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Abstract

Chest radiography has been a recommended pro-
cedure for patient triaging and resource manage-
ment in intensive care units (ICUs) throughout
the COVID-19 pandemic. The machine learn-
ing efforts to augment this workflow have been
long challenged due to deficiencies in reporting,
model evaluation, and failure mode analysis. To
address some of those shortcomings, we model
radiological features with a human-interpretable
class hierarchy that aligns with the radiological
decision process. Also, we propose the use of a
data-driven error analysis methodology to uncover
the blind spots of our model, providing further
transparency on its clinical utility. For example,
our experiments show that model failures highly
correlate with ICU imaging conditions and with
the inherent difficulty in distinguishing certain
types of radiological features. Also, our hierar-
chical interpretation and analysis facilitates the
comparison with respect to radiologists’ findings
and inter-variability, which in return helps us to
better assess the clinical applicability of models.

1. Introduction

Patients affected with COVID-19 frequently experience an
upper respiratory tract infection or pneumonia that can
rapidly progress to acute respiratory failure, multiple or-
gan failure and death (Zhou et al., 2020). Chest radiogra-
phy (chest X-ray; CXR) is a front-line tool that is used in
screening and triaging varieties of pneumonia due to the
diagnostic role of imaging features (Toussie et al., 2020)
and its quick turnaround time (Wong et al., 2020), which
makes it convenient for patient management in intensive
care units. However, in public healthcare systems (e.g. UK
NHS) it can take several hours from CXR acquisition until
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Figure 1. Example chest X-rays from each category. (a) Normal
lungs appear mostly black. (b) Bilateral, peripheral opacities
(white ‘clouds’) in lower lung lobe. (c) Non-typical COVID fea-
tures, with peripheral coarse white lines. (d) Here, a right-sided
basal pleural effusion (fluid accumulation in the left of the image).
Images reproduced with permission.

a reporting radiologist is available to provide such a reading
or RT-PCR test results become available. Thus, in this clini-
cal context, it is especially relevant to build automated CXR
image analysis systems that can benefit front-line patient
management processes to decide on the clinical pathway for
each patient by providing radiological feedback at point of
care. This way, hospitals can better allocate resources and
reduce COVID-19 contamination risks before other clinical
data (e.g. lab tests) is made available.

There have been several efforts to leverage machine learning
models to automate this CXR reading process, reviewed in
Wynants et al. (2020). For example, Wehbe et al. (2021)
benchmarked deep networks on a multi-site dataset com-
prised of thousands of CXR scans, where the models were
trained to predict RT-PCR test results. Instead, in this study,
we aim to predict a radiologist’s impression of a chest image
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by identifying radiological features associated with COVID-
19 pneumonia, rather than lab results or patient outcomes.
CXR alone is known not to have enough diagnostic power
for predicting RT-PCR results (Cleverley et al., 2020), hence
the proposed tool is not intended for diagnosis or progno-
sis on its own. Rather, it provides supporting evidence in
addition to other readings and test results.

The structure of model outputs is directly informed by ra-
diologists’ decision-making process and was developed in
close collaboration with a hospital trust, in contrast to past
COVID-19 ML studies performed without clinical involve-
ment (Tizhoosh & Fratesi, 2021). In detail, we propose a
post-hoc interpretation of model outputs representing the
clinically meaningful hierarchical relationships between tar-
get classes, as illustrated in Fig. 2 (cf. Chen et al., 2019).

Our study also focuses on the potential issues and varying
practices around model evaluation and biases across differ-
ent hospital settings (Roberts et al., 2021). Such pitfalls
can cast a doubt on the clinical applicability of the models
evaluated in previous studies. As a step in this direction,
we propose the use of a dedicated error analysis method-
ology (Nushi et al., 2018) to understand and communicate
the dependency between model’s failure modes and sample
attributes, such as sample difficulty and image acquisition
settings. In this way, users can be made aware of reliable
operating regimes of such models and ensure clinical safety
whilst offering actionable solutions to address such issues.

2. Methodology
2.1. Label definitions

The prediction targets were adapted from the British Soci-
ety for Thoracic Imaging (BSTI)’s reporting guidelines for
COVID-19 findings from chest radiographs (BSTI, 2020):

* NORMAL: No radiological features of COVID-19 nor
of other abnormalities.

