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Abstract

We present Enterprise Alexandria, one of the core Al technologies behind Microsoft
Viva Topics'!. Enterprise Alexandria is a new system for automatically constructing a
knowledge base with high-precision and typed entities from private enterprise data such as
emails, documents and intranet pages. Built as an extension of Alexandria [Winn et al.,
2019], the key novelty of Enterprise Alexandria is the ability in processing both the textual
information and the structured metadata available in each document in an online learning
fashion, making use of any manual curations that have happened in the interim. This task
is performed entirely eyes-off to respect the privacy of the user and the restricted access to
their documents. The knowledge discovery process uses a probabilistic program defining the
process of generating the data item from a set of unknown typed entities. Using probabilistic
inference, Enterprise Alexandria can jointly discover a large set of entities with custom
types specific to the organization. Experiments on three real-world datasets show that the
system outperforms alternative methods with the ability to work effectively at large scale.

1. Introduction

As the volume of textual information produced within organizations continues to grow
dramatically [Radicati and Levenstein, 2019], it is critical for Automated Knowledge Base
Construction (AKBC) systems applied to enterprise scenarios to process data automatically
and at large scale. This is becoming a key research area in enterprise knowledge discovery
[Loshin, 2001] where a key task is to turn unstructured text present in emails, documents
and intranet pages into a single, continuously available, consistent and up-to-date knowledge
base. In doing so, due to the restricted access of enterprise documents that are continuously
edited by the users, the entire knowledge base must be constructed incrementally and
eyes-off (i.e., documents are not accessible for labeling) for each organization [Voigt and
Von dem Bussche, 2017]. Furthermore, since any automated system will inevitably have
gaps in the extracted knowledge, the management of such systems also involves the role
of knowledge curators acting as a trusted source that can editorially curate or expand the
mined knowledge [Maedche et al., 2003]. Therefore it is important for an AKBC system
to be designed to accommodate and learn from curated content. The aim is to achieve a

1. www.microsoft.com/en-us/microsoft-viva/topics
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virtuous cycle where people and machines continually work together to keep the knowledge
accurate and complete.

A key characteristic of enterprise documents is their structured nature, including both
structured text and associated metadata. For instance, emails have a subject, sender, list
of recipients and attached documents while documents have a creator and a list of editors,
viewers and commentators as well as structure within the document, such as sections and
titles. We argue that both kinds of information are critical to build an accurate knowledge
base. In this respect, there is a wealth of knowledge discovery methods that process text
without explicitly modeling metadata [Yamada et al., 2020, Devlin et al., 2019, Zhang et al.,
2019]. Other systems can leverage the full data structure if some amount of training labels
are available to infer the relationship between each structured field (e.g. email sender)
and the entity properties (e.g. project lead) [Zhang, 2015]. Unfortunately, the privacy
restrictions of enterprise data do not allow for their labeling by human annotators, making
these methods unfeasible.

We address this gap by developing an automated system, Enterprise Alexandria (EA), as
an extension of Alexandria [Winn et al., 2019], an existing system designed for Web-based
information extraction. EA is able to jointly discover entities and their associated types
with very minimal supervision in compliance with the privacy requirements of enterprise
data, which makes it the first entity discovery method applicable to enterprise scenarios to
the best of our knowledge. In EA, the probabilistic program is extended to generate both
the document and its metadata from a set of latent entities. Inference is partly performed
automatically using an efficient message-passing algorithm [Minka et al., 2018], and partly
with a handwritten scalable algorithm that can process a large set of documents in batches
and build the knowledge base incrementally, making use of any manual curations that have
happened in the interim. Furthermore, EA adds an important ability to learn the set of
types associated with each entity (e.g. product, event, team, project) from a pre-defined
type hierarchy. In order to ensure that the type hierarchy is sufficient, EA is also able to
semi-automatically discover type names from enterprise data. The importance of determining
the types of extracted entities receives support from a study of workers in two organizations,
which showed that a wide variety of knowledge types are important for work, and that
workers seek to engage with these different types in different ways. We argue that types are
needed not just generically, but to support work in particular industries and organizations.
Using real-world datasets, we show that the quality of the entities and their associated types
extracted by EA outperforms the baselines by significantly increasing the precision of the
extracted knowledge.

