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ABSTRACT

With its strong modeling capacity that comes from a multi-head
and multi-layer structure, Transformer is a very powerful model for
learning a sequential representation and has been successfully ap-
plied to speech separation recently. However, multi-channel speech
separation sometimes does not necessarily need such a heavy struc-
ture for all time frames especially when the cross-talker challenge
happens only occasionally. For example, in conversation scenarios,
most regions contain only a single active speaker, where the separa-
tion task downgrades to a single speaker enhancement problem. It
turns out that using a very deep network structure for dealing with
signals with a low overlap ratio not only negatively affects the infer-
ence efficiency but also hurts the separation performance. To deal
with this problem, we propose an early exit mechanism, which en-
ables the Transformer model to handle different cases with adaptive
depth. Experimental results indicate that not only does the early exit
mechanism accelerate the inference, but it also improves the accu-
racy.

Index Terms— speech separation, multi-channel microphone,
Transformer, deep learning

1. INTRODUCTION

Speech separation plays a vital role in front-end speech processing,
aiming to handle the cocktail party problem. Starting from deep
clustering (DC) [1, 2] and permutation invariant training (PIT) [3, 4],
a variety of separation models have been shown effective in separat-
ing overlapped speech [5, 6]. Recently, the deep learning methods
have been rigorously explored for better speech separation capabil-
ity, including dual-path RNN [7], Conv-tasnet [8], and deep CASA
[9] employing RNN and CNN structures. With the success of Trans-
former model in speech community [10, 11], Transformer [12] and
its variants [13] have successfully been applied to this task.

The Transformer model integrates a stack of self-attention layers
to model the speech representation. Prior work shows that a deeper
structure yields superior performance [14]. For example, for auto-
matic speech recognition (ASR) tasks, a common setting is to use
twelve [15] or more layers [16] in the encoder. However, continuous
speech separation (CSS), which we are addressing, is a simpler task
especially with a multi-channel setting. Multiple microphones com-
bine to provide rich spatial information that allows simple models
to perform the separation job with high accuracy. Applying a deep
Transformer for the multi-channel CSS might be overkill for frames
with only one active speaker, resulting in two problems: 1) Real-time
inference is usually preferred for product deployment, especially for
resource-constrained devices. The Transformer has a heavy run-
time cost due to its deep encoder. Hence, it is necessary to speed
up the execution of the Transformer-based speech separation mod-
els. 2) The Transformer model may suffer from the “overthinking”
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problem [17] as it contains too many encoder layers. We assume
that a shallow Transformer encoder is sufficient to handle the non-
overlapped speech well and that a deep Transformer model could
potentially degrade the speech estimation.

Inspired by the depth-adaptive inference method [17], we pro-
pose to mitigate these problems with an Early Exit mechanism,
which essentially makes predictions at an earlier layer for less over-
lapped speech while using higher layers for speech with a high
overlap rate. We believe that the first few layers are sufficient to
handle the less overlapped speech and thus an early exit scheme
reduces the overall runtime cost. When the input contains a lot of
overlaps, higher layers are automatically triggered to perform more
complex analysis and generate more accurate separation results.
Specifically, we introduce a mask estimator to each transformer
layer and dynamically stop the inference if the predictions from two
consecutive layers are sufficiently similar, based on the normalized
Euclidean distance of the two prediction matrices.

We conduct experiments on the LibriCSS dataset [18]. The ex-
perimental results show that a stricter threshold (hard to exit) leads to
better performance on large-overlapped utterances and worse perfor-
mance on the small-overlapped utterances, which is consistent with
our intuition. With threshold tuning, the proposed model improves
the separation quality of the small-overlapped speech while keeping
the performance on large-overlapped ones. Moreover, the early exit
mechanism enables the Transformer model to achieve better separa-
tion performance while 2x the inference speed.

