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Abstract
We address the problem of serving Deep Neural Networks

(DNNs) efficiently from a cluster of GPUs. In order to realize

the promise of very low-cost processing made by accelera-

tors such as GPUs, it is essential to run them at sustained

high utilization. Doing so requires cluster-scale resource

management that performs detailed scheduling of GPUs, rea-

soning about groups of DNN invocations that need to be co-

scheduled, and moving from the conventional whole-DNN

execution model to executing fragments of DNNs. Nexus is

a fully implemented system that includes these innovations.

In large-scale case studies on 16 GPUs, when required to stay

within latency constraints at least 99% of the time, Nexus

can process requests at rates 1.8-12.7× higher than state of

the art systems can. A long-running multi-application de-

ployment stays within 84% of optimal utilization and, on a

100-GPU cluster, violates latency SLOs on 0.27% of requests.
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1 Introduction
Consider a cloud-scale video analysis service that allows

thousands of tenants to analyze thousands of streams each

concurrently. Increasingly, the core computations for this
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workload are Deep Neural Networks (DNNs), which are

networks of dense linear algebra computations. Specialized

hardware accelerators for DNNs, in the form of Graphic

Processing Units (GPUs, which this paper focuses on) and

even more specialized Tensor Processing Units (TPUs) have

emerged in the recent past. GPU accelerators process DNNs

orders of magnitude faster and cheaper than CPUs in many

cases. However, GPUs are expensive and very-high-capacity:

modern devices each provide over 100 TFLOPS. Cost-savings
from using them depends critically on operating them at

sustained high utilization. A fundamental problem, therefore,

is to distribute the large incoming workload onto a cluster

of accelerators at high accelerator utilization and acceptable

latency. We address this problem in this paper.

Conceptually, this problem can be thought of as sharding

inputs via a distributed frontend onto DNNs on backend

GPUs. Several interacting factors complicate this viewpoint.

First, given the size of GPUs, it is often necessary to place

different types of networks on the same GPU. It is then

important to select and schedule them so as to maximize

their combined throughput while satisfying latency bounds.

Second, many applications consist of groups of DNNs that
feed into each other. It is important to be able to specify

these groups and to schedule the execution of the entire

group on the cluster so as to maximize performance. Third,

it is well known that dense linear algebra computations such

as DNNs execute much more efficiently when their inputs

are batched together. Batching complicates scheduling and

routing because (a) it benefits from cross-tenant and cross-

request coordination and (b) it forces the underlying bin-

packing-based scheduling algorithms to incorporate batch

size. Fourth, the increasingly common use of transfer learning
in today’s workloads has led to specialization of networks,

where two tasks that formerly used identical networks now

use networks that are only mostly identical. Since batching

works only when multiple inputs are applied to the same
model in conventional DNN execution systems, the benefits

of batching are lost.

Nexus is a GPU cluster for DNN execution that addresses

these problems to attain high execution throughput under
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Figure 1: A typical vision processing pipeline. Nexus is de-
signed to provide DNN-based analysis for tens of thousands
of streams.

latency Service Level Objectives (SLOs). It uses three main

techniques to do so. First, it relies on a novel batching-aware
scheduler (Section 6.1) that performs bin packing when the

balls being packed into bins have variable size, depending

on the size of the batch they are in. This schedule specifies

the GPUs needed, the distribution of DNNs across them, and

the order of their execution so as to maximize execution

throughput while staying within latency bounds. Second,

it allows groups of related DNN invocations to be written

as queries and provides automated query optimization to

assign optimal batch sizes to the components of the query

so as to maximize overall execution throughput of the query

while staying within its latency bounds (Section 6.2). Finally,

Nexus breaks from orthodoxy and allows batching of parts of
networks with different batch sizes. This enables the batched

execution of specialized networks (Section 6.3).

Nexus is completely implemented as a containerized sys-

tem deployable on a commercial cloud and comprises of

roughly 10k lines of C++. We have deployed Nexus on a

100-GPU cluster. On focused 16-GPU experiments compared

with existing DNN serving systems (Tensorflow Serving [25]

and Clipper [6]), we measure the maximal request rate pro-

cessed by these systems on fixed applications such that at

least 99% of requests are handled within latency SLOs. By

this metric, Nexus is able to handle 1.8-4.4× more requests

on a traffic monitoring application, and 9.4-12.7× on a game-

stream analysis case study. On a much larger experiment on

an 100-GPU cluster, 7 applications and 12 different models,

Nexus achieves a maximal request rate of over 98.7% while

maintaining similar high throughputs.

2 Background

A vision-based application aggregates visual information

from one or more video streams using custom “business”

logic. Each stream is processed using a pipeline similar to

that in Figure 1. CPU-based code, either on the edge or in

the cloud, selects frames from the stream for processing,

applies business logic to identify what parts (or windows)
of the image need deeper analysis, applies a DNN query to

these windows, and aggregates the results in an application-

specific way, often writing to a database. A query may rep-

resent a single DNN applied to the window, but often it may

represent a sequence of dependent DNN applications, e.g.,

running an object detector on the window and running a car

make/model detector on all sub-windows containing cars.

Model

CPU GPU CPU TPU GPU

lat. lat. cost ($) cost ($) cost ($)

(ms) (ms) (0.1TF (180TF (125TF

peak) peak) peak)

Lenet5 6 <0.1 $0.01 $0.00 $0.00

VGG7 44 <1 0.13 0.01 0.01

Resnet50 1130 6.2 4.22 0.48 0.12

Inception4 2110 7.0 8.09 0.93 0.23

Darknet53 7210 26.3 24.74 2.85 0.70

Table 1: DNN execution latencies and estimated costs per
1000 invocations.1Acceleration may be necessary to meet
latency deadlines, but can also be cheaper, given low
cost/TFLOPS.

Typically, a stream is sampled a few times a second or

minute, and the DNN query should complete execution in

tens to hundreds of milliseconds (for “live” applications) or

within several hours for (“batch” applications). The execution

of DNNs dominates the computation pipeline, and the cost

of executing them dominates the cost of the vision service.

Nexus provides a standalone service that implements the

DNN-based analysis stage for vision pipelines.

2.1 Accelerators and the challenge of utilizing them

As Table 1 shows, a key to minimizing the cost of executing

DNNs is the use of specialized accelerators such as GPUs

and TPUs, which are highly optimized to execute the dense

linear algebra computations that comprise DNNmodels. The

table shows the execution latency and the dollar cost of 1000

invocations for a few common models on CPUs and GPUs.

Execution times on CPUs can be orders of magnitude slower

than that on GPUs. For many applications, therefore, latency

constraints alone may dictate GPU-accelerated execution.

Perhaps more fundamentally, GPUs and TPUs promise

much lower cost per operation than even highly accelerated

CPUs: Table 1 lower-bounds the cost of executing a model

by assuming that models can be executed at peak speed

on each platform. Even compared to state of the art CPUs,

accelerators can yield a cost advantage of up to 9× (for TPUs)

and 34× (for GPUs). On the other hand, accelerators have

extremely high computational capacities (e.g., 125 TFLOPS

for the NVIDIA V100). To realize their cost savings, it is critical
to sustain high utilization of this capacity. Sustaining high

utilization is hard, however. For instance, the LeNet model of

Table 1 consumes 20MOPs to run, implying that a singleV100
would require 125 TFLOPS÷ 20MOPs = 6.25M inputs/second

to run at full utilization!

No single stream, or evenmost applications, can yield such

rates. By aggregating inputs across streams and applications,

Nexus is designed to funnel adequate work to each accelera-

tor. However, as we discuss next, having “enough” work is

1
Per-device prices for 1000 invocations assuming peak execution rates on

on-demand instances of AWS c5.large (Intel AVX 512), p2.xlarge (NVIDIA

K80), p3.2xlarge (NVIDIA V100) and GCP Cloud TPU.

323



Nexus: A GPU Cluster Engine for Accelerating DNN-Based Video Analysis SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

not sufficient to achieve high utilization: it is important to

group the right type of work in the right place.