In summary, this paper provides the following contributions to the state of the art:
(i) Findings from a qualitative study of members of two multinational organizations, which
highlights how entity types are important for work. (ii) An extended probabilistic program
that improves the existing Alexandria model and can perform entity discovery jointly from
structured text and the associated metadata. (i7i) A new mechanism for updating the
discovered knowledge incrementally with the ability to support curated content contributed
by human users. (iv) A real-world evaluation showing that EA performs efficiently at scale
while significantly improving the precision of the extracted knowledge compared to four
baselines on several real-world datasets.
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2. User Study on Knowledge Categories

To best inform the design of our model, and to gather data on real entity types as a
baseline for our evaluation, we undertook a qualitative study with prospective end users
who were employed in two different industries. In the study we asked: How do organization
members think about knowledge types, and what types of entities need to be discovered to
support everyday work? The study was conducted in two workshops with 12 (5 = men, 7 =
women) knowledge workers who were employed by one of two multinational organizations
(6 participants in each). The first organization was a large professional services firm; the
second was part of the travel and tourism industry. Participants came from a variety of
backgrounds in terms of role (e.g. designer, program manager, analyst, information architect)
and ranged in seniority from junior to national leadership. In order to provide context,
participants were first shown a short video that described how an automatically-generated
knowledge base might support work. Participants were then asked to think about the
different components that make up their work, which they might want represented in the
AKBC system. Participants were given four examples of such components (project, budget,
product launch, designer) in order to stimulate ideas. The study received ethical approval
from the host Institutional Review Board (IRB). Each participant provided informed consent
for data collection and use prior to participation.

[ Superordinate class (researcher generated) | Knowledge Types (user generated)
Seed types (examples given to the participants) | Projects, Budgets, Designers
Technology Data, Analytics, Algorithms, Technology,
Architecture, Service, Service measurement,
People Headcount, Teams, Stakeholder, Users, Contacts, Communicate,
Social Support Community, Beta Testers, Build network
Digital Artifacts Financial information, Roadmap, Vision, Strategic plan,
UX Research, Design, Documentation
Internal media Brand, Templates, Learning materials
External media Media, Research papers/reports
Internal containers Design library, Research templates,
Support model handbook, Device catalog
Insight Problems, Best Practices, Industry Knowledge,
Idea lifecycle, Demand, Management Buy-In, Brain
Tools Tasks and To-do, Checklist, Tooling,
Microsoft Office 365, Benchmarking, Enhancement

Table 1: The knowledge categories provided by the participants of the user study.

Table 1 shows the 48 unique knowledge types generated by participants in total, which we
manually grouped bottom-up (via an affinity diagram) into eight superordinate classes to help
summarize results. The knowledge categories were grouped based on the explicit meanings
of the category names, descriptions and discussions provided by participants in the workshop.
While three of the knowledge categories reported by participants were confirmations of the
examples we gave to participants (project, budget, designers), the remaining 45 categories
were generated by participants independently. Rather than suggesting that all of these
categories are necessary for every knowledge base, we suggest these categories capture this
set of prospective users’ aspirations for a knowledge base. Overall, this qualitative study
demonstrates why types matter: a wide variety of entity types are important for work,
and workers seek to engage with these different types in different ways. In the following
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Entity CalendarEvent CalendarEvent
Name: “Tokyo” Name: “{Name} {Types} sync” Name: “Tokyo project sync”
E Types: Project, System + Organizers: Subset(Members) = Organizers: John
Members: Alice, Bob, John Attendees: Subset(Members) Attendees: Alice, Bob
IsRecurring: True IsRecurring: True
Latent KB Entity Structured Template Generated Data Item

Figure 1: An example of a structured template being applied to a knowledge base entity (a
project named “Tokyo”) to generate a data item, in this case a calendar event.

discussion, we move on to describe a model to learn the entity types automatically as part
of the AKBC task.

3. The Enterprise Alexandria Model

The Enterprise Alexandria model is an extended form of the probabilistic program used by
Alexandria [Winn et al., 2019]. The main extensions are described below.

