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Abstract

Successor-style representations have many advantages for re-
inforcement learning: for example, they can help an agent
generalize from past experience to new goals, and they have
been proposed as explanations of behavioral and neural data
from human and animal learners. They also form a natural
bridge between model-based and model-free RL methods:
like the former they make predictions about future experi-
ences, and like the latter they allow efficient prediction of
total discounted rewards. However, successor-style represen-
tations are not optimized to generalize across policies: typi-
cally, we maintain a limited-length list of policies, and share
information among them by representation learning or GPI.
Successor-style representations also typically make no provi-
sion for gathering information or reasoning about latent vari-
ables. To address these limitations, we bring together ideas
from predictive state representations, belief space value it-
eration, successor features, and convex analysis: we develop
a new, general successor-style representation, together with
a Bellman equation that connects multiple sources of infor-
mation within this representation, including different latent
states, policies, and reward functions. The new representation
is highly expressive: for example, it lets us efficiently read off
an optimal policy for a new reward function, or a policy that
imitates a new demonstration. For this paper, we focus on ex-
act computation of the new representation in small, known
environments, since even this restricted setting offers plenty
of interesting questions. Our implementation does not scale to
large, unknown environments — nor would we expect it to,
since it generalizes POMDP value iteration, which is difficult
to scale. However, we believe that future work will allow us to
extend our ideas to approximate reasoning in large, unknown
environments. We conduct experiments to explore which of
the potential barriers to scaling are most pressing.

Introduction
We describe a new representation for decision-theoretic
planning, reinforcement learning, and imitation learning: the
successor feature set. This representation generalizes a num-
ber of previous ideas in the literature, including successor
features and POMDP/PSR value functions. Comparing to
these previous representations: successor features assume a
fixed policy or list of policies, while our goal is to reason
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efficiently about many policies at once; value functions as-
sume a fixed reward function, while our goal is to reason
efficiently about many reward functions at once.

Roughly, the successor feature set tells us how features of
our future observations and actions depend on our current
state and our choice of policy. More specifically, the succes-
sor feature set is a convex set of matrices; each matrix corre-
sponds to a policy π, and describes how the features we will
observe in the future depend on the current state under π.

The successor feature set provides a number of useful ca-
pabilities. These include reading off the optimal value func-
tion or policy for a new reward function, predicting the range
of outcomes that we can achieve starting from a given state,
and reading off a policy that imitates a desired state-action
visitation distribution.

We describe a convergent dynamic programming algo-
rithm for computing the successor feature set, generalizing
the value iteration algorithm for POMDPs or PSRs. We also
give algorithms for reading off the above-mentioned opti-
mal policies and feature-matching policies from the succes-
sor feature set. Since the exact dynamic programming al-
gorithm can be prohibitively expensive, we also experiment
with randomized numerical approximations.

In this paper we focus on model-based reasoning about
successor feature sets — that is, we assume access to an ac-
curate world model. We also focus on algorithms that are
exact in the limit of increasing computation. Successor-style
representations are of course also extremely useful for ap-
proximate reasoning about large, unknown environments,
and we believe that many of the ideas discussed here can
inform that case as well, but we leave that direction for fu-
ture work.

To summarize, our contributions are: a new successor-
style representation that allows information to flow among
different states, policies, and reward functions; algorithms
for working with this new representation in small, known en-
vironments, including a convergent dynamic programming
algorithm and ways to read off optimal policies and feature-
matching policies; and computational experiments that eval-
uate the strengths and limitations of our new representation
and algorithms.
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Background and Notation
Our environment is a controlled dynamical system. We inter-
act with it in a sequence of time steps; at each step, all rele-
vant information is encoded in a state vector. Given this state
vector, we choose an action. Based on the action and the cur-
rent state, the environment changes to a new state, emits an
observation, and moves to the next time step. We can de-
scribe such a system using one of a few related models:
a Markov decision process (MDP), a partially-observable
Markov decision process (POMDP), or a (transformed) pre-
dictive state representation (PSR). We describe these models
below, and summarize our notation in Table 1.