2.2 Placing, packing and batching DNNs

DNNs are networks of dense linear algebra operations (e.g.,

matrix multiplication and convolution), called layers or ker-
nels. Networks are also called models. By default, the GPU

simply executes the kernels presented to it in the order re-

ceived. The kernels themselves are often computationally in-

tensive, requiring MFLOPs to GFLOPs to execute, and range

in size from one MB to hundreds of MBs. These facts have

important implications for GPU utilization.

First, loading models into memory can cost hundreds of

milliseconds to seconds.When serving DNNs at high volume,

therefore, it is usually essential to place the DNN on a par-

ticular GPU by pre-loading it on to GPU memory and then

re-using it across many subsequent invocations. Placement

brings with it the traditional problems of efficient packing.
Which models should be co-located on each GPU, and how

should they be scheduled to minimize mutual interference?

Second, it is well known that the processor utilization

achieved by kernels depends critically upon batching, i.e.,
grouping input matrices into higher-dimensional ones be-

fore applying custom “batched” implementations of the ker-

nels. Intuitively, batching allows kernels to avoid stalling on

memory accesses by operating on each loaded input many

more times than without batching. On an NVIDIA GTX1080,

batching improves the throughput of model execution by

4.7-13.3× for batch sizes of 32 for VGG, ResNet, and Incep-

tion models relative to executing them individually. Further,

our empirical measurements indicate that we can often use a

linear model to fit the batched execution latency as follows:

batch_lat(b) = αb + β, (1)

where β is the fixed cost to invoke a model and α is the cost

of each additional task in the batch. Large batches amortize

the fixed cost β and help achieve higher throughputs.

Although batching is critical for utilization, it complicates

the resource allocation and scheduling decisions made in-

side of a cluster. We elaborate on these issues in Section 4.

Further, batching is conventionally only feasible when the

same model is invoked with different inputs. For instance,

we expect many applications to use the same well-known,

generally applicable, models (e.g., Resnet50 for object recog-

nition). However, the generality of these models comes at the

price of higher resource use. It has become common practice

[12, 24] to use smaller models specialized (using “transfer

learning”) to the few objects, faces, etc. relevant to an ap-

plication by altering (“re-training”) just the output layers of

the models. Since such customization destroys the unifor-

mity required by conventional batching, making specialized

models play well with batching is often critical to efficiency.

3 Related work

The projects most closely related to Nexus are Clipper [6]

and Tensorflow Serving [25]. Clipper is a “prediction serving

system” that serves a variety of machine learning models

including DNNs, on CPUs and GPUs. Given a request to

serve a machine learning task, Clipper selects the type of

model to serve it, batches requests, and forwards the batched

requests to a backend container. By batching requests, and

adapting batch sizes online under a latency SLO, Clipper

takes a significant step toward Nexus’s goal of maximizing

serving throughput under latency constraints. Clipper also

provides approximation and caching services, complemen-

tary to Nexus’s focus on executing all requests exactly but

efficiently. Tensorflow Serving can be viewed as a variant of

Clipper that does not provide approximation and caching,

but also has additional machinery for versioning models.

To the basic batched-execution architecture of Clipper,

Nexus builds along the dimensions of scale, expressivity and

granularity. These techniques address the challenges brought
up earlier in this section and thus reflect Nexus’s focus on

executing DNNs on GPUs at high efficiency and scale.

Scale: Nexus provides the machinery to scale serving to

large, changing workloads. In particular, it automates the al-

location of GPU resources and the placement and scheduling

of models across allocated resources. It provides a distributed

frontend that scales with requests. These functions are per-

formed on a continuing basis to adapt to workloads.

Expressivity: Nexus provides a query mechanism that (a)

allows related DNN execution tasks to be specified jointly,

and (b) allows the user to specify the latency SLO just at

the whole-query level. Nexus then analyzes the query and

allocates latency bounds and batch sizes to constituent DNN

tasks so as to maximize the throughput of the whole query.

Granularity:Where Clipper limits the granularity of batched

execution to whole models, Nexus automatically identifies

common subgraphs of models and executes them in a batch.

This is critical for batching on specialized models, which

often share all but the output layer, as described previously.

Other work has explored system-level optimization for

DNN inference. They address goals other than Nexus’s focus

on improving accelerator utilization via aggressive batching

and are broadly complementary. MCDNN [14] is an early

example of a system that exploited shared model prefixes

resulting from specialization on mobile CPUs. However, like

Mainstream [19] after it, which provided a more sophisti-

cated infrastructure for managing specialization on server

CPUs, it focused on shared prefixes that applied to a com-
mon input, with the goal of avoiding redundant computation

across prefixes. Nexus, on the other hand, focuses on shared

prefixes that operate on different inputs with the goal of

utilizing the underlying GPU hardware more efficiently via

batching.
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A common theme in these and other systems is to automat-

ically select approximately equivalent, but more performant,

models for a task. MCDNN [14] introduced the notion of

selecting from a catalog of variants of models that trade

off accuracy for performance. VideoStorm [42] generalized

the notion of exploiting such tradeoffs to all parameters of

the computer vision system, not just those related to DNNs.

NoScope [20] proposed specializing models to queries to

speed up query execution. More recent work [35] proposes

cascading small dynamically specialized models that han-

dle the common case with larger backup models. Focus [17]

applies cascading to the video indexing scenario, backing

up a small, frequent ingest-time indexing DNN with a large

but infrequent query-time DNN. Nexus focuses on providing

an engine for non-approximating execution of the incoming

models, a facility that can potentially be used as a backend

for these approximation-based systems.

Serving DNNs at scale is similar to other large-scale short-

task serving problems. These systems have distributed front

ends that dispatch low-latency tasks to queues on the back-

end servers. Sparrow [27] focuses on dispatch strategies to

reduce the delays associated with queuing in such systems.

Slicer [3] provides a fast, fault-tolerant service for dividing

the back end into shards and load balancing across them.

Both systems assume that the backend server allocation

and task placement is performed at a higher (application)

level, using cluster resource managers such as Mesos [16]

or Omega [33]. Nexus shares the philosophy of these sys-

tems of having a fast data plane that dispatches incoming

messages from the frontend to backend GPUs and a slower

control plane that performs more heavyweight scheduling

tasks, such as resource allocation, packing and load balanc-

ing. On the other hand, compared to these generic systems,

Nexus provides query processing, task allocation, and sub-

task scheduling functionality that is targeted to better batch-

ing over DNN-based workloads.

Much work has focused on producing faster models of-

ten at small losses in accuracy [2, 31, 41] Further, models

of varying accuracy can be combined to maintain high ac-

curacy and performance [6, 14, 17, 20, 35]. Nexus views the

optimization, selection, and combination of models as best

done by the application, and provides no special support

for these functions. Our mechanisms are also orthogonal to

the scheduling, placement, and time-sharing mechanisms in

training systems [13, 30, 38] since DNN serving has to be

performed within tight latency SLOs while maintaining high

utilization.

4 Scheduling problems in batched execution
Batched execution of models improve GPU utilization but

also raises many challenges in determining how cluster

resources are allocated to different applications and how

to batch model invocations without violating latency con-

straints.

Model A Model B Model C

Batch Lat Req/s Batch Lat Req/s Batch Lat Req/s

4 50 80 4 50 80 4 60 66.7

8 75 107 8 90 89 8 95 84

16 100 160 16 125 128 16 125 128

Table 2: Batching profiles for models used in the example.
Lat is the latency (ms) for processing a batch, and Req/s is
the throughput achieved.

Fundamentally, the algorithm for packingmodels on GPUs

needs to take into account the fact that the processing cost

of an input is “squishy”, i.e., it varies with the size of the

batch within which that input is processed. Further, the la-

tency of execution also depends on the batch size. This new

version of bin packed scheduling, which we dub squishy bin
packing, needs to reason explicitly about batching. Second,

batching complicates query processing. If a certain latency

SLO (Service Level Objective) is allocated to the query as

a whole, the system needs to partition the latency across

the DNN invocations that comprise the query so that each

latency split allows efficient batched execution of the re-

lated DNN invocation. We call this complex query scheduling.
Third, in addition to batching-aware resource allocation, the

runtime dispatch engine also has to determine what requests

are batched and what requests are dropped during periods

of bursty arrival. We now use examples and measurements

to elaborate on these underlying scheduling and resource

allocation challenges.