3.1 Structured Templates for joint processing of Text and Metadata

The Alexandria probabilistic program uses a set of templates to generate text. EA extends
this program to generate entire data items, such as emails or calendar events, using manually-
specified structured templates. Figure 1 illustrates how a structured template can be used
to generate an observed data item from a latent knowledge base entity. In this example,
the structured template is applied to a Project entity named “Tokyo” to create a recurring
calendar event ‘Tokyo project sync’ with suitable organizers and attendees. During inference
this process is inverted, so a compatible calendar event will be matched against this structured
template to produce the knowledge base entity. A structured template consists of the type or
types of data items which can be generated (such as emails, calendar events or documents)
along with a set of properties for the generated data items each with a suitable value
generator. Value generators can be one of three kinds: (i) A template-based generator
which generates a string given a template. If more than one template is provided, one is
selected at random. The Name property in Figure 1 uses this kind of value generator. (When
‘Types’ is used in a template, one type is selected at random.) (i7) A subset generator
which generates a collection value as a random subset of a specified collection in the entity.
The Organizers and Attendees property in Figure 1 use this kind of generator to generate
subsets of the Members property. (i) A constant value generator which always gives
a particular value. The IsRecurring property in Figure 1 uses a constant value generator
which always returns ‘True’.

3.2 Entity Names and Variants

In the original Alexandria model, the prior probability of an entity name was uniform over
the set of valid names. EA uses a more sophisticated model (tuned on Wikipedia titles)
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which takes into account the number of words, the length of each word, and more. This
means that two mentions of the same long name are less likely to be a random collision and
more likely to be referring to the same entity than two mentions of the same short name.
This improves the ability of the system to disambiguate mentions of different entities sharing
the same name.

In enterprise data, it is common for an entity to be referred to by different variations
of a name, such as abbreviated forms, capitalizations, etc. EA allows an entity to have
alternative names, as long as the alternatives are compatible variants of each other under a
set of variants models. The supported variants models are:

e Case and diacritic variants where names differ only in case or in the presence/absence
of accents or diacritics;

e Separator variants where the names differ only in separators (such as ‘&’ or ‘+’) or
the separators are removed entirely;

e Name phrase variants where a name “Tokyo” and a name phrase “Project Tokyo”

can be identified;

e Acronym variants where one name is an expansion and the other an acronym or
partial acronym.

When computing the probability that two mentions refer to the same entity, if their names
do not match but are compatible alternatives, then the probability is the same as if the
names matched (on the more probable name), times a constant penalty.

3.3 Type Discovery

As in Alexandria, facts about an entity are represented by named, typed properties. EA
includes a property named ‘Types’ which holds the types for the entity, selected from a
predefined set. EA semi-automatically learns this set of allowed types through a process of
type discovery. This process starts with a small manually-provided seed set of types, such
as {Project, Team}. New types are then added iteratively as follows: (i) Entity discovery
is run to extract entities from a set of enterprise data items, given these seed types. (ii)
Fact retrieval is run using the names of these discovered entities, as described in Winn et al.
[2019]. However, the schema is modified to allow values of the Types property to be any
string of 1-3 words, rather than one of the fixed set of known types. The resulting type
names are ‘type candidates’. (#77) The type candidates are aggregated across entities and
automatically filtered based on their frequency and other checks, such as whether there is
uncertainty in the posterior distribution over the type name. (iv) The remaining type names
are manually filtered to exclude people types and file types. (v) The manually approved
types are added to the type set and the process is repeated using this updated set. Iteration
continues until the number of newly added types becomes sufficiently small to ensure that
good overall coverage has been achieved.

This type discovery process works because entities usually have multiple types. For
example, ‘Tokyo’ might be referred to as a project but also as a framework, system and
toolkit. Each iteration of type discovery first finds entities whose types are any known
type and then uses fact retrieval to add in the other types for these entities, which may be
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unknown. Iteration of this process will discover any type, so long as there exists a chain of
entities which connect that type to a seed type. In practice, given a large set of enterprise
data, the process appears to give good coverage of types across a wide variety of domains.
Specifically, on our largest dataset, it was able to discover a universe of 171 types across
different domain that include “university”, “case”, “campaign”, etc. Note that the EA’s
entity discovery process will surface only the subset of types that appear in the input dataset.
For instance, types like “university” or “case” will be prevalent in the data belonging to an
academic institution or a law firm, respectively.

