become
SORT(UNIQUE(UPDATABLE(B2:B6))).

VI. WHERE-PROVENANCE AND LENSES

There is much prior work on bidirectional editing, including
lenses and specifically the work by Macedo et al. [33] that
implement lenses for spreadsheet formulas. Their work allows
the user to designate some formulas as being the forwards

7https://web.archive.org/web/20210302005953/http://www.vbaexpress.com/
forum/showthread.php?540-Solved-VLOOKUP-Edit-Results-Paste-Changes

8https://web.archive.org/web/20170607034133/https://www.excelforum.
com/excel-formulas-and-functions/651204-edit-vlookup-result.html

https://web.archive.org/web/20210302005953/http://www.vbaexpress.com/forum/showthread.php?540-Solved-VLOOKUP-Edit-Results-Paste-Changes
https://web.archive.org/web/20210302005953/http://www.vbaexpress.com/forum/showthread.php?540-Solved-VLOOKUP-Edit-Results-Paste-Changes
https://web.archive.org/web/20170607034133/https://www.excelforum.com/excel-formulas-and-functions/651204-edit-vlookup-result.html
https://web.archive.org/web/20170607034133/https://www.excelforum.com/excel-formulas-and-functions/651204-edit-vlookup-result.html

get direction of a lens, and then synthesizes, guided by user
annotations, a formula to compute put, the backwards update.

Lenses, in theory, support a wider range of formulas that can
be bidirectionalized; in contrast, portals do not support editing
of formulas like A1 + B1 because arithmetic computations
do not propagate where-provenance. Whilst portals are less
expressive in principle, it is unclear how often users want
to bidirectionalize arithmetic calculations. The examples we
provide are all motivated by real spreadsheet tasks.

Increased expressive power incurs a per-function imple-
mentation cost that our approach does not pay. Synthesizing
a put formula requires knowledge about each function; for
instance, a put formula for the TRANSPOSE function cannot
be synthesized without knowing what TRANSPOSE does. In
contrast, portals work with TRANSPOSE for free. Still, there
are other lens-based approaches, such as semantic bidirection-
alization [42], without this limitation.

Another important aspect of bidirectional editing is explain-
ing the effect of an update to the user. Macedo et al. [33]
synthesize put formulas, so that the update is described using
the same formula language. However, showing formulas to
the user may or may not make the effect of the update
transparent. For instance, the put formula for VLOOKUP uses
IF and MATCH, functions perhaps unfamiliar to the user. If the
lookup array was constructed by SORT, then the put formula
grows in complexity to accommodate the effect of sorting. In
general, a put formula can be significantly more complex than
the get formula. In contrast, the explanation for the effect of an
update using portals is uniform, by construction. The where-
provenance describes exactly what will change and how (by
replacement), and PROTO illustrates via coloured foils.

Semantic bidirectionalization (or SBX for short) [34], [35],
[42] is a technique that exploits relational parametricity [39],
[43] to automatically synthesize a putback function for a
container transformation. The technique has not been ap-
plied to spreadsheets. Fundamentally, SBX also uses where-
provenance, however, we identify two differences with our
application. First, we forgo the lens update property PUTGET
which enforces consistency between the input and output. For
example, given formula SORT(A1 :A3), where A1 :A3 =
{3; 1; 2}, we allow the user to edit the first item in the
output (pointing to A2) to have the value 10; in contrast,
SBX prohibits this updated because it does not preserve the
sort order. We think that in most cases the pointer-based
update of our approach is more useful to spreadsheet users.
The second difference is that provenance exists in our system
independently of bidirectional editing, and useful on its own;
in contrast, provenance in SBX remains hidden. In summary,
our approach is a spreadsheet specific application of SBX
techniques, emphasising where-provenance.