4.1 Squishy bin packing

Consider a workload that consists of three different types

of tasks that invoke different DNN models. Let the desired

latency SLOs for tasks invoking models A, B, and C be 200ms,

250ms, and 250ms, respectively. Table 2 provides the batch

execution latency and throughput at different batch sizes

(i.e., the “batching profile”) for each model.

We first explore the basic scenario where all three types of

tasks are associated with high request rates so that multiple

GPUs are required to handle each task type. To maximize

GPU efficiency, we need to choose the largest possible batch

size while still meeting the latency SLO. Note that the batch

execution cost for a given task type cannot exceed half of

the task’s latency SLO; a task that missed being scheduled

with a batch would be executed as part of the next batch,

and thus its latency would be twice the batch execution cost.

For example, the latency SLO for Model A tasks is 200 ms,

so the maximum batch size we can use is 16. Therefore, the

maximum throughput that Model A can achieve on a single

GPU is 160 reqs/sec, and the number of GPUs to be allocated

for Model A should rA/160, where rA is the observed request

rate. Similarly, the number of GPUs for models B and C

should be rB/128 and rC/128, where rB and rC are the request

rates for models B and C respectively. Figure 2(a) depicts the

desired schedules for the different models.
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Figure 2: Resource allocation example.

We next consider a situation where the request rates for

the models are lower, with each one requiring less than a

GPU. In this case, the scheduler needs to consolidate multiple

types of DNN tasks onto the same GPU to optimize resource

utilization. Consider a workload where Model A receives 64

reqs/sec, and Model B and Model C receive 32 reqs/sec each.

We consider schedules where multiple models are assigned

to a GPU. The GPU then executes batches of different types

of models in a round-robin manner, and it cycles through

them over a time period that we refer to as the duty cycle.
The worst-case latency for a task is no longer twice the batch

execution cost but rather the sum of the duty cycle and the

batch execution cost for that task type.

Given this setup,Model A tasks can be scheduled in batches

of 8 as part of a duty cycle of 125ms; note that the resulting

throughput is the desired rate of 64 reqs/sec, the batch exe-

cution cost for 8 tasks is 75ms, and the worst-case execution

delay of 200ms matches the latency SLO (see Figure 2(b)).

We then check whether the GPU has sufficient slack to ac-

commodate tasks associated with models B or C. Within a

duty cycle of 125ms, we would need to execute 4 tasks of

either B or C to meet the desired rate of 32 reqs/sec. The

batch execution cost of 4 model B tasks is 50ms, which can fit

into the residual slack in the duty cycle. On the other hand,

a batch of 4 model C tasks would incur 60ms and cannot

be scheduled inside the duty cycle. Further, the worst-case

latency for model B is the sum of the duty cycle and its own

batch execution cost, 175ms(= 125+50), which is lower than

its latency SLO 250ms. Thus, it is possible to co-locate Model

B, but not Model C, on the same GPU as Model A.

We now make a few observations regarding the scenario

discussed above and why the associated optimization prob-

lem cannot be addressed directly by known scheduling al-

gorithms. First, unlike vanilla bin-packing that would pack

fixed-size balls into bins, the tasks here incur lower costs

when multiple tasks of the same type are squished together

into a GPU. Second, in addition to the capacity constraints

associated with the GPU’s compute and/or memory capa-

bilities, there are also latency constraints in generating a

valid schedule. Third, there are many degrees of freedom in

generating a valid schedule. The batch size associated with

a model execution is not only a function of the request rate

but also of the duty cycle in which the batch is embedded. In

Section 6.1, we describe how to extend traditional algorithms

to handle this setting.

4.2 Complex query scheduling

Applications often comprise of dependent computations of

multiple DNN models. For example, a common pattern is a

detection and recognition pipeline that first detects certain

objects from the image and then recognizes each object. The

developer will specify a latency SLO for the entire query,

but since the system would host and execute the constituent

models on different nodes, it would have to derive latency

SLOs for the invoked models and the schedules that meet

these latency SLOs. We discussed the latter issue in the pre-

vious example, and we now focus on the former issue.

Consider a query that executes Model X and feeds its

output to Model Y. Suppose we have a 100ms latency budget

for processing this query, and suppose that every invocation

of X yields γ outputs (on average). When γ < 1, X operates

as a filter; when γ = 1, X maps an input to an output; when

γ > 1, X yields multiple outputs from an input (e.g., detection

of objects within a frame).

Assume that Figure 3 depicts the batch execution latency

and throughput of models X and Y. The system has to decide

what latency SLOs it has to enforce on each model such that

the overall latency is within 100ms and the GPU utilization

of the query as a whole is maximized. For this example, we

consider a limited set of latency split plans for models X and

Y: (a) 40ms and 60ms, (b) 50ms and 50ms, (c) 60ms and 40ms.

It would appear that plan (a) should work best since the sum

of the throughputs is largest among the three plans, but a

closer examination reveals some interesting details.

For workloads involving a large number of requests, let

us assume that p and q GPUs execute X and Y, respectively.

We then have γ · p · TX = q · TY , where TX and TY are

per-GPU throughputs of X and Y, such that the pipeline

won’t be bottlenecked by any model. We define the average

throughput as the pipeline throughput divided by the total

number of GPUs, which is p · TX /(p + q). We evaluate the

average throughputs for the three latency split plans with

γ = 0.1, 1, 10. Figure 4 shows that each of the plans achieves

the best performance for different γ values. In fact, there is

no universal best split: it depends on γ , which can vary over

time.

We note two observations from this example. First latency

split for complex query impacts overall efficiency, and it is

necessary to account both batch performance and workload

statistics to make the best decision. Second, latency split

should not be static but rather adapted over time in accor-

dance with the current workload. Section 6.2 describes how

Nexus automatically and continually derives latency splits.

4.3 Rate control and adaptive batching

Model serving systems need to perform adaptive batching

based on the number of requests received. When there is a

burst of requests, the system needs to drop certain requests

in order to serve the remaining requests within the latency
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Model X Model Y

Lat Reqs/s Lat Reqs/s

40 200 40 300

50 250 50 400

60 300 60 500

Figure 3: Batch execution la-
tency (ms) and throughput of
models.

Latency budget Avg Throughput (reqs/s)

X Y γ = 0.1 γ = 1 γ = 10

40 60 192.3 142.9 40.0
50 50 235.3 153.8 34.5

60 40 272.7 150.0 27.3

Figure 4: The average throughput with
three latency split plans for varying γ .

1.0 1.2 1.4 1.6 1.8
α (ms)

0%

10%

20%

30%

40%

Ba
d 

ra
te

uniform
poisson

Figure 5: Performance of lazy dropping.
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Figure 6: Nexus runtime system overview.

SLO. One approach is to perform lazy dropping, i.e., drop

a request only when it has already missed its deadline, and

determine the batch size based on the time budget remaining

for the earliest request in the queue (as in Clipper [6]). We

use simulation to evaluate this approach for different batch-

ing profiles (as modeled by Equation 1). We fix latency SLO

to 100ms and optimal model throughput on a single GPU

to 500 reqs/s, and vary α . Given the fixed throughput, the

fixed cost of β reduces as we increase α . The workload is

generated using uniform and Poisson arrivals with the mean

request rate set to 90% of the optimal throughput. We define

the bad rate to be the percentage of requests that exceed

the deadline or get dropped. Figure 5 shows that the lazy

dropping strategy performs poorly for Poisson distributions

when α is small and β is correspondingly high. Since the sys-

tem always attempts to execute the oldest received request,

it often has to resort to a small batch size in order to meet the

deadline, but this causes the dispatcher to fall behind further

given the high fixed cost is not amortized over sufficient

requests. This experiment indicates that even the runtime

needs to consider batch efficiency in determining what tasks

to dispatch.