* CLASSIC: Stereotypical presentation, e.g. lower lobe,
peripheral predominant, multifocal, bilateral opacities.

* INDET(ERMINATE): Findings that are compatible with
COVID-19 presentation but nonspecific.

e OTHER: Abnormalities that are not suggestive of
COVID-19, e.g. pneumothorax, lobar pneumonia, pleu-
ral effusion, pulmonary oedema, etc.

Examples are shown in Fig. 1. The labelling process of
our partner radiologists is visualised in Fig. 2(a) and can be
summarised as follows: if there are any visual features sug-
gestive of COVID-19, the decision is narrowed to CLASSIC
vs INDET—even if the image presents other findings like
heart failure. In other words, an image is labelled OTHER
only if it shows no signs of COVID-19. Note that these
categories refer exclusively to the presented radiological
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Figure 2. Clinically informed model interpretation. The model’s
outputs are mapped to the radiologists’ decision branches (A/B/C);
branch probabilities are computed according to Eq. (1).

features, and labels are assigned with no access to other
relevant information such as the patient record or past scans.

2.2. Hierarchical analysis of COVID-19 features

To enable analysing model outputs at clinically meaningful
levels of abstraction, we propose to hierarchically aggregate
class probabilities reflecting the radiologists’ decision pro-
cess (Fig. 2). Unlike the related work of Chen et al. (2019),
who modelled a taxonomy of (non-COVID) thoracic abnor-
malities with a hierarchical model architecture, we focus on
post-hoc interpretation of a vanilla multi-class predictor.

Specifically, the model is a conventional CNN classifier
trained with cross-entropy loss (details in Appendix B). We
then use the four-class model outputs to compute normalised
binary probabilities for each of the decision branches:

P(SuUGG) =
P(CLASSIC | SUGG) =
P(OTHER | =SUGG) =

P(CLASSIC) + P(INDET),
P(CLaAsSIC)/P(SUGG), (1)
P(OTHER)/(1 — P(SUGG)),

where ‘SUGG’ refers to ‘suggestion of COVID-19’ (i.e.
‘CLASSIC or INDET’).

2.3. Self-supervised pre-training

The scarcity of large, annotated datasets in chest radiol-
ogy has been one of the major drivers for leveraging self-
supervised model pre-training (Sriram et al., 2021). As self-
supervision does not require image labels, it significantly
reduces the expert annotation burden and enables local clin-
ical sites to build on pre-trained models using much smaller
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private datasets. Further, because the external datasets’ la-
bels that may not align with the target task, self-supervised
learning partly mitigates widespread issues in COVID-19
studies around inappropriate ground-truth labels and misuse
of external datasets (Roberts et al., 2021).

In our study, we employ the BYOL algorithm (Grill et al.,
2020) and experiment with two large chest X-ray datasets
for model pre-training: NIH-CXR (Wang et al., 2017), with
112,120 frontal-view CXR scans, and CheXpert (Irvin et al.,
2019), with 224,316. Both datasets were acquired from large
cohorts of subjects diagnosed with chest pathologies in-
cluding consolidation, pneumonia, lung nodules, etc. Even
though these external datasets contain only pre—COVID-19
scans, self-supervision enables the model to learn generic
characteristics of lung lobes, opacities, and nodules, which
are useful in quantifying COVID-19-related features.

3. Datasets

COVID-19 CXR dataset: The labelled images used for
supervised fine-tuning come from a retrospective dataset
comprising de-identified chest radiographs, collected in the
UK across multiple sites of the University Hospitals Birm-
ingham NHS Foundation Trust during the first COVID-19
wave (1st March to 7th June 2020). The study partici-
pants were consecutive patients who had CXR taken for
suspected COVID-19 infection, presented in the emergency
department, acute medical unit, or inpatient unit. The ini-
tial dataset with 6125 images was curated by excluding
duplicates and poor-quality scans, resulting in 4,940 usable
images (NORMAL: 1154, CLASSIC: 1778, INDET: 1093,
OTHER: 915). Of the 3639 unique subjects in the curated
dataset, 515 (14.2%) were aged below 40, 2931 (80.5%)
were in the 40-89 age group, and the remaining 193 (5.3%)
were over 90; 1622 (44.6%) were female patients.