VII. RELATED WORK

a) Bidirectional Programming: [38] pioneered early
work on constraint maintainers for user interfaces. [15] imple-
ment SKETCH-N-SKETCH, a system with bidirectional editing
using trace-based program synthesis. Constraints are produced

from a trace, and edits to the output are reconciled against
the constraints to produce small updates to the input. [36]
implement an evaluation update algorithm that modifies a
program and input in response to output edits. Their ap-
proach addresses a limitation of lenses which is that they
do not readily manipulate arbitrary programs. [27] extend
SKETCH-N-SKETCH with new capabilities for output-directed
programming. Their system shares ideas with trace-based
provenance [3], including where-provenance, but they do not
make a formal correspondence with where-provenance.

b) Lenses: Further types of lenses include Quotient
lenses [24] and Edit lenses [30], providing permutation and
container restructuring lenses respectively—both are related
to provenance. In particular, a container restructuring lens
for an array takes a permutation vector for the elements
and allows edits to the permuted array to transport back to
the original. If SORT or similar functions also produced a
permutation then it would be possible to construct a lens
that permits similar updates to our portal approach. When
considering the relationship between lenses and provenance,
the sort permutation used to construct the edit lens can be
viewed as the provenance for the work performed by the sort.

c) Provenance: [11] first proposed why and where
provenance in the context of databases. [14] give a review
of database provenance, including a third variant how prove-
nance. [1] present the Dependency Core Calculus which em-
beds multiple variants of program dependency analysis. [13]
connect dependency analysis to provenance, and extend the
nested relation calculus with dependency provenance.

d) Spreadsheets: [18] implement Boxer, a visual pro-
gramming system based on the spatial metaphor. A component
of the system is called a port: a view of another component
that is bidirectionally synchronised. A port is not a value, but
is like a special spreadsheet cell that holds a fixed portal. In
contrast, in our system, a portal is simply a value of a formula,
and its target may be determined dynamically by the formula.

There are multiple systems that allow spreadsheet inter-
faces to manipulate web applications, including Gneiss [12],
Quilt [7], and Wildcard [32]. These systems do not define a
formal semantics with provenance.

VIII. CONCLUSION

We develop a new spreadsheet concept, the portal, based
on where-provenance. When a value with where-provenance
is computed by a cell’s formula, a user can edit the location
described by the provenance from that cell. Portals are first-
class spreadsheet values, hence users can now control the
editing surface of a spreadsheet using formulas. We analyse
a proprietary spreadsheet implementation Calc.ts to evaluate
where-provenance as a basis for bidirectional transformation.
We find that many commonly used spreadsheet functions
support portals with little or no modification. In future work
we aim to explore the connection between provenance and
bidirectional transformation, in addition to further exploring
the user interface questions posed by bidirectional transfor-
mations.

REFERENCES

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke, “A Core Calculus
of Dependency,” in Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’99.
New York, NY, USA: Association for Computing Machinery, 1999, pp.
147–160. [Online]. Available: https://doi.org/10.1145/292540.292555

[2] R. Abraham and M. Erwig, “GoalDebug: A Spreadsheet Debugger for
End Users,” in Proceedings of the 29th International Conference on
Software Engineering, ser. ICSE ’07. USA: IEEE Computer Society,
2007, pp. 251–260. [Online]. Available: https://doi.org/10.1109/ICSE.
2007.39

[3] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera, “A Core Calculus for
Provenance,” in Principles of Security and Trust, P. Degano and J. D.
Guttman, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 410–429.

[4] H. Apfelmus, 2012. [Online]. Available: https://wiki.haskell.org/FRP
explanation using reactive-banana

[5] D. W. Barowy, E. D. Berger, and B. Zorn, “ExceLint: Automatically
Finding Spreadsheet Formula Errors,” Proc. ACM Program. Lang.,
vol. 2, no. OOPSLA, Oct. 2018. [Online]. Available: https://doi.org/10.
1145/3276518

[6] M. Bendre, B. Sun, D. Zhang, X. Zhou, K.-C. Chang, and
A. Parameswaran, “DataSpread: Unifying Databases and Spreadsheets,”
in Proceedings of the VLDB Endowment International Conference on
Very Large Data Bases, vol. 8, 08 2015, pp. 2000–2003.