5 Nexus architecture
The primary goal of Nexus is to attain high execution effi-

ciency on GPU clusters while serving video analysis requests

within a specified latency SLO. Our service model assumes

that the system can drop requests if it cannot execute them

within their deadlines (following prior work [5]). Note that

this is appropriate for video stream analysis, as the next sam-

pled frame would typically be processed even if the earlier

one is dropped. We also note that we could configure our sys-

tem to simply delay the execution of requests that miss their

deadlines to a later time and at a lower priority; many of our

techniques would still be effective in improving efficiency in

such a setting.

Nexus works on three planes (as depicted by Figure 6). The

management plane allows developers to ingest and deploy ap-
plications and models, at a timescale of hours to weeks. The

control plane, via the global scheduler, is responsible for re-
source allocation and scheduling at a typical timescale of sec-

onds to minutes. The data plane, comprised of in-application

Nexus library instances and backend modules (together, the

Nexus runtime), dispatches and executes user requests at the

timescale of milliseconds to seconds. The global scheduler

interacts with the underlying cluster resource manager (e.g.,

Mesos [16], Azure Scale Sets [23]) to acquire CPUs/GPUs

for the frontend/backend. A load balancer (not shown) from

the underlying cluster spreads user requests across Nexus’s

distributed frontend. We sketch the three planes.

Management plane:Models are stored in amodel database
and may be accompanied by either a sample data set or a

batching profile. Nexus uses the sample dataset, if available,

to derive a batching profile. A profilermeasures the execution

latency and memory use for different batch sizes when the

models are uploaded to Nexus. Applications are containers

that provide the Nexus library to client programs. Devel-

opers store these application containers in cluster-provided

container repositories and may instruct Nexus to ingest a

container, at which point it is loaded from the repository

onto a frontend CPU.

Control plane: The global scheduler is a cluster-wide re-
source manager that uses load statistics from the runtime.

It uses this profile to add or remove frontend and backend

nodes from the cluster, invokes the epoch scheduler to decide
which models to execute and at what batch size, and which

backend to place the models on so as to balance the load

and maximize utilization. Multiple models may be mapped

onto a single backend, albeit with an execution schedule that

ensures they do not interfere as in Section 4.1. The mapping

from models to backends is captured in a routing table that is
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sent to frontends. The matching execution schedule for each

backend is captured in a schedule that is sent to backends.

On receiving a routing table, frontends update their current

routing table. On receiving a schedule, backends load ap-

propriate models into GPU memory and set their execution

schedule.

Allocation, scheduling, and routing updates happen at the

granularity of an epoch, typically 30-60s, although a new

epoch can also be triggered by large changes in workload. To

prevent oscillation from frequent reconfiguration, we limit

the minimum period between two epochs to 10 seconds.

Epoch scheduling involves the following:

• Produce an updated split of the latency SLO for the indi-

vidual models inside a query (see Section 6.2).

• Combine two or more models that share a prefix and

latency SLO into a new prefix-batched model (see Sec-

tion 6.3).

• Perform profile-guided squishy bin packing to allocate the

GPU resources for each model. (see Section 6.1).

Because epoch scheduling reacts to workload change at

the granularity of an epoch at best, Nexus relies on admis-

sion control that drops excessive requests to make sure that

most (targeted for 99% in the evaluation) requests can be

served within their latency constraints within an epoch. Re-

quests are dropped using an early-drop policy (see Adaptive

Batching in Section 6.3).

Data plane:When a user request comes into (a replica of)

an application container, the application invokes DNNs via

the Nexus library API. The library consults the local routing

table to find a suitable backend for that model, dispatches the

request to the backend, and delivers responses back to the

application. The application is responsible for packaging and

delivering the end-result of the query to the user. A backend

module uses multiple threads to queue requests from various

frontends, selects and executes models on these inputs in a

batched mode according to the current schedule, and sends

back the results to frontends. It can utilize one or more GPUs

on a given node, with each GPUmanaged by a GPU scheduler
that schedules tasks on it.

6 Batch-aware scheduling and dispatch
We now describe the algorithms used by the global scheduler

and the node dispatcher. First, we consider the case of sched-

uling streams of individual DNN task requests, given their

expected arrival rates and latency SLOs. We next consider

how to schedule streams of more complex queries/jobs that

invoke multiple DNN tasks. We then describe how the node

runtime cycles through DNNs and performs batching.

6.1 Scheduling streams of individual DNN tasks

We build upon the discussion presented in Section 4.1. The

scheduler identifies for each cluster node the models hosted

by it. As discussed earlier, the scheduling problem has the

Notation Description

Si Session i
Mki DNN model ki for session Si
Li Latency constraint for session Si
Ri Request rate for session Si
ℓki (b) Execution cost forMki and batch size b

Table 3: Notation

structure of bin-packing [21], but we need to address the

"squishiness" of tasks and the need to meet latency SLOs.

Inputs: The scheduler is provided the request rate for a

model at a given latency SLO. We refer to the requests for a

given model and latency SLO as a session. Note that a session
would correspond to classification requests from different

users and possibly different applications that invoke the

model with a given latency constraint. Table 3 describes

the notation used below. Formally, a session Si specifies a
modelMki and a latency constraint Li , and there is a request
rate of Ri associated with it. The scheduler is also provided

with the batching profiles of different models. The latency

of executing b invocations ofMki is ℓki (b). We assume that

throughput is non-decreasing with batch size b.

Scheduling overview: The scheduler allocates one or more

sessions to each GPU and specifies their target batch sizes.

Each GPU node n is then expected to cycle through the ses-

sions allocated to it, execute invocations of each model in

batched mode, and complete one entire cycle of batched ex-

ecutions within a duty cycle of dn . For sessions that have a
sufficient number of user requests, one or more GPU nodes

are allocated to a single session. The integer programming

formulation and a greedy approximation algorithm described

below computes the residual workload for such sessions (af-

ter allocating an integral number of GPUs) and then attempts

to perform bin packing with the remaining smaller sessions.

Scheduling Large Sessions: For session Si , we first com-

pute the peak throughput ofMki when executed in isolation

on a GPU. With a batch size b, the worst case latency for any
given request is 2ℓki (b), as we explained in Section 4.1. De-

note batch size Bi as the maximum value for b that meets the

constraint 2ℓki (b) ≤ Li . Therefore, the maximal throughput,

denoted by Ti , for session Si on a single GPU is Bi/ℓki (Bi ).
The number of GPU nodes we allocate to execute just Si
requests is n = ⌊Ri/Ti ⌋. There will be a residual unallocated
load for session Si after taking into account this allocated

load. Note that n = 0 for sessions that don’t have sufficient

requests to utilize an entire GPU. (Function ScheduleSatu-

rate in Algorithm 1 provides the pseudocode.)

Optimization problem for scheduling residual work-
load: We next consider the problem of scheduling the resid-

ual loads, i.e., a workload where none of the models have

sufficient load to need an entire GPU. The optimization prob-

lem can be expressed as an integer programming problem.
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Decision Variables Definition

дj ∈ {0, 1} Whether GPU j is in use

si j ∈ {0, 1} Whether session i is assigned to GPU j
bi j ∈ R≥0 Batch size of session i on GPU j

We need to minimize:

∑
j дj , while subject to:

si j = 1→ дj = 1 ∀j (a)∑
j
si j = 1 ∀i (b)

si j = 0→ bi j = 0 ∀i, j (c)

si j = 1→ bi j ≥ 1 ∀i, j (d)

dj =
∑

i :ti j=1
ℓki (bi j ) ∀j (e)

dj + ℓki (bi j ) ≤ Li ∀i, j (si j = 1) (f)

bi j ≥ ridj ∀i, j (si j = 1) (g)

The constraints correspond to the following requirements.

(a) Sessions can only be assigned to GPUs that are in use.

(b) Each session can only be assigned to one GPU.

(c) bi j is 0 if i is not assigned to GPU j.
(d) bi j is at least 1 if i is assigned to GPU j.
(e) Length of a duty cycle as a function of assigned ses-

sions.

