
71

Generalized Evidence Passing for Effect Handlers

Efficient Compilation of Effect Handlers to C

NINGNING XIE, University of Hong Kong, China

DAAN LEIJEN,Microsoft Research, USA

This paper studies compilation techniques for algebraic effect handlers. In particular, we present a sequence

of refinements of algebraic effects, going via multi-prompt delimited control, generalized evidence passing,

yield bubbling, and finally a monadic translation into plain lambda calculus which can be compiled efficiently

to many target platforms. Along the way we explore various interesting points in the design space. We

provide two implementations of our techniques, one as a library in Haskell, and one as a C backend for

the Koka programming language. We show that our techniques are effective, by comparing against three

other best-in-class implementations of effect handlers: multi-core OCaml, the Ev.Eff Haskell library, and

the libhandler C library. We hope this work can serve as a basis for future designs and implementations of

algebraic effects.

CCS Concepts: • Software and its engineering → Control structures; Polymorphism; • Theory of

computation→ Type theory.

Additional Key Words and Phrases: Algebraic Effects, Handlers, Evidence Passing

ACM Reference Format:

Ningning Xie and Daan Leijen. 2021. Generalized Evidence Passing for Effect Handlers: Efficient Compilation

of Effect Handlers to C. Proc. ACM Program. Lang. 5, ICFP, Article 71 (August 2021), 30 pages. https://doi.org/

10.1145/3473576

1 INTRODUCTION

Algebraic effects and handlers [Plotkin and Power 2003; Plotkin and Pretnar 2013] provide a
powerful and flexible way to add structured control-flow abstraction to programming languages.
Unfortunately, it is not straightforward to compile effect handlers into efficient code: effect opera-
tions are generally able to capture- and resume a delimited continuation, which usually requires
special runtime support to do efficiently. For example, the effect handler implementation in multi-
core OCaml [Dolan et al. 2017; Sivaramakrishnan et al. 2021] relies on a runtime system that
uses segmented stacks which can be captured efficiently [Farvardin and Reppy 2020]. Then, a
natural question that arises is whether it is possible to compile effect handlers efficiently where the
target platform does not directly support delimited continuations, for example, when compiling to
C/LLVM, WASM [Haas et al. 2017], JavaScript, Java VM, .NET, etc.
In this paper we give a formalized translation and evaluation semantics from a typed effect

handler calculus into a plain typed lambda calculus as a sequence of refinements:

(1) First we show how effect handler semantics can be expressed using standard multi-prompt

delimited control semantics [Forster et al. 2019; Gunter et al. 1995] (Section 2.4).

Authors’ addresses: Ningning Xie, University of Hong Kong, China, xnning@hku.hk; Daan Leijen, Microsoft Research, USA,

daan@microsoft.com.

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/8-ART71

https://doi.org/10.1145/3473576

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3473576
https://doi.org/10.1145/3473576
https://doi.org/10.1145/3473576


71:2 Ninging Xie and Daan Leijen

(2) We refine this semantics further to evidence passing semantics (EPS) where the evidence for
a handler prompt in the evaluation context is pushed down to each effect operation as an
evidence vector (Section 2.5 and 3.1). This makes performing an operation a local transition
that no longer needs to search through the evaluation context (Section 2.6 and 3.2).

(3) Next we also localize yielding to a handler prompt by bubbling each yield through the
evaluation context instead of capturing in one step (Section 2.7 and 4.1). This closely follows
the effect handler semantics as given by Pretnar [2015].

(4) With all evaluation transitions localized, we can now define a direct monadic translation of
effect handlers into a plain typed lambda calculus using a multi-prompt monad (Section 2.9,
2.11, and 4). Such program can be directly compiled to any target platform (including C/LLVM,
WASM, JavaScript, Java VM, .NET, etc) without requiring special runtime mechanisms.

Aside from the novel evidence passing semantics, many parts of the refinements are known
compilation techniques for effect handlers ś but we believe we are the first to formalize each
within a single polymorphically typed framework (combined with evidence passing semantics).
Specifically, we make the following contributions:

• We formalize each refinement and translation, and show they are sound and semantics
preserving (Section 3 and 4). Along the way, we explore various interesting points in the
design space:

ś The use of segmented stacks for implementing effect handlers in a direct way (as used by
multi-core OCaml [Sivaramakrishnan et al. 2021]) versus translation into a multi-prompt
monad (Section 2.4): segmented stacks need a dedicated runtime system but can capture
and resume an operation in constant time (for one-shot resumptions), while a multi-prompt
monad is linear in the continuation points.

ś Using insertion- versus canonical ordered evidence vectors (Section 2.5): the former is
efficient to construct but needs a linear lookup for each operation, while a canonical vector
is more expensive to construct upfront but can use constant time lookup for operations.

ś Using short-cut resumptions to minimize the stack usage of a resumption while increasing
sharing of continuation points (Section 2.8); a similar technique is used in [Kiselyov and
Ishii 2015] to compose monadic binds in an effect monad.

ś Using bind-inlining and join-point sharing for improved efficiency when translating into
the multi-prompt monad (Section 2.10).

• Our evidence passing semantics (EPS) is a generalization of the work on evidence passing
translation (EPT) [Xie et al. 2020]. In particular, EPT can only express a subset of full effect
handlers that are restricted to scoped resumptions only, whereas EPS lifts the restriction and
can fully express effect handlers (Section 2.12 and 3.1).
• We give the first formal account of optimized tail-resumptive operation semantics and show
how this can evaluate an operation in-place and avoid performing an expensive yield-and-
resume cycle in the majority of effect operations (Section 2.6 and 3.2). The tail-resumptive
optimization is surprisingly subtle to get correct ś in particular in combination with unscoped

resumptions which we illustrate in Section 2.12.2. We prove the correctness of the tail-
resumptive optimization by showing that an optimized program is contextually equivalent
to the original one.
• Wehave implemented our techniques as amonadic library for effect handlers in Haskell, called
Mp.Eff (for łmulti-prompt effectž) [Xie and Leijen 2021b], generalizing the Ev.Eff library
based on EPT [Xie and Leijen 2020]. Our implementation is based on insertion-ordered
evidence vectors.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:3

• We have also implemented our techniques in the Koka programming language [Leijen 2020]
compiling to standard C code (Section 2.11). The implementation uses canonical evidence
vectors, short-cut resumptions, bind-inlining, and join-point sharing.
• We benchmarked the Koka implementation against four other implementations of effect
handlers that compile to native code: the current state-of-the-art direct implementation
of effect handlers in multi-core OCaml which uses a dedicated runtime system based on
segmented stacks; our Mp.Eff Haskell library; the Ev.Eff Haskell library which has been
shown by Xie and Leijen [2020] to perform very well compared to other Haskell effect
handler libraries [Schrijvers et al. 2019; Wu and Schrijvers 2015; Wu et al. 2014]; and finally
the libhandler C library which implements effect handlers directly in C by copying fragments
of the stack [Leijen 2017a]. Comparing across systems and languages is always tricky but the
results clearly indicate that our approach can have competitive performance (Section 5).

The metatheory proofs are available in the technical report [Xie and Leijen 2021a], and the Mp.Eff

Haskell library and benchmarks are available online [Leijen 2021; Xie and Leijen 2021b].

2 OVERVIEW

We start with a short discussion and examples of basic effect handlers and follow with an overview
of each of our semantic refinements and translation techniques. We refer to other work [Hillerström
and Lindley 2016; Leijen 2017b; Pretnar 2015] for further examples of effect handlers.

2.1 Algebraic Effects

With algebraic effect handlers, an effect l defines a set of operations op. For example, we can have a
reader effect with an ask operation

read { ask : () → int }

and we can perform the ask operation writing perform ask (). A handler (handler h v) takes a list
of operation clauses in h, and a computation v to be handled. Each operation clause in h takes
the form op ↦→ f , providing the implementation f for the operation op from the handled effect
where the implementation f is of form 𝜆x . 𝜆k. e: x binds the operation argument, and k binds the
captured resumption that can be used to resume to the original call-site with the operation result.
For example, we can handle the reader effect by always resuming with the constant 1:

hread = { ask ↦→ 𝜆x . 𝜆k. k 1 }

where the expression handler hread (𝜆_. perform ask () + perform ask ()) evaluates to 2. The fol-
lowing evaluation rules give the essence of the untyped semantics for algebraic effect handlers [Xie
and Leijen 2020]:

(app) (𝜆x . e) v −→ e[x:=v]
(handler) handler h f −→ handle h (f ())

(return) handle h v −→ v

(perform) handle h E[perform op v] −→ f v (𝜆x . handle h E[x])

iff op ̸∈ bop(E) ∧ (op ↦→ f ) ∈ h

Rule (app) is standard 𝛽-reduction and applies a function to a value v by substituting x for the
argument v in the function body. The (handler) takes a computation f , and applies the computation
to a unit value under a new frame handle h. The computation to be handled (f ) is always a unit-
taking function as in [Xie et al. 2020], which essentially corresponds to a suspended computation as
in the call-by-push-value approach [Levy 2006] used in several algebraic effect systems [Kammar
and Pretnar 2017; Plotkin and Pretnar 2013].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:4 Ninging Xie and Daan Leijen

The handle frame is only generated by handler, and treated as a strictly internal frame. When
handling a computation under a handle h frame, there are two possible situations. In the first
case, the computation evaluates to a value and the (return) transition discards the handle h frame
and propagates the value. The second case captures the essence of algebraic effects handlers
where an operation is handled. In rule (perform), perform op v calls an effect operation op by
providing the operation argument v. The handle h frame handles the operation by applying the
operation implementation f to the operation argument v, and the resumption (𝜆x . handle h E[x]).
The resumption captures the original handle, as well as the whole evaluation context E between
handle and the operation call.

An evaluation context E is essentially an expression with a hole (□) in it, and the notation E[e]

represents the expression obtained by plugging e into the hole of E (e.g., (f (g □)) [x] = f (g x)).
In this rule, the condition op ̸∈ bop(E) indicates that op is not in the bound operations of E, i.e. not
handled by any handle frames in E, ensuring that h is always the innermost handle frame for the
effect that handles the operation.

2.2 Examples

Here we consider some standard examples of algebraic effects, and we refer the reader to other work
for more examples as well as practical uses of effect handlers [Bauer and Pretnar 2015; Hillerström
and Lindley 2016; Kammar et al. 2013; Leijen 2017b; Pretnar 2015; Xie et al. 2020]. In the examples,
we use x ← e1; e2 as a shorthand for (𝜆x . e2) e1, and use e1; e2 for (𝜆_. e2) e1, where 𝜆_ denotes a
lambda whose binding is not used in the body.

Exceptions. The following definition defines an effect exn with one operation throw.

exn { throw : ∀𝛼. () → 𝛼 }

Given a datatype Maybe with two constructors Just and Nothing, we can define a handler for
exceptions that reifies any exceptional computation with aMaybe result to return Nothing on an
exception:

hexn = { throw ↦→ 𝜆x . 𝜆k. Nothing }

For example, suppose we define safe division as:

safediv = 𝜆x y. if (y == 0) then perform throw () else x/y

then we have

handler hexn (𝜆_. Just (safediv 42 2)) handler hexn (𝜆_. Just (safediv 42 0))
↦−→∗ handle hexn (Just (42/2)) ↦−→∗ handle hexn (Just (perform throw ()))

↦−→ handle hexn (Just 21) ↦−→ (𝜆x . 𝜆k. Nothing) () (𝜆x . handle hexn (Just x))

↦−→ Just 21 ↦−→∗ Nothing

We use the notation ↦−→ to allow expressions to take steps (−→) inside evaluation contexts, where
↦−→∗ is the transitive reflexive closure of ↦−→, and ↦−→+ is the transitive closure of ↦−→.

Reader. In the previous example we did not make use of the operation argument (x) or the
resumption (k). Let’s consider this time the evaluation of our first example with the reader effect:

handler hread (𝜆_. perform ask () + perform ask ())

↦−→∗ handle hread (perform ask () + perform ask ())

↦−→ (𝜆x . 𝜆k. k 1) () (𝜆x . handle hread (x + perform ask ()))

↦−→∗ (𝜆x . handle hread (x + perform ask ())) 1

↦−→ handle hread (1 + perform ask ()) ↦−→∗ (𝜆x . handle hread (1 + x)) 1 ↦−→∗ 2

where both ask operations resume back to the original calling context with a result.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:5

State. We can define a state handler using the monadic encoding [Kammar and Pretnar 2017],
where performing an operation returns a function that takes in the current state.

st { get : () → 𝛼, hst = {get ↦→ 𝜆x . 𝜆k. (𝜆y. k y y),

set : 𝛼 → () } set ↦→ 𝜆x . 𝜆k. (𝜆y. k () x) }

The following program starts with an initial state 0.