MDPs
An MDP is the simplest model: there are k possible discrete
states, numbered 1 . . . k. The environment starts in one of
these states, s1. For each possible action a ∈ {1 . . . A}, the
transition matrix Ta ∈ Rk×k tells us how our state changes
if we execute action a: [Ta]ij is the probability that the next
state is st+1 = i if the current state is st = j.

More compactly, we can associate each state 1, 2, . . . , k
with a corresponding standard basis vector e1, e2, . . . , ek,
and write qt for the vector at time t. (So, if st = i then
qt = ei.) Then, Taqt is the probability distribution over next
states:

P (st+1 | qt, do a) = E(qt+1 | qt, do a) = Taqt

Here we have written do a to indicate that choosing an action
is an intervention.

POMDPs
In an MDP, we get to know the exact state at each time
step: qt is always a standard basis vector. By contrast, in
a POMDP, we only receive partial information about the un-
derlying state: at each time step, after choosing our action at,
we see an observation ot ∈ {1 . . . O} according to a distri-
bution that depends on the next state st+1. The observation
matrix D ∈ RO×k tells us the probabilities: Dij is the prob-
ability of receiving observation ot = i if the next state is
st+1 = j.

To represent this partial information about state, we can
let the state vector qt range over the probability simplex in-
stead of just the standard basis vectors: [qt]i tells us the prob-
ability that the state is st = i, given all actions and observa-
tions so far, up to and including at−1 and ot−1. The vector
qt is called our belief state; we start in belief state q1.

Just as in an MDP, we have E(qt+1 | qt, do a) = Taqt.
But now, instead of immediately resolving qt+1 to one of the
corners of the simplex, we can only take into account partial
state information: if ot = o then by Bayes rule

[qt+1]i = P (st+1 = i | qt, do a, o)

=
P (o | st+1 = i)P (st+1 = i | qt, do a)

P (o | qt, do a)

= Doi[Taqt]i /
∑
o′ Do′i[Taqt]i

More compactly, if u ∈ Rk is the vector of all 1s, and

Tao = diag(Do,·)Ta

Symbol Type Meaning
d N dimension of feature vector
k N dimension of state vector
A,O N number of actions, observations
f(q, a) Rd one-step feature function
Fa Rd×k implements f : f(q, a) = Faq
Tao Rk×k transition operator for action,

observation
φπ, φπ(q) Rd successor features for π (in

state q)
Aπ Rd×k implements φπ: φπ(q) = Aπq
Φ {Rd×k} successor set
Φa,Φao {Rd×k} backups of Φ for actions and

observations

Table 1: Notation quick reference

where diag(·) constructs a diagonal matrix from a vector,
then our next belief state is

qt+1 = Taoqt / u
TTaoqt

A POMDP is strictly more general than an MDP: if our ob-
servation ot tells us complete information about our next
state st+1, then our belief state qt+1 will be a standard basis
vector. This happens precisely when [P (ot = i | st+1 =
j) = 1]⇔ [i = j].

PSRs
A PSR further generalizes a POMDP: we can think of a
PSR as dropping the interpretation of qt as a belief state,
and keeping only the mathematical form of the state update.
That is, we no longer require our model parameters to have
any interpretation in terms of probabilities of partially ob-
servable states; we only require them to produce valid obser-
vation probability estimates. (It is possible to interpret PSR
states and parameters in terms of experiments called tests;
for completeness we describe this interpretation in the sup-
plementary material, available online.)

