
Nekara: Generalized Concurrency Testing
Udit Agarwal*, Pantazis Deligiannis+, Cheng Huang++, Kumseok Jung**, Akash Lal+, Immad Naseer++

Matthew Parkinson+, Arun Thangamani+, Jyothi Vedurada#, Yunpeng Xiao++

*IIIT Delhi, +Microsoft Research, ++Microsoft, **University of British Columbia, #IIT Hyderabad

Abstract—Testing concurrent systems remains an uncomfort-
able problem for developers. The common industrial practice is
to stress-test a system against large workloads, with the hope
of triggering enough corner-case interleavings that reveal bugs.
However, stress testing is often inefficient and its ability to get
coverage of interleavings is unclear. In reaction, the research
community has proposed the idea of systematic testing, where a
tool takes over the scheduling of concurrent actions so that it can
perform an algorithmic search over the space of interleavings.

We present an experience paper on the application of systematic
testing to several case studies. We separate the algorithmic
advancements in prior work (on searching the large space of
interleavings) from the engineering of their tools. The latter was
unsatisfactory; often the tools were limited to a small domain,
hard to maintain, and hard to extend to other domains. We
designed Nekara, an open-source cross-platform library for easily
building custom systematic testing solutions.

We show that (1) Nekara can effectively encapsulate state-
of-the-art exploration algorithms by evaluating on prior bench-
marks, and (2) Nekara can be applied to a wide variety of
scenarios, including existing open-source systems as well as
production distributed services of Microsoft Azure. Nekara was
easy to use, improved testing, and found multiple new bugs.

I. INTRODUCTION

Exploiting concurrency is fundamental to building scalable
systems. It can range from desktop applications with multiple
threads that exploit a multi-core CPU or giant distributed
systems with multiple processes spanning many VMs. In either
case, getting the concurrency right is challenging. The combi-
natorial explosion of possible interleavings between concurrent
actions makes it hard to find bugs, or even reproduce known
ones [1], [2]. Prior work argues for systematic testing, which
hooks on to the concurrency in a program to reliably control
the interleaving of concurrent actions, and then orchestrates
a search (exhaustive or randomized) within the space of all
interleavings. This idea manifests in several tools, such as
CHESS [2], [3] and Cuzz [4] for multi-threaded applications,
dBug [5], Modist [6] and SAMC [7] for distributed message-
passing systems, and many others [8], [9], [10], [11], [12].

This paper summarizes our experience in applying system-
atic testing in practice. Concurrency comes in many forms; it
changes with the programming language (C#, Go, Rust, etc.),
programming model (e.g., threads, tasks, actors, async-await,
etc.), framework (e.g., Service Fabric [13], libevent [14], Trio
[15], etc.) and so on. Our immediate learning in this space was
that each of the tools mentioned above only address a specific
class of programs, and are difficult or impossible to apply to
other classes of programs.

To understand this shortcoming, we can examine the design
of a typical solution. It consists of three parts. The first is

algorithmic search: a collection of heuristics that guide the
search to interesting parts where bugs can be found, for
instance, fewer context switches first [3], or priority-based
scheduling [4], etc. Second is the modeling of supported con-
currency primitives that specify their semantics, for instance,
the behavior of spawning a thread or acquiring a semaphore,
etc. Last is the injection of these models into a program so
that calls to the original primitives can be replaced by calls
to their corresponding models, helping take over scheduling
decisions at runtime.

Prior work attempts to offer integrated solutions that address
all three aspects for a particular domain. For instance, the
CHESS tool supports a subset of C# threading APIs (from the
System.Threading namespace). Their models are build
into the tool itself, and they are injected automatically into the
program binary via binary instrumentation. This offers a seam-
less experience for supported programs. However, there is no
easy way to extend the tool to programs outside this supported
class. Even C# Task-based or async-await programs, which
are very commonplace, are not supported. Furthermore, use of
complex technology like binary instrumentation makes the tool
hard to maintain. Other tools do not fare any better. SAMC, for
instance, only supports Sockets-based communication that
too only for ZooKeeper-like distributed systems. Supporting
other systems was arguably never a goal of that work.

This paper aims to democratize systematic testing by al-
lowing users (i.e., developers) to build their own systematic
testing solutions. We propose Nekara, a cross-platform open-
source library that provides a simple, yet expressive API that
a developer can use to model the set of concurrency primitives
that they have used in their program. Nekara encapsulates var-
ious search heuristics from prior work, freeing the developer
from having to design these themselves. Nekara can record
scheduling decisions and provide full repro for bugs.

Unlike an integrated solution, Nekara delegates modeling, as
well as injection of these models, to the developer. We argue,
through experience presented in this paper, that the burden on
developers is small, and is out-weighted by many engineering
benefits. In most cases, applications depend on a well-defined
framework or library to provide concurrency support (e.g.,
pthreads). The user can then only design models for these
framework APIs (only ones they used) with Nekara hooks,
and the rest of the system remains unchanged.

Importantly, these Nekara-enabled models are just code;
they live and evolve alongside the rest of the system, and
benefit from standard engineering practices. The models can
be easily injected for testing, say through macros for C code or

mocking utilities for higher-level languages like C#. (Binary
instrumentation is an overkill.) They can be shared between
multiple teams that use the same form of concurrency, or a
community can contribute to support models for a popular
framework like pthreads. Developers can even choose to
limit their code to only those APIs for which they have these
models, given the clarity that Nekara provides.

Nekara also helps with other forms of non-determinism as
well (such as failure injection), and provides the same benefits
of reproducibility. In all, with Nekara, systematic testing
of non-determinism is just another programming exercise,
completely in the hands of the developer.

We show the effectiveness of Nekara by documenting
several case studies, each time showcasing that modeling
concurrency requires minimal effort (less than a few weeks,
easy to share) and provides significant value for testing (more
bugs found). Nekara is just 3K lines of C++ code.1 We believe
that a solution like Nekara unlocks the potential of systematic
testing that has so far been siloed in individual tools.

The main contributions of this paper are as follows.
• The design of the Nekara library that allows building

custom systematic-testing solutions (Sections II and III).
• Experience from several case studies that cover a range

of different forms of concurrency and non-determinism
(Sections IV to VI). Nekara has been adopted by Mi-
crosoft Azure to test distributed services (Sections VI-A
and VI-B).

• The search algorithms in Nekara are inspired from pre-
vious work; we show that the generality of Nekara does
not limit its bug-hunting abilities (Section VII).

Section IX discusses related work and Section X concludes.

II. NEKARA LIBRARY

This section illustrates how Nekara can be used to build a
systematic testing solution. Nekara is only meant for testing.
Production code need not take a dependency on Nekara.

The core Nekara APIs are shown in Figure 1. Nekara op-
erations generalize over threads and resources generalize over
synchronization. Operations and resources are uninterpreted,
each is just an integer. Nekara understands that each operation,
once started and before it ends, executes concurrently with
respect to other operations, unless it blocks on a resource.
Operations while executing can additionally signal a resource,
which unblocks all operations that may be blocked on it.

Nekara implements a co-operative scheduler (§III). It en-
sures that at most one operation executes at any point
in time. The current operation continues running until it
calls schedule_next or wait_resource. At that point,
Nekara can switch to execute some other enabled operation.

It is up to the programmer to map the concurrency in
their program to Nekara operations and resources. We explain
this exercise using the simple concurrent program shown in
Figure 2. The program contains a test case, which executes
the method foo using multiple threads and does an assertion

1Available open source at https://github.com/microsoft/coyote-scheduler

//	Starting/stopping	the	scheduler
void	attach();
void	detach();

//	Operations
void	create_operation();
void	start_operation(int	op);
void	end_operation(int	op);

//	Resources
void	wait_resource(int	rid);
void	signal_resource(int	rid);

//	Co-operative	context	switch
void	schedule_next();

//	Nondeterministic	choices
int	next_integer(int	min,	int	max);

Fig. 1: Core APIs of the Nekara library.

at the end. Clearly, the assertion can fail, but only in a specific
interleaving where thread t1 updates the shared variable x
last. For this program, it makes sense to map threads to
operations and locks to resources. Our goal will be to simply
mock the concurrency-related APIs and leave the rest of the
program unchanged as much as possible.