(handler hst (𝜆_. perform set 21; w← perform get (); (𝜆z. w + w) )) 0
↦−→ (handle hst (perform set 21; w← perform get (); (𝜆z. w + w) )) 0

In the following derivation, we make use of the dot notation [Xie and Leijen 2020]. Specifically, the
notation E1 • E2 composes two evaluation contexts by plugging E2 into the hole of E1, resulting
in a new evaluation context. The (•) notation is right-associative and has the lowest precedence,
so we often write E1 • E2 instead of (E1) • E2. The notation E • e has the same meaning as
E[e], which plugs e into the hole of E, resulting in a new expression. Using the dot notation, the
evaluation order of expressions becomes more apparent, and it is now easier to discuss one specific
frame in the chain of evaluation contexts. We start by rewriting the last expression using the dot
notation as:

= □ 0 • handle hst □ • (□; w← perform get (); (𝜆z. w + w)) • perform set 21

For conciseness, we also often omit a trailing □ in an application context e □ • E and write instead
e • E; this is usually the case for handle expressions:

= □ 0 • handle hst • (□; w← perform get (); (𝜆z. w + w)) • perform set 21

Writing contexts this way, it shows more clearly the stack of evaluation frames with the expression
under evaluation at the end. We can now continue evaluating as:

↦−→∗ □ 0 • (𝜆y. k () 21) with k = 𝜆x .handle hst • (□; w←perform get (); (𝜆z.w + w)) • x
= (𝜆y. k () 21) 0 ↦−→ k () 21
↦−→ □ 21 • handle hst • (□; w← perform get (); (𝜆z. w + w)) • ()

= □ 21 • handle hst • (() ; w← perform get () ; (𝜆z. w + w))

↦−→ □ 21 • handle hst • (w← □; (𝜆z. w + w)) • perform get () ↦−→∗ 42

While this is a nice example of the expressiveness of effect handlers, it is clearly not the most
efficient way to express mutable state. In practice, state can be implemented more efficiently using
parameterized handlers [Plotkin and Pretnar 2009] or a primitive state handler [Xie and Leijen 2020].
Moreover, using the more efficient implementations allow state handlers to be tail-resumptive

(Section 2.6).

Non-determinism. By having the resumption k available when handling, we can actually resume
more than once. In the handler of amb, we implement non-determinism by collecting all possible
results in a list by resuming the resumption twice, each time with one boolean result.

amb { flip : () → bool } handler hamb (𝜆_. x ← perform flip ();

hamb
= { flip ↦→ 𝜆_ k. xs← k True; y← perform flip ();

ys← k False; [x && y])

xs ++ ys } ↦−→∗ [True, False, False, False]

2.3 Compiling Effect Handlers

As the examples show, algebraic effect handlers can be very expressive. Unfortunately, their
expressive power also makes it not easy to compile them efficiently. The main culprit is the
(perform) rule:

handle h E[perform op v] −→ f v (𝜆x . handle h E[x]) iff op ̸∈ bop(E) ∧ (op ↦→ f ) ∈ h

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:6 Ninging Xie and Daan Leijen

This single rule combines two potentially expensive runtime operations:

(1) Searching: The innermost handler for op must be found which usually requires a linear search
through the current handlers in the evaluation context (i.e. search up through the stack
frames).

(2) Capturing: After finding the handler clause f , we need to capture the evaluation con-
text (i.e. stack and registers) up to the found handler, and create a resumption function
(𝜆x . handle h E[x]) which restores the captured context when invoked with a result. An
added complication is that in the general case such resumption may never be called (as in
hexn), or invoked more than once (as in hamb), which can present difficulties in the runtime
(for scanning GC roots for example).

Capturing and restoring resumptions can be done relatively efficiently if the target runtime system
implements segmented stacks [Farvardin and Reppy 2020] ś this is used in multi-core OCaml
[Dolan et al. 2015] for example, where segmented stacks split the stack at each handler so that
a one-shot resumption can be implemented efficiently by switching back to a previous stack
segment [Sivaramakrishnan et al. 2021]). However, many target platforms do not support directly
capturing parts of the stack at all, like compilation to C (as in Koka), WASM, .NET, the Java VM,
JavaScript, etc, and in these cases it is not even possible to implement (perform) in any direct way.

In this paper we address these compilation and runtime challenges by presenting various refine-
ments of the operational semantics in combination with source translations. Each of these steps
enables further optimizations and implementations, and we explore various interesting points in
the design space along the way.

2.4 Multi-Prompt Semantics

As a first step, we are going to split the (perform) operation into two parts where we separate
the searching for a handler from capturing and restoring a resumption. To capture and restore
a resumption we are going to use standard (typed) multi-prompt delimited control [Gunter et
al. 1995]: instead of a handle h frame, we install a prompt m h frame that is uniquely identified
with a marker m, and performing an operation will use a yield m f frame to yield to such prompt.

As an example, consider again the reader effect handler hread = {ask ↦→ f } with f = 𝜆x .𝜆k. k 1,
where we have the following evaluation (rewritten using the dot notation):

handler hread (𝜆_. perform ask () + perform ask ())

↦−→∗ handle hread • (□ + perform ask ()) • perform ask ()

↦−→ f () (𝜆x . handle hread • (□ + perform ask ()) • x)

. . .

When using multi-prompt semantics, the first transition now installs a prompt m hread frame instead
of a handle frame, where m is a unique marker identifying the prompt:

handler hread (𝜆_. perform ask () + perform ask ())

↦−→∗ prompt m hread (perform ask + perform ask ())

= prompt m hread • (□ + perform ask ()) • perform ask ()

The next transition shows how we separate searching from capturing ś perform ask () now only
finds the handler clause f but defers yielding to the prompt by using an explicit yield frame:

↦−→ prompt m hread • (□ + perform ask ()) • yield m (𝜆k. f () k)

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:7

The yield m g has two arguments: the marker m that uniquely identifies the prompt to yield to,
and a function g that is applied to the resumption when reaching the prompt. Through the marker
m, we can yield directly to the corresponding prompt which captures and applies the resumption:

↦−→ (𝜆k. f () k) (𝜆x . prompt m hread • (□ + perform ask ()) • x)

↦−→ f () (𝜆x . prompt m hread • (□ + perform ask ()) • x)

. . .

This separation of concerns does not immediately buy us much but, as we will see, it opens up the
way for optimizing each part individually by (1) using evidence passing semantics to avoid searching,
and (2) using a monadic translation to enable capturing without requiring a special runtime system.
Moreover, multi-prompt delimited control is one of the lowest level control operations that can be
typed in the simply typed lambda calculus.

If one controls the target platform, it is possible to efficiently implement multi-prompt delimited
control directly. This is done for example in multi-core OCaml using segmented stacks: here the
call stack is split in segments where each prompt frame starts a fresh segment. The marker m
can be implemented directly as the runtime pointer to that frame. Yielding up to a parent stack
segment is now a constant time operation as only the stack segment pointer needs to be adjusted.
Resuming once can also be done in constant time this way, but supporting multi-shot resumptions
still requires a linear copy of the resumption stack segments (and one of the reasons why multi-shot
resumptions are not directly supported in multi-core OCaml).

2.5 Evidence Passing Semantics

The (perform) operation is still a non-local transition as it searches through the evaluation context
to find the innermost handler. We can make it local using evidence passing semantics, where we
pass the current handlers in the evaluation context explicitly as an extra evidence vector w down to
the perform operations. Instead of searching through the context, we can now look up the handler
locally. Essentially, if the current evidence vector is w, then the (perform) rule becomes:

perform op v −→ yield m (𝜆k. f v k) where (m, h) = w.l ∧ (op ↦→ f ) ∈ h

The expression w.l directly looks up the marker and handler (called evidence) for effect l from the

evidence vector w. We apply the idea to our example, where we use the ︷︸︸︷ notation to indicate
the current evidence vector and we sometimes omit the notation when it is irrelevant or obvious
from the context. Evaluation always starts with an empty evidence vector ⟨⟨⟩⟩:

⟨⟨⟩⟩
︷                                                                                                         ︸︸                                                                                                         ︷

handler hread (𝜆_. perform ask () + perform ask ())

which evaluates into:

↦−→∗

⟨⟨⟩⟩
︷                         ︸︸                         ︷

prompt m hread •

w = ⟨⟨read : (m,hread ) ⟩⟩
︷                                                                              ︸︸                                                                              ︷

(□ + perform ask ()) • perform ask ()

where the prompt frame modifies the evidence for rest of the evaluation context. At this point
perform evaluates under an evidence vector ⟨⟨read : (m, hread)⟩⟩, and we get:

↦−→ prompt m hread • (□ + perform ask ()) • yield m (𝜆k.f () k) where (m, hread) = w.read

↦−→ (𝜆k. f () k) (𝜆x . prompt m hread • (□ + perform ask ()) • x)

↦−→ f () (𝜆x . prompt m hread • (□ + perform ask ()) • x)

. . .

Using evidence passing semantics makes the (perform) transition localized which can potentially be
more efficient than searching through the evaluation context. When we treat the evidence vector as
an abstract datatype there are two interesting variants depending on how the vectors are ordered:

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:8 Ninging Xie and Daan Leijen

(1) Insertion order : Insert handler evidence in the order of the actual handlers in the evaluation
context. This is straightforward and also the approach we take in the associated Haskell
library. However, it means that the lookup operation w.l still needs to search linearly through
the vector for the łinnermostž handler. One way to implement such vector is as a linked
list where each handler pushes itself on the list. Since evidence vectors are not first-class
values, we can actually allocate this list on the evaluation stack directly and as such it
becomes a linked list of handlers at runtime ś this is exactly how various languages (e.g.
C++ compilers used to do this) and systems (e.g. Windows structured exception handling)
implement exception handlers where thew parameter is a pointer to the head of the exception
handler list.

(2) Canonical order : Use a lexicographic order of the handler evidence based on their effect label.
This requires a strongly typed calculus but it means that if the effect type is fully known
at compile time, we can statically determine the index for a particular effect in the runtime
evidence vector. For example, in systems that keep track of the effect type of expressions
using row types [Hillerström and Lindley 2016; Leijen 2017b], the effect type of our example
perform ask () is the singleton effect row ⟨read⟩, and we know statically that the dynamic
runtime evidence vector will have the form ⟨⟨read : _⟩⟩. We can thus replace the linear runtime
lookup w.read with a constant-time array access w [0] instead. This is the approach used in
the Koka compiler.

2.6 Tail-Resumptive Operations

With evidence semantics in place, the only expensive operation left is yielding and capturing a
resumption. Fortunately, we can often avoid doing a full yield: almost all common operations in
practice happen to be tail resumptive where the operation clause has the form:

op ↦→ 𝜆x . 𝜆k. k e where k ̸∈ fv(e)

For example, the ask operation in our hread handler is of this form2. It turns out we can perform
such operations in place: instead of yielding up and eventually resuming with the final result, we
can directly evaluate e on the current stack without doing an expensive yield followed by a resume.
To this end, we extend each evidence in the evidence vector to store a triple (m, h,w) (instead of a
tuple (m, h)), where the third component w is the evidence context: this is the evidence vector under
which the handler h is defined and is used for the evaluated-in-place expression. We illustrate the
use of this in our running example:

⟨⟨⟩⟩
︷                                                                                                         ︸︸                                                                                                         ︷

handler hread (𝜆_. perform ask () + perform ask ())

↦−→∗

⟨⟨⟩⟩
︷                          ︸︸                          ︷

prompt m hread •

⟨⟨read : (m,hread , ⟨⟨⟩⟩) ⟩⟩
︷                                                                              ︸︸                                                                              ︷

(□ + perform ask ()) • perform ask ()

2While hstate is not tail-resumptive here, implementations of state in practice are usually based on parameterized han-

dlers [Plotkin and Pretnar 2009] or primitive state [Xie and Leijen 2020], both of which are tail-resumptive. The hexn and

hamb handlers are not tail-resumptive because of their special nature (aborting the computation and non-determinism,

respectively). Furthermore, in practice we can also allow any clause that can be rewritten into the tail-resumptive form ś

for example 𝜆x k. if x == 0 then k 1 else k 2 which can be transformed to 𝜆x k. k (if x == 0 then 1 else 2) .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:9

Here, the evidence vector for perform is ⟨⟨read : (m, hread, ⟨⟨⟩⟩)⟩⟩ and we can locally find the operation
clause ask→ 𝜆x k. k 1 ∈ hread and determine that it is tail-resumptive. Instead of generating yield
as before, we instead evaluate e (as in 𝜆x . 𝜆k. k e, with e being 1 in this case) in-place:

↦−→ prompt m hread • (□ + perform ask ()) • under read • 1

↦−→ prompt m hread • (□ + perform ask ()) • 1

↦−→ prompt m hread (1 + perform ask ())

. . .

The operation clause is now evaluated in-place ś but note it needs to be evaluated under an under l

frame. Such frame ensures that if the operation clause e itself performs operations, these are
resolved correctly with respect to the actual handler up in the evaluation context. Consider for
example the following reader handler:

h2 = { ask ↦→ 𝜆x .𝜆k. k (perform ask () + 1) }

Here the operation clause is tail-resumptive, and itself performs an ask operation. Now consider:

handler hread (𝜆_. handler h2 (𝜆_. perform ask()))

↦−→∗

⟨⟨⟩⟩
︷                           ︸︸                           ︷

prompt m1 h
read •

w1 = ⟨⟨read : (m1,h
read , ⟨⟨⟩⟩) ⟩⟩

︷                      ︸︸                      ︷

prompt m2 h2 •

w2 = ⟨⟨read : (m2,h2,w1), read : (m1,h
read , ⟨⟨⟩⟩) ⟩⟩

︷                        ︸︸                        ︷

perform ask ()

At this point, the evidence vector at the second prompt is w1 = ⟨⟨read : (m1, h
read, ⟨⟨⟩⟩)⟩⟩, but the ev-

idence vector at the perform contains two entries: w2 = ⟨⟨read : (m2, h2,w1), read : (m1, h
read, ⟨⟨⟩⟩)⟩⟩.