In more detail, we are given a starting state vector q1, ma-
trices Tao ∈ Rk×k, and a normalization vector u ∈ Rk. We
define our state vector by the recursion

qt+1 = Tatotqt/u
TTatotqt

and our observation probabilities as

P (ot = o | qt, do a) = uTTaoqt

The only requirement on the parameters is that the obser-
vation probabilities uTTaoqt should always be nonnegative
and sum to 1: under any sequence of actions and observa-
tions, if qt is the resulting sequence of states,

(∀a, o, t)uTTaoqt ≥ 0 (∀a, t)
∑
o u

TTaoqt = 1

It is clear that a PSR generalizes a POMDP, and therefore
also an MDP: we can always take u to be the vector of all
1s, and set Tao according to the POMDP transition and ob-
servation probabilities, so that

[Tao]ij = P (ot = o, st+1 = i | st = j, at = a)
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It turns out that PSRs are a strict generalization of POMDPs:
there exist PSRs whose dynamical systems cannot be de-
scribed by any finite POMDP. An example is the so-called
probability clock (Jaeger 2000).

Policy Trees
We will need to work with policies for MDPs, POMDPs,
and PSRs, handling different horizons as well as partial ob-
servability. For this reason, we will use a general policy rep-
resentation: we will view a policy as a mixture of trees, with
each tree representing a deterministic, nonstationary policy.
A policy tree’s nodes are labeled with actions, and its edges
are labeled with observations (Fig. 1). To execute a policy
tree π, we execute π’s root action; then, based on the re-
sulting observation o, we follow the edge labeled o from the
root, leading to a subtree that we will call π(o). To execute
a mixture, we randomize over its elements. If desired we
can randomize lazily, committing to each decision just be-
fore it affects our actions. We will work with finite, balanced
trees, with depth equal to a horizon H; we can reason about
infinite-horizon policies by taking a limit as H →∞.

↑

↑

↑ ↓ ↓

↓

↓ ↓ ↓

↑

↑ ↑ ↓

R

R G B

G

R G B

B

R G B

Figure 1: An example of a policy tree with actions ↑, ↓ and
observations R,G,B.

Imitation by Feature Matching
Successor feature sets have many uses, but we will start by
motivating them with the goal of imitation. Often we are
given demonstrations of some desired behavior in a dynami-
cal system, and we would like to imitate that behavior. There
are lots of ways to specify this problem, but one reasonable
one is apprenticeship learning (Abbeel and Ng 2004) or fea-
ture matching. In this method, we define features of states
and actions, and ask our learner to match some statistics of
the observed features of our demonstrations.

In more detail, given an MDP, define a vector of features
of the current state and action, f(s, a) ∈ Rd; we call this the
one-step or immediate feature vector. We can calculate the
observed discounted features of a demonstration: if we visit
states and actions s1, a1, s2, a2, s3, a3, . . ., then the empiri-
cal discounted feature vector is

f(s1, a1) + γf(s2, a2) + γ2f(s3, a3) + . . .

where γ ∈ [0, 1) is our discount factor. We can average the
feature vectors for all of our demonstrations to get a demon-
stration or target feature vector φd.

(a) f of maze MDP. (b) φgo-left with γ = 0.75.

Figure 2: Maze environment example.

Analogously, for a policy π, we can define the expected
discounted feature vector:

φπ = Eπ

[ ∞∑
t=1

γt−1f(st, at)

]

We can use a finite horizonH by replacing
∑∞
t=1 with

∑H
t=1

in the definitions of φd and φπ; in this case we have the
option of setting γ = 1.

Given a target feature vector in any of these models, we
can ask our learner to design a policy that matches the target
feature vector in expectation. That is, we ask the learner to
find a policy π with

φπ = φd

For example, suppose our world is a simple maze MDP like
Fig. 2a. Suppose that our one-step feature vector f(s, a) ∈
[0, 1]3 is the RGB color of the current state in this figure,
and that our discount is γ = 0.75. If our demonstrations
spend most of their time toward the left-hand side of the
state space, then our target vector will be something like
φd = [0.5, 3, 0.5]T : the green feature will have the highest
expected discounted value. On the other hand, if our demon-
strations spend most of their time toward the bottom-right
corner, we might see something like φd = [2, 1, 1]T , with
the blue feature highest.