[7] E. Benson, A. X. Zhang, and D. R. Karger, “Spreadsheet Driven Web
Applications,” in Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology, ser. UIST ’14. New York,
NY, USA: Association for Computing Machinery, 2014, pp. 97–106.
[Online]. Available: https://doi.org/10.1145/2642918.2647387

[8] A. F. Blackwell, M. M. Burnett, and S. L. Peyton Jones, “Champagne
Prototyping: A Research Technique for Early Evaluation of Complex
End-User Programming Systems,” in VL/HCC. IEEE Computer Society,
2004, pp. 47–54.

[9] A. A. Bock, T. Bøgholm, P. Sestoft, B. Thomsen, and L. L.
Thomsen, “On the semantics for spreadsheets with sheet-defined
functions,” Journal of Computer Languages, vol. 57, p. 100960,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2590118420300204

[10] J. Borghouts, A. D. Gordon, A. Sarkar, and N. Toronto, “End-User
Probabilistic Programming,” in Quantitative Evaluation of Systems,
D. Parker and V. Wolf, Eds. Cham: Springer International Publishing,
2019, pp. 3–24.

[11] P. Buneman, S. Khanna, and W. C. Tan, “Why and Where: A Charac-
terization of Data Provenance,” in Proceedings of the 8th International
Conference on Database Theory, ser. ICDT ’01. Berlin, Heidelberg:
Springer-Verlag, 2001, pp. 316–330.

[12] K. S.-P. Chang and B. A. Myers, “Creating Interactive Web Data
Applications with Spreadsheets,” in Proceedings of the 27th Annual
ACM Symposium on User Interface Software and Technology, ser. UIST
’14. New York, NY, USA: Association for Computing Machinery,
2014, pp. 87–96. [Online]. Available: https://doi.org/10.1145/2642918.
2647371

[13] J. Cheney, A. Ahmed, and U. A. Acar, “Provenance as Dependency
Analysis,” in Database Programming Languages, M. Arenas and M. I.
Schwartzbach, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 138–152.

[14] J. Cheney, L. Chiticariu, and W.-C. Tan, “Provenance in Databases:
Why, How, and Where,” Found. Trends Databases, vol. 1, no. 4, Apr.
2009. [Online]. Available: https://doi.org/10.1561/1900000006

[15] R. Chugh, B. Hempel, M. Spradlin, and J. Albers, “Programmatic and
Direct Manipulation, Together at Last,” in Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’16. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 341–354. [Online]. Available:
https://doi.org/10.1145/2908080.2908103

[16] E. Czaplicki and S. Chong, “Asynchronous Functional Reactive
Programming for GUIs,” in Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’13. New York, NY, USA: Association for Computing
Machinery, 2013, pp. 411–422. [Online]. Available: https://doi.org/10.
1145/2491956.2462161

[17] U. Dayal and P. A. Bernstein, “On the correct translation of update
operations on relational views,” ACM Trans. Database Syst., vol. 7, no. 3,
pp. 381–416, 1982.

[18] A. A. diSessa and H. Abelson, “Boxer: A Reconstructible Computational
Medium,” Commun. ACM, vol. 29, no. 9, pp. 859–868, Sep. 1986.
[Online]. Available: https://doi.org/10.1145/6592.6595

[19] C. Elliott and P. Hudak, “Functional reactive animation,” in International
Conference on Functional Programming, 1997. [Online]. Available:
http://conal.net/papers/icfp97/

[20] R. Fagin, J. D. Ullman, and M. Y. Vardi, “On the semantics of updates
in databases,” in PODS. ACM, 1983, pp. 352–365.

[21] S. Fehrenbach and J. Cheney, “Language-Integrated Provenance,” in
Proceedings of the 18th International Symposium on Principles and
Practice of Declarative Programming, ser. PPDP ’16. New York,
NY, USA: Association for Computing Machinery, 2016, pp. 214–227.
[Online]. Available: https://doi.org/10.1145/2967973.2968604

[22] M. Fisher and G. Rothermel, “The euses spreadsheet corpus: a shared
resource for supporting experimentation with spreadsheet dependability
mechanisms,” in Proceedings of the first workshop on End-user software
engineering, 2005, pp. 1–5.