Figure 3 shows the mocks. The
create_thread_wrapper function calls
create_operation from the parent thread and then
start_operation in the child thread. The former informs
Nekara that a new operation is about to be created, whereas
the latter allows Nekara to take control of the child thread.
The actual thread is still spawned via create_thread;
Nekara does not provide any runtime of its own.

Next step is to implement the synchronization via resources.
We map each lock to a unique resource, and then acquire
and release methods can be mocked as shown in Figure 3.
For ease of explanation, we have assumed that the resource
id corresponding to a lock object x is stored in the field
x->id, and a Boolean variable representing the status of the
lock (locked/unlocked) is stored in the field x->acquired.
Because Nekara performs co-operative scheduling, imple-
menting synchronization is typically easy. The procedure
acquire_wrapper first does a context switch to give other
operations the chance to acquire the lock, and then goes
ahead to grab the lock if it is available. When the lock is
not available, then the operation blocks on the corresponding
resource. In release_wrapper, we signal the resource, so
that blocked operations can try to grab the lock again. (Note
that signalling a resource unblocks all waiting operations, but
Nekara ensures that only one unblocked operation executes at
any point in time.) Any other way of implementing a lock
is acceptable, as long as it ensures that the only blocking
operation is wait_resource.

The final step is to run the test in a loop for a desired number
of iterations, under the control of Nekara’s scheduler, as shown
in Figure 4. Nekara uses search heuristics to explore the
space of interleavings of the underlying test. Nekara records
the set of scheduling decisions that it makes. When a test
iteration fails, the sequence of scheduling decisions can be
supplied back to the Nekara scheduler to directly reproduce the
buggy iteration. The default set of search heuristics in Nekara
are randomized, so we measure the effectiveness of Nekara
as the percentage of buggy iterations, i.e., what fraction of

Modeling

Project LoC Operations Resources LoC #PW
Memcached (§IV) 21K pthread_t pthread_mutex_t, pthread_cond_t, libevent::event_loop 1K 2
Verona (§V) 8K std::thread std::condition_variable, std::atomic 302 n/a
CSCS (§VI-A) 56K Task TaskCompletionSource<T> 3K 4
ECSS (§VI-B) 44K Task TaskCompletionSource<T>, lock 3K 4
Coyote (§VII) 27K Actor EventQueue 16 <1

TABLE I: Systems integrated with Nekara.

int x; // Shared variable
LCK lock; // Mutex

void test() {
 // Initialization
 x = 0; lock = new LCK();
 // Run workload
 t1 = create_thread(&foo, 1);
 t2 = create_thread(&foo, 2);
 t3 = create_thread(&foo, 3);
 // Continues in right column.

 thread_ join(t1);
 thread_ join(t2);
 thread_ join(t3);
 assert(x != 1);
}
void foo(int arg) {
 acquire(lock);
 x = arg;
 release(lock);
}

Fig. 2: A simple concurrent program.

invocations of the underlying test fail.
Completeness, Limitations: A natural question is if

Nekara’s exploration is complete, i.e., if it is possible to
explore all behaviors of a given test in the limit. With Nekara,
we leave this decision to the developer. Completeness can be
achieved by inserting a context switch just before each non-
commuting action [16]. For message-passing programs, non-
commuting actions are typically just message transfers, thus
instrumenting them is enough to get completeness.

In shared-memory programs, an access to shared memory
is potentially non-commuting. One option is for a developer
to implement their own methodology for inserting context
switches at memory accesses in their code. A second simpler
(and common [2]) solution is to only insert at synchronization
APIs. Then the instrumentation remains limited to mocks of
the synchronization APIs, and does not pollute the code. One
case study (§V) uses the former strategy whereas rest use
the latter strategy. With Nekara, the aim is not necessarily
to find all bugs (it’s a testing solution after all), but rather to
significantly improve existing practice. Behaviors induced by
weak memory models [17] are also outside the scope of this
paper (although interesting future work).

Nondeterminism: The call to next_integer returns
a randomly-generated integer within the supplied range. The
returned value is recorded to allow for replay. This is handy for
modeling non-determinism such as failure injection (§VI-A) or
abstracting branches (§V).

Case Studies: We demonstrate Nekara on various sys-
tems (Table I). Memcached [18] is a popular open-source
in-memory key-value store with cache management. Verona
[19] is a language runtime written in C++. CSCS and ECSS
are production cloud services of Microsoft Azure, written
in C#. Coyote [20] provides a C# actor-based programming
framework for building distributed systems. The third and

int	create_thread_wrapper(
				FUNC_PTR	foo,
				ARGS_PTR	args)	{
		int	op	=	create_new_op();
		scheduler.create_operation(op);
		create_thread(starter,	(op,
				foo,	args));
}
void	starter(int	op,	FUNC_PTR	foo,
				ARGS_PTR	args)	{
		scheduler.start_operation(op);
		foo(args);
		scheduler.end_operation(op);
}

void	acquire_wrapper(LCK	lock)	{
		scheduler.schedule_next();
		while	(true)	{
				if	(lock.acquired	==	true)	{
						scheduler.wait_resource(lock->id);
				}	else	{
						lock.acquired	=	true;	break;
				}
}	}
void	release_wrapper(LCK	lock)	{
			assert(lock.acquired);
			lock.acquired	=	false;
			scheduler.signal_resource(lock->id);
}

Fig. 3: Mocks for thread creation, and lock acquire-release.

void	nekara_test()	{
		Scheduler	scheduler(options);
		for	(int	i	=	0;	i	<	100;	i++)	{
				scheduler.attach();	//	Start	the	scheduler
				test();	//	Run	the	test	for	iteration	i
				scheduler.detach();	//	Stop	the	scheduler
}	}		

Fig. 4: A typical Nekara test running for 100 iterations.

fourth columns of Table I list what is mapped to Nekara
operations and resources, respectively. The last two columns
show the modeling effort: lines of code (LoC) as well as the
number of person weeks (#PW) spent for modeling. Verona
used custom Nekara modeling from the outset, so we cannot
quantify the effort. Each of CSCS and ECSS use the same
mocks, which were developed once in 4 person weeks. It is
worth noting that Nekara testing is an integral part of the
engineering process for Verona, CSCS and ECSS.

III. NEKARA IMPLEMENTATION

The Nekara scheduler must be attached before it takes
any action; once detached, all Nekara APIs are no-ops. A
simplified implementation of the core Nekara APIs is shown
in Algorithm 1. Nekara also includes APIs for joining on
an operation, blocking on a conjunction or a disjunction of
resources, as well as signalling a particular operation. These
additional APIs are not discussed here.

Nekara must ensure that only one operation executes at
any point in time, and it must block the rest, to give it
precise control of the program’s execution. Nekara maintains:
the current operation ocur, a map M : O → R that maps

Algorithm 1: Nekara Scheduling APIs
State: int cntpending, ocur; M : O→ R

1 Procedure create_operation(o)
2 O ← O ∪ {o}; M[o]← ∅; atomic { cntpending ++ }
3 Procedure start_operation(o)
4 atomic { cntpending −− }
5 o.cv.wait() // cv is a condition variable
6 Procedure schedule_next()
7 while cntpending > 0 do wait()
8 E ← {o |M [o] = ∅} // collect enabled operations
9 if E = ∅ then raise deadlock

10 onxt ← S.next(E) // choose next operation
11 if ocur = onxt then return
12 oprev ← ocur; ocur ← onxt
13 onxt.cv.notify() // resume next operation
14 if oprev ∈ E then
15 oprev.cv.wait() // pause previous operation

16 Procedure wait_resource(r)
17 M [ocur]← {r}; schedule_next()

18 Procedure signal_resource(r)
19 foreach o ∈ O do
20 M [o]←M [o] \ {r}

an operation to a set of resources that it’s currently blocked
on, and a counter cntpending that is initialized to zero. An
operation o is enabled if M [o] is empty, and is disabled
otherwise. Nekara creates a condition variable o.cv for each
operation o that it uses to block the operation.