Successor Features
To reason about feature matching, it will be important to pre-
dict how the features we see in the future depend on our cur-
rent state. To this end, we define an analog of φπ where we
vary our start state, called the successor feature representa-
tion (Dayan 1993; Barreto et al. 2017):

φπ(s) = Eπ

[ ∞∑
t=1

γt−1f(st, at)

∣∣∣∣ do s1 = s

]
This function associates a vector of expected discounted fea-
tures to each possible start state. We can think of φπ(·) as
a generalization of a value function: instead of predicting
total discounted rewards, it predicts total discounted fea-
ture vectors. In fact, the generalization is strict: φπ(·) con-
tains enough information to compute the value function for
any one-step reward function of the form rT f(s, a), via
V π(s) = rTφπ(s).
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For example, in Fig. 2b, our policy is to always move left.
The corresponding successor feature function looks similar
to the immediate feature function, except that colors will be
smeared rightward. The smearing will stop at walls, since an
agent attempting to move through a wall will stop.

Extension to POMDPs and PSRs
We can generalize the above definitions to models with par-
tial observability as well. This is not a typical use of succes-
sor features: reasoning about partial observability requires a
model, while successor-style representations are often used
in model-free RL. However, as Lehnert and Littman (2019)
point out, the state of a PSR is already a prediction about the
future, so incorporating successor features into these models
makes sense.

In a POMDP, we have a belief state q ∈ Rk instead of a
fully-observed state. We define the immediate features of q
to be the expected features of the latent state:

f(q, a) =
k∑
s=1

q(s)f(s, a)

In a PSR, we similarly allow any feature function that is lin-
ear in the predictive state vector q ∈ Rk:

f(q, a) = Faq

with one matrix Fa ∈ Rd×k for each action a. In either case,
define the successor features to be

φπ(q) = Eπ

[ ∞∑
t=1

γt−1f(qt, at)

∣∣∣∣ do q1 = q

]
Interestingly, the function φπ is linear in q. That is, for each
π, there exists a matrix Aπ ∈ Rd×k such that φπ(q) = Aπq.
We call Aπ the successor feature matrix for π; it is related
to the parameters of the Linear Successor Feature Model of
Lehnert and Littman (2019).

We can compute Aπ recursively by working backward in
time (upward from the leaves of a policy tree): for a tree with
root action a, the recursion is

Aπ = Fa + γ
∑
o

Aπ(o)Tao

This recursion works by splittingAπ into contributions from
the first step (Fa) and from steps 2 . . . H (rest of RHS). We
give a more detailed derivation, as well as a proof of lin-
earity, in the supplementary material online. All the above
works for MDPs as well by taking qt = est , which lets us
keep a uniform notation across MDPs, POMDPs, and PSRs.

It is worth noting the multiple feature representations that
contribute to the function φπ(q). First are the immediate fea-
tures f(q, a). Second is the PSR state, which can often be
thought of as a feature representation for an underlying “un-
compressed” model (Hefny, Downey, and Gordon 2015). Fi-
nally, both of the above feature representations help define
the exact value of φπ; we can also approximate φπ using a
third feature representation. Any of these feature represen-
tations could be related, or we could use separate features
for all three purposes. We believe that an exploration of the
roles of these different representations would be important
and interesting, but we leave it for future work.

Successor Feature Sets
To reason about multiple policies, we can collect together
multiple matrices: the successor feature set at horizon H is
defined as the set of all possible successor feature matrices
at horizon H ,

Φ(H) = {Aπ | π a policy with horizon H}

As we will detail below, we can also define an infinite-
horizon successor feature set Φ, which is the limit of Φ(H)

as H →∞.
The successor feature set tells us how the future depends

on our state and our choice of policy. It tells us the range of
outcomes that are possible: for a state q, each point in Φq
tells us about one policy, and gives us moments of the distri-
bution of future states under that policy. The extreme points
of Φq therefore tell us the limits of what we can achieve.
(Here we use the shorthand of broadcasting: set arguments
mean that we perform an operation all possible ways, sub-
stituting one element from each set. E.g., if X,Y are sets,
X + Y means Minkowski sum {x+ y | x ∈ X, y ∈ Y }.)