4. Incremental Clustering

In our scenario, we assume that new documents will appear, or be updated, at different
times and their overall volume will exceed the capacity of a single machine. Therefore, we
designed EA to process documents incrementally and update the knowledge base in an
online fashion. This architecture is illustrated in Figure 2.

In detail, let the set of documents available at time ¢ be D;. Given a set of templates
J, we use the Alexandria template matching system to produce a set of template matches
{8j+} for D;. These template matches are split into I batches 1,...,I of arbitrary size so
that S;;; is the i-th batch available at time ¢ from the template set J. For simplicity of
notation, we focus the description on a single time interval, as it trivially generalizes to any
time interval, and so we drop ¢ from the variables.

Batch clustering: Using the probabilistic program, the system takes {S;;} as observations
and applies probabilistic inference to produce a set of discovered entities E;. For example,
a document D1 titled “Project Tokyo overview” authored by Alice and a calendar event
D2: “Tokyo team weekly sync” organized by Bob can be matched by structured templates
containing the text templates “{Types} {Name} overview” and “{Name} {Types} weekly
sync”, respectively. Given these matches, batch clustering will output an entity {Name:
Tokyo, Types: {Project, Team}, Members: {Alice, Bob}, Evidences: { D1, D2}}.

Linking: The entities discovered from the batch are linked to the knowledge base by the
following steps:

i Query the knowledge base for candidate entities Q;, using a set of key properties, such

as the entity name. To allow for name variants, the queries are extended to include
different normalized forms of the entity names. For example, an entity with a name

Q00

m t m [' [i rlJ](hPm Curated entities
Q S oy $ E) Templatess | ——————— — — — — — — | lc
l | Incremental Clustering |
! |
D Template S| . . E_ Linking + | & Knowledge
Documents = Matching | >| Batch clustering "| Entity correctness <|T,> Base

Figure 2: Architecture of the incremental clustering process used by EA.
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“Cloud Storage Explorer” is queryable by “cloudstorageexplorer” and “CSE” keys which
allows it to cluster incrementally with entities named “CloudStorage Explorer” and
“CSExplorer” whose normalized names will overlap.

ii Produce a set of entities R; by clustering together E;, Q;,

iii Update the knowledge base by replacing the entities @, with the result set R; which
contains both new and updated entities. For example, if the knowledge base contains
an entity: “{Names: Tokyo, Types: {Project}, Members: {John}, Evidences: {D3}}”,
the linking step will conflate it with the entity produced from the batch clustering step
and so create an updated entity “{Name: Tokyo, Types: {Project, Team}, Members:
{Alice, Bob, John}, Evidences {D1, D2, D3}}”.

Curation: During this process, the human curator can asynchronously edit the knowledge
base and/or add new entities. Both the ATl mined and curated entities are included in @,
allowing mined and curated entities to be linked together into coherent merged entities. The
batch size can be adjusted based on the memory constraints of the executor — a small batch
size requires less memory but increases the runtime for processing all the batches.

Entity Correctness: In Alexandria, fact retrieval was performed for known entities which
restricted the set of valid names for template matching. EA aims instead to discover entities
and so template matching is unrestricted. This results in the system discovering entities
which we do not want in the KB, such as people, months, locations, document names and
tiny entities which are mentioned only in passing. To address this problem, we trained a
‘correctness’ model on a small sample of manually labeled entities extracted from eyes-on
data. This model is a linear classifier, using simple features like the number of documents
mined from, the kinds of documents, the template diversity and so on, that can be applied
post-linking to estimate the correctness of each entity. Specifically, the classifier was trained
on a sample of manually labelled 857 entities (274 positive and 583 negative labels) taken
from the Microsoft Eyes-off dataset (see Section 6.1 for more details).

