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Abstract

The INTERSPEECH 2021 Acoustic Echo Cancellation Chal-
lenge is intended to stimulate research in the area of acous-
tic echo cancellation (AEC), which is an important part of
speech enhancement and still a top issue in audio communi-
cation. Many recent AEC studies report good performance on
synthetic datasets where the training and testing data may come
from the same underlying distribution. However, AEC perfor-
mance often degrades significantly on real recordings. Also,
most of the conventional objective metrics such as echo return
loss enhancement and perceptual evaluation of speech quality
do not correlate well with subjective speech quality tests in the
presence of background noise and reverberation found in real-
istic environments. In this challenge, we open source two large
datasets to train AEC models under both single talk and double
talk scenarios. These datasets consist of recordings from more
than 5,000 real audio devices and human speakers in real envi-
ronments, as well as a synthetic dataset. We also open source
an online subjective test framework and provide an online ob-
jective metric service for researchers to quickly test their results.
The winners of this challenge are selected based on the average
Mean Opinion Score achieved across all different single talk
and double talk scenarios.

Index Terms: acoustic echo cancellation, deep learning, single
talk, double talk, subjective test

1. Introduction

With the growing popularity and need for working remotely,
the use of teleconferencing systems such as Microsoft Teams,
Skype, WebEx, Zoom, etc., has increased significantly. It is im-
perative to have good quality calls to make the users’ experience
pleasant and productive. The degradation of call quality due
to acoustic echoes is one of the major sources of poor speech
quality ratings in voice and video calls. While digital signal
processing (DSP) based AEC models have been used to remove
these echoes during calls, their performance can degrade when
model assumptions are violated, e.g., fast time-varying acoustic
conditions, unknown signal processing blocks or non-linearities
in the processing chain, or failure of other models (e.g. back-
ground noise estimates). This problem becomes more challeng-
ing during full-duplex modes of communication where echoes
from double talk scenarios are difficult to suppress without sig-
nificant distortion or attenuation [1].

With the advent of deep learning techniques, several super-
vised learning algorithms for AEC have shown better perfor-
mance compared to their classical counterparts [2, 3, 4]. Some
studies have also shown good performance using a combination
of classical and deep learning methods such as using adaptive
filters and recurrent neural networks (RNNs) [4, 5] but only
on synthetic datasets. While these approaches provide a good

Table 1: Pearson Correlation Coefficient (PCC) and Spear-
man’s Rank Correlation Coefficient (SRCC) between ERLE,
PESQ and P.808 Absolute Category Rating (ACR) results on
single talk with delayed echo scenarios (see Section 5).

PCC SRCC

ERLE 0.31 0.23
PESQ 0.67 0.57

heuristic on the performance of AEC models, there has been
no evidence of their performance on real-world datasets with
speech recorded in diverse noise and reverberant environments.
This makes it difficult for researchers in the industry to choose a
good model that can perform well on a representative real-world
dataset.

Most AEC publications use objective measures such as
echo return loss enhancement (ERLE) [6, 7] and perceptual
evaluation of speech quality (PESQ) [8]. ERLE is defined as:
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where y(n) is the microphone signal, and §(n) is the enhanced
speech. ERLE is only appropriate when measured in a quiet
room with no background noise and only for single talk scenar-
ios (not double talk). PESQ has also been shown to not have a
high correlation to subjective speech quality in the presence of
background noise [9]. Using the datasets provided in this chal-
lenge we show the ERLE and PESQ have a low correlation to
subjective tests (Table 1). In order to use a dataset with record-
ings in real environments, we can not use ERLE and PESQ. A
more reliable and robust evaluation framework is needed that
everyone in the research community can use, which we provide
as part of the challenge.