Note that Φ(H) is a convex, compact set: by linearity of
expectation, the feature matrix for a stochastic policy will
be a convex combination of the matrices for its component
deterministic policies. Therefore, Φ(H) will be the convex
hull of a finite set of matrices, one for each possible deter-
ministic policy at horizon H .

Working with multiple policies at once provides a num-
ber of benefits: perhaps most importantly, it lets us define
a Bellman backup that builds new policies combinatorially
by combining existing policies at each iteration (Sec. ). That
way, we can reason about all possible policies instead of just
a fixed list. Another benefit of Φ is that, as we will see be-
low, it can help us compute optimal policies and feature-
matching policies efficiently. On the other hand, because it
contains so much information, the set Φ is a complicated
object; it can easily become impractical to work with. We
return to this problem in Sec. 12.

Special Cases
In some useful special cases, successor feature matrices and
successor feature sets have a simpler structure that can make
them easier to reason about and work with. E.g., in an MDP,
we can split the successor feature matrix into its columns,
resulting in one vector per state — this is the ordinary suc-
cessor feature vector φπ(s) = Aπes. Similarly, we can split
Φ into sets of successor feature vectors, one at each state,
representing the range of achievable futures:

φ(s) = {φπ(s) | π a policy} = Φes

Fig. 3 visualizes these projections, along with the Bellman
backups described below. Each projection tells us the dis-
counted total feature vectors that are achievable from the
corresponding state. For example, the top-left plot shows a
set with five corners, each corresponding to a policy that is
optimal in this state under a different reward function; the
bottom-left corner corresponds to “always go down,” which
is optimal under reward R(s, a) = (−1,−1)f(s, a).
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Figure 3: Visualization of the successor feature set Φ for a
3 × 3 gridworld MDP with 2d features. Start state is in yel-
low. Gray insets show one-step feature vectors, which de-
pend only on the state, not the action. Each subplot shows
one projection Φej (scale is arbitrary, so no axes are nec-
essary). The red sets illustrate a Bellman backup at the
bottom-left state, and the black arrows illustrate the feature-
matching policy there. See text for details.

On the other hand, if we only have a single one-step fea-
ture (f(q, a) ∈ R), then we can only represent a 1d family
of reward functions. All positive multiples of f are equiva-
lent to one another, as are all negative multiples. In this case,
our recursion effectively reduces to classic POMDP or PSR
value iteration: each element of Φ is now a vector απ ∈ Rk
instead of a matrixAπ ∈ Rd×k. This α-vector represents the
(linear) value function of policy π; the pointwise maximum
of all these functions is the (piecewise linear and convex)
optimal value function of the POMDP or PSR.

Bellman Equations

Each element of the successor feature set is a successor fea-
ture matrix for some policy, and as such, it satisfies the re-
cursion given above. For efficiency, though, we would like
to avoid running Bellman backups separately for too many
possible policies. To this end, we can write a backup opera-
tor and Bellman equations that apply to all policies at once,
and hence describe the entire successor feature set.

The joint backup works by relating horizon-H policies to
horizon-(H − 1) policies. Every horizon-H policy tree can
be constructed recursively, by choosing an action to perform
at the root node and a horizon-(H − 1) tree to execute af-
ter each possible observation. So, we can break down any
horizon-H policy (including stochastic ones) into a distri-
bution over the initial action, followed by conditional distri-
butions over horizon-(H − 1) policy trees for each possible
initial observation.

