
Formal Methods in Computer-Aided Design 2021

Celestial: A Smart Contracts Verification Framework
Samvid Dharanikota*

Microsoft Research India
Bangalore, India

samvid.dharani@gmail.com

Suvam Mukherjee*

Microsoft Corporation
Redmond, USA

sumukherjee@microsoft.com

Chandrika Bhardwaj#
Goldman Sachs
Bangalore, India

chandrika.bhardwaj@gs.com

Aseem Rastogi
Microsoft Research India

Bangalore, India
aseemr@microsoft.com

Akash Lal
Microsoft Research India

Bangalore, India
akashl@microsoft.com

Abstract—We present CELESTIAL, a framework for formally
verifying smart contracts written in the Solidity language for
the Ethereum blockchain. CELESTIAL allows programmers to
write expressive functional specifications for their contracts. It
translates the contracts and the specifications to F⋆ to formally
verify, against an F⋆ model of the blockchain semantics, that
the contracts meet their specifications. Once the verification
succeeds, CELESTIAL performs an erasure of the specifications to
generate Solidity code for execution on the Ethereum blockchain.
We use CELESTIAL to verify several real-world smart contracts
from different application domains. Our experience shows that
CELESTIAL is a valuable tool for writing high-assurance smart
contracts.

Index Terms—Smart contracts, Blockchain, Reliability, Testing

I. INTRODUCTION

Smart contracts are programs that enforce agreements be-
tween parties transacting over a blockchain. Till date, more
than a million smart contracts have been deployed on the
Ethereum blockchain with applications such as digital wallets,
tokens, auctions, and games, holding digital assests worth over
$200 billion [19].

The most popular language for smart contract develop-
ment is Solidity [20]. Solidity contracts are compiled to
Ethereum Virtual Machine (EVM) bytecode for execution
on the blockchain. Unfortunately, Solidity has obscure op-
erational semantics understood only partially by most pro-
grammers. This often leaves vulnerabilities in the smart con-
tracts. Repeated high-profile attacks (e.g. TheDAO [17] and
ParityWallet [18] attacks) orchestrated around these vul-
nerabilities have resulted in financial losses running into mil-
lions of dollars. Worse, smart contracts are “burned” into the
blockchain on deployment, which does not allow subsequent
patches to fix the vulnerabilities. As a result, it is necessary
to ensure correctness at the time of deployment.

Smart contracts are relatively small pieces of code with
simple data-structures [29]. All these qualities combined—
their critical nature, immutability after deployment, and small

*Equal contribution
#Work done during an internship at Microsoft Research India.

size—make smart contracts a good fit for formal verification.
The challenge, however, is to lower the formal verification
entry barrier for smart contracts developers.

Towards that goal, we present CELESTIAL§, an open-source
framework for developing formally verified smart contracts.
CELESTIAL allows programmers to annotate their Solidity
contracts with Hoare-style specifications [32] capturing func-
tional correctness properties. The contracts and the specifica-
tions are translated to F⋆ [45], which in an automated manner,
proves that the contracts meet their specifications. Once F⋆

returns a verified verdict, CELESTIAL erases the specifications
from the input contracts, and emits Solidity code that can be
deployed and executed on the Ethereum blockchain. By using
Solidity as the source language, and providing fully-automated
verification, CELESTIAL ensures a low entry barrier for smart
contract developers.

F⋆ is a proof assistant and program verifier with a fully
dependent type system. We find it suitable for smart contract
verification for several reasons. First, it provides SMT-based
automation which, as we show empirically, suffices for fully-
automated verification of real-world smart contracts. Second,
F⋆ supports user-defined effects, allowing us to work in a
custom state and exception effect [21] modeling the blockchain
semantics. Finally, F⋆ supports expressive higher-order speci-
fications, though we use its first-order subset with quantifiers
and arithmetic (adding our own libraries for arrays and maps).

We evaluate CELESTIAL by verifying several real-world
Solidity smart contracts that together currently hold millions
of dollars of financial assets. The contracts span different ap-
plication domains including tokens, wallets, and a governance
protocol for Azure Blockchain. We studied the contracts (and
in some cases, discussed with the developers) to design their
specifications and formally verified that the contracts meet
those specifications. In the process, we uncovered bugs in
some cases (e.g. missing overflow checks), manifesting as
F⋆ verification failure. Once we fixed those bugs (e.g. by
adding runtime checks), F⋆ was able to successfully verify
the contracts in all the cases. The overhead of any additional

§https://github.com/microsoft/verisol/tree/celestial/Celestial

https://doi.org/ This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://github.com/microsoft/verisol/tree/celestial/Celestial
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

Fig. 1: Architecture of the CELESTIAL framework.

Fig. 2: A simple blockchain based e-commerce application.

instrumentation, which was required for correctness, was at
most 20% in terms of gas consumption.

Summarizing our main contributions:
1) We present CELESTIAL, a framework for developing

verified Solidity smart contracts. CELESTIAL allows an-
notatation of Solidity contracts with specifications, and
verifies them, in an automated manner, using F⋆.

2) We evaluate CELESTIAL by verifying functional correct-
ness of several real-world, high-valued smart contracts.

II. OVERVIEW

The high-level architecture of CELESTIAL is outlined in
Figure 1. A CELESTIAL project is a set of contracts (e.g. C1,
C2, etc. in the figure) written in Solidity. These contracts may
be annotated with functional specifications encoding properties
of interest. CELESTIAL provides two kinds of translations
for these contracts. The first one translates the contracts and
their specifications to F⋆ [45], a dependently-typed functional
programming language designed for program verification. F⋆,
using a model of the blockchain semantics (Section III),
verifies that the contracts meet their specifications. A second
translation simply erases all specifications to emit vanilla
Solidity contracts. In this section, we use a simple applica-
tion (Section II-A) to describe the specification language of
CELESTIAL (Section II-B). We discuss the verification scope
and limitations of the framework later in Section II-C.