Here we see how the third member of the evidence always points to the łpreviousž evidence vector
(e.g., w1) under which a particular hander (e.g., h2) is defined. If using insertion-ordered evidence
vectors as a linked list, this is always just the tail of the list, but for canonical evidence vectors the
previous vector must be kept explicitly. Since the operation clause is tail-resumptive, we get:

↦−→

⟨⟨⟩⟩
︷                           ︸︸                           ︷

prompt m1 h
read •

w1
︷                      ︸︸                      ︷

prompt m2 h2 •

w2
︷               ︸︸               ︷

under read •

w1
︷                                  ︸︸                                  ︷

perform ask () + 1

= prompt m1 h
read • prompt m2 h2 • under read • (□ + 1) • perform ask ()

The evidence vector for the perform ask () + 1 is now w1 and not the unchanged w2. Indeed, it
would be incorrect to use w2 or otherwise we would invoke the operation clause of h2 again!
The under read frame prevents this from happening and adjusts the evidence vector to the one
under which the read handler is itself defined: this is exactly the third component of the evidence,
w2 .read .thd, which is w1 in our example. We now continue as:

↦−→

⟨⟨⟩⟩
︷                           ︸︸                           ︷

prompt m1 h
read •

w1
︷                      ︸︸                      ︷

prompt m2 h2 •

w2
︷               ︸︸               ︷

under read •

w1
︷                                        ︸︸                                        ︷

(□ + 1) • under read •

⟨⟨⟩⟩
︷︸︸︷

1

↦−→ prompt m1 h
read • prompt m2 h2 • under read • (□ + 1) • 1

↦−→ prompt m1 h
read • prompt m2 h2 • under read • 2 ↦−→∗ 2

Note that the second under read frame adjusts the evidence further to ⟨⟨⟩⟩ (which is w1.read .thd).
The correct formalization of under is subtle, and we will come back to this in Section 2.12.

2.7 Bubbling Yields

Using evidence semantics, perform is a local transition which only leaves yields as a non-local
transition for non-tail-resumptive operations. We can further make yield m local by bubbling it
up until it meets its corresponding prompt m frame in the evaluation context. That is, instead
of capturing the delimited evaluation context E wholesale, we are going to build a resumption
function piecemeal while bubbling up. To this end, we extend yield m v with an extra argument as
yield m v k where k is the current partially built up continuation (starting out as identity).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:10 Ninging Xie and Daan Leijen

Consider our earlier exception effect in Section 2.2 where:

handler hexn (𝜆_. safediv 42 0)
↦−→∗ handle hexn • Just □ • perform throw ()

↦−→ (𝜆x k. Nothing) () (𝜆x . handle hexn (Just x))

When using yield bubbling we evaluate instead as (writing f for 𝜆x k. Nothing):

handler hexn (𝜆_. safediv 42 0)
↦−→∗ prompt m hexn • Just □ • perform throw ()

↦−→ prompt m hexn • Just □ • yield m (𝜆k. f () k) id

At this point, the yield does a local transition and bubbles up only one step through the Just

application, resulting in

↦−→ prompt m hexn • yield m (𝜆k. f () k) (Just ◦ id)

Note how the resumption function changed from the initial identity id to the composition Just ◦ id.
Generally, yields keep bubbling up this way extending their current resumption until they meet
their target prompt:

↦−→∗ f () (𝜆x . prompt m hexn ((Just ◦ id) x)) ↦−→∗ Nothing

Using bubbling removes any direct manipulation of the evaluation context E and only regular
functions are used instead. The bubbling technique for implementing delimited continuations is
well known [Felleisen et al. 1986; Parigot 1992] and used for example to give direct semantics to
effect handlers [Kiselyov and Sivaramakrishnan 2017; Pretnar 2015].

2.8 Short-cut Resumptions

When bubbling up, a resumption is built up as a composition of continuations, f1 ◦ . . . ◦ fn ◦ id, and
when resuming it is applied as (f1 ◦ . . . ◦ fn ◦ id) x which will recreate all f1 to fn application frames
on the evaluation stack which can be expensive. Instead, in an implementation we can represent
the composition as a list [f1, . . ., fn], and resume instead as resume [f1, . . ., fn] x where resume folds
through the list from the end:

resume [] x = x resume (fs ++ [f ]) x = resume fs (f x)

This can be done efficiently by using a queue or array representation (as done in Koka) and also
uses minimal stack space by evaluating just one f continuation at a time. Moreover, any further

yields in a frame fi will bubble up directly through the current resume and thus capture all f1 to fi−1
continuations in one go (and will itself share those continuations through the various yields). We
call these short-cut resumptions as these can be resumed by immediately starting at the deepest
continuation point. This uses minimal stack space while increasing the use of shared continuations.

Note that while bubbling upwe can also encounter prompt and under frames besides regular appli-
cations; for example, the final resumptionmay be of the form f1 ◦ . . . ◦ fi ◦ prompt m h ◦ fi+1 ◦ . . . ◦ fn.
When resuming, we need to ensure that such prompt and under frames are properly restored and
cannot use short-cut’s for those. Of course we can still use resume for the application fragments
surrounding the prompt/under frames, e.g. resume [f1, . . ., fi] ◦ prompt m h ◦ resume [fi+1, . . ., fn].

2.9 Monadic Translation

At this point all transitions are local and no longer capture the evaluation context explicitly. This
means we are now able to translate our core calculus into a pure lambda calculus together with
a multi-prompt delimited control monad. This is a straightforward transformation where every
(effectful) expression is sequenced through a monadic bind. Our running example:

handler hread (𝜆_. perform ask () + perform ask ())

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:11

translates to the following monadic expression:

handler hread (𝜆_. perform ask () ▷ (𝜆x . perform ask () ▷ (𝜆y. Pure (x + y))))

where we write (▷) for monadic binding, and Pure for lifting pure expressions into the monad.
Through the bind operation, the current continuation becomes explicit (as a function argument)
and can be captured and resumed using regular function application, where bind is implemented
essentially3 as:

e ▷ g = case e of Pure x → g x

Yield m f k→ Yield m f (𝜆x . k x ▷ g)

Pure values are directly propagated while a yield bubbles up (upto its matching prompt) and
appends each explicit continuation g to the built up resumption. Since all of this can be expressed
in plain typed lambda calculus, this can be directly translated to almost any target platform ś all
control flow is now fully explicit.

2.10 Bind-Inlining and Join-Point Sharing

However, if done naively there may be a high cost to this translation: since every bind operation
takes a lambda as its second argument this may lead to many closure allocations even for non-
yielding code. Moreover, any direct tail-recursive calls are no longer directly tail-recursive as they
occur under a lambda now!

To improve this we need two techniques: bind-inlining and join-point sharing. To avoid always
allocating a lambda, we can use bind-inlining to simply inline every bind operation, expanding our
example expression to:

handler hread (𝜆_. case perform ask () of

Yield m f k→ Yield m f (𝜆z. k z ▷ (𝜆x . perform ask () ▷ (𝜆y. Pure (x + y))))

Pure x → case perform ask () of Yield m f k→ Yield m f (𝜆z. k z ▷ (𝜆y. Pure (x + y)))

Pure y → Pure (x + y))

For clarity, we did not inline the bind operations in an expansion itself. Nevertheless, we can already
see that at every original bind operation, we duplicated the g argument in the expansion. This
means that if we have a sequence of N statements, we may end up with 2N duplications.

To avoid such expansion, we need to use join-point sharing: we consider every g argument as a
join point, and rewrite the initial translation to make this sharing explicit:

join1 = 𝜆x y. Pure (x + y) join2 = 𝜆x . perform ask () ▷ (𝜆y. join1 x y)

hander hread (𝜆_. perform ask () ▷ join2)

From there, we perform bind-inlining only for non-join definitions, but also aggressively inline
join-definitions for the Pure branches. This results effectively in a fully inlined fast path along the
Pure branches:
handler hread (𝜆_. case perform ask () of

Yield m f k→ Yield m f (𝜆z. k z ▷ join2)

Pure x → case perform ask () of Yield m f k→ Yield m f (𝜆z. k z ▷ join1 x)

Pure y → Pure (x + y))

Note how the join1 join point is shared by the join2 definition as well, and the code expansion for
N statements is now reduced from 2N to 2N . In practice, the Koka compiler does a type-selective
transformation and leaves out monadic binds for functions that are total (since those will never
yield) which further reduces code expansion by a large factor.

This strategy ensures that we have a fast path along each Pure branch: if no operation performs
a full yield, no allocation happens along this path and tail-recursive calls are preserved (and as

3As shown in Section 4 the actual definition also propagates the current evidence vector as part of the monad.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn definitions where the binds are not inlined ś
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C

At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our final calculus
all effectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) flag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx→w), and the yielding flag (ctx→is_yielding). For
example, the expression 𝜆_. perform ask () + perform ask () translates essentially as:

int expr( unit_t u, context_t* ctx) {

int x = perform_ask( ctx→w[0], unit, ctx );

if (ctx→is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask( ctx→w[0], unit, ctx );

if (ctx→is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx→w[0]. Here the offset 0 is known as the effect type is ⟨read⟩ and Koka uses canonical evidence
vectors. If the effect row type was not fully known, e.g., a polymorphic row type ⟨read | 𝜇⟩, the code
would instead be find_ev(ctx→w,tag_read) to find the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every effectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
flag in the processor carry flag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing

The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT differs fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic effect
calculus, EPT is defined via elaboration from the algebraic effect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic effect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only ś that is, resumptions can only
be used under the same handler context as captured by the handler.

Specifically, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
effects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a different host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:13

2.12.1 Non-Scoped Resumptions. We illustrate the problem of non-scoped resumptions using the
following evil effect as shown by Xie et al. [2020]:

evil { evil : () → () } hevil = { evil ↦→ 𝜆x k. k }

The handler hevil illustrates again the expressiveness of effect handlers: the captured resumption is
a first-class value and thus can be returned directly, and in this example we are going to resume
it later under a changed handler context. Suppose we have another reader handler that always
returns 2:

hread2 = { ask ↦→ 𝜆x k. k 2 }

Consider the following program, where f = (𝜆k. handler hread2 (𝜆_. k ())), which takes a contin-
uation and resumes it under a new handler (ignoring tail-resumptive optimization for now):

f (handler hread (𝜆_. handler hevil (𝜆_. perform ask (); perform evil (); perform ask ())))

↦−→

⟨⟨⟩⟩
︷                                      ︸︸                                      ︷

f • prompt m1 h
read •

w1 = ⟨⟨read : (m1, h
read ) ⟩⟩

︷                         ︸︸                         ︷

prompt m2 h
evil

•

w2 = ⟨⟨evil : (m2, h
evil ), read : (m1,h

read ) ⟩⟩
︷                                                                                                                 ︸︸                                                                                                                 ︷

(□ ; perform evil () ; perform ask ()) • perform ask ()

It may seem that both ask operations will return 1 as they both have read : (m1, h
read) in the evidence

vector w2 but, as we will see, that is not the case! The first ask returns 1 as expected though:

↦−→ f • prompt m1 h
read • prompt m2 h

evil • (□ ; perform evil () ; perform ask ()) • 1

However, before we can handle the second ask, the operation evil is performed, which captures the
second ask in the resumption k:

↦−→ f • prompt m1 h
read • prompt m2 h

evil • (□ ; perform ask ()) • perform evil ()

↦−→

⟨⟨⟩⟩
︷                                   ︸︸                                   ︷

f • prompt m1 h
read •

w1
︷︸︸︷

k with k = 𝜆x . prompt m2 h
evil • (□ ; perform ask ()) • x (1)

As k is a value, it is propagated through the prompt m1 frame:

↦−→ f k ↦−→ handler hread2 (𝜆_. k ())

At this point, the reader handler in the context is now changed to hread2 :

↦−→

⟨⟨⟩⟩
︷                            ︸︸                            ︷

prompt m0 h
read2 •

w3 = ⟨⟨read : (m0, h
read2 ) ⟩⟩

︷︸︸︷

k () (2)

↦−→

⟨⟨⟩⟩
︷                            ︸︸                            ︷

prompt m0 h
read2 •

w3
︷                         ︸︸                         ︷

prompt m2 h
evil •

w4 = ⟨⟨evil : (m2, h
evil ), read : (m0, h

read2 ) ⟩⟩
︷                                                ︸︸                                                ︷

(□ ; perform ask ()) • ()

and the ask operation is performed under w4 using the new hread2 and thus evaluates to 2 (and not
1)!

EPT rejects this program at runtime by detecting the non-scoped resumption k: k is captured
under w1 at (1), but is later applied under w3 at (2). In particular, in EPT, both ask operations
statically receive w2 as the evidence vector during elaboration to the evidence calculus. As such
resuming k under a changed evidence vector means the statically received evidence vector does no
longer match the dynamic handler context anymore, and is thus not allowed in their system. In
contrast, our generalized evidence passing semantics correctly models the dynamic behavior of the
evidence vector, and can express the full semantics of algebraic effect handlers.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:14 Ninging Xie and Daan Leijen

2.12.2 Non-Scoped Resumptions with Tail-Resumptive Optimization. Xie et al. [2020] also describe
the tail-resumptive optimization, and argue that tail-resumptive operations are examples of scoped
resumptions, but do not provide any formalization of the optimization.

It turns out that the tail-resumptive optimization is more challenging with generalized evidence
passing semantics, and our formalization goes beyond what is sketched in [Xie et al. 2020]. In
particular, the interaction between non-scoped resumptions and tail-resumptive operations is subtle
and the formalization of under is tricky to get right. We illustrate this by performing the previous
evil example from inside a tail-resumptive operation:

tl { tl : () → Int } htl = { tl ↦→ 𝜆x k. k (perform ask (); perform evil (); perform ask ()) }

Here we have the same sequence of operations as before, but this time these happen from inside an
operation. Note that this operation is tail-resumptive, despite all effects performed before resuming.
Now consider the following program, which performs tl under three handlers, and passes the result
to f .

f (handler hread (𝜆_. handler hevil (𝜆_. handler htl (𝜆_. perform tl () ))))

−→∗ f • prompt m1 h
read • prompt m2 h

evil • prompt m3 h
tl • perform tl ()

We evaluate tl in-place under w2, as h
tl is itself defined under w2.