5. Related Work

The use of machine learning methods for large-scale automatic knowledge base construction
has been intensively studied in the last decades [Dong et al., 2014, Carlson et al., 2010,
Szekely et al., 2015, Zhang, 2015]. The majority of these existing methods are focused on
Web-based information extraction, where the aim is to link new facts extracted from text
to a set of entities coming from a public knowledge base such as Wikipedia [Dong et al.,
2014] or Satori [Winn et al., 2019]; this task is often referred to as entity linking [Zhang,
2015]. Within an organization, entities are likely to be private rather than public, and so
linking to public entities is not possible. Another line of related research on entity discovery
deals with discovering new entities from scratch by processing text documents talking about
these entities. Some of these methods perform feature extraction over the processed text to
extract features characterizing mentions of a particular entity to guide the entity mining
process. On such a basis, it is possible to conflate entity values found in mentions sharing
similar feature patterns [Zhang, 2015]. In particular, the Named Entity Recognition (NER)
features are widely used for this task as powerful signals for detecting categorised entity
names in free text. Specifically, the NER models are able to detect entity names from the
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text while also providing the type of each entity name chosen from a pre-defined set of types.
To date, the most successful NER methods are based on neural language models, such as
BERT (Bidirectional Encoder Representations from Transformers) and RoBERTa (Robust
Optimized BERT Approach) [Devlin et al., 2019, Liu et al., 2019], that are trained on a large
public corpus that can generalize to a private corpus with a small amount of fine tuning.
While the categorized entity names extracted from NER models alone are not sufficient for
constructing a full knowledge base, it is possible to adapt them to our task if an appropriate
conflation algorithm is provided. Therefore, in the next section, we will consider the most
competitive NER models as baselines for evaluating our approach.

6. Experimental Evaluation

This section evaluates the ability of EA to perform entity discovery, compared to four rival
approaches:

BERT Base Fine-tuned (BERT F) BERT is a state-of-the-art language model
developed by Google that is commonly applied to NER tasks [Devlin et al., 2019]. It is
pre-trained on a large corpus of English data in a self-supervised fashion and it makes use
of 12 stacked layers of encoders with an attention mechanism to learn contextual relations
between words in the text. This version of BERT is fine-tuned on the English version of
the standard CoNLL 2003 dataset [Tjong Kim Sang and De Meulder, 2003] to recognize
four types of entity names: location (LOC), organizations (ORG), person (PER) and
Miscellaneous (MISC)2.

BERT Base Multi-lingual Fine-tuned (BERT MF) A variant of BERT Base Fine-
tuned that is further fine-tuned on the CoNLL 2003 dataset to recognize the same four
categories of entity names as BERT F in different languages beyond English?.

BERT Large Fine-tuned (BERT LF) This model similar to the above methods but it
uses the large version of BERT with 24 layers of encoders and 16 attention heads. It is also
fine-tuned on the English version of the CoNLL 2003 dataset to recognize 16 categories of

entity names?.

RoBERTa Large Fine-tuned (RoBERTa LF) RoBERTa is a language model devel-
oped by Facebook that improves the performance of BERT using an optimized training
strategy with a longer training epochs, bigger batches and a larger dataset [Liu et al., 2019].
This model is also fine-tuned on the English version of the CoNLL 2003 dataset®.

The original Alexandria system [Winn et al., 2019] requires entity names as input and
therefore not applicable to entity discovery.

All the benchmarks are freely available on the open-source huggingface platform. To
make these models suitable for the entity discovery task, we must add an entity conflation
model to conflate all the NER extractions referring to the same entity into a single entity.