A. SIMPLEMART

Consider a simple blockchain-based e-commerce applica-
tion SIMPLEMART from Figure 2. The application contains
a SimpleMarket contract (Listing 1) which interacts with
one or more buyers and sellers that may either be smart
contracts themselves or externally-owned accounts. A seller
registers an item for sale by invoking the sell method of
SimpleMarket, with the price as argument. In response,
SimpleMarket creates an instance of the Item contract,
which holds metadata about the new item available for sale. It

1 contract SimpleMarket {
2 mapping(address => uint) sellerCredits;
3 mapping(address => Item) itemsToSell;
4 uint totalCredits;
5 event eNewItem (address , address);
6 event eItemSold (address , address);
7
8 function sell (uint price) public
9 returns (address itemId) {

10 Item item = new Item(address(this),msg.sender ,price);
11 itemId = address(item);
12 itemsToSell[address(item)] = item;
13 emit eNewItem(msg.sender , itemId);
14 }
15 function buy (address itemId) public payable
16 returns (address seller) {
17 Item item = itemsToSell[itemId];
18 if (item == null) { revert ("No such item"); }
19 if (msg.value != item.getPrice ())
20 { revert ("Incorrect price"); }
21 seller = item.getSeller ();
22 totalCredits = safe_add (totalCredits , msg.value);
23 sellerCredits[seller] =
24 sellerCredits[seller] + msg.value;
25 delete (itemsToSell[itemId]);
26 emit eItemSold(msg.sender , itemId);
27 }
28 function withdraw (uint amount) public {
29 if (sellerCredits[msg.sender] >= amount) {
30 msg.sender.transfer(amount);
31 sellerCredits[msg.sender] -= amount;
32 totalCredits -= amount;
33 } else { revert ("Insufficient balance"); }
34 }
35 }

Listing 1: The SimpleMarket Solidity contract

also emits an event (eNewItem) informing the seller about
the idenity (in this case, the address) of the new item. A
buyer may purchase an item by invoking the buy method
of SimpleMarket, passing the item address as an argument,
along with the ether amount matching the item price. If the
item has not been sold already, SimpleMarket records the
sale in its state, which involves adding the ether towards the
total sales proceeds for the respective seller and marking the
item as being sold. The seller may then withdraw the ether
from SimpleMarket via the withdraw method.

Functional correctness of the buy method requires that if a
buyer initiates buy with a valid item and price, then the item is
sold and the seller sales proceeds are credited, leaving all other
sellers’ proceeds unchanged. In addition, we would also like
to verify that the call does not result in arithmetic overflow of
the seller’s proceeds because this can result in honest sellers
losing their credits.

B. Specification Language

Listing 2 shows excerpts of the CELESTIAL versions of
Item and SimpleMarket contracts. The general form of a
CELESTIAL contract is shown in Listing 3. These annota-
tions are Hoare-style specifications, similar to languages like
Dafny [36]. The specifications are written over the contract
fields, function arguments, as well as implicit variables such
as balance (the contract balance), value (ether value in a
payable method), and log (the transaction event log, formally
modeled as a list of events). Our specifications cover the full
power of first-order reasoning with quantifiers, along with

1 contract Item {
2 address seller; uint price; address market;
3 function getSeller () returns (address s)
4 modifies []
5 post (s == seller)
6 { return seller; }
7 // other methods
8 }
9 contract SimpleMarketplace {

10 // contract fields
11 ...
12 invariant balanceAndSellerCredits {
13 balance == totalCredits &&
14 totalCredits >= sum_mapping (sellerCredits)
15 }
16 function buy (address itemId) public
17 returns (address seller)
18 modifies [sellerCredits , totalCredits , itemsToSell ,

log]
19 tx_reverts !(itemId in itemsToSell)
20 || msg.value != itemsToSell[itemId].price
21 || msg.value + totalCredits > uint_max
22 post (!(itemId in itemsToSell)
23 && sellerCredits == old(sellerCredits)[
24 seller => old(sellerCredits)[seller] + msg.

value]
25 && log == (eItemSold , msg.sender , itemId)::old(

log))
26 { // implementation of the buy function }
27 }

Listing 2: Item and SimpleMarket CELESTIAL contracts

1 contract A {
2 uint x, y; // fields , as usual
3
4 invariant { ϕ1 } // contract -level invariant
5
6 function foo () public
7 modifies [x] // fields that are modified
8 tx_reverts ϕ2 // revert condition (under -specified)
9 pre ϕ3 // precondition

10 post ϕ4 // postcondition
11 { s } // Solidity implementation
12 }

Listing 3: A representative CELESTIAL contract

theories for arithmetic (both modular and non-modular), arrays
and maps. We provide programmers the ability to write pure
functions that can be invoked only from specifications, not
Solidity methods, to enable code reuse. We now explain the
individual elements of CELESTIAL specifications.

a) Contract invariant: Contract invariant is a predicate
on the state of the contract (i.e. its field values) that is expected
to be valid at the boundaries of its public methods. When
verifying a contract, the invariant is added to the pre- and
postconditions of every public method. All contract fields in a
CELESTIAL contract are necessarily private (see Section II-C).
Additionally, CELESTIAL ensures that all its contracts are
external callback free (Section IV) to disallow re-entrancy
based attacks from external contracts. Hence, it is safe to
assume the invariant at the beginning of public methods.
Constructors are special; they only guarantee invariant in
their postcondition but don’t assume it as a precondition. For
example, the invariant on line 12 in Listing 2 specifies that the
contract’s balance equals or exceeds the total proceeds from
sales which has not been already claimed by the respective
sellers (sum mapping is a library function for summing values

in an int-valued map).
b) Field updates: The modifies clause specifies con-

tract fields that a method can update. The getSeller method
in Item has an empty modifies clause (line 4 in Listing 2),
which specifies that the function may read the state of the
contract, but cannot make any updates.

c) Pre- and postconditions: Preconditions (pre) are
properties that hold at the beginning of a method execution.
Public methods must have a trivial precondition true because
they can be invoked by the untrusted external world. Post-
conditions (post) are properties that hold when the method
terminates successfully (without reverting). The postconditions
may refer to field values at the beginning of the method using
the old keyword. For example, the condition in line 23 in
Listing 2 specifies that the final sellerCredits is the original
sellerCredits map with only the seller key updated.

d) Revert conditions: tx reverts under-specifies the
conditions under which a method reverts, i.e. if tx reverts

holds at the beginning of a method, the method will definitely
revert. For example, the buy function definitely reverts if the
buyer invokes it with an item which is not available for sale,
or the buyer provides ether which does not match the item
price, or the totalCredits overflows. This is captured in
the specification in line 19. Not specifying tx reverts is
equivalent to tx reverts(false).

e) Safe Arithmetic: In Solidity, arithmetic operations
may silently over- or underflow, whereas division by 0 results
in reverts. CELESTIAL, when translating to F⋆, adds assertions
before every arithmetic operation which check for no over-
and underflows, and division by 0. The programmer must
add specifications or runtime checks to allow the verifier to
prove the safety of the arithmetic operations. CELESTIAL also
provides a safe arithmetic library with built-in runtime checks
(safe add operation in line 22 of Listing 1).