−→∗

⟨⟨⟩⟩
︷                                      ︸︸                                      ︷

f • prompt m1 h
read •

w1=⟨⟨read : (m1,h
read , ⟨⟨⟩⟩) ⟩⟩

︷                         ︸︸                         ︷

prompt m2 h
evil •

w2=⟨⟨evil : (m2, h
evil ,w1),read : (m1,h

read , ⟨⟨⟩⟩) ⟩⟩
︷                      ︸︸                      ︷

prompt m3 h
tl

•

w3=⟨⟨tl : (m3, h
tl ,w2), evil : (m2, h

evil ,w1) , read : (m1,h
read , ⟨⟨⟩⟩) ⟩⟩

︷            ︸︸            ︷

under tl •

w2
︷                                                                                                         ︸︸                                                                                                         ︷

(□; perform evil (); perform ask ()) • perform ask ()

ask is also tail-resumptive and gets evaluated in-place.

−→ f • prompt m1 h
read • prompt m2 h

evil • prompt m3 h
tl

• under tl • (□ ; perform evil (); perform ask ()) • under read • 1 (3)

We then perform evil, which again captures the resumption and passes it to f .

−→∗ f • prompt m1 h
read • prompt m2 h

evil • prompt m3 h
tl

• under tl • (□; perform ask ()) • perform evil

−→∗ f k where k = 𝜆x .prompt m2 h
evil • prompt m3 h

tl • under tl • (□; perform ask ()) • x (4)

f applies k under a reader handler hread2 :

−→∗

⟨⟨⟩⟩
︷                            ︸︸                            ︷

prompt m0 h
read2 •

w4=⟨⟨read : (m0, h
read2 , ⟨⟨⟩⟩ ⟩⟩

︷                         ︸︸                         ︷

prompt m2 h
evil •

w5=⟨⟨evil : (m1,h
evil ,w4), read : (m0, h

read2 , ⟨⟨⟩⟩) ⟩⟩
︷                      ︸︸                      ︷

prompt m3 h
tl

•

w6=⟨⟨tl : (m3, h
tl ,w5), evil : (m2, h

evil ,w4) , read : (m0,h
read2 , ⟨⟨⟩⟩) ⟩⟩

︷         ︸︸         ︷

under tl •

w5
︷                        ︸︸                        ︷

perform ask () (5)
−→∗ 2

The evaluation is quite subtle in several places. First, at (3) we introduced under tl. As shown at
(4), the under frame can itself be captured by a resumption. This explains why we cannot directly
apply the optimization but require an extra under frame: inside the resumption we still need to
remember that operations happening after under tl can only reach handlers beyond htl .

However, at (3), it might be tempting to introduce the frame as under w2 instead of under tl, as
that would be enough to ensure that all operations afterwards are evaluated under w2. By doing so,
under could be formalized in a simpler way: under w2 could simply ignore the current evidence
vector and always pass w2 to future operations. Our initial formalization did this but unfortunately
this turns out to be unsound.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:15

Expression e ::= v | e e | e 𝜎
| prompt m h e

| yield m v

Value v ::= x | 𝜆𝜖x :𝜎. e | Λ𝛼𝜅 . v
| handler h

| perform op 𝜖 𝜎

Handler h ::= { opi ↦→ fi }

Evaluation ctx. E ::= □ | E e | v E | E 𝜎

| prompt m h E

F ::= □ | F e | v F | F 𝜎

Type 𝜎 ::= 𝛼𝜅 | c𝜅 𝜎 | 𝜎 → 𝜖 𝜎

| ∀𝛼𝜅 . 𝜎

Effect row 𝜖 ::= ⟨⟩ | ⟨l | 𝜖⟩ | 𝛼eff

Kind 𝜅 ::= ∗ | 𝜅 → 𝜅 | lab | eff

Type env. Γ ::= ∅ | Γ, x :𝜎

Effect ctx. Σ ::= { li : sigi }

Effect sig. sig ::= { opi :∀𝛼
𝜅 . 𝜎i → 𝜎 ′i }

Evidence ev ::= (m, h, w)

Evidence vec. w ::= ⟨⟨⟩⟩ | ⟨⟨l : ev | w⟩⟩

(app) (𝜆𝜖x :𝜎. e) v −→ e[x:=v]
(tapp) (Λ𝛼𝜅 . v) 𝜎 −→ v [𝛼 :=𝜎]
(handler) handler h v −→ prompt m h (v ()) with unique m
(promptv) prompt m h v −→ v

(prompt) prompt m h E[yield m f ] −→ f (𝜆𝜖x :𝜎2. prompt m h E[x])

with ∅ ⊢val f : (𝜎2→ 𝜖 𝜎) → 𝜖 𝜎

(perform) w ⊢ perform op 𝜖0 𝜎 v −→ yield m (𝜆𝜖k :𝜎2 [𝛼 :=𝜎] → 𝜖 𝜎. f 𝜎 v k)

with (m, h, _) = w.l ∧ (op ↦→ f ) ∈ h

(op :∀𝛼. 𝜎1→ 𝜎2) ∈ Σ(l) ∧∅ ⊢ h : 𝜎 | l | 𝜖

e −→ e′

w ⊢ F[e] ↦−→ F[e′]
(step)

w ⊢ e −→ e′

w ⊢ F[e] ↦−→ F[e′]
(stepw)

w ⊢ e ↦−→∗ e

⟨⟨l : (m, h,w) | w⟩⟩ ⊢ e ↦−→ e′

w ⊢ F[prompt m h e] ↦−→ F[prompt m h e′]
(promptw)

w ⊢ e ↦−→∗ e′ w ⊢ e′ ↦−→ e′′

w ⊢ e ↦−→∗ e′′

Fig. 1. Fpw : multi-prompt with evidence-passing semantics.

As shown at (5), the evidence vector for under tl itself has changed, from w3 to w6, and thus the
evidence vector passed by under tl has also changed from w2 to w5, so that the last ask is handled
by hread2 and returns 2 (the reader can check that 2 is indeed the desired result of the program by
evaluating without tail-resumptive optimization). If we would have used under w2, the ask would
wrongly return 1!

Proving the correctness of under is also challenging, as it essentially requires us to show that a
program with tail-resumptive optimization will produce the same result as of the same program
without the optimization. To this end, we show that the optimized program is contextual equivalent
to the original program.

3 SEMANTICS

This section presents System Fpw , which features algebraic effects using multi-prompt and evidence
passing semantics. The system is designed based on System F𝜖 [Xie et al. 2020], an explicitly typed
polymorphic algebraic effect calculus.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:16 Ninging Xie and Daan Leijen

3.1 Multi-Prompt with Evidence Passing Semantics

Syntax. Figure 1 defines the syntax. Expressions e include values v, applications e e, type appli-
cations e 𝜎 and the internal frames prompt m h and yield m v. Values include variables x, lambdas
𝜆𝜖 x :𝜎.e, which is annotated with the effect 𝜖 that may be performed when the lambda is applied,
type lambdas Λ𝛼k . v, and handler h and perform op 𝜖 𝜎 . Since the calculus is explicitly typed and
an operation signature can be polymorphic, performing an operation perform op 𝜖 𝜎 needs to
indicate its context effect 𝜖 , as well as to explicitly pass the type arguments 𝜎 . A handler h contains
a list of operation clauses op ↦→ f , where f denotes a function expression. As we have seen before,
an evaluation context E is essentially an expression with a hole in it, which indicates explicitly the
evaluation order of an expression. A pure evaluation context F has no prompt frame.

Types. Types 𝜎 include type variables 𝛼𝜅 of kind 𝜅, type constructors c𝜅 𝜎 where c𝜅 of kind 𝜅
is applied to the arguments 𝜎 , function types 𝜎 → 𝜖 𝜎 annotated with the effect 𝜖 that may be
performed when the function is applied, and polymorphic types ∀𝛼𝜅 . 𝜎 . Types of kind eff are called
effect rows and we write them as 𝜖 . Such row can be either empty ⟨⟩ (i.e. the type constructor ⟨⟩eff)

which denotes the total effect, an extension ⟨l | 𝜖⟩ (i.e. the type constructor ⟨_ | _⟩lab → eff → eff),
which extends 𝜖 with effect label l (i.e. a type constructor llab), or a type variable 𝛼eff (often written
as 𝜇). Effect rows that end with such a type variable (e.g., ⟨l | 𝜇⟩) are called open, while effect rows
ending with an empty effect (e.g., ⟨l | ⟨⟩⟩) are called closed.

Equivalence between row types (≡) is defined as follows. Row equivalence is reflexive, transitive,
and can freely reorder distinct labels.

𝜖 ≡ 𝜖

𝜖1 ≡ 𝜖2 𝜖2 ≡ 𝜖3

𝜖1 ≡ 𝜖3

𝜖1 ≡ 𝜖2

⟨l | 𝜖1⟩ ≡ ⟨l | 𝜖2⟩

l1 ≠ l2 𝜖1 ≡ 𝜖2

⟨l1, l2 | 𝜖1⟩ ≡ ⟨l2, l1 | 𝜖2⟩

To distinguish among types, System Fpw uses a basic kind system. Kinds 𝜅 include the basic kind
(∗), functions (𝜅 → 𝜅), the kind of labels (lab), and the kind of effects (eff). The judgment⊢wf 𝜎 : 𝜅
checks the kind of types, whose definition is standard and is given in the technical report [Xie and
Leijen 2021a].
The term context Γ is standard. A global effect context Σ maps each effect l to its signa-

ture sigl , which gives every operation its input and output types, i.e., opi : ∀𝛼 i . 𝜎i → 𝜎 ′i (where
𝛼 i = ftv(𝜎i → 𝜎 ′i )). We assume each op is uniquely named, and we use op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l)

to denote the type of op that belongs to effect l.

Evidence Vectors. System Fpw incorporates evidence passing semantics. In particular, evidence ev is
a triple consisting of a marker m, its corresponding handler h and the evidence vector w where
h is defined. An evidence vector w is a map from effect labels to evidence. It can be either empty
⟨⟨⟩⟩, or an extension ⟨⟨ev | w⟩⟩ which extends w with evidence ev. We also write ⟨⟨w1 | w2⟩⟩ for the
concatenation of w1 and w2. We use the notation w.l to select evidence of label l from w. As we
have discussed in Section 2.5, we treat the evidence vector as an abstract datatype, as it can be either
canonical or insertion ordered, depending on how the extension operation ⟨⟨ev | w⟩⟩ is implemented.
Importantly though, for correctness of the evidence passing semantics, selection and extension
should satisfy the following laws, so that w.l always finds the most recent evidence of l, which
corresponds to the dynamic semantics of algebraic effects where an operation is handled by its
innermost handler.

⟨⟨l : ev | w⟩⟩.l = ev ⟨⟨l′ : ev | w⟩⟩.l = w.l iff l ≠ l′

3.1.1 Operational Semantics. The operational semantics rules of System Fpw (Figure 1) include three
definitions: −→ provides a primitive evaluation step, ↦−→ evaluates expressions under evaluation
contexts, and ↦−→∗ defines the transitive closure of ↦−→. In practice, evaluating an expression always

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:17

start with an empty evidence vector. For clarify, we use a lighter color for all type information,
which is needed for type soundness, but not directly for the dynamic semantics of algebraic effects.

(−→). During evaluation, we pass the current handlers down as an evidence vector. However,
the evidence vector only matters when performing an operation, and many evaluation steps do not
need to inspect the evidence vector. To make the difference clear, we separate the evaluation step
into two categories: plain e1 −→ e2, and evaluation under an evidence vector w ⊢ e1 −→ e2.

Rule (app) and (tapp) are standard. In rule (handler), handler installs a prompt m frame, with a
fresh unique marker m, so that the marker can later be used to find the specific prompt. Values are
propagated through the prompt frame (rule (promptv)).
As this system models the multi-prompt semantics, we split performing an operation into two

parts: searching for a handler (rule (perform)), and capturing and restoring a resumption (rule
(prompt)). Rule (perform) captures the essence of evidence passing semantics. Specifically, given
the evidence vector w, performing an operation directly gets the handler h by selecting out the
corresponding evidence by w.l. The operation implementation f from h is then used to handle the
operation. As we will see shortly, the notation ∅ ⊢ops h : 𝜎 | l | 𝜖 says that h is a handler for effect
l, which has result type 𝜎 and may itself perform effect 𝜖 . Notice the difference between 𝜖0 and 𝜖 ś
𝜖0 is the effect where perform is defined, and 𝜖 is the effect where prompt h is defined. Finally, in
rule (prompt), yield captures the resumption (𝜆𝜖x :𝜎2 . prompt m h E[x]), to which f is applied.

(↦−→). When evaluating expressions under evaluation contexts, each rule is given the current
evidence vector w. Rule (step) and (stepw) correspond respectively to a plain −→ and a w ⊢ −→
step. Both rules evaluate under an F. That is because as shown in rule (promptw), the prompt m h e

frame modifies the evidence vector by inserting the new evidence l : (m, h,w) and uses the evidence
vector ⟨⟨l : (m, h, w) | w⟩⟩ for evaluating e. Here the evaluation context is again an F ensuring that
the evidence vectors always match the prompt frames in the context.

Example. In Section 2, for better illustration, we have used the
w

︷︸︸︷ notation to indicate the current
evidence vector. In the formal system, we always use w ⊢ . The following example shows the eval-
uation derivation of handler hread (𝜆_. perform ask ()) ↦−→∗ 1. We have omitted type annotations,
and details regarding ⟨⟨⟩⟩ ⊢ e1 ↦−→ e3 and ⟨⟨⟩⟩ ⊢ e6 ↦−→

∗ 1.