(f) Latency SLO constraint.

(g) Scheduled rate meets the request rate requirement.

Note that some of the constraints are not linear, and we

omit details on how to express them in a strictly linear way.

We used the CPLEX package to solve this formulation on

benchmark workloads. Even after incorporating optimiza-

tions, such as using a greedy algorithm to provide both an

initial feasible solution and an upper bound for the number of

GPUs needed, solving the integer program is expensive. For

example, computing the minimum number of GPUs for 25

sessions takes several hours, even though the upper bound,

determined via a greedy algorithm, is 8 GPUs. Further this

optimization problem is proven to be strongly NP-hard (see

Appendix A). We, therefore, resort to the following greedy

scheduling algorithm.

Greedy scheduling algorithm for residual loads: For
the bin packing process, the scheduler inspects each residual

session in isolation and computes the largest batch size and

the corresponding duty cycle in order to meet the through-

put and SLO needs. The intuition behind choosing the largest

batch size is to have an initial schedule wherein the GPU op-

erates at the highest efficiency. This initial schedule, however,

is not cost-effective as it assumes that each GPU is running

just one session within its duty cycle, so the algorithm then

attempts to merge multiple sessions within a GPU’s duty

cycle. In doing so, it should not violate the latency SLOs, so

we require that the merging process only reduces the duty

cycle of the combined allocation. The algorithm considers

sessions in decreasing order of associated work and merges

Algorithm 1 Squishy Bin Packing Algorithm

SqishyBinPacking(Sessions)

1: nodes, residue_loads← ScheduleSaturate(Sessions)

2: nodes← nodes ⊕ ScheduleResidule(residue_loads)

3: return nodes

ScheduleSaturate(Sessions)

4: nodes, residue_loads← [], []

5: for Si = ⟨Mki ,Li ,Ri ⟩ in Sessions do
6: Bi ← argmaxb (2ℓki (b) ≤ Li )
7: Ti ← Bi/ℓki (Bi )
8: let Ri = n ·Ti + ri
9: nodes← nodes ⊕ n GPU nodes forMki with batch Bi
10: residue_loads← residue_loads ⊕⟨Mki ,Li , ri ⟩

11: return nodes, residue_loads

ScheduleResidue(residue_loads)

12: for ⟨Mki ,Li , ri ⟩ in residue_loads do
13: bi ← argmaxb (ℓki (b) + b/ri ≤ Li )
14: di ← bi/ri
15: occi ← ℓki (bi )/di

16: sort residue_loads by occi in descending order

17: nodes← []

18: for ⟨Mki ,Li , ri ,bi ,di ,occi ⟩ in residue_loads do
19: max_occ← 0

20: max_node← NULL
21: for n = ⟨b,d,occ⟩ in nodes do
22: n′←MergeNodes(n, ⟨bi ,di ,occi ⟩)
23: if n′ , NULL and n′.occ > max_occ then
24: max_occ← n′.occ
25: max_node← n′

26: if max_node , NULL then
27: replace max_node for its original node in nodes

28: else
29: nodes← nodes ⊕⟨bi ,di ,occi ⟩

30: return nodes

them into existing duty cycles that have the highest alloca-

tions, thus following the design principle behind the best-fit

decreasing technique for traditional bin packing.

We now elaborate on this greedy scheduling algorithm

(which is also depicted in function ScheduleResidue of

Algorithm 1). Denote ri to be the request rate of a residual
load. Suppose we execute the residual load with batch size b,
the duty cycled for gatheringb inputs isb/ri . Then, theworst
case latency is d + ℓki (b). Therefore, we have the constraint:

d + ℓki (b) = b/ri + ℓki (b) ≤ Li (2)

We begin residual load scheduling (Line 12-15) by choos-

ing for session Si the maximum batch size bi that satisfies the
above constraint. The corresponding duty cycle di is also at

its maximal value. Denote occupancy (occ) as the fraction of

the duty cycle di occupied by Si ’s residual load invocations:

occi (bi ) = ℓki (bi )/di .
Next, we start to merge these fractional GPU nodes into

fewer nodes (Line 16-30 in Algorithm 1). This part resembles
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duty cycle d1

Node 2

Node 1

Merged
Node

batch b2

Node 2

Node 1

Figure 7: Merge two nodes into one. Use the smaller duty cy-
cle as new duty cycle for both nodes. Update the batch size
accordingly and re-estimate the batch latency. If sum of la-
tencies doesn’t exceed new duty cycle, the two nodes can be
merged.

the classic bin packing algorithm that first sorts sessions by

decreasing occupancy and merges two nodes into a single

node by best fit. The primary difference is how to determine

whether two nodes can be merged such that their sessions

won’t violate the latency SLOs. Figure 7 depicts the process

of merging two nodes. Suppose we have two sessions S1 and
S2 on separate nodes, with request rates r1 and r2, assigned
batch sizes b1 and b2, and duty cycles d1 and d2. We use

d = min(d1,d2) as the new duty cycle of a combined node.

Without loss of generality, we assume d = d2. We then use

b ′
1
= d · r1 ≤ b1 as the new batch size for S1. Note that

the worst case latency of requests in S1 now becomes d +
ℓk1 (b

′
1
) ≤ d1 + ℓk1 (b1) ≤ Li , and we won’t violate the latency

constraint for S1 by this adjustment. If ℓk1 (b
′
1
) + ℓk2 (b2) ≤ d

and memory capacity permits, a single node can handle

the computation of both S1 and S2, and we allocate these

two sessions to the same node. While the above discussion

considers merging two sessions, the underlying principle

generalizes to nodes containing multiple sessions.

Note that this algorithm does not assume the linear rela-

tionship between execution latency and batch sizementioned

in Equation 1. The algorithm only assumes that the latency

per input, ℓ(b)/b, is non-decreasing with batch size b.
Finally, we extend the algorithm to be incremental across

epochs, thus minimizing the movement of models across

nodes. If the overall workload decreases, the scheduler at-

tempts to move sessions from the least utilized backends to

other backends. If a backend no longer executes any session,

the scheduler releases the backend. If workload increases

such that a backend becomes overloaded, we evict the cheap-

est sessions on this backend until it is no longer overloaded

and perform bin packing again to relocate these evicted ses-

sions.

6.2 Scheduling complex queries

We now present the query analysis algorithm that operates

on dataflow representations of application queries in order to

input

face

car

outputSSD

Figure 8: Dataflow graph of traffic analysis application.

determine the latency SLO splits for the constituent models.

The output of this analysis is given as input to the scheduling

algorithm of Section 6.1 that works with individual models.

Query analysis extracts the dataflow dependency graph

between model invocations in application code. For example,

Figure 8 depicts a traffic analysis application that first uses

the SSDmodel to detect objects and recognizes cars and faces

correspondingly. We formulate the scheduling of queries

as the following optimization problem. Suppose the query

involves a set of models Mi with request rate Ri , and the

end-to-end latency SLO is L. The objective is to find the best

latency SLO split Li for each modelMi to minimize the total

number of GPUs that are required for the query. Because

latency Li is determined by batch size bi , the optimization

problem is equivalent to finding the best batch sizes that

minimizes GPU count, while meeting the latency SLO along

every path from the root model (Mroot) to the leaf models.

minimize

{bv }

∑
v

Rvlv (bv )/bv

subject to

∑
u :Mroot{Mv

lu (bu ) ≤ L ∀v ∈ leaf

We use dynamic programming to solve this optimization

problem for the case of fork-join dependency graphs, but

limit our exposition to the simpler case of tree-like depen-

dency graphs. For example, Figure 8 can be treated as a

tree-structured dependency graph models (we can as the out-

put does not invoke additional DNN models. Denote f (u, t)
as the minimum number of GPUs required to run models

represented by u and the subtree at u within the time budget

t . For a non-leaf node u, the algorithm allocates a time bud-

get k for node u and at most t − k for the rest of the subtree,

and it then enumerates all k ≤ t to find the optimal split.