To summarize, we have expressed the following properties
of the buy method. The revert condition specifies that the
method reverts when the item is not present or the ether sent
by the buyer does not match the item price. The method also
reverts when totalCredits overflows. Since an invariant of
the contract is that totalCredits is greater than the sum
of pending credits of all the sellers, when totalCredits

does not overflow, individual seller credits also don’t overflow.
Finally, line 23 in Listing 2 specifies that only the item seller’s
credits are incremented by price of the item, while credits for
all other sellers remain same.

C. Verification Scope and Limitations

a) Threat model: All contracts and user accounts that
are not part of a CELESTIAL project P are treated as the
external world for P. The external world is free to initiate
arbitrary transactions by calling public methods of P with
arbitrary arguments. The external world, however, cannot
directly access the private fields and methods of P.

b) Trusted Computing Base: The TCB of CELESTIAL
includes the CELESTIAL compiler consisting of the two syntax
translations, the F⋆ model of the blockchain (Section III), the

F⋆ toolchain itself, and the Solidity compiler (these compo-
nents are colored blue in Figure 1). With these components in
our TCB, formal verification of smart contracts in CELESTIAL
guarantees that when the compiled Solidity contracts are run
on the blockchain, they behave as per their specifications. We
leave it as future work to minimize trust on our F⋆ blockchain
semantics (say, by testing it against a Solidity test suite).

c) Solidity Language Restrictions: CELESTIAL does not
support delegatecall which is used to call functions from
other contracts in a way that the callee may directly change
the state of the calling address, thereby breaking the function
call abstraction. Since this is insecure (for example, the
ParityWallet [18] attack exploited it), the secure develop-
ment recommendations suggest against its use [3]. CELESTIAL
also does not support embedding EVM assembly. To check
the prevalence of these features in real-world contracts, we
performed an empirical study. In summary, we found that not
more than 45% of highly used and highly valued contracts use
these features, and even then in controlled manner where their
usage is restricted to a small set of libraries.

d) Modeling Limitations: Our F⋆ semantics does not
model gas consumption. As a result, CELESTIAL contracts
may revert due to out-of-gas exceptions. The model also does
not cover low-level failures such callstack depth overflow.
However, these failures can only cause the transaction to revert
and therefore do not compromise the verification guarantees.
Since we do not model all runtime exceptions, this is one of
the reasons that the tx reverts condition for a function is
an under-specification for when the function may revert. We
also do not precisely model block-level parameters such as
timestamp.

III. VERIFYING CELESTIAL CONTRACTS IN F⋆

CELESTIAL compiles the contracts and their specifications
to F⋆, which are then verified against a trusted F⋆ library
modeling the blockchain semantics. The library consists of
the definition of the blockchain state datatype and a custom
F⋆ effect that encapsulates this state behind the abstraction of
an effect layer. We have carefully designed this abstraction to
ensure that the verification is scalable and fully automated.
The contracts call the stateful API exported by the library and
specify precise changes to the blockchain state in their pre-
and postconditions, that are verified by F⋆.

A. Blockchain state

We model the blockchain state as consisting of 3 main
elements: (a) state of all the contracts (i.e. values of the
contract fields), (b) contract balances, and (c) an event log.
Since in CELESTIAL all contract fields are private, a contract
can directly read or write only its own fields, while interacting
with the other contracts through method calls. The event
log models the per-transaction event log of the Ethereum
blockchain; contracts can use the Solidity emit API to output
events to this log.

a) Contracts state: We model the state of all the con-
tracts in the blockchain as a heterogeneous map from addresses
to records, where the record corresponding to a contract
instance contains the values of all its fields. For the Item

contract from Listing 2, the record type would be:
type item t = { market : address; seller : address; price : uint }

Below is the API provided by the contract map (# parame-
ters are implicit parameters inferred by F⋆ at the call sites):
type address = uint (* 256 bit unsigned integers *)
val contract (a:Type) : Type (* a is the record of contract fields *)
val cmap : Type (* the heterogeneous contracts map *)

val live (#a:Type) (c:contract a) (m:cmap) : prop
val sel (#a:Type) (c:contract a) (m:cmap{live c m}) : a
val create (#a:Type) (m:cmap) (x:a) : contract a & cmap
val upd (#a:Type) (c:contract a) (m:cmap{live c m}) (x:a) : cmap
val addr of (#a:Type) (c:contract a) : address

The API defines the type address as 256 bit unsigned
integers. The contract type is parametric over the record type
a that contains all the contract fields; for the Item contract,
type a will be instantiated with item t. Type cmap is the
heterogeneous contracts map type.

The sel function returns the a-typed record value mapped
to a contract instance in the map. The API requires that
the contract be live in the map (type m:cmap{live c m} is a
refinement type that requires that the m argument at the
call sites satisfies live c m). The liveness requirement basically
says that the contract must be present in the contracts map,
preventing sel to be called with arbitrary addresses. The create
function returns the freshly created contract and the new
cmap that includes a mapping for the new contract, internally
assigning a fresh address to the new contract. The API is fully
implemented in F⋆, we elide the implementation details for
space reasons; all of our development is available online at
https://github.com/microsoft/verisol/tree/celestial/Celestial.

b) Contracts balance: We model the contracts balance
using a map from addresses to uint (the type of 256-bits
unsigned integers). An alternative would have been to add
balance as another one of the contract fields (thus maintaining
them as part of the contracts map), but a separate map allows
us to specify the balances for external accounts, that do not
have an entry in the contracts map.

c) Event log: The event log is a list of events, where each
event records the destination address, a string for event type,
and a payload (a:Type & a is a dependent tuple that packages
a Type and a value of that type):
type event = { to : address; ev typ : string; payload : (a:Type & a) }
type log = list event

With these components, the blockchain state is the following
record type:
type bstate = { cmap : cmap; balances : Map.t address uint; log : log }

B. Libraries for arrays and maps

We have implemented F⋆ libraries for modeling Solidity
arrays and maps—the uses of arrays and maps in CELES-
TIAL contracts are translated to uses of these F⋆ libraries.

https://github.com/microsoft/verisol/tree/celestial/Celestial

Our current implementation only supports dynamically-sized
arrays for now, support for compile time fixed-sized arrays
is future work. The libraries export operations that match the
corresponding Solidity API, and several lemmas that enable
the contracts to reason about their properties. For example,
following is a snippet of our array library:
val array (a:Type) : Type (* an array with element type a *)
val push (#a:Type) (s:array a{length s < uint max}) (x:a) : array a
val push length (#a:Type) (s:array a{length s < uint max}) (x:a)

: Lemma (requires ⊤) (ensures (length (push s x) == length s + 1))

C. An F⋆ effect for contracts

Having set up the model for the blockchain state, we now
add a layer on top so that the contracts may manipulate the
state and precisely specify the modifications in pre- and post-
conditions, while making sure that the verification complexity
does not get out-of-hands. We leverage the type-and-effect
system of F⋆ for this purpose.