(1) e1 = handler hread (𝜆_. perform ask ())

(2) e2 = perform ask ()
(3) e3 = prompt m hread e2
(4) e4 = yield m (𝜆k. (𝜆x k. 1) () k)
(5) e5 = prompt m hread e4
(6) e6 = (𝜆k. (𝜆x k. 1) () k) (𝜆x . prompt m hread x)

· · ·

⟨⟨⟩⟩ ⊢ e1 ↦−→
∗ e3

⟨⟨m, hread , ⟨⟨⟩⟩⟩⟩ ⊢ e2 −→ e4

⟨⟨⟩⟩ ⊢ e3 ↦−→ e5

⟨⟨⟩⟩ ⊢ e1 ↦−→
∗ e5

e5 −→ e6

⟨⟨⟩⟩ ⊢ e5 ↦−→ e6

⟨⟨⟩⟩ ⊢ e1 ↦−→
∗ e6

· · ·

⟨⟨⟩⟩ ⊢ e1 ↦−→
∗ 1

3.1.2 Typing Rules. Figure 2 defines the typing rules for System Fpw . The judgment Γ ⊢ e : 𝜎 | 𝜖
reads that, under the typing context Γ, the expression e has type 𝜎 and may perform effect 𝜖 .
Values are not effectful and thus the typing judgment takes the form Γ ⊢val v : 𝜎 . The judgment
Γ ⊢ops h : 𝜎 | l | 𝜖 type-checks a handler h for effect l, with result type 𝜎 and effect 𝜖 . For clarity
of presentation we do not maintain an explicit kind environment for type variables; instead, as a
well-formedness condition, we assume that all occurrences of a type variable 𝛼 always have the
same kind 𝜅 (subject to alpha-renaming).

Most rules are standard. Rule val can take in any effect. In rule abs, the effect annotation from the
lambda is passed to the body derivation, and the rule produces type 𝜎1→ 𝜖 𝜎2, where 𝜖 indicates
the effect that may be performed by the lambda body. In rule app, we require three effects to match:
the effect 𝜖 in the function 𝜎1→ 𝜖 𝜎2, the effect 𝜖 of e1 and of e2. The rules tapp and tabs handle

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:18 Ninging Xie and Daan Leijen

Γ ⊢ e : 𝜎 | 𝜖 Γ ⊢val v : 𝜎 Γ ⊢ops h : 𝜎 | l | 𝜖

x :𝜎 ∈ Γ

Γ ⊢val x : 𝜎
var

Γ ⊢val v : 𝜎

Γ ⊢ v : 𝜎 | 𝜖
val

Γ, x :𝜎1 ⊢ e : 𝜎2 | 𝜖

Γ ⊢val 𝜆𝜖 x :𝜎1. e : 𝜎1→ 𝜖 𝜎2
abs

Γ ⊢ e1 : 𝜎1→ 𝜖 𝜎 | 𝜖 Γ ⊢ e2 : 𝜎1 | 𝜖

Γ ⊢ e1 e2 : 𝜎 | 𝜖
app

Γ ⊢val v : 𝜎 𝜅 ≠ lab 𝛼 ̸∈ ftv(Γ)

Γ ⊢val Λ𝛼𝜅 . v : ∀𝛼𝜅 . 𝜎
tabs

Γ ⊢ e : ∀𝛼𝜅 . 𝜎1 | 𝜖 ⊢wf 𝜎 : 𝜅

Γ ⊢ e 𝜎 : 𝜎1 [𝛼 :=𝜎] | 𝜖
tapp

op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l)

Γ ⊢val perform op 𝜖 𝜎 : 𝜎1 [𝛼 :=𝜎] → ⟨l | 𝜖⟩ 𝜎2 [𝛼 :=𝜎]
perform

Γ ⊢ops h : 𝜎 | l | 𝜖

Γ ⊢val handler h : (() → ⟨l | 𝜖⟩ 𝜎) → 𝜖 𝜎
handler

Γ ⊢ops h : 𝜎 | l | 𝜖 Γ ⊢ e : 𝜎 | ⟨l | 𝜖⟩

Γ ⊢ prompt m h e : 𝜎 | 𝜖
prompt

Γ ⊢val f : (𝜎 → 𝜖 ′ 𝜎 ′) → 𝜖 ′ 𝜎 ′

Γ ⊢ yield m f : 𝜎 | 𝜖
yield

opi : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l) 𝛼 ̸∩ ftv(𝜖, 𝜎) Γ ⊢val fi : ∀𝛼. 𝜎1→ 𝜖 ((𝜎2→ 𝜖 𝜎) → 𝜖 𝜎)

Γ ⊢ops { op1 ↦→ f1, . . ., opn ↦→ fn } : 𝜎 | l | 𝜖
ops

Fig. 2. Typing Rules for System Fpw .

type application- and abstraction and are mostly standard except that type abstraction requires the
kind is not lab: this ensures that lab types are always a constant (l) which ensures that unification
for row equivalence is decidable [Leijen 2005].
Performing an operation introduces effects. In rule perform, perform op 𝜖 𝜎 first gets the type

of the operation from Σ(l), and adds l to the context effect 𝜖 , generating ⟨l | 𝜖⟩. Dually, handling
eliminates effects. In rule handler, given a handler h for l, the rule takes an action with effect ⟨l | 𝜖⟩,
and produces the result effect 𝜖 . Rule prompt is similar, but directly takes an expression e of effect
⟨l | 𝜖⟩. Rule ops types a handler, where we assume {op1, . . ., opn} = Σ(l). Note that all operation
implementations must have the same effect (𝜖) and type result (𝜎).

Rule yield is more subtle. Recall that the operational rule (perform) (in Figure 1) turns perform
into yield, So we expect the result type of yield to match that of perform. Note that the result type
of perform is the same as the argument type of the resumption k, and the type of the resumption k

itself is the argument type of f in yield m f . Therefore, in rule yield, we directly get the result type
from the type of f . To be more precise, we could also set the result effect of yield to match that of
perform. But since yield is an internal frame, the current form is sufficient for type soundness.

3.1.3 Correctness, Preservation and Progress. In rule (perform), we refer tow as the current evidence
vector, and we select out the handler from the evidence vector (instead of searching for it in the
evaluation context). This means that for the correctness of evidence passing semantics, the current
evidence vector w must correspond exactly to the actual handlers in the dynamic evaluation context ś
so that the handler selected from the evidence vector is indeed exactly the innermost handler that
would be found with the original semantics of algebraic effects.

We use the notation ⌈E⌉ to extract all evidence from an evaluation context E. Specifically, if E is
F0 • prompt m1 h1 • F1 • . . . • prompt mn hn • Fn, where each hi is a handler for li , we have
⌈E⌉ = ⟨⟨ln : (mn, hn, _) | . . . | l1 : (m1, h1, _)⟩⟩ (we ignore the third component as it is not used). In

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:19

order to prove correctness, we show that a ↦−→ step can be reasoned in terms of a −→ step, where
for a w ⊢ −→ step, the evidence vector is the original evidence vector extended by all evidence
from the evaluation context:

Lemma 1. (Inversion of ↦−→). If w ⊢ e1 ↦−→ e2, then either

• e1 = E[e′
1
], e2 = E[e′

2
], and e′

1
−→ e′

2
; or

• e1 = E[e′
1
], e2 = E[e′

2
], and ⟨⟨⌈E⌉ | w⟩⟩ ⊢ e′

1
−→ e′

2
.

Based on Lemma 1, we can now show that the marker m and the handler h found by evidence-
passing semantics is indeed the innermost handler found dynamically from the evaluation context.
The following theorem establishes the correctness of evidence passing semantics.

Theorem 1. (Evidence corresponds to the evaluation context).

If ⟨⟨⟩⟩ ⊢ E[perform opl 𝜎 v] ↦−→ E[yield m (𝜆k. f 𝜎 v k)], then ⌈E⌉ .l = (m, h, _), and (op ↦→ f ) ∈ h.

Preservation and progress do not hold immediately for our system; instead we need to consider
both prompt and yield as strictly internal frames that cannot be written directly by the programmer
(and only occur during evaluation). For example, if we can write yield m ourselves, we can use an
arbitrary m that does not match with any prompt in the context (and thus lose progress); similarly,
we can write a yield m f where the result type of f does not match the type expected by the prompt
m in the context (and lose preservation).
By treating both prompt and yield as strictly internal frames we can ensure by construction

that the previous problematic examples cannot occur, and can prove progress and preservation. In
particular, we use a similar definition as the handle-safe definition from [Xie et al. 2020]:

Definition 1. (Internal-safe expressions). An internal-safe expression is a well-typed closed ex-
pression that either (1) contains no internal construct; or (2) is itself reduced from an internal-safe
expression.

Internal-safe expressions maintain two important invariants: (1) each prompt owns a unique m
generated at rule (handler); and (2) when perform generates yield m in (perform), it has found the
handler with the right type (and therefore, yield m will find the right prompt m in rule (prompt)).
We prove that internal-safe System Fpw enjoys preservation and progress.

Theorem 2. (Preservation of Internal-safe System Fpw). If∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is internal-safe,
and ⟨⟨⟩⟩ ⊢ e1 ↦−→ e2, then ∅ ⊢ e2 : 𝜎 | ⟨⟩.

The progress theorem is more tricky, as perform does not find the handler from the evaluation
context but instead from the evidence vector. Fortunately, from Lemma 1, we can show that the
handler found from the evidence vector is always available in the evaluation context.

Theorem 3. (Progress of Internal-safe System Fpw). If ∅ ⊢ e1 : 𝜎 | ⟨⟩ where e1 is internal-safe,
then either e1 is a value, or ⟨⟨⟩⟩ ⊢ e1 ↦−→ e2.

We can further prove that markers cannot be duplicated in the evaluation context.

Theorem 4. (Uniqueness of Handlers for Internal-safe System Fpw). For any internal-safe Fpw

expression prompt m1 h1 (E2 [prompt m2 h2 e]), we have m1 ≠ m2.

3.2 Tail-Resumptive Optimization

With evidence passing semantics, we are now ready to formalize the tail-resumptive optimization,
which is given in Figure 3. We extend the definition of expressions with under𝜖,𝜖 l e, and the
definition of evaluation contexts with under𝜖,𝜖 l E.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:20 Ninging Xie and Daan Leijen

Expression e ::= . . . | under𝜖,𝜖 l e
Evaluation context E ::= . . . | under𝜖,𝜖 l E

(performt) w ⊢ perform op 𝜖0 𝜎 v −→ (Λ𝛼. 𝜆 ⟨l |𝜖0⟩x :𝜎1. under
𝜖0,𝜖 l e) 𝜎 v

with (m, h,w ′) = w.l

(op ↦→ Λ𝛼. 𝜆𝜖x :𝜎1. k :𝜎2→ 𝜖 𝜎. k e) ∈ h ∧ k ̸∈ fv(e)

(underv) under𝜖0,𝜖 l v −→ v

w ′ ⊢ e ↦−→ e′ (m, h,w ′) = w.l

w ⊢ F[under𝜖0,𝜖 l e] ↦−→ F[under𝜖0,𝜖 l e′]
(underw)

Γ ⊢ e : 𝜎 | 𝜖

Γ ⊢ under𝜖0,𝜖 l e : 𝜎 | ⟨l | 𝜖0⟩
under

Fig. 3. Tail resumptive operations

3.2.1 Operational Semantics. Rule (performt) is the key to apply the tail-resumptive optimization.
First, it gets the handler h from the evidence vector as before. But it then detects that the operation
implementation (Λ𝛼. 𝜆𝜖x :𝜎1. 𝜆.k :𝜎2→ 𝜖𝜎. k e) is tail-resumptive (with k ̸∈ fv(e)), and so instead
of yielding up, it generates under𝜖0,𝜖 l e, which directly evaluates e in-place with the type arguments
𝜎 and value argument v. When the expression evaluates to a value, the value is propagated through
the under frame (rule (underv)).
Importantly, under needs to modify the evidence vector, so that operations happening after it

can find the right handler. In rule (underw), given the current evidence vector w, under first finds
the innermost evidence for l in the evidence vector, i.e., (m, h, w ′), and then passes the evidence
vector w ′, under which h is defined, to e. In other words, under skips the whole evidence fragment
between h to itself, which should not be accessible to e.

3.2.2 Typing. Rule under types an under𝜖0,𝜖 l e expression. Note that the effect 𝜖 corresponds to
the effect of e, while under itself produces ⟨l | 𝜖0⟩. As with yield, in a more refined system, we can
further state that 𝜖0 contains 𝜖 (as when generated in (performt)), but as under is internal, the
current typing rule is sufficient for establishing soundness.