Calling create_operation atomically increments
cntpending to keep track of operations that Nekara should
expect to be spawned. No other action is taken, which
means that the current operation ocur will continue executing.
start_operation decrements cntpending and immediately
blocks the caller. Having these two calls decorating the spawn
of a new operation was important to keep Nekara independent
of the underlying runtime. A call to start_operation
can happen concurrently with respect to other Nekara API.

The executing operation ocur continues until it calls either
schedule_next or wait_resource. The latter just calls
the former, so we just describe schedule_next. It first
waits until cntpending goes to zero. (Once this happens, it
implies that all operations must be inside Nekara.) Nekara
then uses a search heuristic S to decide the next operation
to schedule from the set of all enabled operations (or raise
“Deadlock” is none is enabled). If the next operation is
the same as the current, no action is necessary. Otherwise,
the current operation is blocked and the next operation is
scheduled.

Search heuristics: Several search heuristics have been
proposed in prior work; Thomson et al. [12] provides a survey.
These heuristics are based around empirical observations of
where most bugs lie in practice: for instance, prioritize few
context switches [3], few delays [21], few priority-exchange
points [4], [9], etc.; even selecting the next operation uniformly
at random works well in practice [12]. Nekara, by default, has
several heuristics implemented and uses all of them in a round-
robin fashion (across test iterations).

Network

Slabs

...

Application	Programming	Interface	(API)

Slab	Rebalancer
LRU	
Crawler

Slab	
classes

LRU

...

...

...

LRU	
Maintainer

Worker
Threads

Worker
Threads

Memcached

KV	Hash	Table

Assoc
Maintainer

Worker
Threads

Fig. 5: Architecture of Memcached.

Nekara captures the crux of systematic testing in a small,
simple C++ library. It separates search heuristics from the
modeling and specialization of testing to a particular system.

IV. CASE STUDY: MEMCACHED

Memcached [18] (MC) is an open-source, in-memory key-
value store commonly used as a cache between an application
and a database. It is mostly written in C with approximately
21 KLOC. Being a popular multi-threaded application, it has
been used for benchmarking bug-detection tools in prior work
[22], [23], [24], [25].

Figure 5 illustrates the high-level architecture of MC, show-
ing the key data structures at the bottom and the various kinds
of threads that access them. MC maintains an in-memory,
chained hash table for indexing key-value (KV) pairs. Worker
threads update the hash table and the assoc maintainer thread
is responsible for expanding or shrinking the hash table when
its load crosses above or below certain threshold.

To reduce internal fragmentation, MC uses a slab-based
allocator for storing KV pairs. KV pairs of different sizes
are mapped to different slab classes, and the slab rebalancer
thread redistributes memory among slab classes as needed.
For every slab class, MC maintains three linked lists, named
hot, warm and cold LRUs, to keep track of the least recently
used (LRU) KV pairs. When a slab class runs out of memory,
some memory is reclaimed by evicting the least recently used
KV pair. Two background threads, called LRU maintainer and
LRU crawler, update these linked lists and performs evictions
whenever required.

The dispatcher thread is the main thread that starts and stops
all other threads. Its primary function is to look for incom-
ing network connections and dispatch them to the available
worker threads, which then serve the network client’s requests.
MC relies on an event-driven, asynchronous model based on
libevent [14]; worker threads do not block on network I/O,
but instead switch to processing another request.

Integrating Nekara: We first needed to make MC
more modular and unit-testable. We mocked system calls
like socket, sendmsg, recvmsg, getpeername,
poll, read, write, etc. so that we could imi-

K
no

w
n

Id Bug Type Description Reference
1 Misuse of pthread API Double initialization of mutex and conditional variables PR#566
2 Data Race Dispatcher and worker thread race on a shared field named stats PR#573
3 Misuse of pthread API Deadlock due to recursive locking of a non-recursive mutex PR#560
4 Misuse of pthread API Deadlock due to an attempt to pthread_join a non-existing thread Issue#685
5 Atomicity Violation Two worker threads simultaneously increment the value of the same KV pair Issue#127

N
ew

6 Atomicity violation Null pointer dereference when one worker thread deletes a global variable
while another worker thread was updating it Issue#728

7 Misuse of pthread API Attempt to join a non-existant thread Issue#733

8 Deadlock Slab rebalancer and the dispatcher thread deadlock due to simultaneous invocation
of pthread_cond_signal by a worker and the dispatcher thread. Issue#738

9 Misuse of pthread API This bug can lead to either unlocking an unlocked mutex or unlocking a
mutex that is held by some other thread (resulting in data races). Issue#741

TABLE II: List of previously known bugs, as well as new bugs, that Nekara found in Memcached.

Bug#2 Bug#5 Bug#6 Bug#8
Uncontrolled 7 0.12% 7 7

Nekara 4% 20% 0.8% 0.01%

TABLE III: Percentage of buggy iterations, for Memcached
tests. Each test was executed for 10K iterations.

tate network traffic coming from one or multiple MC
clients. Nekara-specific work was limited to the mocking of
libevent and pthread APIs. These totalled around 1
KLOC and took a nominal effort of around two weeks.

Existing MC tests did not exercise concurrency, so we wrote
a test ourselves. It concurrently invoked several MC oper-
ations; the workload itself was a combination of workloads
from existing tests. We then compared the response returned
by MC with the expected response. Because Nekara tests run
in a loop, we needed to ensure that every iteration of the test
was independent of the previous one. This required resetting
of all the global, static variables and clearing the cache after
every iteration.

Bugs: We picked five previously-known concurrency-
related bugs, listed in Table II, and injected them back in the
latest version. We picked MC’s latest stable version, 1.6.8 for
experimentation. Some of these bugs (Bugs 1, 2, 5) were either
used or found by previous work [25], [23], and others were
obtained from GitHub. In the course of testing, we also found
four previously unknown bugs (Bugs 6 to 9), which have been
confirmed by MC developers.

Bugs related to misuse of pthread APIs (Bug 1, 3, 4, 7, 9)
were easy: they were caught in the first test iteration. The only
reason they escaped MC’s existing tests is that pthreads does
not fail on invalid invocations; we found them simply because
our pthread API mocks checked for them.

Table III shows results for the remaining bugs where using
Nekara was crucial. Most of these bugs could not be caught
without Nekara despite running the test several (10K) times.
All of previously-unknown bugs were present in MC from at
least the past four years, and even prior tools [23], [26] did
not find them.

State coverage: In addition to finding bugs, we wanted to
check if Nekara indeed provides more coverage of concurrent

1000 5000 10000 15000
#Iterations

0

100

200

300

400

500

600

700

800

#U
ni

qu
e

st
at

es

Uncontrolled
Nekara

Fig. 6: State coverage for Memcached.

behaviors. We took a hash of all key data-structures of MC
(LRU linked lists, slab classes, and the KV table) at the end
of a test iteration, and counted the number of unique hashes
seen over all test iterations. We ran the Nekara test for 15K
iterations and the results are shown in Figure 6.

The results show a roughly four-fold increase in the total
number of hashes with Nekara, clearly indicating that it
was able to exercise many more behaviors of MC. Deeper
inspection revealed that Nekara was able to trigger corner-
case behaviors more often, for instance, a slab class running
out of memory, or a get operation observing a cache miss.
Overall, our evaluation demonstrates that a system like MC
can benefit greatly from systematic testing, and using Nekara
requires little effort.

V. CASE STUDY: VERONA

Project Verona [19] is a prototype implementation of a new
programming language that explores the interaction between
concurrency and ownership to guarantee race freedom. The
runtime of the language has several complex concurrent pro-
tocols that use shared memory. The runtime has scheduling
including work stealing, back pressure (to slow message queue
growth), fairness, memory management using atomic reference
counting, and global leak detection. These concepts interact in
subtle ways that are difficult to debug.

The designers of Verona decided to use systematic testing
from the start, motivated by prior struggle with concurrency
bugs that took hours to days to resolve, and that had been a
significant barrier to making quick progress.

Uncontrolled Nekara Commit Hash
Bug#1 7 0.049% 25bb324
Bug#2 7 0.091% c087803

TABLE IV: Percentage of buggy iterations, for Verona tests.
Each test was executed repeatedly for 5 mins.

