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Abstract 

In end-to-end multilingual speech recognition, the hypotheses 

in one language could include word tokens from other 

languages. Language confusions happen even more frequently 

when language identifier (LID) is not present during inference. 

In this paper, we explore to reduce language confusions without 

using LID in model inference by creating models with multiple 

output heads and use sequence probability to select the correct 

head for output hypotheses. We propose head grouping to 

merge several language outputs into one head to save runtime 

cost. Head groups are decided by the distances among language 

clusters learned through language embedding vectors to 

separate confusable languages apart. We further propose 

prediction network sharing for languages from the same family. 

By jointly applying head grouping and prediction network 

sharing, training data from the same family languages is better 

shared while confusable languages are divided into different 

heads to reduce language confusions. Our experiments 

demonstrate that our multilingual transformer transducer 

models based on multi-head outputs achieve on average 7.8% 

and 10.9% relative word error rate reductions without LID 

being used in inference from one-head baseline model with 

affordably increased runtime cost on 10 European languages. 

Index Terms: multilingual speech recognition, transformer 

transducer, language ID 

1. Introduction 

With several thousands of spoken languages in the world, the 

language expansion of multilingual models in Automatic 

Speech Recognition (ASR) has been an interesting topic that 

attracts lots of efforts from both industry and academia [1, 2, 3, 

4, 5, 6, 7, 8, 9]. In hybrid ASR models, effective ways to build 

multilingual acoustic models (AMs) include hidden layer 

sharing [1, 2, 3] and multitask learning [4]. However, because 

of dedicated output layers for each individual language, hybrid 

multilingual models have significantly increased model size 

and runtime cost, making them difficult to be deployed in the 

industrial applications. Therefore, using multilingual models as 

seed models to boost the performance of low resource 

languages [4] has become an effective and popular way in 

industrial production shipping. 

Recently, end-to-end (E2E) models have made rapid 

progress in ASR area [10, 11, 12, 13, 14, 15, 16]. E2E 

multilingual models have attracted lots of interests since they 

make ASR model training and inference even simplified. There 

are already lots of efforts to develop E2E multilingual models 

based on sequence-to-sequence models (S2S) [5, 6, 7, 8, 9], 

RNN transducer (RNN-T) models [17], and transformer 

transducer models [18]. Compared to hybrid models, E2E 

models are more capable of modeling the distributions of 

multiple languages with comparable or even better ASR 

performance than monolingual baseline models [5, 6, 7, 8, 17, 

18, 19, 20]. Unlike a hybrid model that has one output head for 

each language, an E2E model only uses one output head [5, 6, 

7, 8, 9, 17, 18, 19, 20] to cover all languages by passing a 

language identifier (LID) in form of a one-hot or learnable 

embedding vector to distinguish different languages.  

However, in lots of applications, the ASR system is 

required to recognize users’ speech without knowing in 

advance what language the user is speaking. Under such 

situation, LID is not available to the system. There has been 

little work, if any, to explore multilingual E2E models without 

manually feeding in LID. Instead of manually inputting LID, 

[19, 20] inferred LID as an embedding vector and attached it to 

the network input features based on RNN-T models. Since the 

language classifiers were only trained with acoustic features 

without any language text information, the inferred LID in [19, 

20] was susceptible to both acoustic variations and language 

pronunciation similarities. Therefore, the improvement was 

limited. As shown in [6, 7, 8, 17, 18, 19, 20], there is a 

significant gap between the multilingual models trained and 

decoded with and without LID, because the latter system loses 

the LID guide to distinguish between languages. In addition, [5] 

proposed an attention-based S2S multilingual architecture that 

added language indices at the beginning of text data in training. 

During inference, instead of using LID as input, the system 

outputs both word hypotheses and LID. However, it remains 

unclear how the proposed idea in [5] compared with the case 

using LID as input since there was no related result presented 

in the paper.   