2. APPROACH

2.1. Problem Formulation

Given a continuously provided signal including multiple talkers,
CSS aims to retrieve individual constituting utterances and route
them to one of its output channels in such a way that each output
signal no longer contains overlapped utterances. This is typically
performed by applying a sliding window to the input signal and
performing the separation at each window position. Within each
window, a separation model generates a fixed number of outputs.

Let y(t) denote the mixed signal and x(¢) the s-th individual
target signal, where ¢ is the time index. The mixed signal is modeled
as follows:

y(t) = > zo(t). (1

We also denote their short-time Fourier transforms (STFTs) as
Y (¢, f) and X, (¢, f), respectively. f denotes frequency domain.
When C microphones are available, the model input consists of
a concatenation of the STFT features of the first channel and the
inter-channel phase difference between the i-th channel and the first
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Fig. 1: The architecture of Early Exit Transformer. We attach a mask estimator to each Transformer encoder layer and dynamically stop

inference if the predictions are similar between two consecutive layers.

channel. Thus, the features may be represented as
Y(t,f) =Y'(t, f) @IPD(2) ... S IPD(C) 2)

where Y (t, f) denotes the STFT of the i-th channel, IPD(i) =
0'(t, f) — 0*(t, f), and O°(t, f) is the phase of Y (¢, f). Each fea-
ture dimension is normalized along the time axis.

Following [19, 20], instead of directly computing the STFT of
the individual signals [X1(¢, f)...Xs(¢, f)], we estimate a group
of masks M(¢, f) = [Mui(¢, f)...Mg(t, f)] with a deep learning
model. Then, for the s-th individual signal, X, (¢, f) is obtained
either by beamforming or by masking, i.e., Ms(t, f) © Y'(¢, f)
where © is the elementwise product.

In the following section, we will first introduce the Transformer
model for speech separation and then our Early Exit Transformer
network.

2.2. Transformer Model

As shown in the left side of Figure 1, We estimate the masks from
the input mixed signals with the Transformer model [21] which is
composed of a stack of identical encoder layers. Each layer con-
sists of a multi-head self-attention module and a position-wise fully
connected feed-forward module.

The input of the Transformer model hy is a linear conversion of
the input Y (¢, f) with a feed-forward module FFN(-):

hg = FEN(Y (¢, f)). (3)

Given the input, h;_1, of the ¢-th layer, the output h; is calcu-
lated as

h) = layernorm(h;_1 + MultiHeadAttention(h;_1)) 4)
h; = layernorm(h; + FFN(h})), 6)

where MultiHeadAttention(-) and layernorm(-) denote the multi-
head self-attention module and the layer normalization, respectively.

The multi-head self-attention module is implemented with rela-
tive position embedding as follows:

Multihead(hifl) = [Hl . Hdhead]whead (6)

Q; (K, + pos)” ) v, @

where H,; = softmax
i ( Vg

where dj, is the hidden layer dimensionality, and djeqq is the num-
ber of attention heads. Qj, Kj, V; are linear conversions of the in-
put h;_; with different parameter matrices. pos = {relmn.} €
RMXMxdr i the relative position embedding [22], where M is the
maximum chunk length, and rel,,, , € R% represents the offset of
the m-th vector in Q; and the n-th vector in Kj.

Given the output, hy, of the final layer, we obtain the masks
M(t, f) with Estimator’(-), an estimator consisting of a feed-
forward module and a sigmoid activation function, i.e.,

M(t, f) = Estimator’ (h;) (8)
= sigmoid(FFN(hy)). )

2.3. Early Exit Transformer

Despite the promising performance, the Transformer model with
deep layers is prone to “heavy runtime cost” and “overthinking” in
the speech separation task. To overcome this, based on the assump-
tion that the first few layers are sufficient to handle less overlapped
speech, we propose an Early Exit Transformer model (see Fig. 1) to
estimate the masks by dynamically choosing the number of layers to



use. Specifically, we attach a layerwise estimator, Estimator®(-), to
the output of each Transformer encoder layer h;, based on which,
we can predict the masks M"*(¢, f) at each internal layer:

M’ (¢, f) = Estimator’ (h;) (10)
sigmoid(FFN(h;)). (11)

During the inference, given the output of the i-th layer with ¢ > 1,
we calculate the normalized Euclidean Distance dist’ between the
estimated masks of the (i-1)-th layer and the -th layer:

mean;, s (Euclidf:anDistance(Mi*1 (t, f), M'(t, f))) (12)

Given a pre-defined threshold 7, if dist’ < 7 for the two consecu-
tive layers, we terminate the inference process and output M* (¢, f))
as the final prediction masks. Instead of performing the inference
using all the encoder layers, the early exit mechanism makes the
predictions with the first few layers for the small-overlap segments,
which can accelerate the inference process and potentially reduce the
“overthinking” problem.

During the training, besides the parameters for the Transformer
model, the Estimators attached to the internal layers are also trained
to predict the masks from the hidden states. Therefore, for each
Estimator, we apply PIT [3, 4] to minimize Loss’ which is the Eu-
clidean distance between the reference and the mask predicted by
Estimator®(-). The final loss is the weighted average function, fol-
lowing [17], as

I i
. - Loss
Logs = 2=t {7 Loss" (13)
Dzl
where —7— is used as the weight for the loss of the i-th estimator,

Yl

Estimator’. A deeper layer is assigned with a larger weight in the
loss computation. The intuition behind this is that the more com-
plex the model becomes, the more sensitive it gets to prediction er-
rors. Moreover, while the first layer receives the gradients from all
layers, only the gradients of [i, I] layers back-propagate to the i-th
layer. Thus, giving a larger loss weight to a deeper layer stabilizes
the training process.

3. EXPERIMENT

3.1. Datasets

We train the models with 219 hours of artificially reverberated and
mixed speech signals sampled randomly from WSJ1 [23]. Follow-
ing [24], we include four different mixture types in the training data.
Each training mixture is generated by randomly picking one or two
speakers from the WSJ1 dataset and convolving each with a 7 chan-
nel room impulse response (RIR) simulated with the image method
[25]. Then, we rescale and combine them with a source energy ratio
between -5 and 5 dB. Simulated isotropic noise [26] is also added
at a 0-10 dB signal to noise ratio. The average overlap ratio of the
training set is around 50%.

We evaluate the models on the LibriCSS dataset [18], which
consists of 10 hours of concatenated and mixed LibriSpeech utter-
ances played and recorded in a meeting room. We test our model
performance under a seven-channel setting. We conducted both the
utterance-wise evaluation and continuous input evaluation (refer to
[18] for the two evaluation schemes).

3.2. Implementation Details

Our baseline speech separation models are BLSTM and vanilla
Transformer. The BLSTM model consists of three BLSTM layers
with 1024 input dimensions and 512 hidden dimensions, resulting in
21.80M parameters. Three sigmoid projection layers are appended
to estimate three masks, two for speakers and one for noise. We
use the Adam optimizer [27] to train the BLSTM model with the
learning rate initialized to le-3. The learning rate is decreased by
half if the validation loss stops decreasing for 2 epochs. Training
is performed for 100 epochs. The Transformer model consists of
16 Transformer encoder layers with 4 attention heads, 256 attention
dimensions and 2048 FFN dimensions, resulting in 21.90M param-
eters. We use the AdamW optimizer [28] to train the Transformer
model with the weight decay set to 1e-2. The learning rate is le-4
and the warm-up learning schedule with linear decay is used, where
the warm-up step is 10,000, and the training step is 260,000.