[23] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt, “Combinators for Bidirectional Tree Transformations:
A Linguistic Approach to the View-Update Problem,” ACM Trans.
Program. Lang. Syst., vol. 29, no. 3, May 2007. [Online]. Available:
https://doi.org/10.1145/1232420.1232424

[24] J. N. Foster, A. Pilkiewicz, and B. C. Pierce, “Quotient lenses,”
in Proceedings of the 13th ACM SIGPLAN International Conference
on Functional Programming, ser. ICFP ’08. New York, NY, USA:
Association for Computing Machinery, 2008, pp. 383–396. [Online].
Available: https://doi.org/10.1145/1411204.1411257

[25] S. Gulwani, “Automating String Processing in Spreadsheets Using Input-
Output Examples,” in Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’11. New York, NY, USA: Association for Computing
Machinery, 2011, pp. 317–330. [Online]. Available: https://doi.org/10.
1145/1926385.1926423

[26] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet Data Manipulation
Using Examples,” Commun. ACM, vol. 55, no. 8, pp. 97–105, Aug.
2012. [Online]. Available: https://doi.org/10.1145/2240236.2240260

[27] B. Hempel, J. Lubin, and R. Chugh, “Sketch-n-Sketch: Output-Directed
Programming for SVG,” in Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’19.
New York, NY, USA: Association for Computing Machinery, 2019, pp.
281–292. [Online]. Available: https://doi.org/10.1145/3332165.3347925

[28] F. Hermans, B. Jansen, S. Roy, E. Aivaloglou, A. Swidan, and D. Hoe-
pelman, “Spreadsheets are Code: An Overview of Software Engineering
Approaches Applied to Spreadsheets,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 5, 2016, pp. 56–65.

[29] F. Hermans and E. Murphy-Hill, “Enron’s spreadsheets and related
emails: A dataset and analysis,” in 2015 IEEE/ACM 37th IEEE Inter-
national Conference on Software Engineering, vol. 2. IEEE, 2015, pp.
7–16.

[30] M. Hofmann, B. Pierce, and D. Wagner, “Edit Lenses,” in Proceedings
of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’12. New York, NY, USA:
Association for Computing Machinery, 2012, pp. 495–508. [Online].
Available: https://doi.org/10.1145/2103656.2103715

[31] B. Jansen, “Enron versus euses: A comparison of two spreadsheet
corpora,” in Proceedings of the 2nd Ceur Workshop 1355: Software
Engineering Methods in Spreadsheets, SEMS 2015, Florence, Italy, May
18, 2015. Eds.: Hermans, F., Paige, RF, Sestoft, P. CEUR-WS, 2015.

[32] G. Litt and D. Jackson, “Wildcard: Spreadsheet-Driven Customization of
Web Applications,” in Conference Companion of the 4th International
Conference on Art, Science, and Engineering of Programming,
ser. ¡programming¿ ’20. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 126–135. [Online]. Available:
https://doi.org/10.1145/3397537.3397541

[33] N. Macedo, H. Pacheco, N. R. Sousa, and A. Cunha, “Bidirectional
spreadsheet formulas,” in 2014 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), 2014, pp. 161–168.

[34] K. Matsuda and M. Wang, “Bidirectionalization for free with runtime
recording: Or, a light-weight approach to the view-update problem,”
in Proceedings of the 15th Symposium on Principles and Practice