      In this paper, we propose multilingual transformer 

transducer models without LID input during inference in order 

to achieve the goal of ASR without knowing the users’ 

language in advance. Because there is no LID guide, word token 

hypotheses in one language can be misrecognized as similar 

word tokens from other languages, which is defined as language 

confusions. For example, the Spanish word “sí” often appears 

in Italian hypotheses as a substitution error of the Italian word 

“sì”. As we define the output of a model as its head, instead of 

building one-head multilingual models, our strategy is to 

develop multi-head models that distributes confusable 

languages into different heads to reduce language confusions as 

much as possible. In order to save runtime cost, we reduce the 

model heads by head grouping based on distances among 

learned language clusters. We further propose to have the same 

family languages share the same prediction network to achieve 

even better results. Finally, we use sequence-level log 

probabilities to select hypotheses from the multi-head models 

during decoding, which not only uses acoustic information [19, 

20], but integrate language text embedding to make better 

output decision. 

      The rest of the paper is organized as follows. In Section 2, 

we describe the proposed methods for building high quality 



multilingual Transformer transducer models. The experiment 

results on 10 European (EU10) languages with 75 thousand 

hours training data are presented and analyzed in Section 3.  

Finally, in Section 4 we conclude and discuss our future work. 

2.   Multilingual Transformer Transducer 

2.1. Transformer transducer model 

A transducer model [11] has three components: an acoustic 

encoder network, a label prediction network, and a joint 

network as shown in Figure 1. Transducer models can use 

different types of models as encoders such as LSTMs in RNN-

T models [11] and transformers [15, 16, 18] in transformer 

transducer models as shown in Figure 1. Each transformer 

block in the encoder network is constructed from a multi-head 

self-attention layer followed by a feed-forward layer. On the 

right side of Figure 1, the components of a transformer block 

are illustrated. The loss function of transducer models is the 

negative log posterior of output target label 𝒚  given input 

acoustic feature 𝒙 and is defined as 

                             𝐿 = −log𝑃(𝒚|𝒙)                                 (1) 

which is calculated by the forward-backward algorithm 

described in [10]. 

 

Figure 1: Architecture of transformer transducer models 

2.2. One head vs. multi-heads 

We refer to a softmax layer as the head of a multilingual model. 

In multilingual E2E models, multiple languages can share one 

head as their output layer [5, 6, 7, 8, 9, 17, 18, 19, 20] by 

merging the tokens from all languages into a union set as shown 

in Figure 2(a). Based on sentence pieces [21], language tokens 

among similar languages such as EU10 can be highly 

overlapped, which makes the model super compact as a 

monolingual model. However, similar tokens from different 

languages lead to the language confusions that make recognized 

hypotheses in one language include tokens from other 

languages. Therefore, as extra input features, LIDs are 

commonly used to help multilingual E2E models distinguish 

among different languages and improve model performance [6, 

7, 8, 17, 18, 19, 20]. E2E models can also create a specific head 

for each language to effectively reduce the confusion between 

languages. As shown in Figure 2(b), language 1, 2, 3, 4 (L1, L2, 

L3, L4) have their own output head.  

2.3. Head grouping 

Even though assigning a specific head to each language can 

greatly reduce language confusions in multilingual models, it 

leads to much higher computational and memory cost since 

decoding needs to be performed on every head. Therefore, in 

order to save runtime cost with reduced the number of heads, 

we divide languages into several head groups, and languages in 

the same group share one head while they should be distinct 

from each other as much as possible. Therefore, the head 

grouping aims to gather less confusable languages together and 

is decided by the linear distance based on visible language 

embedding cluster plot with t-SNE [22]. For more detail 

regarding to language embedding clusters, please refer to 

Section 3.2. In Figure 3(a), since L1 and L2 are languages that 

have larger linear cluster distance, they are grouped together to 

share one head. Likewise, L3 and L4 share another head. 

2.4. Prediction network sharing for family languages 

For low and medium resource languages, one advantage of 

multilingual models is to share data among different languages. 