. huggingface.co/dslim/bert-base-NER

. huggingface.co/wietsedv/bert-base-multilingual-cased-finetuned-udlassy-ner
. huggingface.co/dbmdz/bert-large-cased-finetuned-conl103-english

. huggingface.co/xlm-roberta-large-finetuned-conll03-english

Tt W N
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Specifically, we use a standard case-sensitive linking by name conflation method that works
as follows: Firstly, all extractions sharing the same name based on case-sensitive string
matching are grouped together. Then, an entity is constructed by taking the union of all the
documents’ meta—data. For instance, n extractions about an entity named x classified with
type t1, ..., t, extracted from j documents, d;, ..., d;, each with associated people’s meta-data
mj, ...,m; (e.g. the authors of the documents) are conflated into the entity: “{Name: z,
Types: {u(t1,...,tn)}, Members: {u(ms,...,m;)}, Evidences: {d;,...,d;}}” where u(.) is the
union function. To remove obvious noise, we filter out small entities from all the methods,
i.e., with less than 100 evidences, and we also remove a few categories of entities that were
not included in our ground truth, i.e., person, date and ordinal numbers. Finally, we use a
list of disallowed entity names, containing 1998 stop-words and common English n-grams
corresponding to false entity names, that is applied to filter the output of each method.

6.1 Datasets

Our evaluation involves the following three real-world datasets: Enron: A well-known public
corpus of 517,401 emails generated from 150 employees of the Enron Corporation [Klimt and
Yang, 2004]. The dataset has full eyes-on access for research purposes (i.e., researchers can
look at the data). Microsoft Eyes-on: A dataset of 368,366 documents donated by Microsoft
employees with restricted eyes-on access (i.e., the entities mentioned in the documents can
be labeled by a selected pool of human judges). For this dataset, we also have access to a
ground truth with 1,786 human-curated labels for real entity names (1,205 positive labels
and 581 negative labels) that exist within the Microsoft organization. Microsoft Eyes-off:
A larger dataset with 1,023,435 documents made available by Microsoft employees with
eyes-off access only that is useful for evaluating performance at larger scale. Both Microsoft
datasets went through exhaustive privacy reviews in order to protect individual privacy and
corporate confidentiality.

6.2 Performance Comparisons

We evaluate the performance of the alternative approaches against two versions of our method:
(i) EAgizes100, that is our model with the basic entity size filter (i.e., > 100 evidences) that
is applied to all methods. (i7) FA, that is our model with the entity correctness classifier
described in Section 4. To evaluate the performance of the different approaches, we measure
the precision and coverage against the ground truth defined as follows: Precision = p/(p+n)
and Relative Coverage = p/pga. Here p and n are the number of positive and negative
entity name labels in the ground truth, respectively, that are calculated by matching in the
entity names discovered by each method to the ground truth labels, and pga is the precision
of EA. Intuitively, the precision measures the proportion of discovered entity names with
a positive label out of all the entities that can be matched to the ground truth, while the
relative coverage measures the recall ratio between each method and EA. Absolute recall
is not feasible to compute in our setting since it requires labels for entities that were not
discovered by any system. Since Enron does not have any existing ground truth for entity
names, for each method we drew a random sample of 100 entity names out of the names it
discovered and manually labeled them positive or negative. This ensures unbiased precision
estimates. For Microsoft Eyes-on, we used the existing ground truth.
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Enron Microsoft Eyes-on
[ Method [ Entities  Types Prec. Rel. Cov. [ Entities Types Prec. Rel. Cov. ]

BERT F 2,764 3 0.08+0.04 1.33+0.03 990 3 0.44 0.33
BERT MF 5,789 3 0.13 £0.03 7.86 £ 0.04 2,610 3 0.39 0.77
BERT LF 2,296 16 0.18+0.04 4.31+0.04 867 16 0.58 0.38
RoBERTa LF 5,988 3 0.13£0.03 8.13£0.04 2,542 3 0.49 0.94
EAsize>100 449 152 0.37 £ 0.05 1.73 1,029 141 0.71 0.55
EA 104 152 0.92 £0.03 1 1,591 141 0.83 1

Table 2: Performance of all the methods on the Enron and Microsoft Eyes-On datasets.