Therefore, if we have the successor feature set Φ(H−1) at
horizon H − 1, we can construct the successor feature set at
horizon H in two steps: first, for each possible initial action

a, we construct

Φ(H)
a = Fa + γ

∑
o

Φ(H−1)Tao

This set tells us the successor feature matrices for all
horizon-H policies that begin with action a. Note that only
the first action is deterministic: Φ(H−1) lets us assign any
conditional distribution over horizon-(H − 1) policy trees
after each possible observation.

Second, since a general horizon-H policy is a distribu-
tion over horizon-H policies that start with different actions,
each element of Φ(H) is a convex combination of elements
of Φ

(H)
a for different values of a. That is,

Φ(H) = conv
⋃
a

Φ(H)
a

The recursion bottoms out at horizon 0, where we have

Φ(0) = {0}

since the discounted sum of a length-0 trajectory is always
the zero vector.

Fig. 3 shows a simple example of the Bellman backup.
Since this is an MDP, Φ is determined by its projections Φej
onto the individual states. The action “up” takes us from
the bottom-left state to the middle-left state. So, we con-
struct Φupebottom-left by shifting and scaling Φemiddle-left (red
sets). The full set Φebottom-left is the convex hull of four sets
Φaebottom-left; the other three are not shown, but for example,
taking a = right gives us a shifted and scaled copy of the
set from the bottom-center plot.

The update from Φ(H−1) to Φ(H) is a contraction: see the
supplementary material online for a proof. So, as H → ∞,
Φ(H) will approach a limit Φ; this set represents the achiev-
able successor feature matrices in the infinite-horizon dis-
counted setting. Φ is a fixed point of the Bellman backup,
and therefore satisfies the stationary Bellman equations

Φ = conv
⋃
a

[
Fa + γ

∑
o

ΦTao

]

Feature Matching and Optimal Planning
Once we have computed the successor feature set, we can
return to the feature matching task described in Section .
Knowing Φ makes feature matching easier: for any target
vector of discounted feature expectations φd, we can effi-
ciently either compute a policy that matches φd or verify that
matching φd is impossible. We detail an algorithm for doing
so in Alg. 1; more detail is in the supplementary material.

Fig. 3 shows the first steps of our feature-matching policy
in a simple MDP. At the bottom-left state, the two arrows
show the initial target feature vector (root of the arrows) and
the computed policy (randomize between “up” and “right”
according to the size of the arrows). The target feature vector
at the next step depends on the outcome of randomization:
each destination state shows the corresponding target and the
second step of the computed policy.

We can also use the successor feature set to make optimal
planning easier. In particular, if we are given a new reward
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Algorithm 1: Feature Matching Policy
1 t← 1

2 Initialize φdt to the target vector of expected
discounted features.

3 Initialize qt to the initial state of the environment.
4 repeat
5 Choose actions ait, vectors φit ∈ Φaitqt, and

convex combination weights pit s.t.
φdt =

∑`
i=1 pitφit.

6 Choose an index i according to probabilities pit,
and execute the corresponding action: at ← ait.

7 Write the corresponding φit as
φit = Fatqt + γ

∑
o φot by choosing

φot ∈ ΦTatoqt for each o.
8 Receive observation ot, and calculate

pt = P (ot | qt, at) = uTTatotqt.
9 qt+1 ← Tatotqt/pt

10 φdt+1 ← φott/pt
11 t← t+ 1
12 until done

function expressed in terms of our features, say R(q, a) =
rT f(q, a) for some coefficient vector r, then we can effi-
ciently compute the optimal value function under R:

V ∗(q) = max
π

rTφπq = max {rTψq | ψ ∈ Φ}

As a by-product we get an optimal policy: there will always
be a matrix ψ that achieves the max above and satisfies ψ ∈
Φa for some a. Any such a is an optimal action.