This AEC challenge is designed to stimulate research in
the AEC domain by open sourcing a large training dataset, test
set, and subjective evaluation framework. We provide two new
open source datasets for training AEC models. The first is a
real dataset captured using a large-scale crowdsourcing effort.
This dataset consists of real recordings that have been collected
from over 5,000 diverse audio devices and environments. The
second dataset is synthesized from speech recordings, room im-
pulse responses, and background noise derived from [10]. An
initial test set will be released for the researchers to use dur-
ing development and a blind test set near the end, which will
be used to decide the final competition winners. We believe
these datasets are large enough to facilitate deep learning and
representative enough for practical usage in shipping telecom-
munication products.

This is the second AEC challenge we have conducted. The
first challenge was held at ICASSP 2021 [11] and included 17



participants with entries ranging from pure deep models, hybrid
linear AEC + deep echo suppression, and DSP methods. The
results show that the deep and hybrid models far outperformed
DSP methods, with the winner being a hybrid model. However,
there is still much room for improvement. To improve the chal-
lenge and further stimulate research in this area we have made
the following changes:

* The dataset has increased from 2,500 devices and envi-
ronments to 5,000 to provide additional training data.

* The test set has been significantly improved to include
more real-world issues that challenge echo cancellers,
such as clock drift, gain variations on the near end, more
severe echo path changes, glitches in the mic/speaker
signal, and more devices with poor onboard AEC’s. This
test set should be more challenging than the first chal-
lenge.

* The test framework has been improved to increase the
accuracy of echo impairment ratings in the presence of
background noise.

* The challenge includes a real-time and non-real-time
track.

* Additional time is given to complete the challenge.

* A new Azure Service based objective metric is provided
that has a high correlation to human ratings (see Table
2).

The training dataset is described in Section 2, and the test
set in Section 3. We describe a DNN-based AEC method in
Section 4. The online subjective evaluation framework is dis-
cussed in Section 5, and the objective service in Section 6. The
results are given in Section 7. The challenge rules are described
in https://aka.ms/aec-challenge.

2. Training datasets

The challenge will include two new open source datasets, one
real and one synthetic. The datasets are available at https:
/Igithub.com/microsoft/ AEC-Challenge.

2.1. Real dataset

The first dataset was captured using a large-scale crowdsourc-
ing effort. This dataset consists of more than 30,000 recordings
from 5,000 different real environments, audio devices, and hu-
man speakers in the following scenarios:

. Far end single talk, no echo path change
. Far end single talk, echo path change

. Near end single talk, no echo path change

1
2
3
4. Double talk, no echo path change
5. Double talk, echo path change

6

. Sweep signal for RT60 estimation

For the far end single talk case, there is only the loudspeaker
signal (far end) played back to the users and users remain silent
(no near end signal). For the near end single talk case, there
is no far end signal and users are prompted to speak, capturing
the near end signal. For double talk, both the far end and near
end signals are active, where a loudspeaker signal is played and
users talk at the same time. Echo path change was incorpo-
rated by instructing the users to move their device around or
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Figure 1: Sorted near end single talk clip quality (P.808) with
95% confidence intervals.

bring themselves to move around the device. The near end sin-
gle talk speech quality is given in Figure 1. The RT60 distri-
bution for 2678 environments in the real dataset for which im-
pulse response measurements were available is estimated using
a method by Karjalainen et al. [12] and shown in Figure 2. The
RT60 estimates can be used to sample the dataset for training.

We use Amazon Mechanical Turk as the crowdsourcing
platform and wrote a custom HIT application that includes a
custom tool that raters download and execute to record the six
scenarios described above. The dataset includes only Microsoft
Windows devices. Each scenario includes the microphone and
loopback signal (see Figure 3). Even though our application
uses the WASAPI raw audio mode to bypass built-in audio ef-
fects, the PC can still include Audio DSP on the receive signal
(e.g., equalization and Dynamic Range Compression (DRC));
it can also include Audio DSP on the send signal, such as AEC
and noise suppression.