F⋆ distinguishes value types such as uint from computation
types. Computation types specify the effect of a computation,
its result type, and optionally some specifications (e.g. pre-
and postconditions) for the computation. For example, Tot uint
classifies pure, terminating computations that return a uint
value. Similarly uint →Tot uint is the type of pure, terminating
functions that take a uint argument and return a uint result.
uint → uint is a shorthand for uint →Tot uint; all the blockchain
state functions that we have seen so far have an implicit Tot
effect.

Following Ahman et al. [21], a state and exception effect
for computations that operate on mutable state and may throw
exceptions is as follows (st is the type of mutable state):
type result (a:Type) = (* the return type of the computations *)
| Success : x:a → result a
| Error : e:string → result a

effect STEXN a st (pre:st → prop) (post:st → result a → st →
prop) = ...

The semantics of the computations in the STEXN effect
may be understood as follows: a computation e of type
STEXN a st pre post when run in an initial state (s0:st) satisfying
pre s0, terminates either by throwing an exception (modeled as
returning an Error-valued result) or by returning a value of type
a (modeled as returning Success-valued result). In either case,
the final state (s1:st) is such that post s0 r s1 holds, where r is
the return value of the computation. F⋆ also supports divergent
effects, in which case the computations are also allowed to
diverge. The STEXN effect in F⋆ comes with a program logic
for verifying such computations.

a) Customizing STEXN for contracts: Contract compu-
tations naturally fall into the state and exception effect; they
read from and write to the mutable blockchain state, and they
may throw an exception by calling revert.

However, the revert operation in Ethereum is slightly dif-
ferent from exceptions in, say, OCaml in that it also reverts
the underlying state to what it was at the beginning of the
transaction, while in OCaml, the state changes are retained. To
accommodate this, we instantiate the state st in STEXN with

type st = { tx begin : bstate; current : bstate }

where the field tx begin snapshots the state at the beginning
of a transaction. Contracts modify the current state, unless they
revert, in which case the current state is reset to tx begin. Thus,
we define the ETH effect for smart contracts as follows:
(* state + exception with st as the state *)
effect ETH (a:Type) (pre:st → prop) (post:st → result a → prop) =

STEXN a st pre post

Using ETH effect, we implement the APIs for
begin transaction, revert, and commit transaction as follows:
let begin transaction () : ETH unit (requires λ →⊤)
(ensures λs0 r s1 → is success r ∧ s0 == s1) = () (* no op *)

let revert () : ETH unit (requires λ →⊤)
(ensures λs0 r s1 → is err r ∧ s1=={s0 with current=s0.tx begin}) = ...

let commit transaction () : ETH unit (requires λ →⊤)
(ensures λs0 r s1 → is succ r ∧ s1=={s0 with tx begin=s0.current}) = ...

The function begin transaction is a no-op, its precondition is
trivial (⊤), while its postcondition states that it does not revert
(is success r) and it leaves the state unchanged (s0 == s1). revert,
on the other hand, returns an error value, and its output state
s1 is same as its input state s0 with current component replaced
with the snapshot s0.tx begin, i.e. the state at the beginning of
the transaction. commit transaction is opposite, it replaces the
tx begin component with s0.current to commit the current state.

The function to get the current state for a contract is as
follows, note that the contract is selected from the current
component of the state:
let get contract (#a:Type) (c:contract a) : ETH a

(requires λs → live c s.current.cmap)
(ensures λs0 x s1 → x == Success (sel c s.current.cmap) ∧

s0 == s1) = ...

Similarly, the library provides functions send to transfer
balance to a contract and emit to emit an event to the event
log.

To make our specifications easier to read and write, we
define the following effect abbreviation:
effect Eth (a:Type) (pre:bstate → prop) (revert:bstate → prop)

(post:bstate → a → bstate → prop)
= ETH a (requires λs → pre s.current)

(ensures λs0 r s1 →
(revert s0.current =⇒ Error? r) ∧
(Success? r =⇒ post s0.current (Success?.x r) s1.current))

The pre- and postconditions in the Eth effect are written
over the current blockchain state (bstate), as opposed to over
the st record. Further, the postcondition is a predicate on
a value of type a–it only specifies what happens when the
contract function terminates successfully. The revert predicate
is a predicate on the input state, which if valid means that the
function reverts. We find this abbreviation well-suited for our
examples, providing the full-flexibility of the ETH effect to the
programmers is of course possible.

CELESTIAL translates each contract to an F⋆ module, where
the contract methods are translated to F⋆ functions in the Eth
effect. Every function gets explicit parameters for self, sender,
value in the case of payable functions, and (underspecified)

block-level parameters such as timestamp; after these the
function specific parameters follow.

The F⋆ precondition of each function gets to assume the
liveness of the contract and the contract invariant. Since
these functions can be called by arbitrary, non-verified code,
we cannot expect the callers to satisfy more sophisticated
preconditions. The postcondition of each function includes
the liveness, the contract invariant, and other function-specific
postconditions.

The translation of a function body uses the private, per-
field getters and setters, also emitted by the translation. Calls
to public functions of other contracts are translated to calls
to corresponding functions in other F⋆ modules (contracts).
Library calls to arrays, maps, etc. translate to corresponding
libraries calls in F⋆.

We make a final comment regarding the correctness of the
various translations. Since the CELESTIAL source language is
just Solidity with specifications, the CELESTIAL to Solidity
translation is only spec erasure. The translation to F⋆ is again
quite systematic, and therefore, amenable to auditing. Formally
proving that the CELESTIAL to F⋆ translation is semantics
preserving is an interesting and challenging future work.