Implementation
An exact representation of Φ can grow faster than exponen-
tially with the horizon. So, in our experiments below, we
work with a straightforward approximate representation. We
use two tools: first, we store Φao = ΦTao for all a, o in-
stead of storing Φ, since the former sets tend to be effec-
tively lower-dimensional due to sparsity. Second, analogous
to PBVI (Pineau, Gordon, and Thrun 2003a; Shani, Pineau,
and Kaplow 2013), we fix a set of directions mi ∈ Rd×k,
and retain only the most extreme point of Φao in each di-
rection. Our approximate backed-up set is then the convex
hull of these retained points. Just as in PBVI, we can ef-
ficiently compute backups by passing the max through the
Minkowski sum in the Bellman equation. That is, for each i
and each a, o, we solve

arg max 〈mi, φ〉 for φ ∈
⋃
a′ [Fa′ + γ

∑
o′ Φa′o′ ]Tao

by solving, for each i, a, o, a′, o′

arg max 〈mi, φ〉 for φ ∈ Φa′o′Tao

and combining the solutions.
There are a couple of useful variants of this implementa-

tion that we can use in stoppable problems (i.e., problems
where we have an emergency-stop or a safety policy; see

the supplemental material for more detail). First, we can up-
date monotonically, i.e., keep the better of the horizon-H or
horizon-(H + 1) successor feature matrices in each direc-
tion. Second, we can update incrementally: we can update
any subset of our directions while leaving the others fixed.

More on Special Cases
With the above pruning strategy, our dynamic programming
iteration generalizes PBVI (Pineau, Gordon, and Thrun
2003b). PBVI was defined originally for POMDPs, but it
extends readily to PSRs as well: we just sample predictive
states instead of belief states. To relate PBVI to our method,
we look at a single task, with reward coefficient vector r.
We sample a set of belief states or predictive states qi; these
are the directions that PBVI will use to decide which value
functions (α-vectors) to retain. Based on these, we set the
successor feature matrix directions to be mi = rqTi for all i.

Now, when we search within our backed up set Φ(H) for
the maximal element in directionmi, we get some successor
feature matrix φ. Because tr(φT rqTi ) is maximal, we know
that tr(qTi φ

T r) = qTi (φT r) is also maximal: that is, φT r is
as far as possible in the direction qi. But φT r is a backed-
up value function under the reward r; so, φT r is exactly the
value function that PBVI would retain when maximizing in
the direction qi.

Experiments: Dynamic Programming
We tried our dynamic programming method on several small
domains: the classic mountain-car domain and a random
18 × 18 gridworld with full and partial observability. We
evaluated both planning and feature matching; results for
the former are discussed in this section, and an example
of the latter is in Fig. 3. We give further details of our ex-
perimental setup in the supplementary material online. At a
high level, our experiments show that the algorithms behave
as expected, and that they are practical for small domains.
They also tell us about limits on scaling: the tightest of these
limits is our ability to represent Φ accurately, governed by
the number of boundary points that we retain for each Φao.

In mountain-car, the agent has two actions: accelerate
left and accelerate right. The state is (position, velocity),
in [−1.2, 0.6] × [−0.07, 0.07]. We discretize to a 12 × 12
mesh with piecewise-constant approximation. Our one-step
features are radial basis functions of the state, with values
in [0, 1]. We use 9 RBF centers evenly spaced on a 3 × 3
grid. In the MDP gridworld, the agent has four determinis-
tic actions: up, down, left, and right. The one-step features
are (x, y) coordinates scaled to [−1, 1], similar to Fig. 3. In
the POMDP gridworld, the actions are stochastic, and the
agent only sees a noisy indicator of state. In all domains, the
discount is γ = 0.9.

Fig. 4 shows how Bellman error evolves across iterations
of dynamic programming. Since Φ is a set, we evaluate er-
ror by looking at random projections: how far do Φ and the
backup of Φ extend in a given direction? We evaluate direc-
tions mi that we optimized for during backups, as well as
new random directions.
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Figure 4: Bellman error v. iteration for three simple test domains, varying the amount of computation per iteration. We show
error separately in directions we have optimized over and in new random directions. Average of 25 random seeds of the direction
mi with the highest bellman error per seed; all error bars are smaller than the line widths. The center panel shows the effect
on Bellman error when we have higher-dimensional feature vectors. The rightmost panel shows the effect on Bellman error
when the agent has less information about the exact state. In both cases the convergence rate stays similar, but we need more
directions mi to adequately sample the boundary of Φ (i.e., to lower the asymptotic error on new directions).