More formally,

f (u, t) = min

k :k≤t

{
min

b :lu (b)≤k
Ru

lu (b)

b
+ min

t ′:t ′≤t−k

∑
v :Mu→Mv

f (v, t ′)

}
Since the dynamic programming cannot handle contin-

uous state space, we approximate the state space of time

budget with L/ε pieces of segments, where ε is the length of

a segment. The time complexity is quadratic in L/ε .

6.3 Batch-aware dispatch

We now briefly describe the runtime mechanisms that con-

trol the execution of DNN tasks on backend nodes.
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Overlapping CPU and GPU computation: DNN tasks

can be decomposed into three stages: pre-processing (includ-

ing decoding and batching images), forwarding, and post-

processing. Pre- and post-processing are usually done on the

CPU since they are not compute-intensive, whereas forward-

ing of a neural network model runs on the GPU. In order to

achieve maximum GPU utilization, it is necessary to over-

lap the CPU computation and GPU computation. Therefore,

the Nexus backend uses a thread pool of workers that pre-

process the requests for the next batch and post-process the

outputs of the previous batch on CPU, while another thread

is dedicated to launching batched executions on the GPU.

We observe experimentally that it usually takes 4 to 5 CPU

cores to saturate GPU throughput, depending on the amount

of computation in the models. Nexus uses an event-driven

approach [28] to handling I/O, pre- and post-processing.

GPU Multiplexing: DNN frameworks provide no specific

support for the concurrent execution of multiple models. For

example, if two models that share a GPU execute in two pro-

cesses or containers, they will independently issue requests

to execute layers/kernels to the underlying GPU. The GPU

runtime will typically serve these requests in first-come-first-

served fashion, resulting in an arbitrary interleaving of the

operations for the two models. The interleaving increases

the execution latency of both models and makes it hard to

predict the latency. Instead, the Nexus node runtime man-

ages the execution of all models on a GPU, so it is able to

pick batch sizes and execution schedules for all models in

a round-robin fashion to make sure models abide by their

latency SLOs. In addition, Nexus overlaps the pre- and post-

processing in CPU with the GPU execution to increase GPU

utilization.

Prefix Batching: Another important observation is that

transfer learning [8, 26, 34, 36, 40] adapts a model from one

dataset to another or from one task to another by re-training

only the last few layers. DNN frameworks assume that if

models differ in any layer, they cannot be executed in a

batched fashion at all. However, in the common setting of

model specialization, several models may differ only by their

output layer. Batching the execution of all but the output

layer can yield substantial batching gains. Nexus computes

the hash of every sub-tree of themodel schema and compares

it with the existing models in the database to identify com-

mon sub-trees when a model is uploaded. At runtime, models

with known common sub-trees are loaded partially in the

backend and batched at the sub-tree (or prefix) granularity.

The different suffix parts are then executed sequentially.

Adaptive Batching: As discussed in Section 4.3, lazy drop-

ping during dispatch could lead to small batch sizes and low

efficiency. In Nexus, we use an early drop policy that skips

over requests that would cause sub-optimal batching. Specif-

ically, the dispatcher scans through the queue using a sliding

window whose length is the batch size determined by the
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Figure 9: Maximal throughput achieved by lazy drop and
early drop policy under various α .

global scheduler for a given session. It stops at the first re-

quest that has enough budget for batched execution latency

of the entire window and drops all earlier requests. We use

simulation to compare the lazy drop and early drop policy.

Similar to Figure 5, we fix latency SLO to 100ms and optimal

throughput to 500 reqs/s. Figure 9 depicts the throughput

achieved by lazy drop and early drop policy under different

α when 99% of requests are served within latency SLO. The

results show that early drop can achieve up to 25% higher

throughput than lazy drop.

7 Evaluation

We implemented Nexus in roughly 10k lines of C++ code.

Nexus supports the execution of models trained by various

frameworks including Caffe [18], Caffe2 [9], Tensorflow (TF)

[1], and Darknet [32]. Nexus can be deployed in a cluster

using Docker Swarm [7] (used below) or Kubernetes [11]. In

our evaluation, we use this implementation to answer the

following questions. (1) Does using Nexus result in better

cluster utilization while meeting SLOs with respect to exist-

ing systems? (2) Does high performance persist when Nexus

is used at a large scale? (3) How do the new techniques in

Nexus contribute to its performance? (4) What determines

how well each of these techniques work?

For a given workload and cluster, we refer to themaximum

rate of queries that Nexus can process such that 99% of them

are served within their latency SLOs as its throughput. We

use throughput as the primary measure of cluster utilization.

7.1 Workload

Our basic approach is to run Nexus (and its various configu-

rations and competitors) on either a small (16-GPU) or a large

(100-GPU) cluster on various mixes of the applications and

input videos specified in Table 4. These applications are mod-

eled closely on widely-known video analysis scenarios, but

we implemented each of them since we are unaware of freely

available, widely used versions. They encompass a wide va-

riety of characteristics. Some (e.g., game and traffic, which
implements Figure 8) are based on 24/7 live video streams,

whereas others (e.g., dance and logo) apply to footage of

individual performances. Some require simple queries (e.g.,
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name

brief models video Nexus

description used input features used

game analyze streamed

video games

text, object rec. Twitch [37] streams,

1 week, 50 streamers

SS, ED, QA-1,

PB

traffic surveil traffic on

streets

object det., face

rec.

traffic cameras, 1

week, 20 cameras

SS, ED, QA-2

dance rate dance perfor-

mances

person det., pose

rec.

dance videos from

YouTube, 2 hrs

SS, ED, QA-2

bb gauge response

to public bill-

board

person, face det.,

gaze, age, sex rec.

game show audience

videos, 12 hours

SS, ED, QA-3,

PB

bike find bike-rack oc-

cupancy on buses

object, text det./

rec./ trk.

traffic cameras, 1

week, 10 cameras

SS, ED, QA-4,

PB

amber match vehicle to

"Amber Alert" de-

scription

object det., car

make+model rec.,

text det./rec.

dashcam videos from

YouTube, 12 hours

SS, ED, QA-4,

PB

logo audit corporate

logo placeement

person icon,

pose, text, person

det./rec.

NFL, NBA game

videos, 24 hours

SS, ED, QA-5,

PB

Table 4: Evaluated application and input data. Squishy
scheduling, early drop, complex query analysis and prefix-
batching are abbreviated as SS, ED, QA and PB. QA-k indi-
cates that the related complex query has k stages. Models
for detection, recognition and tracking are abbreviated ‘det.’,
‘rec.’ and ‘trk.’

game, designated "QA-1" has 1 stage), and others more com-

plex ones (e.g., the 5-stage logo, designated "QA-5", seeks to

detect people, find their torsos, look for logos, and if found,

detect and recognize the player’s number). Most use multiple

specialized versions of models and are therefore amenable to

prefix batching, designated "PA". For each workload, we have

collected several hours and many streams (for live streams)

or files (for episodes) of video, which sample and play in

a loop to preserve temporal characteristics while allowing

arbitrarily long simulations. Unless otherwise mentioned,

we sample inter-arrival time between frames uniformly.

7.2 Using Clipper and Tensorflow as baselines

Clipper and TF Serving assume cluster scheduling and la-

tency SLOs for DNN invocations are handled externally.

Careful scheduling and latency allocation are two of Nexus’s

core contributions. To provide a basis for comparison, we

furnish simple default versions of each. A batch-oblivious
scheduler

2
greedily allocates to each model/SLO a share of

the cluster proportional to its request rate and inversely pro-

portional to its maximum single-node throughput. Further,

we split the latency for a query evenly across its stages. The

oblivious scheduler may map multiple models onto a Clip-

per GPU, in which case we launch one container per model

on the GPU. We rely on Clipper’s load balancer to manage

2
Note that we retain Clipper’s adaptive batching, which is orthogonal to

the scheduling scheme used, in all experiments. Adaptive batching groups

requests into batches on a single backend node, adapting the batch size

dynamically to get higher throughput. Scheduling, on the other hand, works

at cluster-scale over a coarse epoch granularity and performs resource

allocation. In particular, it determines how many replicas to use for each

model, and which GPUs to place them on. Clipper assumes an external

scheduler, so we had to provide a batch-oblivious scheduler as a reasonable

baseline.
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Figure 10: Game analysis ablation study.

model replicas. In contrast, TF does not provide a frontend

load balancer, nor does it allow the specification of latency

SLOs per request. We, therefore, provide a dispatcher and

pick the maximum batch size for each model, so its SLO is

not violated.