For clean speech far end signals, we use the speech seg-
ments from the Edinburgh dataset [13]. This corpus consists
of short single speaker speech segments (1 to 3 seconds). We
used a long short term memory (LSTM) based gender detector
to select an equal number of male and female speaker segments.
Further, we combined 3 to 5 of these short segments to create
clips of length between 9 and 15 seconds in duration. Each
clip consists of a single gender speaker. We create a gender-
balanced far end signal source comprising of 500 male and 500
female clips. Recordings are saved at the maximum sampling
rate supported by the device and in 32-bit floating point format;
in the released dataset we down-sample to 16kHz and 16-bit
using automatic gain control to minimize clipping.

For noisy speech far end signals we use 2000 clips from the
near end single talk scenario that were rated between MOS 3
and 4 using ITU-T P.808 subjective testing framework. Clips
are gender balanced to include an equal number of male and
female voices.

For near end speech, the users were prompted to read sen-
tences from TIMIT [14] sentence list. Approximately 10 sec-
onds of audio is recorded while the users are reading.

2.2. Synthetic dataset

The second dataset provides 10,000 synthetic scenarios, each
including single talk, double talk, near end noise, far end noise,
and various nonlinear distortion scenarios. Each scenario in-
cludes a far end speech, echo signal, near end speech, and near
end microphone signal clip. We use 12,000 cases (100 hours
of audio) from both the clean and noisy speech datasets derived
in [10] from the LibriVox project' as source clips to sample

Uhttps://librivox.org
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Figure 2: Distribution of reverberation time (RT60).
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Figure 3: The custom recording application recorded the loop-
back and microphone signals.

far end and near end signals. The LibriVox project is a col-
lection of public domain audiobooks read by volunteers. [10]
used the online subjective test framework ITU-T P.808 to select
audio recordings of good quality (4.3 < MOS < 5) from the
LibriVox project. The noisy speech dataset was created by mix-
ing clean speech with noise clips sampled from Audioset [15],
Freesound® and DEMAND [16] databases at signal to noise ra-
tios sampled uniformly from [0, 40] dB.

To simulate a far end signal, we pick a random speaker from
a pool of 1,627 speakers, randomly choose one of the clips from
the speaker, and sample 10 seconds of audio from the clip. For
the near end signal, we randomly choose another speaker and
take 3-7 seconds of audio which is then zero-padded to 10 sec-
onds. Of the selected far end and near end speakers, 71% are
female and 67% are male. To generate an echo, we convolve a
randomly chosen room impulse response from a large internal
database with the far end signal. The room impulse responses
are generated by using Project Acoustics technology® and the
RT60 ranges from 200 ms to 1200 ms. In 80% of the cases,
the far end signal is processed by a nonlinear function to mimic
loudspeaker distortion. For example, the transformation can be
clipping the maximum amplitude, using a sigmoidal function as
in [17], or applying learned distortion functions, the details of
which we will describe in a future paper. This signal gets mixed
with the near end signal at a signal to echo ratio uniformly sam-
pled from -10 dB to 10 dB. The signal to echo ratio is calculated
based on the clean speech signal (i.e. a signal without near end
noise). The far end and near end signals are taken from the
noisy dataset in 50% of the cases. The first 500 clips can be
used for validation as these have a separate list of speakers and
room impulse responses. Detailed metadata information can be
found in the repository.

3. Test set

Two test sets are included, one at the beginning of the chal-
lenge and a blind test set near the end. Both consist of 800
real world recordings, between 30-45 seconds in duration. The
datasets include the following scenarios that make echo cancel-
lation more challenging:

¢ Long- or varying delays, i.e., files where the delay be-
tween loopback and mic-in is atypically long or varies

Zhttps://freesound.org
3https://www.aka.ms/acoustics

during the recording.
¢ Strong speaker and/or mic distortions.
 Stationary near-end noise.
* Non-stationary near-end noise.

* Recordings with audio DSP processing from the device,
such as AEC.

¢ Glitches, i.e., files with “choppy” audio, for example,
due to very high CPU usage.

e Gain variations, i.e., recordings where far-end level
changes during the recording (2.1), sampled randomly.