IV. IMPLEMENTING CELESTIAL

The translators to F⋆, for specifications as well as imple-
mentation, are combined 2300 lines of Python code. The spec-
erasing translator to Solidity is about 750 lines of Python code.
The blockchain model is around 1200 lines of F⋆ code. We
target the 0.6.8 version of the Solidity compiler for generating
EVM bytecode. To aid developer experience, we have written
a plugin for Visual Studio Code [16] that supports full syntax
highlighting for CELESTIAL. If developers require access to
the CELESTIAL specifications in the generated Solidity, we can
easily tweak the CELESTIAL to Solidity translation to preserve
the specifications as comments.

Limitations: We focused our implementation efforts on
Solidity constructs used in our case studies. We currently do
not support syntactic features such as inheritance, abstract
contracts and tuple types. These mostly only provide syntactic
sugar that should be easy to support in future versions of CE-
LESTIAL. Our implementation currently also does not support
passing arrays and structs as arguments to functions. While
our implementation allows loops in contract functions, we
currently do not support writing loop invariants. We also only
provide weak specifications for block level constructs (such
as timestamp, number and gaslimit), transaction level
constructs (such as origin and gasprice), and functions for
obtaining hashes (such as keccak256 and sha256).

Contract Local Reasoning: Calling external contracts
can lead to reentrant behavior where the external contract
calls back into the caller, which is often difficult to reason
about. CELESTIAL disallows such behaviors by checking for
external callback freedom (ECF) [28], [42] which states that
every contract execution that contains a reentrant callback is
equivalent to some behavior with no reentrancy. When this
property holds, it is sufficient to reason about non-reentrant

1 contract A {
2 bool lock;
3 function foo () public
4 tx_reverts lock
5 { if(lock) { revert; } ... }
6
7 function bar (address x) {
8 lock = true;
9 // external call

10 x.call (...);
11 lock = false;
12 ...
13 } }

Listing 4: Ensuring External Callback Freedom

behaviors only: any specification over those set of behaviors
will hold for all behaviors as well. Thus, ECF allows for
contract-local reasoning.

CELESTIAL has two ways of checking for ECF; one of these
must hold for each external call. The first is a lightweight
syntactic check from VERX [42]. An external call is deemed
ECF compliant if it is guaranteed to only be called at the end
of a transaction. In other words, for any public method that
may transitively invoke an external call, it must ensure that it
does not read or write to the blockchain state after the call.
External calls that do not fall in this category must satisfy
CELESTIAL’s second check that asserts that any callbacks
made by an external call are guaranteed to revert. We explain
this check using the CELESTIAL contract shown in Listing 4.
There is an external call in method bar on line 10. To
prevent reentrancy, the programmer uses a contract field called
lock and follows the protocol that the lock will be assigned
true when making an external call. Furthermore, each public
method of the contract (such as foo) will revert if lock is set
to true. It is easy to see that if the external contracts tries to
call back a method of A, the transaction will abort.

CELESTIAL’s translation to F⋆ adds a sequence of assertions
preceding each external call (that does not satisfy CELES-
TIAL’s first check). For each public method of the contract,
it takes the tx reverts condition on the method, say ϕ, and
inserts assert ϕ before the external call. This will ensure that
a call back to a public method is guaranteed to revert.

V. EVALUATION

We evaluate the development experience with CELESTIAL
by writing verified versions of 8 Solidity smart contracts, in-
cluding real-world contracts spanning crypto-currency tokens,
wallets, marketplace, auctions and governance. Some of these
contracts are “high-valued”, holding millions of dollars of
financial assets or having processed millions of transactions.

For each contract, we added detailed functional specifica-
tions. If the verification failed, we minimally modified the
code in order to discharge the verification conditions. For
contracts which required such modifications, we additionally
measured the gas consumption overhead, using Truffle [13].
We performed our experiments using an Intel Core i7-7600U
dual-core CPU, with 16GB RAM, and running Windows 10.
Table I summarizes the various case studies that we performed.

Fig. 3: The AssetTransfer state machine. The dashed arrow indicates
a buggy state transition.

Due to lack of space, we discuss details of 3 of the case studies
here. We refer interested readers to our Technical Report [25]
for a detailed discussion of all the case studies. The sources
for all the case studies are available at
https://github.com/microsoft/verisol/tree/celestial/Celestial.

CELESTIAL

Benchmark #C #Sol #Spec #Impl V-Time (sec)

AssetTransfer* 1 130 70 187 4.26
OpenZeppelin ERC20 4 171 97 200 8.82
BinanceCoin* 2 133 25 136 29.98
WrappedEther* 1 62 62 114 20.00
EtherDelta* 1 281 57 351 63.97
Consensys MultiSig* 2 378 163 289 77.80
SimpleAuction* 1 66 61 101 22.45
Governance Contract 1 417 121 149 86.86

TABLE I: CELESTIAL case studies. We report the number of con-
tracts in the application (#C), LOC of the original Solidity imple-
mentation (#Sol), LOC of the CELESTIAL version, divided between
specification (#Spec) and implementation (#Impl), and finally the F⋆

verification time (averaged over 3 runs). Benchmarks marked with *
used a safe arithmetic library, which is added towards #Impl.

A. AssetTransfer

Application: AssetTransfer [10] is a microbenchmark that
provides a smart contract based solution for transferring assets
between a buyer and a seller. The contract encodes asset
transfer as a finite state machine (FSM) (Figure 3), a common
design pattern [11], [39], with the different states denoting the
varying stages of approval for the transfer. The contract has
notions of roles, such as Buyer and Seller, and state transitions
are guarded by appropriate roles (for example, the contract
can transition from Active to OfferPlaced when the Seller
invokes the MakeOffer method).
Specifications. Figure 3 is also the specification for this
contract, that is, we must ensure that each of the contract
methods respect the transitions mentioned in the FSM diagram.
For example, the following is the spec for MakeOffer:
function MakeOffer (uint _price)

modifies [sellingPrice , state , log]
tx_revert (old(state) != Active && msg.sender != Seller)
post (state == OfferPlaced && sellingPrice == _price)

{ // implementation }

The spec ensures that the method makes the correct state
transition (Active → OfferPlaced), and this transition
can only be caused by the Seller. Interestingly, this spec
failed to verify, which led us to discover two bugs in the
implementation. These bugs could potentially leave the whole

transfer in a frozen state. For instance, one of the bugs led to
the erroneous state transition shown in Figure 3. It caused the
contract to mistakenly transition to the SellerAccept state,
even after both the Seller and Buyer had accepted the transfer,
which makes the final state (Accept) to become unreachable.
Fixing these bugs allowed verification to go through. Previous
work [47] has noted similar bugs in a different version of the
contract. The original contract also had overflow/underflow
vulnerabilities, which we eliminated using runtime checks.
Performance. We ran both contracts (CELESTIAL-generated
Solidity and original Solidity) through a typical asset-transfer
workflow. On an average, the CELESTIAL version consumed
1.12× more gas compared to the original. We account for both
the contract as well as any associated library, for instance for
safe arithmetic, when measuring the deployment cost.