Our Early Exit Transformer model is implemented with the
same Transformer encoders as the baseline Transformer model. The
model is optimized with the weighted average loss (as described in
Section 2.3) with the same hyperparameters as the baseline. Dur-
ing inference, we vary the early exit threshold in {0, 3e-5, 5e-5,
8e-5, le-4, 1.5e-4, 2e-4, oo} to control the exit layer and thus the
speed-up ratio. We evaluate the speech separation accuracy with
two ASR models. One is a hybrid system with a BLSTM based
acoustic model and a 4-gram language model as used in the original
LibriCSS paper [18]. The other is one of the best open-source end-
to-end transformer [16] based ASR models ! which achieves WERs
of 2.08% and 4.95% for LibriSpeech test-clean and test-other, re-
spectively. As with [18], by leveraging the multiple microphones,
the individual target signals are generated with mask-based adaptive
minimum variance distortionless response (MVDR) beamforming.

3.3. Evaluation Results

Table 1 shows the WERs of our Early Exit Transformer with dif-
ferent threshold 7 values as well as those of the baselines for the
utterance-wise evaluation. With a larger threshold, the inference
process tended to exit at a lower layer, and greater speed-up was
obtained. We also found the performance on low overlap ratio sets
benefited from the use of fewer inference layers, which implies the
“overthinking” problem of the vanilla Transformer model. Specifi-
cally, when 7 = oo, the inference process always halted at the sec-
ond layer. This yielded 6.59x speed-up and achieved the best WERs
for the two non-overlap settings. The use of a smaller threshold led
to a better separation performance for high overlap ratio settings.
When 7 = 0, its performance degraded on the small overlap ra-
tio sets. This may have been caused by the mismatch between the
training and inference, i.e., with the proposed method, the model
tries to predict the mask correctly at all the layers while only the last
layer’s result is used at the inference time. Moreover, it is slower than
the vanilla Transformer since every layer predicts the output once.
With a tuned threshold, better results were obtained by mitigating the
“overthinking” problem. With 7 = 1.5e — 4, our Early Exit Trans-
former achieved better results in the small overlap ratio settings than
the vanilla Transformer while achieving a 4.08 x speed-up. With a
modest threshold setting (7 = 8e —5), the inference time was halved
while also achieving better speech separation performance with both
of the two ASR models for all overlap settings.

Table 2 shows the continuous evaluation results. As with
the utterance-wise evaluation, the Early Exit Transformer mod-

"https://github.com/MarkWuNLP/SemanticMask



Table 1: Utterance-wise evaluation. Two numbers in a cell denote %WER of the hybrid SR model used in LibriCSS [18] and end-to-end

transformer based SR model [16]. 0S: 0% overlap with short inter-utterance silence. OL: 0% overlap with a long inter-utterance silence.