During development of the Verona runtime, the scheduler,
concurrent queues, and memory management protocols were
carefully reviewed for uses of shared memory concurrency.
Threads were mapped to operations (like in Section II).
Synchronization happened in two forms. The first was the use
of std:atomic; these remain unchanged except that before
every store, and after every load, a call to schedule_next
is inserted, because they mark a potentially racy access to
shared memory. The second was the use of condition variables;
these directly map to Nekara resources.

Verona uses Nekara’s next_integer to control other
sources of non-determinism. For instance, object identity, in
systematic testing builds, was made deterministic, so features
that sort based on identity can be tested reproducibly. The
runtime has numerous heuristics to postpone expensive op-
erations until there is sufficient work to justify their cost.
This implies that certain bugs, which require the expensive
operation to execute, can take a long time to manifest. The
postponement-heuristic was replaced with systematic choice,
i.e., if next_integer(0,1) == 0. This had two ben-
efits: (1) it shortened the trace length to find a bug, and (2) it
removed any dependency on a specific heuristic’s behaviour.

Verona uses systematic testing as part of its code-review
and CI process. Any change to the Verona runtime has an
additional twenty minutes of CI time for running systematic
testing. There is a small amount of stress testing, but most
runtime bugs are found using systematic testing. The project’s
ethos is such that any failure found which did not exhibit
during systematic testing is treated as two bugs: the underlying
bug, and a bug in the use of systematic testing. The latter
is fixed first by writing a systematic test that reveals the
bug. Moreover, users of Verona get systematic testing for free
because the runtime is already instrumented with Nekara.

Anecdotal evidence from the Verona team has said that the
use of systematic testing has given greater confidence for new
members of the team to modify the runtime primarily due
to the debugging experience of replayable crashes. Detailed
logging and replayable crashes provide a way to understand
the subtle interactions in concurrent systems that would nor-
mally be a significant barrier to entry for new programmers.
Most runtime bugs do not make it off the developer’s machine
as the local systematic testing catches them before CI. Two
recent bugs that we investigated are listed in Table IV. Both
bugs would not have been found without systematic testing.
Bug #1 was a failure to correctly protect memory from
being deallocated by another thread. The window for this to
occur was a few hundred cycles, hence almost impossible to
reproduce reliably without systematic testing. The second bug
was due to not considering a corner case of a new feature.

class	Task{
		static	Task	Run(Func<Task>	func);
		static	Task	Delay(TimeSpan	delay);
		static	Task	WhenAll(params
				Task[]	tasks);
		static	Task<Task>	WhenAny(
				params	Task[]	tasks);
					...
		TaskAwaiter	GetAwaiter();
}

class	TaskCompletionSource<T>	{
		Task<T>	Task	{	get;	}
					...
		void	SetResult(T	result);
		void	SetException(Exception	ex);
		void	SetCanceled(
				CancellationToken	ct);
}

Fig. 7: Task and TaskCompletionSource<T> APIs.

VI. CASE STUDY: TASK PARALLEL LIBRARY

The Task Parallel Library [27] (TPL) is a popular, open-
source, cross-platform library provided by .NET for building
concurrent applications. TPL exposes several key types, such
as Task and TaskCompletionSource<T> that interoper-
ate with the async and await keywords in the C# language,
enabling writing asynchronous code without the complexity of
managing callbacks. A developer writes code using these high-
level APIs and TPL takes care of the hard job of partitioning
the work, scheduling tasks to execute on the thread pool,
canceling and timing out tasks, managing state and invoking
asynchronous callbacks.

TPL is pervasive in the .NET ecosystem. We designed
TPLN as a drop-in-replacement library for TPL. TPLN pro-
vides stubs that replace the original TPL APIs, as well as
subclasses that override original TPL types. These stubs and
subclasses call into Nekara via a C++ to C# foreign-function
interface. Any C# application that uses TPL for its concurrency
simply needs to replace it with TPLN to get systematic testing.
We now explain core TPLN design.

The Task type (Figure 7) provides several public-facing
APIs including: Task.Run for queueing a function to execute
on the thread pool and returning a task that can be used
as a handle to asynchronously await for the function to
complete; Task.WhenAll and Task.WhenAny for waiting
one or more tasks to complete; Task.Delay for creating
an awaitable task that completes after some time passes; and
compiler-only APIs, such as Task.GetAwaiter, which
the C# compiler uses in conjunction with the async and
await keywords to generate state machines that manage
asynchronous callbacks [28].

Figure 8 shows the Nekara-instrumented version of
Task.Run. For simplicity, we have omitted low-level de-
tails such as task cancellation and exception handling.
Task.Run of TPLN creates a new Nekara operation
via create_operation, and then invokes the origi-
nal Task.Run to spawn a task. This new task first
calls start_operation, then invokes the user func-
tion, followed by end_operation. The parent task calls
schedule_next to give the child task a chance to execute.
TaskCompletionSource<T> (TCS), shown in Fig-

ure 7, allows developers to asynchronously produce and con-
sume results. This type exposes a Task get-only property

using	SystemTask	=	System.Threading.Tasks.Task;
static	Task	Run(Func<Task>	func)	{
		//	Create	a	new	Nekara	operation	id	for	the	new	task.
		int	op	=	GetUniqueOperationId();
		Nekara.create_operation(op);
		var	task	=	SystemTask.Run(async	()	=>	{
				Nekara.start_operation(op);
				//	Execute	the	user-specified	asynchronous	function.
				//	The	await	logic	is	instrumented	with	Nekara.
				await	func();
				Nekara.end_operation(op);
		});

		Nekara.schedule_next();
		return	task;
}

Fig. 8: Instrumentation of Task.Run with Nekara.

//	TCS	context	used	for	Nekara	testing.
class	TCSContext<T>	{
		//	Nekara	resource	id	for	the	TCS.
		int	Id	=	GetUniqueResourceId();	
		//	The	result	set	by	the	TCS.
		T	Result	=	default;
		bool	IsCompleted	=	false;
}
void	SetResult(T	result)	{
		var	context	=	GetCurrentContext();
		if	(!context.IsCompleted)	{
				//	Set	the	TCS	result.
				context.Result	=	result;
				context.IsCompleted	=	true;
				//	Signal	the	TCS	consumer.
				Nekara.signal_resource(context.Id);
		}
}

Task<T>	Task	=>	{
		//	Get	the	current	TCS	context.
		var	context	=	GetCurrentContext();
		if	(context.IsCompleted)	{
				//	If	TCS	is	completed,	return	the	result.
				return	Task.FromResult(context.Result);
		}

		//	Return	a	Nekara-controlled	task
		//	that	will	be	completed	by	the	producer.
		return	Task.Run(()	=>	{
				//	Wait	the	producer	to	set	the	result.
				Nekara.wait_resource(context.Id);
				//	Exception/cancellation	logic.
				...
				return	context.Result;
		});
};

Fig. 9: Instrumentation of TCS APIs with Nekara.

that a consumer can await to receive a result of type T asyn-
chronously. This task remains uncompleted until the producer
completes it with a result by invoking SetResult.

Instrumentation of TCS Task and SetResult is shown in
Figure 9. We designed TCSContext<T>, a simple test-only
data structure in TPLN that contains information needed to
model a TCS. TCSContext<T> contains a Nekara resource
id associated with the TCS, the result of the TCS, and a
Boolean value that is set to true once the TCS completes.
TCSContext<T> is set to the TCS state upon initialization
by TPLN , so that it can be accessed when invoking one of the
stub TCS APIs. The producer (SetResult) is modeled as
follows: it first accesses the context, then checks if the TCS has
completed and, if not, it sets the result and IsCompleted
to true and signals the resource associated with the TCS
to unblock any task that might be waiting on the TCS Task
getter property. The consumer (Task getter) is modeled as
follows: it first accesses the context, then checks if the TCS
has completed and, if it has, it simply returns a completed task
with the result. If the TCS has not completed yet, it will create
a new task by invoking the Task.Run TPLN API (which we
described above). This asynchronous task immediately waits
on the resource, and once the producer signals, it returns the

(Mock)	Client

Control	Plane
ASP.NET

Microservice

Data	Plane
ASP.NET

Microservice

Worker
ASP.NET

Microservice

CSCS	Kubernetes	Cluster

(Mock)
Cosmos	DB

(Mock)	Storage	Queue

Fig. 10: The high-level architecture of CSCS.

completed result.
We also modeled two other TPL types. First is the

Monitor type that implements a reentrant lock in C#
(along similar lines to Figure 3). Second is the type
AsyncTaskMethodBuilder that the C# compiler uses to
generate state machines to manage asynchronous callbacks in
methods that use async and await.