7.3 Single-application case studies

To compare our performance with those of Clipper and TF

Serving, we ran the game and traffic applications sepa-

rately on a 16-GPU cluster. In each case, we ran an ablation

study on Nexus features to gauge their impact.

7.3.1 Game analysis

When analyzing game streams, we seek to recognize six

numbers (e.g., number of kills, number of players alive) and

one object icon on each frame. We use versions of LeNet [22]

specialized to the game’s font and the number of digits to

recognize numbers, and ResNet-50 [15] with its last layer

specialized to recognize the icon. We include 20 games in

the case study, and consider a latency SLO of 50ms (sensi-

tivity to SLOs is analyzed in Section 7.5). The request rates

of frames from the 20 games follow the Zipf-0.9 distribution.

We noticed that both Clipper and TF show extremely poor

throughput on the tiny LeNet model. We conjecture, but

could not confirm, that this is because of inadequate paral-

lelism between CPU and GPU processing. To be maximally

fair to them, we allow the two baselines to invoke just the

ResNet model. Their resulting throughput, which we report,

is better by over 4× than including LeNet. Finally, we addi-

tively turn off prefix batching (PB), squishy scheduling (SS),

early drop (ED), and overlapped processing in the CPU and

GPU (OL, see Section 6.3). The game query has only 1 stage

and, therefore, does not exercise query analysis (QA).

Figure 10 shows the results. Nexus increases through-
put significantly, by 9.4 and 12.7× relative to Clipper and

TF Serving on this application. Several of Nexus’s tech-
niques contribute, with OL the most (incrementally dis-

abling OL results in an additional 7.4× throughput reduction),

and ED the least (disabling it results in a 3% reduction). Note

that even though OL is the dominant technique for this appli-

cation, the other Nexus techniques together result in a 48%

fall in throughput (from 4120 to 2143 req/s) when disabled.

ED is designed to address variability in requests. When we
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Figure 11: Traffic analysis ablation study.

re-ran the experiments with frame inter-arrival rates sam-

pled from a Poisson distribution as opposed to uniform, the

significance of ED increases, and throughput drops by amore

significant 8.5%.

Disabling OL causes a dramatic reduction in throughput

for this application because of a complex interaction between

its tight (50ms) SLO, relatively high preprocessing times

(roughly 10ms), and the low forwarding times of the models

(roughly 6ms for ResNet-50 and under 0.1ms for LeNet).

Serializing preprocessing with GPU execution for each batch

results in roughly half the cycles of the GPU remaining idle.

Further, given the tight SLO and the latency of preprocessing,

batch sizes need to remain close to 1 to guarantee timely

execution. These small batch sizes have many times lower

throughput than the optimal large batches. Taken together,
these factors result in a large throughput loss, making
OL critical in the tight-SLO/smallmodel regime. As the
analysis for the traffic monitoring application (Figure 11)

below shows, with more relaxed SLOs and larger models, the

importance of overlapped preprocessing (OL) is diminished.

7.3.2 Traffic monitoring

traffic uses SSD [4], VGG-Face [29] andGoogleNet-car [39]

for object detection, face recognition and car make/model

analysis on 20 long-running traffic streams with a latency

SLO of 400ms. These models are larger than those used in

the game analysis case: the largest (SSD), which is invoked

on every frame, runs for 47ms at batchsize 1 and the smallest

(Googlenet) runs for 4.2ms, compared to 6.2ms/0.1ms for

gaming.

Our first experiment replicates the cumulative ablation

test that we performed on gaming analysis in the previ-

ous section. Figure 11 shows the results for analyzing non-

rush-hour traffic data.
3 Once again, maximum through-

put comes from many Nexus techniques working to-
gether. All techniques other than OL, when disabled to-

gether, result in a signficant 39% performance drop relative

to full Nexus (throughput falls from 534 to 326 req/s). Further,

the contribution of ED is small.

On the other hand, the relative contribution of OL is

3
See the analysis below comparing rush-hour with non-rush-hour results.
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Figure 12: Diurnal throughput variation for traffic analysis.

much smaller in this application: disabling OL incremen-

tally results in throughput falling only by a further 34%

(from 326 to 216 req/s), as opposed to the previous 7.4×
drop. Through more detailed analysis, we confirm that the

more relaxed SLO enables large-batch execution, which to-

gether with the large model forwarding time renders the

preprocessing time relatively small (so less of the GPU stays

idle) and allows high throughput due to batch execution.

Unlike game, traffic is a two-stage application: the first

stage detects vehicles or people, and the second stage recog-

nizes their make/model or identity. Query Analysis (QA) is

thus applicable. Instead of splitting latency evenly (which is

the baseline, represented by -QA the figure), QA allocates

345ms of the 400ms latency to object detection via SSD. Dis-
abling QA results in a significant throughput loss, with
throughput falling by 19% (from 534 to 433 req/s).

An interesting aspect of the traffic application is that the

nature of data analysis depends strongly on whether the

traffic being analyzed is rush-hour. Figure 12 summarizes

throughput achieved on non-rush-hour vs rush-hour traffic.

Three points are worth noting. First, throughput achieved

during rush hour is significantly less than that during non-

rush hour. This is because rush-hour traffic is more complex:

more vehicles are detected, and require follow-on analysis,

on every frame. Second, although during rush hour, the ben-

efit of Nexus relative to the TF Serving baseline falls (from

534/227 = 2.4× during non-rush hour to 264/146 = 1.8× dur-

ing rush hour)
4
, the benefit provided by Nexus is still

significant. In particular, the relative benefit of the QA tech-

nique also falls. This seems to be because various subsystems

are over-subscribed during rush hour.

7.4 Long-running multi-application deployment

To check whether Nexus maintains its gains when run at

large scale, especially in the face of significant workload

variation across multiple applications, we deployed Nexus

on a cluster ranging from 16 to 100 GPUs on a commercial

cloud, running all applications from Table 4 simultaneously

for a period of several hours. We focused on two metrics.

First, how close to optimal is GPU utilization during this

4
We were unable to determine why the relative performance of Clipper fell

so sharply on rush-hour data.
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period? Second, how well does Nexus react to workload

changes?

We first study the optimality of Nexus by using the uni-

form distribution to generate highly controlled workloads for

the applications and perform the evaluation on a cluster of 16

GTX 1080Ti GPUs. To bound the optimal (smallest) number

of GPUs needed for a session, we assumed that its model is

fully (not just prefix) batchable, that its SLO allows it to run

at the optimal batch size, and that it has enough requests

coming in to be scheduled back-to-back on GPUs. Of course,

real sessions often violate one or more of these assumptions

and will have lower throughput. Nexus achieved a bad rate of

less than 1% consistently and used 11.7 GPUs on average. We

then computed the theoretical lower bound of the number

of GPUs required based on the maximal throughput that a

model can achieve on a single GPU. The lower bound for

this workload is 9.8 GPUs on average. It indicates that Nexus

scheduler can achieve 84% of GPU efficiency compared to

the theoretical lower bound.

Next, we deploy Nexus on 100 K80s and evaluate work-

loads with varying Poisson arrival rates. In particular, we

fixed the number of model sessions, designated by a given

model and its latency SLO, per application (e.g., game had

50 model sessions, traffic had 20), but varied the request

rate per session by varying the rate at which each submitted

frames.

Figure 13 shows Nexus adapting to a change in workload

during a 1000-sec window of the deployment. The top panel

shows a stacked graph of requests over time, the middle

one the number of GPUs allocated and the bottom one the

bad rate, with instantaneous bad rates above 1% marked in

red. Around 326s into the window, the number of requests

increases and starts varying significantly. Nexus, which is

running with 30s epochs, starts dropping requests, detects

the change within 12s (this could have been as long as 30s)

and allocates more GPUs. It deallocates GPUs (this time with

a roughly 10s lag) at the 644s mark when demand subsides.