Note that the asymptotes for the new-directions lines are
above zero; this persistent error is due to our limited-size
representation of Φ. The error decreases as we increase the
number of boundary points that we store. It is larger in the
domains with more features and more uncertainty (center
and right panels), due to the higher-dimensionalAπ matrices
and the need to sample mixed (uncertain) belief states.

Related Work
Successor features, a version of which were first introduced
by Dayan (1993), provide a middle ground between model-
free and model-based RL (Russek et al. 2017). They have
been proposed as neurally plausible explanations of learning
(Gershman et al. 2012; Gershman 2018; Momennejad et al.
2017; Stachenfeld, Botvinick, and Gershman 2017; Gardner,
Schoenbaum, and Gershman 2018; Vértes and Sahani 2019).

Recently, numerous extensions have been proposed. Most
similar to the current work are methods that generalize to a
set of policies or tasks. Barreto et al. (2017) achieve trans-
fer learning by generalizing across tasks with successor fea-
tures; Barreto et al. (2018) use generalized policy improve-
ment (GPI) over a set of policies. A few methods (Borsa
et al. 2018; Ma, Wen, and Bengio 2018) recently combined
universal value function approximators (Schaul et al. 2015)
with GPI to perform multi-task learning, generalizing to a
set of goals by conditioning on a goal representation. Barreto
et al. (2020) extend policy improvement and policy evalua-
tion from single tasks and policies to a list of them, but do
not attempt to back up across policies.

Many authors have trained nonlinear models such as neu-
ral networks to predict successor-style representations, e.g.,
Kulkarni et al. (2016); Zhu et al. (2017); Zhang et al. (2017);
Machado et al. (2017); Hansen et al. (2019). These works are
complementary to our goal here, which is to design and an-
alyze new, more general successor-style representations. We
hope our generalizations eventually inform training methods
for large-scale nonlinear models.

At the intersection of successor features and imitation
learning, Zhu et al. (2017) address visual semantic planning;

Lee, Srinivasan, and Doshi-Velez (2019) address off-policy
model-free RL in a batch setting; and Hsu (2019) addresses
active imitation learning.

As mentioned above, the individual elements of Φ are re-
lated to the work of Lehnert and Littman (2019). And, we
rely on point-based methods (Pineau, Gordon, and Thrun
2003a; Shani, Pineau, and Kaplow 2013) to compute Φ.

Conclusion
This work introduces successor feature sets, a new represen-
tation that generalizes successor features. Successor feature
sets represent and reason about successor feature predictions
for all policies at once, and respect the compositional struc-
ture of policies, in contrast to other approaches that treat
each policy separately. The set represents the boundaries of
what is achievable in the future, and how these boundaries
depend on our initial state. This information lets us read off
optimal policies or imitate a demonstrated behavior.

We give algorithms for working with successor feature
sets, including a dynamic programming algorithm to com-
pute them, as well as algorithms to read off policies from
them. The dynamic programming update is a contraction
mapping, and therefore convergent. We give both exact and
approximate versions of the update. The exact version can
be intractable, due to the so-called “curse of dimensional-
ity” and “curse of history.” The approximate version miti-
gates these curses using point-based sampling.

Finally, we present computational experiments. These are
limited to relatively small, known environments; but in these
environments, we demonstrate that we can compute succes-
sor feature sets accurately, and that they aid generalization.
We also explore how our approximations scale with environ-
ment complexity.

Overall we believe that our new representation can pro-
vide insight on how to reason about policies in a dynamical
system. We know, though, that we have only scratched the
surface of possible strategies for working with this represen-
tation, and we hope that our analysis can inform future work
on larger-scale environments.
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