4. Baseline AEC Method

We adapt a noise suppression model developed in [18] to the
task of echo cancellation. Specifically, a recurrent neural net-
work with gated recurrent units takes concatenated log power
spectral features of the microphone signal and far end signal as
input, and outputs a spectral suppression mask. The short-time
Fourier transform is computed based on 20 ms frames with a
hop size of 10 ms, and a 320-point discrete Fourier transform.
We use a stack of two gated recurrent unit layers, each of size
322 nodes, followed by a fully-connected layer with a sigmoid
activation function. The model has 1.3 million parameters. The
estimated mask is point-wise multiplied with the magnitude
spectrogram of the microphone signal to suppress the far end
signal. Finally, to resynthesize the enhanced signal, an inverse
short-time Fourier transform is used on the phase of the mi-
crophone signal and the estimated magnitude spectrogram. We
use a mean squared error loss between the clean and enhanced
magnitude spectrograms. The Adam optimizer with a learning
rate of 0.0003 is used to train the model. The model and the
inference code is available in the challenge repository. *

5. Online subjective evaluation framework

We have extended the open source P.808 Toolkit [19] with meth-
ods for evaluating the echo impairments in subjective tests. We
followed the Third-party Listening Test B from ITU-T Rec.
P.831 [20] and ITU-T Rec. P.832 [21] and adapted them to our
use case as well as for the crowdsourcing approach based on the
ITU-T Rec. P.808 [22] guidance.

A third-party listening test differs from the typical listening-
only tests (according to the ITU-T Rec. P.800) in the way that
listeners hear the recordings from the center of the connection
rather in the former one in which the listener is positioned at one
end of the connection [20]. Thus, the speech material should be
recorded by having this concept in mind. During the test ses-
sion, we use different combinations of single- and multi-scale
ACR ratings depending on the speech sample under evaluation.
We distinguish between single talk and double talk scenarios.
For the near end single talk, we ask for the overall quality. For
the far end single talk and double talk scenario, we ask for an
echo annoyance and for impairments of other degradations in
two separate questions’. Both impairments are rated on the
degradation category scale (from 1:Very annoying, to 5: Im-
perceptible). The impairments scales leads to a Degradation
Mean Opinion Scores (DMOS). Note that we do not use the

“https://github.com/microsoft/AEC-
Challenge/tree/main/baseline/interspeech2021

5Question 1: How would you judge the degradation from the echo?
Question 2: How would you judge other degradations (noise, missing
audio, distortions, cut-outs)?
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Figure 4: The audio processing pipeline used in the challenge.

Table 2: AECMOS Pearson rank correlation coefficient (PCC)
for our current model and the old model.

Scenario PCC Old PCC

Far end single talk echo DMOS 0.97 0.99
Near end single talk other DMOS  0.92 0.80
Double talk echo DMOS 0.93 0.94
Double talk other DMOS 0.91 0.52

Other degradation category for far end single talk for evaluating
echo cancellation performance, since this metric mostly reflects
the quality of the original far end signal. However, we have
found that having this component in the questionnaire helps in-
crease the accuracy of echo degradation ratings (when measured
against expert raters). Without the Other category, raters can
sometimes assign degradations due to noise to the Echo cate-
gory.

In the current challenge, for the far end single talk sce-
nario, we evaluate the second half of each clip, to avoid initial
degradations from initialization, convergence periods, and ini-
tial delay estimation. For the double talk scenario, we evaluate
roughly the final third of the audio clip.

The audio pipeline used in the challenge is shown in Figure
4. In the first stage (AGC1) a traditional automatic gain con-
trol is used to target a speech level of -24 dBFS. The output of
AGCl is saved in the test set. The next stage is an AEC, which
participants will process and upload to the challenge submission
site. The next stage is a traditional noise suppressor (DMOS <
0.1 improvement) to reduce stationary noise. Finally, a second
AGC is run to ensure the speech level is still -24 dBFS. The
subjective test framework with an AEC extension is available
at https://github.com/microsoft/P.808. A more detailed descrip-
tion of the test framework and its validation is given in [23].