Class labels were extracted from reports by consultant radi-
ologists or specialist radiographers, then blindly reviewed
by a radiologist based on the images alone to mitigate biases
due to availability of clinical side-information. Cases for
which the assigned label disagreed with the original reports
were further reviewed by a clinician to reach a consensus.
Although not used as a prediction endpoint, RT-PCR test
status at imaging time was also recorded for evaluation.

Multi-label test dataset: A subset of this data was held out
from training to evaluate the model’s predictive performance
against a diverse panel of front-line radiology reporters, in
an inter-observer variability (IOV) study. It contains 400
images acquired in April 2020 (approx. 100 consecutive pa-
tients from each of the four categories), with age and gender
distributions similar to the training set. This test dataset was
labelled into the four categories separately by three annota-
tors with varying levels of experience in chest radiology: a

Table 1. Test accuracies of the model and clinicians (N = 400;
NORMAL: 100, CLASSIC: 101, INDET: 98, OTHER: 101; : Fleiss’
kappa statistic, indicating inter-annotator agreement)

Classification task Model Ann.1 Ann.2 Ann.3 (k)

SuGG. COVID 800 775 730 700 (.491)
CLASSIC vs INDET .724  .608 482 588 (.245)
NORMAL vs OTHER .791  .731 706 721 (.488)
Multi-class 588 563 463 488 (.408)

Suggestion of COVID
(AUC: 0.875)

Normal vs Other
(AUC: 0.865)

Classic vs Indet.
(AUC: 0.828)
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Figure 3. ROC curves for hierarchically aggregated model predic-
tions, compared to clinicians’ performance

consultant (Ann. 1) and a trainee chest radiologists (Ann. 2),
and a non-specialist clinician (Ann. 3). They had access
only to these 400 images, without any other clinical context.

4. Results

A DenseNet-121 backbone (Huang et al., 2017) was first
pre-trained with self-supervision on NIH-CXR (cf. com-
parison with CheXpert in Appendix A), then fine-tuned on
the private COVID-19 training dataset with 5-fold cross-
validation. It was ensured that all images from the same
patient were either in the training or in the validation set
(see Appendix B). The results discussed below are based on
an ensemble of the 5 trained models for the best hyperpa-
rameter configuration. Our open-source implementation is
available at https://aka.ms/innereyeoss.

4.1. Classification performance

Table 1 presents the test accuracies for multi-class and for
each binary classification branch illustrated in Fig. 2 (A, B,
and C). The corresponding ROC analysis of these binary
sub-tasks is shown in Fig. 3. Reported results for ‘CLASSIC
vs INDET’ and ‘NORMAL vs OTHER’ include only images
with the relevant labels.

We see that the model outperforms the clinicians across all
hierarchical and multi-class tasks, with respect to the ref-
erence labels defined as in the training dataset. Our model
achieves lower scores on ‘CLASSIC vs INDET’, seemingly
the hardest sub-task of the three, and the clinicians per-
form closer to chance level. However, this is an inherently
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ambiguous problem—discussions with the annotators (in-
cluding the original labellers) revealed they tended to use
different thresholds for distinguishing these two classes,
which is also reflected in the lowest ~ value (Table 1).

4.2. Model failure analysis

To better understand the model’s failure patterns, we em-
ployed a semi-automatic error analysis tool (Nushi et al.,
2018) that trains a decision tree to identify partitions of data
on which the model underperforms, according to attributes
that are most predictive of mistakes. Such a principled anal-
ysis of prediction errors can significantly benefit predictive
models in healthcare settings by identifying potential biases
and opportunities for model improvement.

The attributes considered in our analysis (see Fig. 4) in-
cluded RT-PCR test status for SARS-CoV-2 (positive, neg-
ative, or unknown) and X-ray acquisition direction (pos-
teroanterior or anteroposterior view; PA/AP). For this anal-
ysis, we focused on the top-level binary classification task
(‘SuGG. COVID’), which is the most relevant for patient
management in a hospital. The analysis identified that the ac-
quisition direction had the strongest association with model
errors; in particular, AP images showed a higher error rate
than PA. This is consistent with the clinical context, as PA
imaging is used as standard-of-care with higher diagnostic
quality, whereas AP is reserved for cases when the patient
is too ill to stand upright—correlating strongly with being
in ICU and presenting much higher variations in image ap-
pearance and layout of the patient anatomy. In addition, AP
scans with negative or unknown RT-PCR status display ele-
vated error rates, conceivably due to the higher prevalence
of INDET and OTHER in this group.