In E2E models, while encoders share acoustic variations, 

prediction networks can share tokens from different languages, 

especially for languages under the same language family [23] 

when sentence pieces are used as output units. Instead of using 

one prediction network for all languages, we let languages from 

the same language family share one prediction network. 

Following our head grouping strategy in Section 2.3, family 

languages sharing the same prediction network could be 

assigned to different heads according to their linear cluster 

distance. Note that although we encourage better data sharing 

for prediction network training, we still keep confusable 

languages apart at model output layer to reduce language 

confusions. For example, in Figure 3(b), since L1 and L3 are 

from the same language family, they share the same prediction 

network, but are grouped into different heads to avoid 

confusing output tokens with those from similar languages. The 

same idea applies for L2 and L4. Finally, since the number of 

languages could be more than the number of heads, languages 

from the same family could be grouped into the same head 

depending on their linear cluster distance. 

 

Figure 2: (a) one-head model; (b) multi-head model 

 

Figure 3: (a) head grouping; (b) head grouping and prediction 

network sharing for languages from the same family 

2.5. Head selection for outputs 

Since there are several heads in our multilingual transformer 

transducer models, without passing LID as the input, we need 

to perform decoding on every head and select the correct one as 

final outputs. Therefore, we select the hypothesis with the 

highest sequence probability as the correct one for a specific 

language. The sequence-level log probability is defined as  

𝑆𝑐𝑜𝑟𝑒 =   𝑃(ℎ𝑒𝑎𝑑) ∗ 𝑚𝑎𝑥
𝐵

log 𝑃𝑟(𝑦)                     (2) 

where 𝑃𝑟(𝑦) is the probability of emitting output sequence 𝑦 in 

beam search B, and 𝑃(ℎ𝑒𝑎𝑑) is probability of head group that 

is a uniform distribution. Unlike [19, 20] that the inferred LID 

was only trained with acoustic features, sequence-level 

decoding posterior probability in transducer models integrates 



both acoustic and language text embedding information so that 

it could make better decision to select correct language 

hypotheses as final outputs. 

3. Experiments 

3.1. Experiment setups 

3.1.1. Languages and data 

We develop our multilingual transformer transducer models for 

EU10 languages: German (DE), Greek (EL), English (EN), 

Spanish (ES), French (FR), Italian (IT), Dutch (NL), Polish 

(PL) Portuguese (PT), and Romanian (RO). For all these 

languages, Both training and test data is transcribed and 

anonymized with personally identifiable information removed. 

Test data includes both in-domain data sampled from the same 

distribution as training, and also out-of-domain data that is 

different from training. The training and test data amount per 

language is summarized in Table 1.   

Table 1: Train and test data per language (in hours) 

Language Train Test 

DE 4,894 38.1 

EL 2,191 20.2 

EN 38,592 207.6 

ES 7,587 33.1 

FR 5,957 33.3 

IT 6,581 19.2 

NL 883 6.1 

PL 2,115 5.1 

PT 4,304 16.6 

RO 1,902 13.0 

Total 75,007 392.3 

3.1.2. Model structure and training configuration 

In our transformer transducer models, 18 transformer blocks 

with 320 hidden nodes, 8 attention heads, and 2048 feedforward 

nodes are used as the encoder; 2 LSTM layers with 1024-

dimensional embedding and hidden layer are used in the 

prediction network. All our experiments use 80-dimensional 

log-Mel filterbanks with 25 millisecond (ms) windows and 

10ms shift. Two convolutional layers are applied to get features 

with 40ms sampling rate. The input acoustic feature sequence 

is segmented into chunks with a chunk size of 18 in our 

experiments and chunks are not overlapped. Therefore, the 

maximum lookahead is 720ms. In addition, we also apply 4 left 

chunks to leverage history acoustic information in our training. 

An effective mask strategy to truncate history and allow limited 

future lookahead information has been designed as in [24]. All 

the models are trained from scratch and with mixed precision 

for efficient training. The learning rate warmup strategy is the 

same as in [25]. Each training mini-batch consists of utterances 

from all languages, sampled according to their natural training 

data distribution. Around 10k sentence pieces [21] from all 

speech transcribed text data of EU10 are used as token units in 

all experiments. 