6. Azure service objective metric

We have developed an objective perceptual speech quality met-
ric called AECMOS. It can be used to stack rank different AEC
methods based on Mean Opinion Score (MOS) estimates with
high accuracy. It is a neural network-based model that is trained
using the ground truth human ratings obtained using our on-
line subjective evaluation framework. The audio data used to
train the AECMOS model is gathered from the numerous sub-
jective tests that we conducted in the process of improving the
quality of our AECs as well as the first AEC challenge re-
sults. Our model has improved greatly since the start of the
contest. The performance of AECMOS on stack ranking mod-
els is given in Table 2 compared with subjective human ratings
on the 14 submitted models from the Second AEC Challenge.
We are still working on making the model generalize better
on the new challenge test set using methods described in [24].
Sample code and details of the evaluation API can be found on
https://aka.ms/aec-challenge.

TeamId| Track |ST NE MOS|ST FE Echo DMOS| DT Echo DMOS | DT Other DMOS |Overall| Cl
4|realtime 4.25 4.59 4.69 4.18| 4.43|0.02
2|realtime 4.27 4.49 4.52 439 4.42|0.02
7|realtime 4.10 4.54 4.77 4.24| 4.41]0.02
8|realtime 4.32 4.45 4.59 4.28| 4.41/0.02

14|realtime 4.19 4.49 4.58 4.27| 4.38/0.02
13|realtime 4.26 4.34 4.36 4.23| 4.30/0.02
5|realtime 4.23 4.49 431 4.15 4.29/0.02
9|realtime 3.78 4.44 4.44 3.90, 4.14/0.02
11]realtime 4.13 4.12 4.18 4.04| 4.12/0.02
3|realtime 4.01 4.52 3.90 3.72 4.04/0.02
-|realtime 4.18 3.82 4.04 3.45| 3.87/0.02
10|realtime 4.16 3.73 3.72 3.53| 3.78/0.03
12|nonrealtime 3.29 3.83 4.21 2.92| 3.56/0.03
6|realtime 278 2.50 3.53 3.40, 3.04/0.03
15|nonrealtime 2.25 BRY 3.76 192| 2.82/0.03

Figure 5: AEC challenge results

Team 4 2 7 8
4 1 0.81 0.73 0.64
2 0.81 1 0.91 0.82
7 0.73 0.91 1 0.91
8 0.64 0.82 0.91 1

Figure 6: ANOVA results for the top 4 participants

7. Results

We received 14 submissions for the challenge. Each team sub-
mitted processed files from the blind test set (see Section 3). We
batched all submissions into three sets:

* Near end single talk files for MOS test (NE ST MOS).

» Far end single talk files for Echo and Other degradation
DMOS test (FE ST Echo/Other DMOS).

* Double talk files for Echo and Other degradation DMOS
test (DT Echo/Other DMOS).

To obtain the final overall rating, we averaged the results of
NE ST MOS, FE ST Echo DMOS, and DT Echo/Other DMOS,
weighting them equally. The final standings are shown in Fig-
ure 5. The resulting scores show a wide variety in model per-
formance. The score differences in near end, echo, and double
talk scenarios for individual models highlight the importance of
evaluating all scenarios, since in many cases, performance in
one scenario comes at a cost in another scenario.

For the top four teams, we ran an ANOVA test to determine
statistical significance (Figure 6). The differences between the
teams were not statistically significant, and per the challenge
rules, the winners will be picked based on the computational
complexity of the models.

8. Conclusions

The results of this challenge show considerable improvement
over the previous challenge [11], even though this test set was
significantly more challenging. Nearly all participants exceeded
the baseline model, and this year’s top performer exceeded the
baseline by 0.13 DMOS more than the previous challenge.
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