B. ERC20 Tokens

Application. ERC20 is a standard [4] for Ethereum cryptocur-
rencies (or tokens). Till date, over 400K ERC20 tokens have
been deployed on Ethereum, handling financial assets worth
billions of dollars. We formally verified the OpenZeppelin
ERC20 contract [8], which is a popular reference implementa-
tion of some of the key ERC20 functions, such as transferring
tokens from one account to another and approving third parties
to spend tokens on a user’s behalf. We also verified the
ERC20-based BinanceCoin (BNB) [2] token.
Specifications. We based some of our specifications on earlier
efforts to formally verify the OpenZeppelin ERC20 token [6],
[47]. The following shows an excerpt. The implementation
maintains the balance (number of issued tokens) for each
contract address using a balances map. CELESTIAL allows
us to easily express the important invariant (line 4) that the
sum over the balances for each user equals the total number
of tokens issued.
1 contract ERC20 {
2 mapping (address => uint) _balances;
3 uint _totalSupply; // total issued tokens
4 invariant _balanceAndSellerCredits {
5 _totalSupply = sum_mapping(_balances)
6 }}

The remaining specifications capture the business logic of
key ERC20 functions. The example below shows the postcon-
dition for the transfer method that is used for atomically
debiting a source account, and crediting the amount in a
destination account. The postcondition ensures that the correct
debit and credit operations occur in the source and destination
accounts, and all other accounts remain unchanged.
1 function _transfer (address from , address to, uint amt)
2 private tx_reverts ..., modifies [...]
3 pre _balances[from] >= amt &&
4 _balances[to] + amt <= uint_max
5 post ite(from == to, _balances == old(_balances),
6 _balances == old(_balances)[
7 from => old(_balances)[from] - amt ,
8 to => old(_balances)[to] + amt]))
9 { // implementation }

The ERC20 token makes copious use of arithmetic op-
erations. OpenZeppelin designed a SafeMath Library [9] to
perform runtime checks for overflows and underflows, which

https://github.com/microsoft/verisol/tree/celestial/Celestial

the original ERC20 token leverages to ensure runtime safety
for arithmetic operations. In contrast, we used the CELESTIAL
safe arithmetic operations in public functions, and eliminated
runtime checks altogether in private functions when the arith-
metic was provably safe.

C. Governance Contract

Application. We study a contract from Microsoft that manages
a consortium of mutually-trusted members interacting on a
private Ethereum blockchain. The contract comprises a set of
rules governing operations such as inviting fresh members to
join the consortium and adding or removing existing members.
The contract is complex, since it maintains many correlated
data structures, loops and access control policies, with each
logical operation involving intricate changes to multiple data
structures. Due to the proprietary nature of the contract, we
abstain from showing code or specifications for it explicitly.
We did not include several functions in the original contract,
whose operations were orthogonal to the governance logic.
Specifications. We briefly describe some of the important
properties that we proved.
1) Among members in the consortium, some are designated

as being “administrators”. An important invariant is that
the number of administrators cannot be zero (otherwise the
consortium freezes with no further transaction processing).

2) In the contract, logical units of information are maintained
in aggregate by several data structures. For example, the
contract maintains an array of existing members. However,
members can either be referenced by a string identifier,
or an address. Thus, the contract maintains a couple of
additional mappings that maintain, respectively, associ-
ations between string identifiers and addresses, to the
correct indices in the array. We specify several invariants
to ensure that these data structures are always consistent.
For example, we specify that there are no duplicates in the
array, no two string identifiers map to the same array index,
and the value of each string identifier must not exceed the
length of the array of members.

3) We precisely captured the postconditions for operations
such as member additions, where we ensure that the
operation only updates the necessary keys and indices,
while leaving the remaining entries untouched.

We note that some of these properties are similar to those
proved by Lahiri et al [35] for a variation of an open-source
governance contract [14].

VI. RELATED WORK

The literature on ensuring correctness of smart contracts can
be classified into the following broad categories.
Surveys and Best Practices. There is a wealth of available
material that highlights known vulnerabilities and exploits
in smart contracts [22], [24], [41], [46]. These efforts have
resulted in literature suggesting best coding practices for
Solidity [5], [12]. CELESTIAL is inspired by these practices,
for instance, by ruling out low-level instructions as well as
uncontrolled reentrancy, however, the restrictions are not just

for avoiding programming pitfalls, but rather to aid semantic
verification.
Testing. Frameworks like Truffle [13] allow users to write unit
and integration tests for smart contracts in JavaScript. The
transactions are typically executed in an in-memory mock of
the EVM, such as Ganache [7]. In addition to testing functional
behaviors and finding bugs, such tests reveal useful diagnostic
information such as gas consumption.
Contract Analysis. A large number of tools have been devel-
oped that statically analyze smart contracts (Solidity source
code or EVM bytecode) to reveal various vulnerabilities.
Examples include MadMax [27] (targeting vulnerabilities due
to gas exceptions) and Slither [26] (for identifying security
vulnerabilities). Oyente [38] leverages symbolic execution to
rule out several classes of vulnerabilities. ContractFuzzer [33]
offers a fuzzing based solution for identifying security bugs.

Solythesis [37] is a source-to-source Solidity compiler that
instruments the Solidity code with runtime checks to enforce
invariants, but specifications particular to each function can’t
be specified in this framework and it has a significantly high
gas overhead because of the runtime checks. VeriSmart [44]
offers a highly precise verifier for ensuring arithmetic safety of
Ethereum smart contracts, which discovers transaction invari-
ants, but is unable to capture quantified transaction invariants.
Tools like teEther [34] leverage symbolic execution to find
vulnerable executions and automatically generate exploits.

Each of these tools target a known set of vulnerabilities and
offer specialized solutions for them. In contrast, CELESTIAL
verifies custom specifications of contracts, relying on verifica-
tion to rule out all vulnerabilities against that specification.
Formal Verification. VeriSol [35], [47] checks conformance
between a state-machine-based workflow and the smart con-
tract implementation, for contracts of Azure Blockchain Work-
bench [1]. VeriSol does not check for reentrancy; it simply
assumes its absence, as opposed to CELESTIAL that enforces
it as part of the contract verification. Further, VeriSol does
not model arithmetic over/underflow, or check for unsafe type
casts, which were an important aspect of our case studies.