3.2. Results 

3.2.1. Baseline multilingual models with and without LID 

We train a multilingual model as the baseline for our 

experiments by just mixing all training data from EU10 without 

passing LID. We then train another multilingual model with the 

same model architecture, but append a 10-dimensional oracle 

LID one-hot vector with acoustic features as input. Table 2 

shows the multilingual model trained and decoded with LID is 

19.2% significantly better than the model without LID being 

used in training and decoding, especially on the languages that 

have mismatch between training and test data such as FR, IT, 

NL and PL. In Table 3, we show examples of language 

confusion errors from Italian to Spanish (marked with red color) 

for the model without LID. These confusion errors are able to 

be fixed by the LID model in Table 3. 

3.2.2. Head grouping 

We separate confusable languages into different groups to 

avoid language confusions. The visible language clusters based 

on learned embeddings from the prediction network of baseline 

multilingual model without LID are demonstrated using t-SNE 

[22] in Figure 4(a). We maximize the linear distance among 

language clusters and divide them into two groups as 1) DE, 

NL, IT, PT and EL (green shape); and 2) EN, PL, ES, FR, and 

RO (blue shape) as shown in Figure 4(b), and three groups as 

1) EN, ES, and EL (blue shape); 2) PT, NL, and FR (green 

shape); and 3) IT, PL, DE, and RO (brown shape) as shown in 

Figure 4(c). In Table 2, word error rates (WERs) of multilingual 

models are shown with two heads (2H) for two language groups 

as in Figure 4(b), three heads (3H) for three language groups as 

in Figure 4(c), and ten heads (10H). All these 2H, 3H and 10H 

models are decoded with provided oracle LID. 10H model is 

1.9% relatively better while 2H and 3H models are 16.0% and 

8.3% relatively worse than the baseline LID model. 10H model 

is most effective to reduce language confusions. As discussed 

in Section 2.5, without passing LID as input during inference, 

we also evaluated the multi-head models with sequence-level 

log probabilities to select correct head for output hypotheses. In 

Table 2, ten head model with probability selection (10H prob.), 

two head model with probability selection (2H prob.), and three 

head model with probability selection (3H prob.) are 11.4%, 

7.8%, and 3.1% better than the baseline model without LID, 

respectively.

Table 2: WERs for EU10 based on different multilingual models 

Model DE EL EN ES FR IT NL PL PT RO Avg 

Baseline without LID 18.2 17.8 10.7 19.8 27.0 21.6 24.4 24.0 14.1 15.6 19.3 

Baseline with LID 16.2 17.5 10.5 16.1 17.4 15.3 17.7 17.7 13.0 14.6 15.6 

2H 17.2 17.4 10.4 17.1 23.6 19.2 23.0 25.0 13.8 15.0 18.1 

3H 16.3 17.2 10.3 16.7 23.4 14.8 21.7 20.6 13.3 14.8 16.9 

10H 16.0 17.1 10.2 15.6 19.0 13.7 17.7 17.4 12.7 13.7 15.3 

2H prob. 17.7 17.5 10.6 18.0 24.2 20.0 23.6 26.1 13.4 15.1 18.7 

3H prob. 17.0 17.4 10.6 18.2 23.9 16.3 23.2 22.4 14.0 14.8 17.8 

10H prob. 18.0 18.1 11.4 18.4 21.4 16.5 19.4 19.5 14.3 13.8 17.1 

3P+3H 16.1 16.4 10.0 15.8 22.0 13.9 20.3 19.7 12.9 14.2 16.1 

3P+3H prob. 16.9 16.5 10.4 17.1 22.6 15.6 21.9 21.8 13.7 14.3 17.1 



 

Figure 4: (a) language clusters; (b) two head groups; (c) three head groups 

3H prob. model is clearly better than 2H prob. model. Although 

10H prob. model gets better averaged WER than 3H prob. 

model, on several individual languages such as DE, EL, EN, IT 

and PT, 3H prob. model obtains better WERs. In addition, 10H 

prob. model has much higher computational and memory cost 

in runtime. Therefore, 3H prob. model is the best choice with a 

good balance between runtime cost and model performance. By 

the way, we also jointly trained one-head multilingual model 

and a LID classifier with multi-task learning to infer LID during 

decoding as in [20], but got much worse results than our current 

method.  