3.2.3 Correctness, Preservation and Progress. In what sense is the tail-resumptive optimization
correct? Only if the optimized expression can produce an equivalent result as of the original
expression. However, the equivalence is not so obvious. To illustrate the subtlety, consider evaluating
the expression (prompt m h • E • perform op 𝜎 v) under the evidence vector w. Assume that
the op operation is handled by prompt m h, where (op ↦→ Λ𝛼. 𝜆x k. k e) ∈ h with k ̸∈ fv(e), i.e.,
the implementation is tail-resumptive. If we evaluate the expression without tail-resumptive
optimization, we get (for clarify we omit w in the derivation):

prompt m h • E • perform op 𝜖0 𝜎 v

↦−→ prompt m h • E • yield m (𝜆k. (Λ𝛼. 𝜆x k. k e) 𝜎 v k)

↦−→∗ (Λ𝛼. 𝜆x k. k e) 𝜎 v (𝜆x . prompt m h E[x])

↦−→∗ (𝜆x . prompt m h E[x]) e[𝛼 :=𝜎, x:=v]

while with tail optimization we end up with:

prompt m h • E • perform opl 𝜖0 𝜎 v

↦−→ prompt m h • E • (Λ𝛼. 𝜆x . under𝜖0,𝜖 l • e) [𝜎] v

↦−→∗ prompt m h • E • under𝜖0,𝜖 l • e[𝛼 :=𝜎, x:=v]

The two expressions are now quite different. Nevertheless, intuitively these two result expressions
are equivalent: they both first evaluate e[𝛼 :=𝜎, x:=v], and then pass the result to prompt m h E, via
beta-reduction and via propagation through under, respectively. The situation is a bit more tricky
though as e[𝛼 :=𝜎, x:=v] may perform an operation. However, even in that case, the operation will

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:21

find the same handler: in the first case, it is obvious that the evidence vector passed to e[𝛼 :=𝜎, x:=v]
is w; in the second case, w is first extended by evidence from prompt m h • E, but then under𝜖 l

changes the evidence vector back to w! To capture the observation, we formalize an equivalent
relation e1 � e2 between expressions (and evaluation contexts respectively) where e1 has no under,
and e2 may have under. The relation � is mostly structural, up to renaming of fresh markers, with
the following rule:

e1 � e2 E1 � E2 l ̸∈ bl(E1) ∅ ⊢ops h : 𝜎 | l | 𝜖

(𝜆x . prompt m h E1 [x]) e1 � prompt m h • E2 • under𝜖0,𝜖 l e2

We can prove that evaluation preserves the equivalent relation, except that expressions need to take
several reduction steps to become equivalent again, as evaluating prompt under the two semantics
takes different number of steps to reach the desired equivalent form.

Lemma 2. (Evaluation Preserves � ). Given two closed internal-safe expressions ∅ ⊢ e1 : 𝜎 | ⟨⟩

and ∅ ⊢ e2 : 𝜎 | ⟨⟩, if e1 � e2, then either e1 and e2 are values, or there exist e′
1
, e′

2
such that

⟨⟨⟩⟩ ⊢ e1 ↦−→
+ e′

1
, ⟨⟨⟩⟩ ⊢ e2 ↦−→

+ e′
2
, and e′

1
� e′

2
.

Based on Lemma 2, we show that the optimized and unoptimized expressions are contextual

equivalent, with the intuition that we cannot tell them apart in any context.

Definition 2. (Contextual Equivalence).

e1 �ctx e2 ≜ ∅ ⊢ e1 : 𝜎 | 𝜖 ∧∅ ⊢ e2 : 𝜎 | 𝜖

∧∀C. ∅ ⊢ C : (𝜎 | 𝜖) → (Int | ⟨⟩) =⇒ (∀n. C[e1] ↦−→
∗ n ⇐⇒ C[e2] ↦−→

∗ n)

where C is the standard definition of a program context that is under-free, and C[e1] is evalu-
ated under the original semantics while C[e2] is with tail-resumptive optimization. The notation
∅ ⊢ C : (𝜎1 | 𝜖1) → (𝜎2 | 𝜖2) type-checks an program context, so that if∅ ⊢ e : 𝜎1 | 𝜖1, we have
∅ ⊢ C[e] : 𝜎2 | 𝜖2.

Theorem 5. (Tail-resumptive Optimization is Sound). If ∅ ⊢ e : 𝜎 | 𝜖 , then e �ctx e.

The theorem may seem trivial, but given that �ctx uses different evaluation strategies for the left
expression and the right one, the theorem states exactly what we want: starting from the same
expression e, evaluating without and with tail-resumptive optimization produces the same result.
We have also proved that Theorem 2 (Preservation) and Theorem 3 (Progress) remain valid for
internal-safe System Fpw extended with under.

4 TRANSLATION TO POLYMORPHIC LAMBDA CALCULUS

In order to compile to standard lambda calculus from our evidence passing effect handler calculus,
we first need to ensure that all transitions are local and no longer manipulate evaluation contexts
explicitly. The only operation that it is non-local with evidence passing semantics is the yield. As
discussed in Section 2.7 we can make this local by bubbling up the yields step-by-step through the
context while constructing a resumption.

4.1 Bubbling Yields

We briefly introduce System Fpb (Figure 4), which extends the semantics of Fpw where yield builds
the resumption locally and bubbles up to its corresponding prompt frame. In this section, we focus
on the dynamic semantics of System Fpb, with its full typed formalization and preservation and
progress theorems given in the technical report [Xie and Leijen 2021a].

First, expressions now include a new form of yielding expression yield m v v that takes an extra
argument: the first v is a function that will be applied to the resumption (like before), while the
second v is the current resumption that is extended step-by-step while bubbling up. We replace the

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:22 Ninging Xie and Daan Leijen

Expressions e ::= v | e e | e 𝜎 | prompt m h e | yield m v v

(app
1
) v □ • yield m f k −→ yield m f (𝜆x . v (k x))

(app
2
) □ e • yield m f k −→ yield m f (𝜆x . (k x) e)

(under) under l □ • yield m f k −→ yield m f (𝜆x . under l (k x))

(prompt
1
) prompt m h □ • yield m f k −→ f (𝜆x . prompt m h (k x))

(prompt
2
) prompt n h □ • yield m f k −→ yield m f (𝜆x . prompt n h (k x)) iff n ≠ m

(perform) w ⊢ perform op 𝜖0 𝜎 v −→ yield m (𝜆k. f 𝜎 v k) (𝜆x . x)

with (m, h, _) = w.l ∧ (op ↦→ f ) ∈ h

Fig. 4. Fpb: Multi-prompt with bubble semantics.

original rules (prompt) and (perform) in System Fpw (Figure 1) with rules in Figure 4. The new rule
(perform) builds the continuation and initial resumption, which is then bubbled up by the other
rules. In (perform) the yield now gets an extra argument (𝜆x . x) which is the initial partially built

resumption ś at this time just an identity function. The resumption is now gradually extended as
yield bubbles up through every evaluation frame, as in rule (app

1
), (app

2
) and (prompt

2
). In rule

(app
1
), the frame v □ is added to the current partially built resumption k, generating (𝜆x . v (k x)).

Rule (app
2
) is similar. Rule (prompt

2
) compares markers and finds that n ≠ m and adds the prompt

frame to the resumption. The yield keeps bubbling up until it finds its matching handler in rule
(prompt

1
), where we finally apply the continuation f to now completed resumption.

4.2 A Multi-prompt Delimited Control Monad

All transitions in the bubbling semantics are now local transitions, and we can implement these
semantics using a multi-prompt delimited control monad, where each algebraic effect specific
construct can be implemented directly as a regular function. In this section, we first establish
the multi-prompt delimited control monad and then discuss the type directed translation from
System Fpb into a polymorphic lambda calculus. We use standard techniques [Dybvig et al. 2007] to
implement delimited control as a monad. For better readability, throughout this section we use
Haskell-like syntax. First, we define our monadMon as:

type Mon 𝜇 𝛼 = Evv 𝜇→ Ctl 𝜇 𝛼

The evidence-passing semantics is established by taking an argument of type Evv 𝜇, which corre-
sponds to the current evidence vector for an effect 𝜇, and returning in the control monad Ctl. The
control monad is defined as4:

data Ctl 𝜇 𝛼 =

| Pure : 𝛼 → Ctl 𝜇 𝛼

| Yield :∀𝛽 𝜇 ′ r . Marker 𝜇 ′ r → ((𝛽 →Mon 𝜇 ′ r) →Mon 𝜇 ′ r) → (𝛽 →Mon 𝜇 𝛼) → Ctl 𝜇 𝛼

The Pure case returns a value result, while Yield implements yielding to a prompt (corresponding
to yield m f k in System Fpb). Markers carry explicit types and can later serve as the witness to
type equality. When binding a yield, the resumption keeps being extended:

(f ◦ g) x = f (g x) (function composition)
(f ★ g) x = g x ▷ f (Kleisli composition)
e ▷ g = 𝜆w. case e w of Pure x → g x w (monadic bind)

Yield m f k→ Yield m f (g ★ k) ((app
1
), (app

2
) Fig. 4, app Fig. 5)

4This monad is used exactly in the Mp.Eff library [Xie and Leijen 2021b], but the Ctl is different from that of Ev.Eff [Xie

et al. 2020] as the continuation and resumption in Yield both return inMon, whereas in Ev.Eff these return in Ctl (again

because in EPT the evidence vector is statically determined).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:23

With the multi-prompt monad, we can now define the monadic translation of types from System
Fpb, where all effectful functions are made monadic:

⌊∀𝛼𝜅 . 𝜎⌋ = ∀𝛼𝜅 . ⌊𝜎⌋ ⌊𝜎1→ 𝜖 𝜎2⌋ = ⌊𝜎1⌋ →Mon 𝜖 ⌊𝜎2⌋

⌊𝛼⌋ = 𝛼 ⌊c𝜅 𝜎1 . . . 𝜎n⌋ = c𝜅 ⌊𝜎1⌋ . . . ⌊𝜎n⌋

We then implement prompt as a family of promptl functions for each effect l:

promptl : ∀𝜇 𝛼. Marker 𝜇 𝛼 → Hndl 𝜇 𝛼 →Mon ⟨l | 𝜇⟩ 𝛼 →Mon 𝜇 𝛼

promptl m h e = 𝜆w. case e ⟨⟨l : (m, h,w) | w⟩⟩ of

Pure x → Pure x ((promptv) in Fig. 1)

Yield m′ f k | m ≠ m′→ Yield m′ f (promptl m h ◦ k) ((prompt
2
) in Fig. 4)

Yield m′ f k | m = m′→ f (promptl m h ◦ k) w ((prompt
1
) in Fig. 4)

Note how the evidence vector is passed as an explicit argument in the monad. The Pure case returns
the value as is. For Yield, if it yields to another prompt, we keep building the resumption. In the
third case, Yield meets the target prompt and we apply f to the built-up resumption (composed
with promptl m h as we use deep resumptions). Note that to type check this case, the equality of the
markers m = m′ implies that 𝜇 = 𝜇 ′ and 𝛼 = r (as in the definition of Yield). For example, this
can be encoded using explicit equality witnesses [Baars and Swierstra 2002] or equality constraints
in Haskell [Sulzmann et al. 2007; Xie and Leijen 2021b].

The handler function generates prompt with a fresh marker created by a utility function freshm.

handler l : ∀𝜇 𝛼. Hndl 𝜇 𝛼 → (() →Mon ⟨l | 𝜇⟩ 𝛼) →Mon 𝜇 𝛼

handler l h f = freshm (𝜆m→ promptl m h (f ()) ((handler) in Fig. 1)

The type of a handler Hndl is generated for every effect signature l : {op
1
: ∀𝛼1. 𝜎1→ 𝜎 ′

1
, . . ., opn :

∀𝛼n . 𝜎n→ 𝜎 ′n } ∈ Σ and is a record of operation definitions:

data Hndl 𝜇 r = Hndl (∀𝛼1. Op ⌊𝜎1⌋ ⌊𝜎
′
1
⌋ 𝜇 r) . . . (∀𝛼n . Op ⌊𝜎n⌋ ⌊𝜎

′
n⌋ 𝜇 r)

together with a selector for each operation opi : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l):

selectopi : ∀𝛼 𝜇 r . Hndl 𝜇 r → Op ⌊𝜎1⌋ ⌊𝜎2⌋ 𝜇 r

selectopi (Hndl op
1
. . . opn) = opi

where the Op 𝛼 𝛽 𝜇 r type represents operations from 𝛼 to 𝛽 defined in a handler with effect 𝜇 and
result type r (the answer type). For example for a reader effect we have:

data Hndread 𝜇 r = Hndread (Op () int 𝜇 r)

selectask (Hndread ask) = ask

For operations we distinguish between tail-resumptive operation implementations and normal
implementations in order to do the tail-resumptive optimization:

data Op 𝛼 𝛽 𝜇 r = Tail : (𝛼 →Mon 𝜇 𝛽) → Op 𝛼 𝛽 𝜇 r

| Normal : (𝛼 →Mon 𝜇 ((𝛽 →Mon 𝜇 r) →Mon 𝜇 r)) → Op 𝛼 𝛽 𝜇 r

We can now perform an operation by getting the handler from the evidence vector, and selecting
the right operation from the handler record (e.g. ask). Depending on the operation constructor, we

use under l for tail-resumptive operations or otherwise generate a Yield.

performl
: ∀𝜇 𝛼 𝛽. (∀𝜇 ′ r . Hndl 𝜇 ′ r → Op 𝛼 𝛽 𝜇 ′ r) → 𝛼 →Mon ⟨l | 𝜇⟩ 𝛽

performl select x = 𝜆w : Evv ⟨l | 𝜇⟩. let (m, h,w ′) = w.l in

case select h of Tail f → under l m w ′ (f x) ((performt) in Fig. 3)
Normal f→ Yield m (𝜆y. f x ▷ (𝜆g. g y)) (𝜆x w. Pure x) ((perform) in Fig. 4)

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:24 Ninging Xie and Daan Leijen

val

Γ ⊢val v : 𝜎 ⇝ v ′

Γ ⊢ v :𝜎 | 𝜖 ⇝ 𝜆w : Evv 𝜖.Pure 𝜖 ⌊𝜎⌋ v ′

app

Γ ⊢ e1 :𝜎1→ 𝜖 𝜎 | 𝜖 ⇝ e′
1

Γ ⊢ e2 :𝜎1 | 𝜖 ⇝ e′
2

Γ ⊢ e1 e2 :𝜎 | 𝜖 ⇝ e′
1
▷ (𝜆f : ⌊𝜎1→ 𝜖 𝜎⌋ . e′

2
▷ f )

op : ∀𝛼. 𝜎1→ 𝜎2 ∈ Σ(l)

Γ ⊢val perform op 𝜖 𝜎 : 𝜎1 [𝛼 :=𝜎] → ⟨l | 𝜖⟩ 𝜎2 [𝛼 :=𝜎]

⇝ performl 𝜖 ⌊𝜎1 [𝛼 :=𝜎]⌋ ⌊𝜎2 [𝛼 :=𝜎]⌋ (Λ𝜇 r . selectop ⌊𝜎⌋ 𝜇 r)

perform

Fig. 5. Monadic translation of Fpb (excerpt).