System Avg. exit Speed- Overlap ratio in %
y layer up 0S 0L 10 20 30 40
No separation [18] - - 11.8/5.5 11.7/5.2 18.8/11.4 27.2/18.8 35.6/27.7 43.3/36.6
BLSTM [13] - - 7.0/3.1 7.5/3.3 10.8/43 13.4/56 16.5/7.5 18.8/8.9
Transformer [13] 16.0 1.00x | 83/34 84/34 11.4/41 12.5/48 14.7/64 16.9/7.2
Early Exit Transformer (7 = 0) 16.0 0.92x | 8.9/34 9.4/3.6 12.3/42 14.7/50 15.1/6.2 16.5/6.6
Early Exit Transformer (7 = 8¢ — 5) 6.9 2.60x | 7.6/3.2 7.7/3.3 10.1/3.8 12.4/48 14.4/6.2 16.4/6.9
Early Exit Transformer (7 = 1.5e — 4) 4.8 4.08x | 7.8/3.2 7.6/3.4 9.8/3.8 12.2/5.1 14.7/6.7 17.9/7.8
Early Exit Transformer (7 = c0) 2.0 6.59x | 7.1/3.1 7.3/3.3 10.0/44 13.6/6.1 17.0/84 20.5/10.4
Table 2: Continuous speech separation evaluation
Avg. exit Speed- Overlap ratio in %
System layer  up 0S 0L 10 20 30 40
No separation [18] - - 15.4/12.7 11.5/5.7 21.7/17.6 27.0/24.4 34.3/30.9 40.5/37.5
BLSTM [13] - - 11.4/6.0 8.4/41 13.1/70 149/79 18.7/11.5 20.5/12.3
Transformer [13] 16.0 1.00x | 12.0/5.6 9.1/44 13.4/6.2 14.4/6.8 18.5/9.7 19.9/10.3
Early Exit Transformer (7 = 0) 16.0 0.76x | 14.1/6.2 10.3/4.6 17.2/7.1 17.3/7.5 23.0/10.8 23.5/12.0
Early Exit Transformer (7 = le — 4) 7.5 1.47x | 11.3/54 8.9/44 12.7/6.0 13.8/6.7 17.8/9.3 19.7/10.5
Early Exit Transformer (7 = 1.5e¢ — 4) 5.8 1.88x | 11.5/52 89/43 12.6/6.0 13.7/69 17.6/9.5 19.6/10.3
Early Exit Transformer (7 = 2e — 4) 5.2 2.08x | 11.2/5.6 8.8/45 12.7/6.3 13.9/7.2 18.5/9.5 19.6/10.9
Early Exit Transformer (7 = co) 2.0 4.74x | 14.7/14.6 8.7/6.9 16.1/13.7 17.8/152 22.5/18.2 24.8/18.9
els achieved superior performance to the vanilla Transformer while channel.
improving the inference time by a factor of two. The improvements
were more prominent on the small-overlapped test sets. In contrast to 161
the utterance-wise speech separation, we observed that the inference 14
process tended to stop at a higher layer for the same threshold and
that the best results for the non-overlap settings were achieved with 5127 oo
some internal layer rather than with the second layer. This could be :? 10 T=3¢-5
because, in CSS, each model evaluation used a shorter chunk than b x/_x’—a//(_—x T TTes
the typical utterance length of the utterance-wise evaluation dataset, g ¥ x—,*__x—/_x/‘———x : ;; TZ: .
making the task harder. < 6 — T=2e4
41 O o
3.4. Discussion and Analysis )

In addition to the main experiments, there are several interesting
questions that should be discussed.

Exit layer across different testsets: We first explore what the
exit layer distribution is with respect to different overlapped ratios.
Figure 2 shows that the averaged exit layer slightly increases as the
overlap ratio becomes larger. When 7 = 8e — 5, Early Exit Trans-
former makes predictions one layer deeper on 40% overlap test-
set compared to 0S testset. The increment is more significant with
7 = be — 5, demonstrating that small overlapped cases tend to exit
at shallow layers which is consistent with our intuition.

Performance for the single channel scenario: We also tried
the early exit mechanism on the single channel speech separation
task. For this scenario, the conclusion is the more layers we use,
the better performance we get. We can obtain speed acceleration
but performance degradation with the early exit mechanism. Specif-
ically, we obtain a 1.61% speed-up with 6.0% relative WER losses
and a 2.07% speed-up with 10.4% relative WER losses on average.
We think that speech separation for single channel is much more
challenging due to the absence of the microphone array signal, and
less than 16 layers are not enough to handle this task well. We leave
it for future work to explore the early exit mechanism for the single

Fig. 2: The average exit layer of Early Exit Transformer across dif-
ferent testsets with different threshold 7 for the utterance-wise eval-
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uation.

We elaborate an early exit mechanism for Transformer based
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20
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4. CONCLUSION

multi-channel speech separation, which aims to address the “over-
thinking” problem and accelerate the inference stage simultaneously.
Each Transformer layer is equipped with a mask estimator, and the
early exit is triggered if the outputs of two successive layers are
similar. Experiment results show that it does not only speed up
inference, but also improves the performance on small-overlapped
testsets, which is consistent with our intuition. Regarding single-
channel evaluation, we observe negative results since the task is
too challenging to handle. In the future, we will study speeding up
Transformer based separation model from other perspectives.
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