Nexus violates the latency SLOs on 0.27% of requests on

average. The sporadic high bad rate (>1%) is mainly due to

scheduling reconfiguration triggered by workload changes.

These results illustrate that Nexus responds well to
variable workloads at large scale and is able to allocate
close to the aggressive theoretical lower bound.

7.5 Sensitivity analysis of Nexus features

We now present micro-benchmarks to analyze the main com-

ponents of Nexus. Overall, we find that Nexus’s core tech-

niques are quite robust to variations in key design parame-

ters.

GPU Multiplexing. The Nexus runtime (Section 6.3) fo-

cuses on minimizing interference on GPU between execut-

ing models (by avoiding interleaving during their execution),

and idling while switching between models (by overlapping

pre/post-processing on CPU with model execution on the
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Figure 13: A 1000 sec window from our large-scale deploy-
ment.
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Figure 14: Impact on throughput of varying numbers of
models served (a) and latency SLOs (b) underGPUmultiplex-
ing.

GPU, and not waiting for fixed target batch sizes to fill up

before dispatch to the GPU).

Figure 14 analyzes the importance of these features by

comparing the throughput of Nexus with those of Clipper,

TF Serving, and a version of Nexus ("Nexus-parallel") that

issues models in parallel and does not control interference.

This experiment runs increasing numbers of copies of the In-

ception model with a latency SLO of 100ms. Throughputs of

all four models suffer, TF Serving less than Clipper because

it runs models in a round-robin fashion whereas Clipper de-

ploys them in independent containers that interfere. Nexus

achieves 1.4–2.1× throughput compared to TF serving, and

1.9–9.8× throughput compared to Clipper on a single GPU.

Nexus-parallel fares better because it avoids idling (but still

suffers from interference), and Nexus fares the best. We see

similar trends across other models. Figure 14(b) compares

the throughput while varying the latency SLO from 50ms

to 200ms, with the number of models fixed at 3. When la-

tency SLO becomes higher, the greater scheduling slack gives

Nexus-parallel higher throughput.

Prefix Batching. Figure 15 examines how the throughput

and memory benefits of prefix batching scale as the num-

ber of variants of Resnet50 that differ only in the last layer

increases, on a single GPU. Figure 15(a), compares prefix
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Figure 15: Impact on throughput (a) and memory use (b) of
varying numbers of batched models under prefix batching.

batching to unbatched execution of the variants. Without

prefix batching, the variants have to execute on smaller

"sub-batches" to satisfy their SLOs, yielding worse aggregate

throughput. With prefix batching, since many models can

execute in one batch, the sub-batches can be aggregated into

large batches that maintain up to 110% higher throughput.

Similarly, when the (unshared) model suffixes are small

("1 FC", indicating one "fully connected" unshared layer, in

Figure 15(b)), additional model variants use negligible extra

GPU memory. As the number of unshared layers increase ("2

FC" and "3 FC" add two and three fully connected layers to

the shared prefix), the memory benefits fall. Without prefix

batching (black line), however, we quickly run out of GPU

memory even if a model has only one unshared layer.

Squishy Scheduling. We now examine the sensitivity of

squishy scheduling to model types, request rates, and SLOs.

We compare the throughput of Nexus with squishy schedul-

ing to a baseline version of Nexus that uses batch-oblivious

scheduling instead. Both need to allocate 16 sessions on 8

GPUs under 5 scenarios: (a) Inception or (b) ResNet models

with mixed SLOs ranging from 50ms to 200ms, (c) Inception

or (d) ResNet models with mixed request rates following

Zipf-0.9 distribution, (e) 8 different model architectures, each

associated with two SLOs, 50ms and 100ms. Figure 16 depicts

the relative throughput of standard Nexus with regard to

baseline. Nexus outperforms baseline across all mixes, with

the highest gains (up to 64%) coming from handling varying

request rates, and the lowest (11%) coming from handling

varying request mixes.

Complex Query Analysis. To evaluate the performance

gain of the query analyzer, we compare the throughput of

Nexus with and without the query analyzer. The baseline

simply splits the latency SLO evenly across the various stages

in the query. The query includes two stages: (a) the first stage

executes SSD, and then (b) invokes Inception model for γ
times. The experiment is performed on 8 GPUs. We vary the

latency SLO from 300ms to 500ms and choose γ to be 0.1, 1,

and 10. Figure 17 shows that Nexus with the query analyzer

achieves 13–55% higher throughput than the baseline.
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Figure 16: Impact on throughput of varyingmodel- and SLO-
mixes under squishy scheduling.

300ms 400ms 500ms
γ = 0.1 γ = 1 γ = 10 γ = 0.1 γ = 1 γ = 10 γ = 0.1 γ = 1 γ = 10

Query latency SLO

0

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

Baseline Nexus

Figure 17: Impact on throughput of varying query latency
SLO and γ (see Section 4.2) under complex query analysis.

8 Conclusion
We present a scalable and efficient system design for serving

Deep Neural Network (DNN) applications. Instead of serving

the entire application in an opaque CPU-based container

with models embedded in it, which leads to sub-optimal

GPU utilization, our system operates directly on models and

GPUs. This design enables several optimizations in batching

and allows more efficient resource allocation. Our system is

fully implemented, in C++, and evaluation shows that Nexus

can achieve 1.8-12.7× more throughput relative to state-of-

the-art baselines while staying within latency constraints

(achieving a “good rate”) over 99% of the time.
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A Hardness of Fixed-rate GPU Scheduling Prob-
lem (FGSP)

We now justify the use of an approximate algorithm for GPU

cluster scheduling. We define the Fixed-rate GPU Schedul-
ing Problem (FGSP), which is a highly restricted version of

the general problem, and we show that even the restricted

version is intractable.

FGSP:
Input - models Mi , 1 ≤ i ≤ n with corresponding latencies

Li , latency bounds Bi and GPU count C . (The latencies cor-
respond to the fixed rates.)

Output - Partition of the models into C sets so that in each

set S we have D + Li ≤ Bi ,∀i ∈ S where D =
∑

i ∈S Li is the
duty cycle for the set.

We show that FGSP is strongly NP-hard by reduction from

3-PARTITION [10].

Theorem 1. FGSP is strongly NP-complete.

Proof. We start with a given instance of 3-PARTITIONwhich

consists of a bound B and 3n B
4
≤ a1,a2 . . . ,a3n ≤

B
2
; the

goal of 3-PARTITION is to partition the ai s into triples such

that the sum of each triple is B. Observe that wlog we may

assume that

∑
1≤i≤3n ai = nB.

From the given instance of 3-PARTITION we create an

instance of FGSP by setting Li = 2B + ai ,Bi = 9B + ai ,∀1 ≤
i ≤ 3n, C = n.

It is clear that if there exists a solution to the 3-PARTITION

instance then the same partition into n triples yields a parti-

tion of the FGSP instance into C = n sets so that D + Li ≤
9B +ai since D = 7B and Li = 2B +ai . In the other direction

suppose there exists a solution to FGSP. Observe that in any

solution to FGSP every set can have at most 3 models be-

cause otherwise the duty cycle D would exceed 8B and then

the constraint D + Li ≤ Bi would be violated for any i in the

set, since D + Li > 10B but Bi < 10B. Since there are a total
of 3n models and C = n sets every set must have exactly

3 models, i.e. every set must be a triple. Since D + Li ≤ Bi
for any i in the set, we have that D + 2B + ai ≤ 9B + ai or
D ≤ 7B. But this implies that in every triple the sum of the

Lis is at most 7B or the sum of the corresponding ais is at
most B. But since the sum of all the n triples is nB and each

triple is at most B it must be that the sum of each triple is

exactly B. This means that the partition of models of the

FGSP instance into sets is also a solution for the partition of

the corresponding ai into triples in 3-PARTITION.

□
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