Finally, under can be implemented with two mutually recursive definitions:

under l : ∀𝜇 𝛽 𝜇 ′ r . Marker 𝜇 ′ r → Evv 𝜇 ′→Mon 𝜇 ′ 𝛽 →Mon 𝜇 𝛽

underkl : ∀𝜇 𝛽 𝜇 ′ r . Marker 𝜇 ′ r → (𝛽 →Mon 𝜇 ′ r) → 𝛽 →Mon 𝜇 r

The under function runs the action e under another evidence vector w ′, and ensures that any
resumption is itself continued under the right evidence through underk:

under l m w ′ e = 𝜆w : Evv 𝜇. case e w ′ of ((underw) in Fig. 3)
Pure x → Pure x ((underv) in Fig. 3)

Yield n f k→ Yield n f (underkl m k) ((under) in Fig. 4)

Note that it is easy to make a mistake here: in the Yield case, a well-typed (!) but semantically

wrong implementation of under l is to return Yield n f (𝜆x . under l m w ′ (k x)) ś as described in
Section 2.12.2 this wrongly fixes the evidence vector to w ′. Instead, we need to use the underk
function which re-finds the correct evidence vector w ′ from the current evidence vector w to
resume under:

underkl m k x = 𝜆w : Evv 𝜇. let (m′, h,w ′ : evv 𝜖) = w.l in

if (m = m′) then under m w ′ (k x) w ((underw) in Fig. 3)

The marker is passed to underl and underkl in order to get the type equality from m = m′ (which
should always hold for internal-safe expressions).

4.3 Monadic Translation

Using the multi-prompt monad definition, we can define a type-directed translation of System Fpb

into a polymorphic lambda calculus (see the technical report [Xie and Leijen 2021a]). The translation
takes the form Γ ⊢ e : 𝜎 | 𝜖 ⇝ e′ , where under Γ, the expression e with type 𝜎 and effect 𝜖 is
translated to e′. Based on the multi-prompt monad, the translation is mostly straightforward
where each construct translates directly to its corresponding function: prompt translates to prompt,
handler translates to handler , etc. Figure 5 shows an excerpt of the translation rules, while the full
translation is shown in the technical report [Xie and Leijen 2021a].
During translation, we have made type applications explicit. Rule val simply wraps the value

translation inside Pure. Rule app first evaluates e′
1
, binds the result to f , and then evaluates e′

2

and passes the result to f . If any of the expressions evaluates to Yield, the monadic binding (▷)
will bubble it up (according to the rules (app

1
) and (app

2
) in Figure 4). Rule perform shows how

perform is translated using our monadic implementation of performl and selectop.
We prove that our translation is sound, where we use the notation ⊢F for the typing judgment

in the target polymorphic lambda calculus, whose full definition can be found in the technical
report [Xie and Leijen 2021a].

Theorem 6. (Monadic Translation is Sound). If∅ ⊢ e : 𝜎 | ⟨⟩ ⇝ e′, then∅ ⊢F e′ : Mon ⟨⟩ ⌊𝜎⌋.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:25

4.4 Semantics Preserving

We now show that our sequence of refinements preserve the original semantics of polymorphic
algebraic effect handlers in System F𝜖 [Xie et al. 2020]. In particular, consider a user-provided
expression e in F𝜖 . As our initial multi-prompt delimited control semantics shares the same source
language (i.e., without internal frames) with System F𝜖 , we have two possible dynamic semantics
for e: (1) the original direct semantics defined in System F𝜖 ; and (2) the multi-prompt delimited
control semantics described in 2.4. We can prove that these two semantics always give the same
result; that is, the multi-prompt delimited control preserves the original algebraic effects semantics.

In fact, each of our further refinement steps is also semantics preserving: (1) the evidence passing
semantics preserves the multi-prompt delimited control semantics; (2) the bubbling semantics Fpb

preserves the evidence passing semantics; and (3) the monadic translation semantics preserves the
bubbling semantics. Detailed lemma statements and their proofs are included in in the technical
report [Xie and Leijen 2021a].

Building on top of the semantics preserving lemmas of each refinement step, we can show that
the final monadic translation preserves the semantics of System F𝜖 . Specifically, for a user-provided
total expression e of type int, if e evaluates to n in System F𝜖 , then its monadic translation evaluates
to n in the polymorphic lambda calculus; we use e ⇑ to denote the case when e diverges.

Theorem7. (Semantics Preserving). Given∅ ⊢ e : int | ⟨⟩ ⇝ e′, if e ↦−→∗ n in F𝜖 , then e′ ⟨⟨⟩⟩ ↦−→∗

Pure ⟨⟩ int n, in the polymorphic lambda calculus and if e ⇑ in F𝜖 , then e′ ⟨⟨⟩⟩ ⇑ in the polymorphic
lambda calculus.

5 BENCHMARKS

In this section we benchmark five implementations of effect handlers [Leijen 2021].

(1) Koka: We have a full implementation of our techniques in the Koka compiler [Leijen 2020]
which compiles via standard C code. This uses generalized evidence passing with canonical
evidence vectors, short-cut resumptions, bind-inlining and join-point sharing.

(2) multi-core OCaml: This is a fork of standard OCaml with the current state-of-the-art direct
implementation of effect handlers based on segmented stacks [Sivaramakrishnan et al. 2021]
(but without direct support for multi-shot resumptions).

(3) Mp.Eff : This is our implementation of generalized evidence passing effect handlers as a
monadic library in Haskell [Xie and Leijen 2021b]. The library uses insertion-ordered evidence
vectors and does not use short-cut resumptions.

(4) Ev.Eff : A Haskell monadic effect handler library by Xie and Leijen [2020] based on evidence
translation (and cannot handle non-scoped resumptions). This library performs very well
with respect to other effect handler implementations [Kiselyov and Ishii 2015; Schrijvers et
al. 2019; Wu and Schrijvers 2015; Wu et al. 2014] and monad transformers.

(5) libhandler : a C library that implements effect handlers on top of the regular C stack and uses
longjmp to transfer control [Leijen 2017a]. This is a direct implementation where capturing-
and resuming is linear in the stack size as it copies and restores pieces of the C stack directly.
It uses the tail-resumptive optimization and insertion ordered łevidencež where it searches
through the handler frames on the stack.

Comparing across systems is always difficult as many parts differ ś for example, Koka uses Perceus
compiler guided reference counting [Reinking et al. 2021] while multi-core OCaml and Haskell use a
generational tracing collector, Koka has few standard optimizations while both OCaml and Haskell
are sophisticated compilers with decades of development, etc. We selected current best-in-class
implementations that compile to native code so execution times are somewhat comparable. As

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple

0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

·
·
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

·
·
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s

2.
45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

·
·
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

·
·
·1
1.
68
s

·
·
·1
6.
43
s

·
·
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
a
p
se
d
ti
m
e

(l
o
w
er

is
b
ett

er
)

Koka multi-core OCaml Mp.Eff (Haskell) Ev.Eff (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the effect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe specific
aspects of effect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive effects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full first-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.

• counter. This benchmark implements a state effect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5× faster than Koka ś we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.Eff is about 4× slower as Koka, but Ev.Eff is 4× faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all effect handling code
away. When we remove the inline pragma on the state handler definition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned off; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10× slower than the optimized version.
• counter1. This is the same as counter but with one (unused) reader effect handler in between.
This time Koka is 1.5× faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:27

the tail-resumptive get and set operations are independent of any other handlers that are in
the context (as the handler is found at a constant offset in the canonical evidence vectors). In
contrast, multi-core OCaml always yields up one handler stack segment at a time and thus
each get and set operation needs to pass through the reader handler incurring a runtime cost.
• counter10. Same as counter1 but now with 10 reader handlers under the state handler. Again
Koka execution is (almost) the same as for counter1 but we can see that all implementations
without tail-resumptive optimization or evidence-passing get slower with each added handler
due to the linear search at each operation call.
The counter10 benchmark may seem artificial but we believe this pattern to be common in
practice. Many uses of effect handlers are to provide contextual state and environments; for
example, a type checker may have a current substitution, the type environment, a unique
identifier generator, etc. Such nested handlers may thus be quite common in general.
• mstate. This is the same as counter but now implements the state effect in a monadic way as
shown in Section 2.2. This means that the operations are no longer tail-resumptive since the
resumption is captured under a lambda. To reduce the execution time, mstate only performs
20M get and set operations (versus 200M in the tail-resumptive counter benchmark). This is a
worst-case for Koka as it needs to allocate a fresh resumption for each operation call, and it is
about 5× slower than multi-core OCaml here. Surprisingly, both Mp.Eff and Ev.Eff are faster
than Koka here ś again, the small benchmark can be optimized impressively well by GHC.
• nqueens. Calculates all solutions to the queens problem of size 12 using a choice effect to
elegantly express backtracking similar to the non-determinism example in Section 2.2.
Multiple resumptions are not directly supported in multi-core OCaml but we can use
Obj.clone_continuation to manually copy resumptions6. Here OCaml is about 5× slower
than Koka. We think that this is mostly due to the need to clone a resumption while in Koka
(and Haskell) the resumption function is shared over multiple resumes.
• triple. Finds Pythogorean triples by using multi-shot resumptions for backtracking, and the
performance is therefore very similar to that of nqueens.

To better quantify the impact of each optimization individually, we also measured the performance
of Koka with various optimizations disabled: (1) Koka using insertion ordered evidence (Section 2.5),
(2) without fast path bind inlining (Section 2.10), (3) without short-cut resumptions (Section 2.8), and
(4) without tail-resumptive optimization (Section 2.6).

As we can see in Figure 6, insertion-order shows the high linear search overhead in counter1 and
counter10, while short-cut resumptions offer a modest 10% improvement in mstate and nqueens.
Bind-inlining speeds up the counter benchmarks by 25% but has less effect on more allocation
intensive benchmarks. Finally, tail-resumptive optimization speeds up the counter benchmarks by
10×. As we argued before, most operations in practice are tail-resumptive and we consider this an
important optimization.

Overall, the results look promising and show our compilation strategy can be competitive with
specialized runtime implementations. With respect to evidence translation versus evidence passing,
it seems evidence translation can have the advantage in performance: even though Mp.Eff and
Ev.Eff have very similar implementations, the generalized evidence passing library is about twice
as slow as the Ev.Eff library over our benchmarks. We believe this is partly caused by the more
static nature of evidence in Ev.Eff and which makes it more amenable to compiler optimizations.

6It works for our particular benchmark, but generally multiple resumptions do not work reliably (as currently implemented)

for two reasons: the optimizer is not aware of multiple resumptions and may generate invalid code when optimizing across

function calls (this is a problem for libhandler as well [Leijen 2017a]), and cloning a continuation does not compose with

other operations that may not clone their own continuation (leading to a runtime crash).

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



71:28 Ninging Xie and Daan Leijen

6 RELATED WORK

Throughout the paper, we compare with the most directly related work [Sivaramakrishnan et
al. 2021; Xie et al. 2020; Xie and Leijen 2020] inline. Here we briefly discuss other related work.

In contrast to the monadic translation, Hillerström et al. [2017] describe a CPS based translation
of effect handlers. Similar to bubbling and evidence passing, this avoids capturing the evaluation
context by making all continuations explicit. Forster et al. [2019] show how delimited control,
monads, and effect handlers can all be expressed in terms of each other in an untyped setting.
However, their encoding of effect handlers in terms of shift-reset does not preserve typeability (due
to the lack of answer type polymorphism [Asai and Kameyama 2007; Danvy and Filinski 1989]).
In our work typing is preserved by using multi-prompt control with explicitly typed markers.
Kiselyov and Sivaramakrishnan [2017] present a direct embedding of effect handlers in OCaml
based on shift-reset (using the delimcc library), where they use an out-of-band technique [Kiselyov
et al. 2006] to work around the lack of answer type polymorphism. Kammar et al. [2013] also embed
effect handlers in OCaml using shift-reset, where they use a global mutable variable to hold the
current stack of handlers (which can be considered as the insertion-ordered evidence vector).
Capability passing [Brachthäuser et al. 2020; Schuster et al. 2020] is related to algebraic effect

handlers. It has the concept of handlers but each handler must be passed explicitly by name and
there is no search for the innermost handler when an operation is performed (but the handler
is an explicit argument). Schuster et al. [2020] show that capability based handlers can be effi-
ciently compiled using iterated CPS translation (however, the translation requires whole-program
monomorphisation). Generally, with capability passing, handler names are captured statically in a
resumption and, similar to evidence translation (EPT), one gets either stuck or the łwrongž results
for the examples in Section 2.12. Evidence passing avoids this problem by keeping the evidence
vector separate from general expressions and not capturing it as part of a resumption.