Creating TPLN took roughly one person month, with most
time spent in ensuring that we support each TPL API and
maintain details such as exception propagation, cancellation,
etc. This is largely a one-time effort (unless TPL itself changes
significantly). Several engineering teams in Microsoft were
able to use TPLN to test their services without needing
any changes to their production code. Two such systems
are summarized next in Sections VI-A and VI-B. They use
conditional compilation to automatically replace the original
TPL library with TPLN during testing.

A. Testing CSCS with TPLN

Cloud Supply Chain Service (CSCS) exposes a set of
HTTP REST APIs that clients can invoke to create supply-
chain entities and orchestrate supply-chain processes. CSCS
is designed with a typical microservice-based architecture
(Figure 10) where multiple stateless microservices coordinate
with each other through shared state maintained in backend
storage systems. CSCS consists of roughly 56K lines of C#
code. It is built using ASP.NET [29] and achieves horizontal
scalability through Kubernetes [30].

The CSCS microservices, although stateless, concurrently
access the backend storage, including Cosmos DB [31] (a
globally-distributed database service) and Azure Queue Stor-
age [32] (a durable distributed queue). Some requests in
CSCS follow a simple request/response pattern, while others
trigger background jobs, making the client periodically poll
to check on the completion of the job. This requires complex
synchronization logic between the microservices.

CSCS is written against storage interfaces, so they can
be easily mocked during testing using techniques such as
dependency injection. Multiple concurrent client calls are sim-
ulated by spawning concurrent tasks that invoke the relevant
ASP.NET controller actions.

//	Instantiates	a	Cosmos	DB	Mock,	an	instance	of	a	CSCS
//	ASP.NET	microservice,	and	a	CSCS	client.
var	cosmosDbMock	=	new	CosmosDb_Mock(...);
var	factory	=	new	ServiceFactory(cosmosDbMock,	...);
var	client	=	factory.CreateClient(...);

//	Invokes	a	concurrent	Create	and	Update	client	request.
Task	req1	=	Task.Run(()	=>	client.Create("id",
		{	Content:	"payload1",	Timestamp:	7	}));
Task	req2	=	Task.Run(()	=>	client.Update("id",
		{	Content:	"payload2",	Timestamp:	8	}));

await	Task.WhenAll(req1,	req2);

//	Gets	the	resource	(stored	in	Cosmos	DB)	and	asserts
//	it	contains	the	expected	payload	and	timestamp.
var	resource	=	await	client.Get("id");
Assert.IsTrue(resource.Content	==	"payload2"	&&
		resource.Timestamp	==	8);

Fig. 11: A simple Nekara concurrent test in CSCS.

Bug#1 Bug#2 Bug#3 Bug#4
Uncontrolled 7 7 7 7

Nekara 11% 7% 1% 1%

TABLE V: Percentage of buggy iterations on CSCS tests.

CSCS concurrency unit tests range from simple concurrency
patterns where the test calls an API with different inputs but
the same key (to exercise interference in Cosmos DB) to more
complex tests that randomly fail certain mock invocations
(using the next_integer API) to simulate intermittent
network failures. Figure 11 shows a simple CSCS test. These
tests, when exercised by Nekara, were able to uncover subtle
bugs. Table V lists some of the bugs, comparing testing with
and without Nekara. Each test was run multiple times for a
total of 5 minutes and the table shows percentage of buggy
runs. Without Nekara, none of these bugs would have been
found. Following is a description of these bugs.

a) Data loss due to concurrent requests (Bug#1): CSCS
requires that upon two concurrent Create or Update re-
quests, only the request with the latest modified timestamp
succeeds. To achieve this, CSCS uses Cosmos DB ETags
functionality for optimistic concurrency control, but a bug
in the handling of ETags led to a stale Create overwriting
fresher data. This bug was missed by both stress testing and
manual code review, but found quickly with Nekara (with the
test shown in Figure 11). This bug could have lead to customer
data loss.

b) Inconsistent entity state (Bug#2): CSCS manages two
sets of related entities, which are stored in different tables and
partitions of Cosmos DB. Rejecting an update on one of the
entities, must lead to rejection of updating the other entity too.
However, Cosmos DB does not support transactions between
entities stored in different partitions, and the developers had
to implement custom synchronization logic to get around this
limitation. When the team wrote a concurrent test that tries to

cancel and reject an entity at the same time, Nekara uncovered
an issue where the system got into an inconsistent state. This
bug had escaped stress testing and manual code review.

c) Resource creation liveness issue (Bug#3): Certain
requests trigger a background task requiring the client to peri-
odically poll its completion. This functionality is implemented
by storing a record indicating the request status in Cosmos DB
and then submitting the job to a worker queue to trigger the
asynchronous work. There was a bug where the submission to
the worker queue could fail due to network connectivity issues.
However, as the record was created in the database, the user
would find the status to be pending-creation upon a
GET request and would erroneously assume the resource will
be eventually created. This liveness bug was caught with a test
that simulated potential network failures.

d) Race condition in test logic (Bug#4): Interestingly,
Nekara found a bug in the CSCS test code itself. The buggy
test performed two concurrent PUT requests to provision a
resource, then waited for the provisioning to complete and
then deleted the resource. The test was failing because two
concurrent Create requests led to two asynchronous workers
for the same resource. The test then deleted the resource as
soon as one of the workers transitioned the resource state to
created. However, there was a race between the second
asynchronous worker and the Delete request, which caused
the test to fail. The developers were initially not sure if this
bug was in their production logic or test logic, but due to
Nekara’s reproducible traces they were able to understand the
issue and fix it.

B. Testing ECSS with TPLN

Cloud storage uses geo-redundancy to protect against catas-
trophic data center failures. The Erasure Coding Storage Ser-
vice (ECSS) offers an economical solution to this problem by
applying erasure coding to blob objects across geographically
distributed regions. Figure 12 shows a partial view of the
high-level architecture of ECSS. The system consists of a data
service and a metadata service. The data service is responsible
for striping data and generating parities across regions, as well
as reconstructing data in the event of failures. The metadata
service manages erasure coding stripes and handles dynamic
updates to the stripes (due to object creation, update, and
deletion). ECSS consists of roughly 44K lines of C# code.

To achieve high-throughput, ECSS was designed to be
highly-concurrent. The data service implements a component
called Syncer that periodically synchronizes metadata between
individual regions and the metadata service using Azure
Queue Storage. Syncer is sharded and the ECSS developers
implemented a lease-based mechanism to assign different
Syncer partitions to different metadata service nodes. The
metadata service executes two long running TPL tasks: a
table updater and a table scanner. The updater asynchronously
dequeues Syncer messages from Azure Queue Storage and
uses their contents to update Azure Table Storage. The scanner
periodically scans Azure Table Storage to check different types
of metadata. Based on the metadata state, the scanner will

`
Data	Service

Metadata	Service

Syncer...

(Mock)	Storage	Table

Table	Scanner Table	Updater

In-memory	Action	Queue

In-memory	Action	Queue

...

Action
Engine

(Mock)	Storage	Queue

Data	Block

Fig. 12: Parts of the high-level architecture of ECSS.