In detail, Table 2 reports the performance of the five methods on the Enron and Microsoft
FEyes-on datasets. In these experiments, the EA methods used a set of 88 templates and
hierarchy of 176 entity types, both learned from the Microsoft Eyes-off dataset. On both
datasets, EAg,e~100 and EA have the highest precision. In particular, the precision of EA is
5.11 (0.92 vs. 0.16 on Enron) and 1.43 (0.83 vs. 0.58 Microsoft Eyes-on) times higher than
the second best method (BERT LF). This is due to the combination of the template-based
language model and the probabilistic clustering of EA that allows it to jointly discover
entities with high precision and disambiguate different entities with the same name. For
example, EA was able to find two distinct entities named ‘MT6’ on Microsoft Fyes-on, while
the same entities are incorrectly over-conflated together due to linking entities by name in
the other methods. In addition, through its name variant model (see Section 3.2), EA was
able to find alternate names for several entities, such as {OneDriveWeb, OneDrive Web, OD
Web} in Microsoft Eyes-on and {Phillips, PHILLIPS} in Enron, referring to the different
ways that people expressed the same entity in the free text. Instead, the same entity names
were incorrectly under-conflated by the other methods because they do not strictly match
with one another. In terms of coverage, EA has the highest coverage on Microsoft Eyes-on
while the BERT-based methods have higher coverage but lower precision on Enron. It is
worth noting that in our application, given the presence of the knowledge curator that must
editorially check the validity of each entity, we find that methods with high coverage and
low precision are less practical because they tend to overload the system with a very large
and noisy set of entities, more than a human curator can cope with. Instead, high-precision
methods like EA tend to provide a more manageable, yet substantial, set of entities that are
much easier to deal with for the knowledge manager. In this light, precision errors tend to
be penalized more than providing additional coverage. Finally, EA is able to associate up to
9.5 times more types (152 vs. 16 on Enron) to the discovered entities compared to the other
methods that can only associate types from their (typically small) set of types that they
have been fine-tuned on. Overall, EA achieves significantly higher precision and it retrieves
more entity types on both datasets.

6.3 Memory Usage and Runtime

To assess the performance of EA at larger scale, we ran it on the Microsoft Eyes-off dataset.
For compliance reasons, we could not run the other methods on this dataset. In this
experiment, EA was able to process 1,023,435 documents and 45, 645, 618 template matches
in 9.3h on a conventional machine, using 8.64GB of memory measured as the median of
the last 50 batches (Memory@50). It discovered 675,439 entities and 172 entity types. The

10
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clustering time is constant across batches, taking approximately 23 seconds for a batch
of 10,000 template matches. The linking time increases approximatively linearly with a
small slope (0.005) over batches as the size of the knowledge base grows over time (that can
potentially be mitigated by cleaning up old entities). Overall, this result shows that the
incremental clustering architecture adopted in EA scales gracefully on our largest dataset.

6.4 Type Retrieval

Figure 3 shows the types retrieved by EA on the two eyes-on datasets. Due to the lack of
ground truth for types, we cannot perform a quantitative evaluation of their correctness.
However, since it is known that Enron and Microsoft are companies specialized in the energy
and software industry, respectively, the types appear relevant to the organization owning the
data (e.g. “Site” or “Fund” for Enron and “Team”, “App” or “Deal” for Microsoft Eyes-on).
When we focus on the ‘Technology’ and ‘Seed types’ classes from the user study (Table 1),
we found that 40% of the entity types declared by the participants were also retrieved by EA
for at least one entity in the Microsoft Eyes-on dataset. The non-retrieved types are mostly
specific categories such as “Best practice”, “O365” or “Service measurement” that did not
appear often in the training set. As a result, we expect a substantial but not necessarily
complete overlap between the two sets, even if they both belong to the technology industry.
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Figure 3: Word clouds of entity types retrieved by EA on the Enron and Microsoft Eyes-on
datasets. The font size is weighted by frequency of each type across all entities.

7. Conclusions

Enterprise Alexandria provides automatic knowledge discovery of typed entities from en-
terprise documents. The system extends Alexandria by consuming structured information
coming from documents’ metadata, discovering entities incrementally in an online fashion,
and allowing users to contribute manual curations to the entity discovery process. Our
evaluation shows that EA significantly outperforms the alternatives in extracting entities
with higher quality on several real-world datasets. EA is a key technology for the Al engine

of Microsoft Viva Topics and it is currently servicing thousands of organizations and users®.

6. www.microsoft.com/en-us/research/blog/alexandria-in-microsoft-viva-topics-from-big-data-to-big-
knowledge/
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