To further investigate this effect, we analysed error patterns
across classes and views (Table 2). As expected, mistakes
are notably more frequent in the ambiguous INDET class and
extremely diverse OTHER class. On the other hand, NOR-
MAL lungs in standard PA view were the most accurately
predicted by our model as well as by the annotators. Lastly,
we note that INDET-PA appears extremely challenging not
only for the model but also for the annotators, who attained
error rates of 52%, 81%, and 95% for these images. We
observe similar error patterns for Ann. I in Table C.2, and a
more detailed analysis of the clinicians’ performance and
disagreements is presented in Appendix C.

5. Discussion

In this study, we developed and evaluated a clinically in-
formed hierarchical interpretation of a ML model for detect-
ing signs of COVID-19 in chest X-rays. By aligning with
the experts’ decision-making process, this formulation led
to more transparent engagement with the clinical partners

6/30 (20.0%)

PCR*
| 181122 (14.8%) — PCR? — 8/70 (11.4%)
e iy
Total V PCR- 4722 (18.2%)

80/400 (20.0%)
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62/278 (22.3%) — PCR? — 14/48 (29.2%)
T PCR—

29/155 (18.7%)

19/75 (25.3%)

Figure 4. Error analysis tree for the proposed model. Nodes in-
dicate ‘errors / instances (ratio)’, and ones highlighted in light
red have error rates higher than the overall 20.0%. ‘PCR+/-/?
correspond to RT-PCR positive / negative / unknown.

Table 2. Model error distribution stratified by original class and
PA/AP view (‘errors / instances (ratio)’)

Class PA view AP view | Total
NORMAL 1/ 61 7/ 39 8/100
cLassic 1/ 12 6/ 89 7/101
INDET 13/ 21 20/ 77 33/ 98
OTHER 3/ 28 29/ 73 32/101
Total 18/122 62/278 ‘ 80/400

and helped created trust in the ML model. Furthermore, this
enabled systematic evaluation on clinically relevant predic-
tive sub-tasks, which suggested that the model performs at
least as accurately as clinicians on these challenging prob-
lems. While not attempted here, we also envision that the
operating points for each sub-task can be chosen indepen-
dently, and appropriate confidence thresholds could be set
for deferring decisions to human experts.

Moreover, we conducted a detailed data-driven analysis of
model failures to understand in which circumstances the
model’s predictions may be less reliable. Although this kind
of error analysis is not often found in healthcare-related ML
studies, we believe it is crucial for providing transparency
and actionable insights about a model’s behaviour. For ex-
ample, we may consider additional inputs to the model (here,
AP/PA view) and/or complementing the training set with
more data from underperforming strata. The analysis may
also be useful after deployment if presented as reliability
information alongside the model’s predictions.

We envisage the deployment of this model in a front-line
hospital setting to automatically identify features of COVID-
19 in chest X-rays. This would require validation against
radiologists in a prospective multi-site study. A successful
model may potentially ease pressures on already stretched
radiology services and aid less experienced clinical staff
in decision-making. This can be used in conjunction with
clinical status and RT-PCR in efficiently distributing pa-
tients from the front-line areas to other hospital zones thus
avoiding in-hospital bottlenecks.
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A. Pre-training comparison

Table A.1 presents the model performance obtained in
the classification tasks illustrated in Fig. 2(b) in terms
of precision-recall area-under-the-curve (PR-AUC), ROC-
AUC, and accuracy metrics, along with multi-class (one-of-
four) accuracy, in 5-fold cross-validation runs.

The experimental results demonstrate that model pre-
training significantly improves the classification accuracy
for every task in the hierarchical decision making process.
The same behaviour is observed when we pre-trained the
models on two different external datasets: NIH-CXR (Wang
et al., 2017) and CheXpert (Irvin et al., 2019). However,
there was no significant difference between the compared
pre-trained models whilst they consistently outperformed
models trained with random weight initialisation. Due to
comparable performance of the pre-trained models, we used
NIH pre-training for the remaining experiments.