https://doi.org/10.1145/292540.292555
https://doi.org/10.1109/ICSE.2007.39
https://doi.org/10.1109/ICSE.2007.39
https://wiki.haskell.org/FRP_explanation_using_reactive-banana
https://wiki.haskell.org/FRP_explanation_using_reactive-banana
https://doi.org/10.1145/3276518
https://doi.org/10.1145/3276518
https://doi.org/10.1145/2642918.2647387
http://www.sciencedirect.com/science/article/pii/S2590118420300204
http://www.sciencedirect.com/science/article/pii/S2590118420300204
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1561/1900000006
https://doi.org/10.1145/2908080.2908103
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/6592.6595
http://conal.net/papers/icfp97/
https://doi.org/10.1145/2967973.2968604
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1411204.1411257
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/2103656.2103715
https://doi.org/10.1145/3397537.3397541

of Declarative Programming, ser. PPDP ’13. New York, NY, USA:
Association for Computing Machinery, 2013, pp. 297–308. [Online].
Available: https://doi.org/10.1145/2505879.2505888

[35] ——, ““Bidirectionalization for free” for monomorphic transforma-
tions,” Science of Computer Programming, vol. 111, pp. 79–109, 2015.

[36] M. Mayer, V. Kuncak, and R. Chugh, “Bidirectional Evaluation with
Direct Manipulation,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA,
Oct. 2018. [Online]. Available: https://doi.org/10.1145/3276497

[37] M. McCutchen, J. Borghouts, A. D. Gordon, S. Peyton Jones, and
A. Sarkar, “Elastic sheet-defined functions: Generalising spreadsheet
functions to variable-size input arrays,” Journal of Functional Program-
ming, vol. 30, p. e26, 2020.

[38] L. Meertens, “Designing Constraint Maintainers for User Interaction,”
Tech. Rep., 1998.

[39] J. Reynolds, “Types, abstraction, and parametric polymorphism,” in
Information Processing, 1983.

[40] P. Sestoft, “Implementing function spreadsheets,” in Proceedings of the
4th international workshop on End-user software engineering. ACM,
2008, pp. 91–94.

[41] W.-C. Tan, “Containment of Relational Queries with Annotation Propa-
gation,” in Database Programming Languages, G. Lausen and D. Suciu,
Eds. Springer Berlin Heidelberg, 2004, pp. 37–53.

[42] J. Voigtländer, “Bidirectionalization for Free! (Pearl),” in Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’09. New York, NY, USA:
Association for Computing Machinery, 2009, pp. 165–176. [Online].
Available: https://doi.org/10.1145/1480881.1480904

[43] P. Wadler, “Theorems for free!” in Proceedings of the Fourth
International Conference on Functional Programming Languages and
Computer Architecture, ser. FPCA ’89. New York, NY, USA: ACM,
1989, pp. 347–359. [Online]. Available: http://doi.acm.org/10.1145/
99370.99404

[44] J. Williams, C. Negreanu, A. D. Gordon, and A. Sarkar, “Understanding
and Inferring Units in Spreadsheets,” in 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2020, pp. 1–9.

[45] J. Williams, N. Joharizadeh, A. D. Gordon, and A. Sarkar, “Higher-
Order Spreadsheets with Spilled Arrays,” in Programming Languages
and Systems. ESOP 2020. LNCS vol 12075, P. Müller, Ed. Springer,
2020.

[46] J. Zhang, S. Han, D. Hao, L. Zhang, and D. Zhang, “Automated
Refactoring of Nested-IF Formulae in Spreadsheets,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2018. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 833–838. [Online].
Available: https://doi.org/10.1145/3236024.3275532

https://doi.org/10.1145/2505879.2505888
https://doi.org/10.1145/3276497
https://doi.org/10.1145/1480881.1480904
http://doi.acm.org/10.1145/99370.99404
http://doi.acm.org/10.1145/99370.99404
https://doi.org/10.1145/3236024.3275532

	Introduction
	A New Universe of Spreadsheets
	Example: Data Cleaning
	Example: User Interface Controls
	Example: Lightweight Database

	A Core Calculus with Portals
	Syntax
	Operational Semantics
	Sort, Filter, and Unique
	Portals as Where-provenance

	Evaluating Where-provenance
	Where-provenance Supported Spreadsheet Functions
	Function Usage in Practice

	Implementation
	Where-provenance and Lenses
	Related Work
	Conclusion
	References