VerX [15], [42] is another formal verification tool. VerX
uses a syntactic check to ensure ECF (which we use in
CELESTIAL as well), however it cannot verify that the program
in Listing 4 satisfies ECF. VerX aims for automation of
verification by inferring predicates in an abstraction-refinement
loop. Such techniques tend to be limited in their ability to
reason with quantifiers; VerX uses special built-in predicates
like sum for quantified reasoning over maps. CELESTIAL,
on the other hand, allows for the full power of first-order
reasoning with quantifiers. VerX implements its own custom
symbolic execution, whereas CELESTIAL uses a simple syntax
translation to F⋆ and delegates all analysis to the mature F⋆

verifier. Unfortunately, the VerX tool is not openly available
for further comparisons.

Some verification tools work at the level of EVM bytecode
[30], [31], [40], [43], instead of Solidity source level. This
is more precise and removes the Solidity compiler from the
TCB, however, it is also more time consuming and hard to

scale to the larger, complex contracts that we have evaluated
in Section V. Bhargavan et al. [23] provide an approach to
translate a subset of Solidity to F⋆ for verification, as well
as a method to decompile EVM bytecode to F⋆ to check low-
level properties such as establishing worst-case gas bounds for
a transaction. Their work is presented as a proof-of-concept
only, with limited evaluation and restricted to a small subset
of the language.

VII. CONCLUSION

We presented CELESTIAL, a framework for developing
formally verified smart contracts. CELESTIAL provides fully
automated verification, using F⋆, of Solidity contracts an-
notated with functional correctness specifications. With the
help of several real-world case studies, we conclude that
formal verification can be made accessible to smart contract
developers for programming high-assurance contracts. Our
next steps include enriching our F⋆ model of blockchain with
more features and validating it using the Solidity testsuite as
well as exploring proofs of cross-transaction properties.

REFERENCES

[1] Azure blockchain workbench. https://azure.microsoft.com/en-us/
solutions/blockchain/.

[2] Binance coin. https://www.binance.com/en.
[3] Consensys secure development recommendations. https://consensys.

github.io/smart-contract-best-practices/recommendations/.
[4] Eip 20: Erc-20 token standard. https://eips.ethereum.org/EIPS/eip-20.
[5] Ethereum smart contract security best practices. https://consensys.github.

io/smart-contract-best-practices/.
[6] Formal verification of erc20 implementations

with verisol. https://forum.openzeppelin.com/t/
formal-verification-of-erc20-implementations-with-verisol/1824.

[7] Ganache. https://github.com/trufflesuite/ganache.
[8] Openzeppelin erc20. https://github.com/OpenZeppelin/

openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol.
[9] Openzeppelin safemath. https://github.com/OpenZeppelin/

openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol.
[10] Remix ethereum ide. https://github.com/Azure-Samples/blockchain/tree/

master/blockchain-workbench/application-and-smart-contract-samples/
asset-transfer.

[11] Solidity docs: State machines. https://solidity.readthedocs.io/en/v0.6.8/
common-patterns.html#state-machine.

[12] Solidity security considerations. https://solidity.readthedocs.io/en/v0.6.
8/security-considerations.html.

[13] Truffle suite. https://www.trufflesuite.com/.
[14] Validator set contracts. https://github.com/Azure-Samples/blockchain/

tree/master/ledger/template/ethereum-on-azure/permissioning-contracts/
validation-set.

[15] Verx. https://verx.ch/.
[16] Visual studio code. https://code.visualstudio.com/.
[17] Understanding the dao attack. https://www.coindesk.com/

understanding-dao-hack-journalists, 2016.
[18] The parity wallet hack explained. https://blog.openzeppelin.com/

on-the-parity-wallet-multisig-hack-405a8c12e8f7/, 2017.
[19] Etherscan: Contract accounts. https://etherscan.io/accounts/c, 2020.
[20] Solidity v0.7.2. https://solidity.readthedocs.io/en/v0.7.2/, 2020.
[21] Danel Ahman, Catalin Hritcu, Kenji Maillard, Guido Martı́nez, Gor-

don D. Plotkin, Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy.
Dijkstra monads for free. In Giuseppe Castagna and Andrew D.
Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 515–529. ACM, 2017.

[22] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of
attacks on ethereum smart contracts. IACR Cryptology ePrint Archive,
2016:1007, 2016.

[23] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kula-
tova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and San-
tiago Zanella Béguelin. Formal verification of smart contracts: Short
paper. In Toby C. Murray and Deian Stefan, editors, Proceedings of
the 2016 ACM Workshop on Programming Languages and Analysis for
Security, PLAS@CCS 2016, Vienna, Austria, October 24, 2016, pages
91–96. ACM, 2016.

[24] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu.
A survey on ethereum systems security: Vulnerabilities, attacks and
defenses. CoRR, abs/1908.04507, 2019.

[25] Samvid Dharanikota, Suvam Mukherjee, Chandrika Bhardwaj, Aseem
Rastogi, and Akash Lal. Celestial: A smart contracts verification
framework. Technical Report MSR-TR-2020-43, Microsoft, December
2020.

[26] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis
framework for smart contracts. In Proceedings of the 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain,
WETSEB@ICSE 2019, Montreal, QC, Canada, May 27, 2019, pages
8–15. IEEE / ACM, 2019.

[27] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. Madmax: surviving out-of-gas con-
ditions in ethereum smart contracts. Proc. ACM Program. Lang.,
2(OOPSLA):116:1–116:27, 2018.

[28] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky,
Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. Online detection of
effectively callback free objects with applications to smart contracts.
Proc. ACM Program. Lang., 2(POPL), December 2017.

[29] Jingxuan He, Mislav Balunovic, Nodar Ambroladze, Petar Tsankov, and
Martin T. Vechev. Learning to fuzz from symbolic execution with
application to smart contracts. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019, pages 531–548. ACM,
2019.

[30] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu,
Philip Daian, Dwight Guth, Brandon M. Moore, Daejun Park, Yi Zhang,
Andrei Stefanescu, and Grigore Rosu. KEVM: A complete formal
semantics of the ethereum virtual machine. In 31st IEEE Computer
Security Foundations Symposium, CSF 2018, Oxford, United Kingdom,
July 9-12, 2018, pages 204–217. IEEE Computer Society, 2018.