Syncer_1

Syncer_2

(Mock)
Storage	Table

update
metadata
to	v2

init	and	read
metadata	from	v1

update
metadata
to	v3

enqueue
msg_B

enqueue
msg_A

(Mock)	Storage	Queue
1.	msg_A	(metadata_v2)
2.	msg_B	(metadata_v3)

init	and	read
metadata	from	v2

Data	Block

read
data	at
time	1

read
data	at
time	2

Fig. 13: Race condition in the ECSS data service.

enqueue actions on a set of in-memory queues. Long-running
tasks execute action engines that drain these queues, perform
actions on the state and update the metadata in Azure Table
Storage, as well as sending action messages to the data service
through Azure Queue Storage to do erasure coding among
other operations.

Eventually, the state of the data service and Azure Ta-
ble Storage must be consistent. ECSS manages exabytes of
customer data, and correctness is absolutely vital, which is
why the team used TPLN for thorough testing. No changes
were required to the production code. The main investment
was in writing the tests: the tests instantiate the Syncer and
the metadata service in-memory, use dependency injection for
inserting their mocks of Azure Table Storage and Azure Queue
Storage, write input data and finally assert that the Azure Table
Storage state is consistent.

Nekara helped find several critical bugs that could have
resulted in data loss. Figure 13 illustrates one of these bugs,
a race condition between two Syncer instances from the same
partition. The first Syncer instance (Syncer_1) starts and
reads metadata with version 1 from Azure Table Storage,
updates it and writes it back to the table with version 2.
On the same partition, a new Syncer instance (Syncer_2)
starts, reads the same metadata (which now has version 2),
and updates it to version 3. Immediately after, Syncer_2
reads from the data block, but just before it continues its
execution, Syncer_1 reads the latest data from the same
block and generates msg A containing version 2 of the

TPLN CoyoteN Coyote

Benchmarks BI% Time BI% Time BI% Time

Ch. Replication 7 594 0.01% 197 0.01% 224
Fail. Detector 7 39 0.08% 19 0.07% 23
Paxos 0.05% 254 0.07% 56 0.06% 104
Raft 0.35% 789 0.29% 151 0.38% 156

TABLE VI: Comparing systematic testing with Nekara against
the original Coyote. Tests run for 10k iterations. BI% denotes
percentage of buggy iterations. Time is in seconds.

metadata and enqueues this message to Azure Queue Storage.
Next, Syncer_2 continues executing and generates msg B
containing version 3 of the metadata and also enqueues this
message. Finally, the metadata service dequeues conflicting
messages from the same partition, which could result in a
later version of the metadata being overwritten by an outdated
version. To fix the bug, the developers had to write logic just
before enqueueing the messages to check if the metadata and
the version are consistent, and if not then discard the message.

This bug had escaped continuous unit and stress tests.
Nekara was able to find it in under 10 seconds and just 8
test runs (on average). The ECSS team (as well as the CSCS
team) routinely run Nekara tests as part of their CI.

VII. REPRODUCING KNOWN BUGS

We evaluate Nekara against three prior tools on their own
set of benchmarks. The purpose of this evaluation is to show
that one can get state-of-the-art systematic testing with Nekara.

a) Coyote: The first comparison is against Coyote [20]
that provides an open-source .NET actor library, used by teams
in Azure [33]. Coyote provides a runtime for executing actors.
All actors execute concurrently and communicate by sending
messages to each other. Coyote also provides a systematic
testing solution for testing these actor-based programs [11],
[34].

We directly instrumented the Coyote runtime using Nekara
to build our own systematic testing solution. We had two
options. In the first approach, we took advantage of the Coyote
runtime being implemented entirely on top of TPL, which
we simply replaced with TPLN . In the second approach, we
instead instrumented at the level of actor semantics: an actor
is mapped to an operation, and the actor’s inbox is mapped
to a resource. We skip the details of this instrumentation for
lack of space; the high-level summary is that it only required
16 lines of changes to the Coyote runtime. We refer to the
second approach as CoyoteN . Note that in both approaches, all
changes were limited to the Coyote runtime; the user program
remains unchanged.

Table VI shows results on prior Coyote benchmarks, which
consist of buggy protocol implementations. The two Nekara
approaches have different advantages. TPLN has the benefit of
being able to test the Coyote runtime itself (that it correctly
implements actor semantics). Moreover, the instrumentation
was mechanical and required no knowledge of Coyote itself.

class	MockDictionary<K,	V>	:	Dictionary<K,	V>	{
		int	SharedVar;	bool	IsWrite	=	false;	...
		bool	override	ContainsKey(K	key)	{
				var	tid	=	Task.CurrentId;
				SharedVar	=	tid;
				Nekara.schedule_next();
				//	Check	for	race.
				assert(!(SharedVar	!=	tid	&&	IsWrite));
				return	base.ContainsKey(key);
		}
}

		void	override	Add(K	key,	V	value)	{
				var	tid	=	Task.CurrentId;
				SharedVar	=	tid;	IsWrite	=	true;
				Nekara.schedule_next();
				//	Check	for	race.
				assert(SharedVar	==	tid);
				IsWrite	=	false;
				base.Add(key,	value);
		}

Fig. 14: Mock dictionary instrumented to detect races.

However, bugs in the Coyote runtime was not in question
here, and we found this approach to have worse performance
than the other systematic testing solutions. Instrumenting at
the TPL level significantly increased the number of operations
and scheduling points in the program, which decreased bug-
finding ability and increased test time. CoyoteN , however, was
comparable to Coyote because both directly leverage actor
semantics. We also compared against uncontrolled testing,
which unsurprisingly, could not find any of the bugs.

We make a note on the relationship of Coyote to Nekara
because both projects have influenced each other. Coyote had
earlier only supported an actor-based programming model.
Nekara inherited many of the search techniques used in
Coyote, but applied them to a generalized setting. Given
the success of Nekara’s TPLN model in testing Task-based
programs, the Coyote team has since incorporated that work
natively to support Task-based programs as well. Coyote
uses bytecode-level instrumentation to automatically inject
hooks into an unmodified C# program, making the end-user
experience more seamless than with using TPLN .

b) TSVD: In the second experiment, we reproduce bugs
found by TSVD [35], a tool that looks for thread-safety viola-
tions (TSVs), which are concurrent invocations of operations
on a non-thread-safe data structure (e.g., a Dictionary).
TSVD’s open-source evaluation [35] covered nine .NET appli-
cations; here we consider six of those (one was removed from
GitHub and in two others we were unable to locate a TSV bug
from the cited GitHub issue). In each application, we replaced
TPL with TPLN and made one additional change. To capture
TSV as an assertion, we implemented a MockDictionary
type as a subclass of Dictionary, and modified the applica-
tion to use this type. Figure 14 shows this mock: an assertion
failure in the mock corresponds to a TSV. Table VII shows
the results: we were able to find all TSVs, taking at most 8
iterations on average. In the DataTimeExtension benchmark,
we found four additional TSVs (not reported by TSVD) by
running the test for 100 iterations.

c) Maple: The third comparison is against Maple [36], a
systematic-testing tool that uses dynamic instrumentation and
provides coverage-driven testing through online profiling and
dynamic analyses. We picked a set of real-world benchmarks
from SCTBench [12]. These include: an older version of Mem-
cached, SpiderMonkey (a JavaScript runtime engine), Stream-

Nekara

Applications LoC #BF BR? BI%

T
SV

D

DataTimeExtention 3.2K 3 3 89.3%
FluentAssertion 78.3K 2 3 51.3%
K8s-client 332.3K 1 3 11.7%
Radical 96.9K 3 3 28.3%
System.Linq.Dynamic 1.2K 1 3 99.0%
Thunderstruck 1.1K 2 3 48.3%

M
ap

le

SpiderMonkey∗ 200K 2 3 0.5%
Memcached-1.4.4 10K 1 3 20.0%
StreamCluster∗ 2.5K 3 3 41.7%
Pbzip2 1.5K 1 3 50.0%

TABLE VII: Comparison with TSVD and Maple. #BF is
number of bugs found by these tools. The 3(under BR?)
denotes that Nekara reproduced all these previously found
bugs. BI% denotes percentage of buggy iterations.