B. Implementation details

Our model uses a DenseNet-121 (Huang et al., 2017) back-
bone for image feature extraction. The model is trained us-
ing cross entropy loss over the 4 classes for 50 epochs with
a batch size of 64. We use the Adam optimiser (Kingma
& Ba, 2015) and a learning rate of 1075, The pixel val-
ues of each image are linearly normalised between 0 and
255. During training and inference, each image is resized

Table A.1. Cross-validation classification results aggregated over
K = 5 folds (N = 4940; NORMAL: 1154, CLASSIC: 1778,
INDET: 1093, OTHER: 915). Mean * (std.).

Pre-training Classification task PR-AUC ROC-AUC Accuracy

None SUGG. COVID 922 +£.005 .893 +.006 .815+.012
CLASSIC vs INDET .722 +.023 .835+.014 .758 +.013
NORMAL vs OTHER .793 +.043 .843 +.029 .772 +.033
Multi-class — — 625 +.018
NIH-CXR SuGG. COVID 938 £.007 915 +.009 .837 +.009
CLASSIC vs INDET .746 +.023 .857 +£.005 .777 +.012
NORMAL vs OTHER .813 +.031 .855+.017 .784 +.016
Multi-class — — 655+ .016
CheXpert  Multi-class — — .653 +.015
Both Multi-class — — .658 = .015

to size 256 X256, and then a center crop taken to get an
image of size 224 x224. When training, we perform data
augmentation using random horizontal flips, affine trans-
forms, random crops, and brightness, contrast, saturation
and gamma transforms.

C. Multi-expert labelling process

In this study, we formed an isolated test set with multiple
expert labels to assess the clinical applicability of the learnt
models. For this purpose, a panel of three clinicians man-
ually labelled a subset of the in-house dataset (N = 400)
described in Section 3. The labelling process was carried out
using a cloud-based annotation tool on an image-by-image
basis, where each expert was able to adjust the image inten-
sity window/level and analyse CXR scans in high-resolution.
At the same time, the annotation time of each expert was
monitored throughout this exercise to create a proxy mea-
sure quantifying the difficulty of each labelling task and also
the experience level of each annotator.
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Figure C.1. Distribution of average labelling time (in seconds) on
380 CXR images, broken down by how often the three clinicians
agreed on the class assignment. A small subset of of the 400 images
(N = 11) whose average labelling time exceeded 50 seconds were
omitted from the graph to reduce the noise level in the analysis,
and a further 9 were skipped by at least one annotator.
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Figure C.1 shows a breakdown of average labelling time
by agreement of the 3 annotators. We observe that, for the
samples where the experts arrive at the same conclusion,
the annotation time is consistently lower compared to the
(presumably more difficult) samples where they do not agree.
Additionally, we observed a systematic correlation between
the annotators’ disagreement and the model’s errors (see
Table C.1), suggesting that the model tended to have more
difficulty on ambiguous cases. Lastly, Table C.2 reports
the breakdown of errors of the most experienced annotator
(Ann. 1) by class label and CXR view. Comparing to Table 2,
it suggests that the model and Ann. I have similar error
patterns for this task.

Table C.1. Model error rates versus expert disagreement for each
predictive task. We indicate agreement patterns as ‘3’ for full
agreement, ‘2:1” for partial agreement, and ‘1:1:1" for full dis-
agreement between the three annotators. The model’s overall error
rates are also included for reference.

Annotator agreement

Classification task 3 2:1 1:1:1 Overall
SuGG. COVID 18.6% 22.6% — 20.0%
CLASSIC vs INDET 19.5% 33.9% — 27.6%
NORMAL vs OTHER 16.4% 29.9% — 20.9%
Multi-class 303% 479% 56.1%  40.8%

Table C.2. Distribution of disagreements between the labels pro-
vided by a consultant chest radiologist (Ann. I) and the reference
labels collected on the test set. The results are stratified by target
class and PA/AP view (‘errors / instances (ratio)’).

Class PA view AP view | Total
NORMAL 1/ 61 6/ 39 7/100
cLassic 1/ 12 17/ 89 18/101
INDET 11/ 21 34/ 77 45/ 98
OTHER 3/ 28 17/ 73 20/101

Total 16/122 741278 | 907400