[31] Yoichi Hirai. Defining the ethereum virtual machine for interactive
theorem provers. In Michael Brenner, Kurt Rohloff, Joseph Bonneau,
Andrew Miller, Peter Y. A. Ryan, Vanessa Teague, Andrea Bracciali,
Massimiliano Sala, Federico Pintore, and Markus Jakobsson, editors,
Financial Cryptography and Data Security - FC 2017 International
Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta,
April 7, 2017, Revised Selected Papers, volume 10323 of Lecture Notes
in Computer Science, pages 520–535. Springer, 2017.

[32] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[33] Bo Jiang, Ye Liu, and W. K. Chan. Contractfuzzer: fuzzing smart
contracts for vulnerability detection. In Marianne Huchard, Christian
Kästner, and Gordon Fraser, editors, Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018, pages 259–269. ACM,
2018.

[34] Johannes Krupp and Christian Rossow. teether: Gnawing at ethereum
to automatically exploit smart contracts. In William Enck and Adri-
enne Porter Felt, editors, 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 1317–
1333. USENIX Association, 2018.

[35] Shuvendu K. Lahiri, Shuo Chen, Yuepeng Wang, and Isil Dillig. Formal
specification and verification of smart contracts for azure blockchain.
CoRR, abs/1812.08829, 2018.

[36] K. Rustan M. Leino. Dafny: An automatic program verifier for
functional correctness. In Edmund M. Clarke and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning
- 16th International Conference, LPAR-16, Dakar, Senegal, April 25-
May 1, 2010, Revised Selected Papers, volume 6355 of Lecture Notes
in Computer Science, pages 348–370. Springer, 2010.

[37] Ao Li, Jemin Andrew Choi, and Fan Long. Securing smart contract with
runtime validation. In Alastair F. Donaldson and Emina Torlak, editors,
Proceedings of the 41st ACM SIGPLAN International Conference on

https://azure.microsoft.com/en-us/solutions/blockchain/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://www.binance.com/en
https://consensys.github.io/smart-contract-best-practices/recommendations/
https://consensys.github.io/smart-contract-best-practices/recommendations/
https://eips.ethereum.org/EIPS/eip-20
https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/
https://forum.openzeppelin.com/t/formal-verification-of-erc20-implementations-with-verisol/1824
https://forum.openzeppelin.com/t/formal-verification-of-erc20-implementations-with-verisol/1824
https://github.com/trufflesuite/ganache
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/asset-transfer
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/asset-transfer
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/asset-transfer
https://solidity.readthedocs.io/en/v0.6.8/common-patterns.html#state-machine
https://solidity.readthedocs.io/en/v0.6.8/common-patterns.html#state-machine
https://solidity.readthedocs.io/en/v0.6.8/security-considerations.html
https://solidity.readthedocs.io/en/v0.6.8/security-considerations.html
https://www.trufflesuite.com/
https://github.com/Azure-Samples/blockchain/tree/master/ledger/template/ethereum-on-azure/permissioning-contracts/validation-set
https://github.com/Azure-Samples/blockchain/tree/master/ledger/template/ethereum-on-azure/permissioning-contracts/validation-set
https://github.com/Azure-Samples/blockchain/tree/master/ledger/template/ethereum-on-azure/permissioning-contracts/validation-set
https://verx.ch/
https://code.visualstudio.com/
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://etherscan.io/accounts/c
https://solidity.readthedocs.io/en/v0.7.2/

Programming Language Design and Implementation, PLDI 2020, Lon-
don, UK, June 15-20, 2020, pages 438–453. ACM, 2020.

[38] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 254–269. ACM, 2016.

[39] Anastasia Mavridou and Aron Laszka. Designing secure ethereum smart
contracts: A finite state machine based approach. In Sarah Meiklejohn
and Kazue Sako, editors, Financial Cryptography and Data Security -
22nd International Conference, FC 2018, Nieuwpoort, Curaçao, Febru-
ary 26 - March 2, 2018, Revised Selected Papers, volume 10957 of
Lecture Notes in Computer Science, pages 523–540. Springer, 2018.

[40] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and
Peter Sewell. Lem: reusable engineering of real-world semantics. In
Johan Jeuring and Manuel M. T. Chakravarty, editors, Proceedings
of the 19th ACM SIGPLAN international conference on Functional
programming, Gothenburg, Sweden, September 1-3, 2014, pages 175–
188. ACM, 2014.

[41] Daniel Pérez and Benjamin Livshits. Smart contract vulnerabilities:
Does anyone care? CoRR, abs/1902.06710, 2019.

[42] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Cohen, and Martin Vechev. Verx: Safety verification of smart contracts.
In 2020 IEEE Symposium on Security and Privacy, SP, pages 18–20,
2020.

[43] Grigore Rosu and Traian-Florin Serbanuta. An overview of the K

semantic framework. J. Log. Algebraic Methods Program., 79(6):397–
434, 2010.

[44] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh.
VERISMART: A highly precise safety verifier for ethereum smart
contracts. In 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, May 18-21, 2020, pages 1678–1694. IEEE,
2020.

[45] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and
Santiago Zanella Béguelin. Dependent types and multi-monadic effects
in F. In Rastislav Bodı́k and Rupak Majumdar, editors, Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, pages 256–270. ACM, 2016.

[46] Antonio Lopez Vivar, Alberto Turégano Castedo, Ana Lucila Sandoval
Orozco, and Luis Javier Garcı́a-Villalba. An analysis of smart contracts
security threats alongside existing solutions. Entropy, 22(2):203, 2020.

[47] Yuepeng Wang, Shuvendu K. Lahiri, Shuo Chen, Rong Pan, Isil Dillig,
Cody Born, Immad Naseer, and Kostas Ferles. Formal verification of
workflow policies for smart contracts in azure blockchain. In Supratik
Chakraborty and Jorge A. Navas, editors, Verified Software. Theories,
Tools, and Experiments - 11th International Conference, VSTTE 2019,
New York City, NY, USA, July 13-14, 2019, Revised Selected Papers,
volume 12031 of Lecture Notes in Computer Science, pages 87–106.
Springer, 2019.

	Introduction
	Overview
	SimpleMart
	Specification Language
	Verification Scope and Limitations

	Verifying Celestial Contracts in F⋆
	Blockchain state
	Libraries for arrays and maps
	An F⋆ effect for contracts

	Implementing Celestial
	Evaluation
	AssetTransfer
	ERC20 Tokens
	Governance Contract

	Related Work
	Conclusion
	References