Cluster (online clustering of input streams), and pbzip2 (a
parallel implementation of bzip2). Bugs in these applications
include atomicity violations, order-violation, deadlocks and
livelocks. All these benchmarks use pthreads so we reused
the models from Section IV. Table VII shows the results.
Nekara found all the reported bugs; most in a small number
of iterations. These numbers are either comparable or smaller
than those reported by Maple, although a direct comparison
is not possible because of the different set of techniques and
instrumentation used. For some benchmarks, marked in the
table with a ∗, we also inserted schedule_next just before
global variables accesses, without which we were unable
to find some of the bugs (due to the incompleteness issue
mentioned in Section II).

VIII. EXPERIENCE SUMMARY

This section summarizes our experience in integration
Nekara with the various case studies presented in this paper.

Integration: We were able to integrate Nekara testing
with several systems with no changes to the production code in
most cases. Only in the case of Memcached, we had to modify
the code in order to mock system calls to sockets so that we
could write unit tests with multiple concurrent clients. The fact
that production code need not take a dependency on Nekara
was important was acceptance with development teams.

Modeling effort: Table I shows that the modeling effort
was small to moderate. For systems like Verona, systematic
testing was always an integral part of its development process.
Systems like ECSS and CSCS fully shared their models
(TPLN) demonstrating amortization of effort across teams.

Development of the models does require some expertise in
reasoning about concurrency, especially for understanding the
semantics of synchronization APIs and encoding it correctly
using Nekara resources. Correctness of these models is a
concern, because mistakes can lead to deadlocks when running
Nekara tests. We leave the problem of validating models as
future work. In general, it would be interesting to explore a
community-driven effort that maintains models of common
concurrency frameworks or APIs.

Bugs: Nekara helped catch several bugs, including live-
ness bugs, deadlocks, memory leaks as well as functionality
bugs like data corruption. Many of these would not have been
caught with existing practices like stress testing or code review.

Writing test cases: Developing good tests that exercise
concurrency in the system, and assert something meaningful,
are crucial to get benefits from systematic testing. For Mem-
cached, we wrote a generic test by simply combining existing
test cases. For other systems, the developers of those systems
were able to write tests themselves without our help.

Debugging: Repro capabilities of Nekara was well ap-
preciated by developers. Furthermore, instrumentation of a
runtime (like Verona or Coyote) provides systematic testing
to users of the runtime for free.

IX. RELATED WORK

The systematic testing approach has its roots in stateless
model checking, popularized first by VeriSoft [10]. Stateful
approaches require capturing the entire state of a program in
order to avoid visiting the same state again, because of which
these techniques are typically applied on an abstract model
of an implementation [37], [38]. Stateless approaches, on the
other hand, only control program actions. They do not inspect
program state at all, consequently are directly applicable to
testing the implementation itself. All these techniques were
initially focussed on verification. CHESS [39] shifted the
focus to bug finding; it prioritized exploration of a subset
of behaviors, one with a few number of context switches,
and found many bugs. Several randomized search techniques
[4], [9], [12], [40], [21] have followed since, showcasing very
effective bug-finding abilities. Our focus has been on making
systematic testing easy to use, to that end we capture all
these search techniques inside Nekara. One class of techniques
that we are unable to capture in Nekara’s interface currently
is partial-order-reduction (POR) based techniques [10], [41].
POR requires knowing if the next steps of two different
operations are independent of each other or not. Supporting
POR require more information to be supplied to Nekara, which
is interesting future work.

Instantiation of systematic testing exists for multi-threaded
[42], [2], [3], [4], [41] as well as message-passing programs
[5], [6], [7], [8], [9], however their combined reach is still
small. For instance, most C# applications that we considered
are built on TPL Tasks. These Tasks eventually execute on
the .NET threadpool, so one can consider them to be multi-
threaded applications, but instrumenting the .NET runtime is
challenging, and we did not find any readily applicable tool.
Moreover, even if this was possible, instrumenting at a higher-
level is typically much easier (§VI) and more efficient (§VII).
Our goal is to unlock systematic testing; modeling is not
hidden inside a tool, but available as code that can be readily
adopted by others.

Complementary to systematic testing is the work on finding
low-level concurrency bugs such as data races and atomic-
ity violations [43], [44], [45], [46], [47]. These techniques
examine a given concurrent execution and evaluate if there

were potentially racy accesses. Data race detection typically
requires monitoring memory accesses at runtime. Nekara can
help generate a diverse set of concurrent executions for these
tools, or be used directly for specific races (§VII).

Another related problem is deterministic replay of pro-
cesses, even virtual machines [48], [49], [50], [51], [52]. These
techniques seek generality to support arbitrary systems, and
require very detailed tracing. The problem is simpler in our
setting, as we are focussed on a single test written by a
developer aware of the concurrency used in their application.

X. CONCLUSIONS

Systematic testing holds promise in changing the way we
test concurrent systems. In this paper, we present Nekara,
a simple library that allows developers to build their own
systematic testing solutions. Integration of Nekara is a simple
programming exercise that only requires modeling of key
concurrency APIs. The model code is easy to share to further
amortize the cost across multiple projects. We report several
case studies where the use of Nekara made considerable
impact, both in existing systems, as well as systems designed
from scratch with systematic testing.

REFERENCES

[1] J. Gray, “Why do computers stop and what can be done about it?” in
Proceedings of the 5th Symposium on Reliability in Distributed Software
and Database Systems. IEEE, 1986, pp. 3–12.

[2] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu, “Finding and reproducing heisenbugs in concurrent pro-
grams,” in Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, 2008, pp. 267–280.

[3] M. Musuvathi and S. Qadeer, “Fair stateless model checking,” in
Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA, June 7-13,
2008, R. Gupta and S. P. Amarasinghe, Eds. ACM, 2008, pp.
362–371. [Online]. Available: https://doi.org/10.1145/1375581.1375625

[4] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
randomized scheduler with probabilistic guarantees of finding bugs,”
in Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2010, Pittsburgh, Pennsylvania, USA, March 13-17, 2010, 2010, pp.
167–178. [Online]. Available: https://doi.org/10.1145/1736020.1736040

[5] J. Simsa, R. Bryant, and G. A. Gibson, “dbug: Systematic
testing of unmodified distributed and multi-threaded systems,” in
Model Checking Software - 18th International SPIN Workshop,
Snowbird, UT, USA, July 14-15, 2011. Proceedings, ser. Lecture
Notes in Computer Science, A. Groce and M. Musuvathi, Eds.,
vol. 6823. Springer, 2011, pp. 188–193. [Online]. Available:
https://doi.org/10.1007/978-3-642-22306-8\ 14

[6] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou, “MODIST: transparent model checking of
unmodified distributed systems,” in Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation, 2009,
pp. 213–228.

[7] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S.
Gunawi, “SAMC: semantic-aware model checking for fast discovery
of deep bugs in cloud systems,” in Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation, 2014,
pp. 399–414.

[8] J. F. Lukman, H. Ke, C. A. Stuardo, R. O. Suminto, D. H. Kurni-
awan, D. Simon, S. Priambada, C. Tian, F. Ye, T. Leesatapornwongsa,
A. Gupta, S. Lu, and H. S. Gunawi, “Flymc: Highly scalable testing
of complex interleavings in distributed systems,” in Proceedings of the
Fourteenth EuroSys Conference 2019, Dresden, Germany, March 25-28,
2019, 2019, pp. 20:1–20:16.

[9] B. K. Ozkan, R. Majumdar, F. Niksic, M. T. Befrouei, and G. Weis-
senbacher, “Randomized testing of distributed systems with probabilistic
guarantees,” PACMPL, vol. 2, no. OOPSLA, pp. 160:1–160:28, 2018.

[10] P. Godefroid, “Software model checking: The verisoft approach,”
Formal Methods in System Design, vol. 26, no. 2, pp. 77–101, 2005.
[Online]. Available: https://doi.org/10.1007/s10703-005-1489-x

[11] P. Deligiannis, M. McCutchen, P. Thomson, S. Chen, A. F. Donaldson,
J. Erickson, C. Huang, A. Lal, R. Mudduluru, S. Qadeer, and W. Schulte,
“Uncovering bugs in distributed storage systems during testing (not
in production!),” in 14th USENIX Conference on File and Storage
Technologies, FAST 2016, Santa Clara, CA, USA, February 22-25, 2016.,
2016, pp. 249–262.