Table 3: Language confusion examples for Italian 

 

3.2.3. Prediction network sharing for family languages 

We further improve 3H model with three shared prediction 

networks. Languages share the same prediction network if they 

are in the same language family [23]. The three groups of 

languages that share the same prediction network are 1) EN, 

DE, NL, and FR; 2) PT, IT, ES, RO, and PL; and 3) EL. 

Actually, FR should have been in the second group according 

to language family [23]. However, from Figure 4(a), FR cluster 

is closer to the languages in the first group. In addition, EL has 

different characters from other 9 languages, and therefore form 

a group by itself. We integrate the prediction network sharing 

with head grouping in Section 3.2.2 to construct a model with 

three prediction networks and three heads (3P+3H). All the 

three prediction networks have the same model structure as 

described in Section 3.1.2. In addition, languages that share the 

same prediction network could also be grouped into the same 

head such as NL and FR since their clusters are far away from 

each other as shown in Figure 4(c). In Table 2, 3P+3H model 

further improves 3H model by 4.7% relatively, and is only 3.2% 

relatively worse than baseline LID model. 3P+3H model with 

probability selection (3P+3H prob.) improves 3.9% relatively 

over 3H prob. model, and is 10.9% relatively better than 

baseline model without LID. 

3.2.4. Runtime cost discussion and head selection accuracy 

10H prob. model has higher runtime computational cost and 

language confusions than 3H prob. model since it has to do ten 

decoding while 3H prob. model only runs three decoding in 

parallel. In Table 4, 10H prob. model obtains 90.2% accuracy 

that is absolute 2.6% worse than 3H prob. model, which 

explains 10H model is 9.5% better than 3H model, while 10H 

prob. model is only 3.9% better than 3H prob. model. In 

addition, 3P+3H prob. model needs to run 9 decoding in 

parallel, but it obtains 92% accuracy that is much better than 

10H prob. model, which means better data sharing for 

prediction networks can help reduce language confusions.  In 

terms of memory footprint, 3H model, 3P+3H model, and 10H 

models have 112.5, 132.5, and 212.5 million float parameters, 

respectively. Overall, 3P+3H prob. model has less runtime cost 

than 10H prob. model but with same averaged WER and better 

scalability for multilingual language extension.     

Table 4: Accuracies of head selection for outputs 

Language 10H prob. 3H prob. 3P+3H prob.   

DE 86.9 92.3 91.2 

EL 92.7 97.3 97.4 

EN 88.8 92.9 92.9 

ES 85.5 88.5 88.7 

FR 88.0 92.9 91.7 

IT 88.3 92.3 91.2 

NL 91.4 87.9 86.7 

PL 94.5 94.0 92.6 

PT 87.6 91.1 90.2 

RO 98.2 98.8 97.8 

Avg 90.2 92.8 92.0 

4. Conclusions and Future Work 

In this paper, we explored multi-head transformer transducer 

multilingual models to reduce language confusions without 

using LID in model training. We proposed to: 1) apply head 

grouping to separate confusable languages into different heads; 

2) apply family language prediction network sharing to 

encourage better data sharing for languages in the same family; 

3) apply sequence-level probability to automatically select the 

right head for output hypotheses. Our best models achieved 

7.8% and 10.9% relative WER reductions from baseline model 

without LID on EU10. In the future, we plan to further improve 

head selection accuracies for 3H and 3P+3H prob. models in 

order to achieve even better model performance. 
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