Zhang and Myers [2019] and Brachthäuser et al. [2020] (using capability passing as a target
calculus) develop łlexically scoped effect handlersž. It is argued that such handlers avoid accidental
capture of operations, and allow better modular reasoning for higher-order abstractions. However,
this approach deviates from the semantics of algebraic effect handlers as originally defined by Plotkin
and Pretnar [2013]. In particular, common source-to-source transformations are not always valid
in this setting. For example, inlining a lambda expression instead of passing it by argument may
change the semantics of an operation. In contrast to algebraic effect handlers there is also no
untyped dynamic semantics, and types are required to give semantics to a program.
Flatt and Dybvig [2020] extended Racket (and the Chez Scheme runtime) with support for

continuationmarks. These provide efficient access to key-valuemaps that are bound in the evaluation
context. As such, we can view these as a kind of built-in (tail-resumptive) state effect handler.

7 CONCLUSION

Generalized evidence passing is a promising technique for compiling effect handlers to standard
target platforms, and can offer competitive performance relative to specialized runtimes. Moreover,
our formalization explores the design space of implementation techniques and their trade-offs. We
hope our study will lead to further improvements of effect handlers implementations in the future.

ACKNOWLEDGMENTS

We would like to thank Taro Sekiyama, and other anonymous reviewers, for their detailed and
insightful feedback on earlier versions of the paper. We also thank Jonathan Brachthäuser his
feedback and proof reading of this paper.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.



Generalized Evidence Passing for Effect Handlers 71:29

REFERENCES

Kenichi Asai, and Yukiyoshi Kameyama. 2007. Polymorphic Delimited Continuations. In Proceedings of the 5th Asian

Conference on Programming Languages and Systems, 239ś254. APLAS’07. Singapore. https://doi.org/10.1007/978-3-540-

76637-7_16.

Arthur I. Baars, and S. Doaitse Swierstra. 2002. Typing Dynamic Typing. In Proceedings of the Seventh

ACM SIGPLAN International Conference on Functional Programming, 157ś166. ICFP’02. Pittsburgh, PA,

USA. https://doi.org/10.1145/581478.581494.

Andrej Bauer, and Matija Pretnar. 2015. Programming with Algebraic Effects and Handlers. J. Log. Algebr. Meth. Program. 84

(1): 108ś123. https://doi.org/10.1016/j.jlamp.2014.02.001.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Nov. 2020. Effects as Capabilities: Effect Handlers

and Lightweight Effect Polymorphism. Proc. ACM Program. Lang. 4 (OOPSLA). ACM. https://doi.org/10.1145/3428194.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effekt: Capability-Passing Style for Type-

and Effect-Safe, Extensible Effect Handlers in Scala. Journal of Functional Programming, number 30. Cambridge University

Press.

Olivier Danvy, and Andrzej Filinski. 1989. A Functional Abstraction of Typed Contexts. 89/12. DIKU, University of Copenhagen.

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, KC Sivaramakrishnan, and Leo White. 2017.

Effectively Tackling the Awkward Squad. In ML Workshop.

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil Madhavapeddy. Sep. 2015. Effective Concurrency

through Algebraic Effects. In OCaml Workshop.

R Kent Dybvig, Simon Peyton Jones, and Amr Sabry. 2007. A Monadic Framework for Delimited Continuations. Journal of

Functional Programming 17 (6). Cambridge University Press: 687ś730. https://doi.org/10.1017/S0956796807006259.

Kavon Farvardin, and John Reppy. 2020. From Folklore to Fact: Comparing Implementations of Stacks and Continuations. In

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, 75ś90. PLDI

2020. London, UK. https://doi.org/10.1145/3385412.3385994.

Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F. Duba. 1986. Reasoning with Continuations. In

Proceedings of the 1st Symposium on Logic in Computer Science (LICS), 131ś141.

Matthew Flatt, and R. Kent Dybvig. 2020. Compiler and Runtime Support for Continuation Marks. In Proceedings of the

41st ACM SIGPLAN Conference on Programming Language Design and Implementation, 45ś58. PLDI 2020. ACM, London,

UK. https://doi.org/10.1145/3385412.3385981.

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2019. On the Expressive Power of User-Defined Effects:

Effect Handlers, Monadic Reflection, Delimited Control. Journal of Functional Programming 29. Cambridge University

Press: 15. https://doi.org/10.1017/S0956796819000121.

Carl A. Gunter, Didier Rémy, and Jon G. Riecke. 1995. A Generalization of Exceptions and Control in ML-like Languages. In

Proceedings of the Seventh International Conference on Functional Programming Languages and Computer Architecture,

12ś23. FPCA ’95. ACM, La Jolla, California, USA. https://doi.org/10.1145/224164.224173.

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon

Zakai, and JF Bastien. 2017. Bringing the Web up to Speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation, 185ś200. PLDI 2017. Association for Computing

Machinery, New York, NY, USA. https://doi.org/10.1145/3062341.3062363.

Daniel Hillerström, and Sam Lindley. 2016. Liberating Effects with Rows and Handlers. In Proceedings of the 1st International

Workshop on Type-Driven Development, 15ś27. TyDe 2016. Nara, Japan. https://doi.org/10.1145/2976022.2976033.

Daniel Hillerström, and Sam Lindley. 2018. Shallow Effect Handlers. In 16th Asian Symposium on Programming Languages

and Systems (APLAS’18), 415ś435. Springer.

Daniel Hillerström, Sam Lindley, Bob Atkey, and KC Sivaramakrishnan. Sep. 2017. Continuation Passing Style for Effect

Handlers. In Proceedings of the Second International Conference on Formal Structures for Computation and Deduction.

FSCD’17.

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in Action. In Proceedings of the 18th ACM

SIGPLAN International Conference on Functional Programming, 145ś158. ICFP ’13. ACM, New York, NY,

USA. https://doi.org/10.1145/2500365.2500590.

Ohad Kammar, and Matija Pretnar. Jan. 2017. No Value Restriction Is Needed for Algebraic Effects and Handlers. Journal of

Functional Programming 27 (1). Cambridge University Press. https://doi.org/10.1017/S0956796816000320.

Oleg Kiselyov, and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects. In Proceedings of the 2015 ACM SIGPLAN

Symposium on Haskell, 94ś105. Haskell ’15. Vancouver, BC, Canada. https://doi.org/10.1145/2804302.2804319.

Oleg Kiselyov, Chung-chieh Shan, and Amr Sabry. 2006. Delimited Dynamic Binding. In Proceedings of the Eleventh ACM

SIGPLAN International Conference on Functional Programming, 26ś37. ICFP ’06. Association for Computing Machinery,

New York, NY, USA. https://doi.org/10.1145/1159803.1159808.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

https://doi.org/10.1007/978-3-540-76637-7_16
https://doi.org/10.1007/978-3-540-76637-7_16
https://doi.org/10.1145/581478.581494
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/3428194
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1145/3385412.3385994
https://doi.org/10.1145/3385412.3385981
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1145/224164.224173
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1017/S0956796816000320
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/1159803.1159808


71:30 Ninging Xie and Daan Leijen

Oleg Kiselyov, and KC Sivaramakrishnan. Dec. 2017. Eff Directly in OCaml. In ML Workshop 2016. http://kcsrk.info/

papers/caml-eff17.pdf. Extended version.

Daan Leijen. 2005. Extensible Records with Scoped Labels. In Proceedings of the 2005 Symposium on Trends in Functional

Programming, 297ś312.

Daan Leijen. 2017. Implementing Algebraic Effects in C: Or Monads for Free in C. Edited by Bor-Yuh Evan Chang. Program-

ming Languages and Systems, LNCS, 10695 (1). Springer International Publishing, Suzhou, China: 339ś363. APLAS’17.

Daan Leijen. Jan. 2017. Type Directed Compilation of Row-Typed Algebraic Effects. In Proceedings of

the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL’17), 486ś499. Paris,

France. https://doi.org/10.1145/3009837.3009872.

Daan Leijen. Nov. 2020. The Koka Programming Language. https://koka-lang.github.io.

Daan Leijen. May 2021. Effect Handler Benchmarks. https://github.com/daanx/effect-bench.

Paul Blain Levy. 2006. Call-by-Push-Value: Decomposing Call-by-Value and Call-by-Name. Higher-Order and Symbolic

Computation 19 (4). Springer: 377ś414.

Michel Parigot. 1992. 𝜆𝜇-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In Logic Programming and

Automated Reasoning, edited by Andrei Voronkov, 190ś201. Springer Berlin Heidelberg.

Gordon D. Plotkin, and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures 11 (1):

69ś94. https://doi.org/10.1023/A:1023064908962.

Gordon D. Plotkin, andMatija Pretnar. Mar. 2009. Handlers of Algebraic Effects. In 18th European Symposium on Programming

Languages and Systems, 80ś94. ESOP’09. York, UK. https://doi.org/10.1007/978-3-642-00590-9_7.

Gordon D. Plotkin, and Matija Pretnar. 2013. Handling Algebraic Effects. In Logical Methods in Computer Science, volume 9.

4. https://doi.org/10.2168/LMCS-9(4:23)2013.

Matija Pretnar. Dec. 2015. An Introduction to Algebraic Effects and Handlers. Invited Tutorial Paper. Electron. Notes Theor.

Comput. Sci. 319 (C). Elsevier Science Publishers: 19ś35. https://doi.org/10.1016/j.entcs.2015.12.003.

Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen. 2021. Perceus: Garbage Free Reference Counting with

Reuse. In 42rd ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI ’21.

Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff. 2019. Monad Transformers and Modular Algebraic Effects:

What Binds Them Together. In Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell, 98ś113. Haskell

2019. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3331545.3342595.

Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. Aug. 2020. Compiling Effect Handlers in Capability-

Passing Style. Proc. ACM Program. Lang. 4 (ICFP). ACM. https://doi.org/10.1145/3408975.

KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting Effect

Handlers onto OCaml. In 42rd ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI ’21.

Martin Sulzmann, Manuel Chakravarty, Simon Peyton Jones, and Kevin Donnelly. Jan. 2007. System F with Type Equality

Coercions. In ACM SIGPLAN International Workshop on Types in Language Design and Implementation (TLDI’07), 53ś66.

ACM press.

Herb Sutter. 2019. Zero-Overhead Deterministic Exceptions: Throwing Values. http://www.open-std.org/jtc1/sc22/

wg21/docs/papers/2019/p0709r4.pdf. ISO/IEC WG2.1, P0709R4.

Nicolas Wu, and Tom Schrijvers. 2015. Fusion for Free: Efficient Algebraic Effect Handlers. In Proceedings of the 12th

International Conference on Mathematics of Program Construction, 9129:302. MPC 2015. Springer, Königswinter, Germany.

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in Scope. In Proceedings of the 2014 ACM SIGPLAN

Symposium on Haskell, 1ś12. Haskell ’14. Göthenburg, Sweden. https://doi.org/10.1145/2633357.2633358.

Ningning Xie, Jonathan Brachthäuser, Phillip Schuster, Daniel Hillerström, and Daan Leijen. Aug. 2020. Effect Han-

dlers, Evidently. In 25th ACM SIGPLAN International Conference on Functional Programming (ICFP’2020). Jersey City,

NJ. https://doi.org/10.1145/3408981.

Ningning Xie, and Daan Leijen. Aug. 2020. Effect Handlers in Haskell, Evidently. In Proceedings of the 2020 ACM SIGPLAN

Symposium on Haskell. Haskell’20. Jersey City, NJ. https://doi.org/10.1145/3406088.3409022.

Ningning Xie, and Daan Leijen. Mar. 2021a. Mp.Eff: Efficient Effect Handlers Based on Evidence Passing Semantics. https://

github.com/xnning/MpEff.

Ningning Xie, and Daan Leijen. Mar. 2021b. Generalized Evidence Passing for Effect Handlers. MSR-TR-2021-5. Microsoft

Research. Extended version with proofs.

Yizhou Zhang, and Andrew C. Myers. Jan. 2019. Abstraction-Safe Effect Handlers via Tunneling. Proc. ACM Program. Lang.

3 (POPL). ACM. https://doi.org/10.1145/3290318.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

http://kcsrk.info/papers/caml-eff17.pdf
http://kcsrk.info/papers/caml-eff17.pdf
https://doi.org/10.1145/3009837.3009872
https://koka-lang.github.io
https://github.com/daanx/effect-bench
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.2168/LMCS-9%25284:23%25292013
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3408975
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0709r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0709r4.pdf
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/3408981
https://doi.org/10.1145/3406088.3409022
https://github.com/xnning/MpEff
https://github.com/xnning/MpEff
https://doi.org/10.1145/3290318

	Abstract
	1 Introduction
	2 Overview
	2.1 Algebraic Effects
	2.2 Examples
	2.3 Compiling Effect Handlers
	2.4 Multi-Prompt Semantics
	2.5 Evidence Passing Semantics
	2.6 Tail-Resumptive Operations
	2.7 Bubbling Yields
	2.8 Short-cut Resumptions
	2.9 Monadic Translation
	2.10 Bind-Inlining and Join-Point Sharing
	2.11 Compiling to C
	2.12 Generalized Evidence Passing
	2.12.1 Non-Scoped Resumptions
	2.12.2 Non-Scoped Resumptions with Tail-Resumptive Optimization


	3 Semantics
	3.1 Multi-Prompt with Evidence Passing Semantics
	3.1.1 Operational Semantics
	3.1.2 Typing Rules
	3.1.3 Correctness, Preservation and Progress

	3.2 Tail-Resumptive Optimization
	3.2.1 Operational Semantics
	3.2.2 Typing
	3.2.3 Correctness, Preservation and Progress


	4 Translation to Polymorphic Lambda Calculus
	4.1 Bubbling Yields
	4.2 A Multi-prompt Delimited Control Monad
	4.3 Monadic Translation
	4.4 Semantics Preserving

	5 Benchmarks
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