[12] P. Thomson, A. F. Donaldson, and A. Betts, “Concurrency testing
using controlled schedulers: An empirical study,” ACM Transactions on
Parallel Computing, vol. 2, no. 4, pp. 1–37, 2016.

[13] Microsoft, “Azure Service Fabric,” https://azure.microsoft.com/services/
service-fabric/.

[14] libevent, “An event notification library,” https://libevent.org/.
[15] Trio, “A friendly Python library for async concurrency and I/O,” https:

//trio.readthedocs.io/en/stable/.
[16] R. J. Lipton, “Reduction: A method of proving properties of parallel

programs,” Commun. ACM, vol. 18, no. 12, pp. 717–721, Dec. 1975.
[17] B. Norris and B. Demsky, “Cdschecker: checking concurrent data

structures written with C/C++ atomics,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2013, part of SPLASH
2013, Indianapolis, IN, USA, October 26-31, 2013, 2013, pp. 131–150.

[18] Memcached, “An in-memory key-value store,” https://www.memcached.
org/, 2020.

[19] Microsoft Research, “Verona: Research programming language for con-
current ownership,” https://github.com/microsoft/verona, 2021.

[20] Microsoft Coyote, “Fearless coding for reliable asynchronous software,”
https://github.com/microsoft/coyote, 2020.

[21] M. Emmi, S. Qadeer, and Z. Rakamaric, “Delay-bounded scheduling,”
in Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA,
January 26-28, 2011, 2011, pp. 411–422.

[22] T. Elmas, J. Burnim, G. Necula, and K. Sen, “CONCURRIT: a domain
specific language for reproducing concurrency bugs,” in Proceedings of
the 34th ACM SIGPLAN conference on Programming language design
and implementation, 2013, pp. 153–164.

[23] D. Schemmel, J. Büning, C. Rodrı́guez, D. Laprell, and K. Wehrle,
“Symbolic partial-order execution for testing multi-threaded programs,”
arXiv preprint arXiv:2005.06688, 2020.

[24] S. Nagarakatte, S. Burckhardt, M. M. Martin, and M. Musuvathi,
“Multicore acceleration of priority-based schedulers for concurrency bug
detection,” in Proceedings of the 33rd ACM SIGPLAN conference on
Programming Language Design and Implementation, 2012, pp. 543–
554.

[25] N. Jalbert, C. Pereira, G. Pokam, and K. Sen, “RADBench: A concur-
rency bug benchmark suite.” HotPar, vol. 11, pp. 2–2, 2011.

[26] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: data race detec-
tion in practice,” in Proceedings of the workshop on binary instrumen-
tation and applications, 2009, pp. 62–71.

[27] D. Leijen, W. Schulte, and S. Burckhardt, “The design of a task parallel
library,” in Proceedings of the 24th ACM SIGPLAN Conference on
Object Oriented Programming Systems Languages and Applications.
ACM, 2009, pp. 227–242.

[28] Microsoft, “Asynchronous programming with async and await,” https://
docs.microsoft.com/dotnet/csharp/programming-guide/concepts/async/,
2020.

[29] ——, “ASP.NET: A framework for building web apps and services with
.NET and C#,” https://dotnet.microsoft.com/apps/aspnet, 2020.

[30] The Kubernetes Authors, “Kubernetes,” https://kubernetes.io/, 2020.
[31] Microsoft, “Cosmos DB: Fast NoSQL database with open APIs for any

scale,” https://azure.microsoft.com/en-us/services/cosmos-db/, 2020.
[32] ——, “Queue Storage: Durable queues for large-volume cloud services,”

https://azure.microsoft.com/en-us/services/storage/queues/, 2020.
[33] P. Deligiannis, N. Ganapathy, A. Lal, and S. Qadeer, “Building

reliable cloud services using P# (experience report),” CoRR, vol.
abs/2002.04903, 2020. [Online]. Available: https://arxiv.org/abs/2002.
04903

[34] P. Deligiannis, A. F. Donaldson, J. Ketema, A. Lal, and P. Thomson,
“Asynchronous programming, analysis and testing with state machines,”

in Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2015, pp. 154–164.

[35] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye, “Efficient scal-
able thread-safety-violation detection: Finding thousands of concurrency
bugs during testing,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, ser. SOSP ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 162180, https:
//doi.org/10.1145/3341301.3359638.

[36] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A coverage-
driven testing tool for multithreaded programs,” in Proceedings of
the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 485502.
[Online]. Available: https://doi.org/10.1145/2384616.2384651

[37] G. Holzmann, The SPIN Model Checker: Primer and Reference Manual,
1st ed. Addison-Wesley Professional, 2011.

[38] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie, “Zing: A
model checker for concurrent software,” in Computer Aided Verification,
16th International Conference, CAV 2004, Boston, MA, USA, July 13-17,
2004, Proceedings, 2004, pp. 484–487.

[39] M. Musuvathi and S. Qadeer, “Iterative context bounding for system-
atic testing of multithreaded programs,” in Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, 2007,
pp. 446–455.

[40] A. Desai, S. Qadeer, and S. A. Seshia, “Systematic testing of asyn-
chronous reactive systems,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015, 2015, pp. 73–83.

[41] J. Huang, “Stateless model checking concurrent programs with maximal
causality reduction,” in Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland,
OR, USA, June 15-17, 2015, 2015, pp. 165–174.

[42] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill,
“CMC: A pragmatic approach to model checking real code,” in 5th
Symposium on Operating System Design and Implementation (OSDI
2002), Boston, Massachusetts, USA, December 9-11, 2002, 2002.

[43] C. Flanagan and S. N. Freund, “Atomizer: a dynamic atomicity checker
for multithreaded programs,” in Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2004, Venice, Italy, January 14-16, 2004, 2004, pp. 256–267.

[44] S. Park, S. Lu, and Y. Zhou, “Ctrigger: exposing atomicity violation
bugs from their hiding places,” in Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2009, Washington, DC, USA, March 7-11,
2009, 2009, pp. 25–36.

[45] C. Flanagan and S. N. Freund, “Fasttrack: efficient and precise dynamic
race detection,” in Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2009,
Dublin, Ireland, June 15-21, 2009, 2009, pp. 121–133.

[46] K. Sen, “Race directed random testing of concurrent programs,” in
Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA, June 7-13,
2008, 2008, pp. 11–21.

[47] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson,
“Eraser: A dynamic data race detector for multi-threaded programs,”
in Proceedings of the Sixteenth ACM Symposium on Operating System
Principles, SOSP 1997, St. Malo, France, October 5-8, 1997, 1997, pp.
27–37.

[48] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray, M. Drinić,
D. Mihočka, and J. Chau, “Framework for instruction-level tracing and
analysis of program executions,” in Proceedings of the 2nd International
Conference on Virtual Execution Environments, ser. VEE ’06. New
York, NY, USA: Association for Computing Machinery, 2006, pp.
154–163. [Online]. Available: https://doi.org/10.1145/1134760.1220164

[49] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“Revirt: Enabling intrusion analysis through virtual-machine logging
and replay,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 211–224,
Dec. 2003. [Online]. Available: https://doi.org/10.1145/844128.844148

[50] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen,
“Execution replay of multiprocessor virtual machines,” in Proceedings
of the Fourth ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, ser. VEE ’08. New York, NY, USA:

Association for Computing Machinery, 2008, pp. 121–130. [Online].
Available: https://doi.org/10.1145/1346256.1346273

[51] J.-D. Choi and H. Srinivasan, “Deterministic replay of java multithreaded
applications,” in Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools, ser. SPDT ’98. New York, NY, USA:
Association for Computing Machinery, 1998, pp. 48–59. [Online].
Available: https://doi.org/10.1145/281035.281041

[52] M. Xu, R. Bodik, and M. D. Hill, “A ”flight data recorder”
for enabling full-system multiprocessor deterministic replay,” in
Proceedings of the 30th Annual International Symposium on Computer
Architecture, ser. ISCA ’03. New York, NY, USA: Association
for Computing Machinery, 2003, pp. 122–135. [Online]. Available:
https://doi.org/10.1145/859618.859633

