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ABSTRACT

This paper presents a deep learning approach for a versatile Micro-
climate prediction framework (DeepMC). Micro climate predictions
are of critical importance across various applications, such as Agri-
culture, Forestry, Energy, Search & Rescue, etc. To the best of our
knowledge, there is no other single framework which can accurately
predict various micro-climate entities using Internet of Things (IoT)
data. We present a generic framework (DeepMC) which predicts
various climatic parameters such as soil moisture, humidity, wind
speed, radiation, temperature based on the requirement over a pe-
riod of 12 hours - 120 hours with a varying resolution of 1 hour - 6
hours, respectively. This framework proposes the following new
ideas: 1) Localization of weather forecast to IoT sensors by fusing
weather station forecasts with the decomposition of IoT data at mul-
tiple scales and 2) A multi-scale encoder and two levels of attention
mechanisms which learns a latent representation of the interaction
between various resolutions of the IoT sensor data and weather
station forecasts. We present multiple real-world agricultural and
energy scenarios, and report results with uncertainty estimates
from the live deployment of DeepMC, which demonstrate that
DeepMC outperforms various baseline methods and reports 90%+
accuracy with tight error bounds.
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1 INTRODUCTION

It is the month of April and a farm in Eastern Washington, USA is
producing wheat and lentil crops. The spring is just settling in while
the temperature is slightly above freezing. The farmer is getting
ready to fertilize his fields as the conditions become safe from
winter runoff and frost [39]. The plants are significantly susceptible
to fertilizers at freezing temperatures, therefore, the farmer consults
the local weather station for temperature forecasts, which is located
in the closest metropolitan valley about 50 miles away from the
farm. The 3-day predictions show consistent temperatures above
the freezing point. The farmer rents equipment and fertilizers and
starts fertilizing the farm. A couple of nights the temperature in
certain parts of the field drop below freezing and kills around 20%
of the crops. Despite the availability of weather forecasts from
commercial weather stations, this is a common situation that can
affect up to 20% of the crops [27, 28, 39]. This is because the climatic
parameters around the plant not only vary from the nearest weather
stations but also between various regions of the farm.

In this paper, we present a micro-climate prediction framework
(DeepMC), which, among other related problems, addresses the
problem presented above. Micro-climate is the accumulation of cli-
matic parameters formed around an (approximately) homogeneous
and relatively smaller region [19, 30]. Knowledge of micro-climate
and micro-climate predictions are of importance in agriculture
[5, 31], forestry [33], architecture [12], urban design [1], ecology
conservation [38], maritime [8] and many other domains. DeepMC
predicts various micro-climate parameters with 90%+ accuracy at
IoT sensor locations deployed in various regions across the world.
For brevity and ease of explanation, this paper will focus on micro-
climate prediction for agriculture and energy, and demonstrate
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results computed in farm conditions for micro-climate parameters
- soil moisture, wind speed, radiation, humidity, soil temperature,
and ambient temperature. More results are available for different do-
mains and micro-climate parameters using the same methodology,
which will not be presented in this paper. Readers are encouraged
to try the same architecture presented in this paper for similar
problems with varying input-output climatic parameters.

Climatic parameters are stochastic in nature and quite challeng-
ing to model for prediction tasks. Some of the challenges with
developing a framework for micro-climate predictions are:

1) Non-stationary features: Non-stationarity of the climatic time-
series data makes it difficult to model the input-output relationship.
Each input feature affects the output variable at a different temporal
scale, for example, the effect of precipitation on soil moisture is
instantaneous while the effect of temperature on soil moisture is
accumulated over time. Additionally, climatic parameters behave
differently during different times of the year, especially during the
times when seasons are transitioning. To capture these varying
effects, a solution needs to capture multiple trends in the data in a
stationary way [13, 22, 29]. DeepMC utilizes a multi scale wavelet
decomposition based approach to capture these effects [13, 22] (see
Section 6.4). This approach decomposes the input signals into vari-
ous scales capturing trends and details in the data.

2) Varying input dimension: Various factors influence the trend
of a particular climatic parameter of interest. For example, soil mois-
ture predictions are correlated with climatic parameters such as
ambient temperature, humidity, precipitation, and soil temperature
[17]; While ambient humidity is correlated with parameters - ambi-
ent temperature, wind speed, and precipitation [40]. This creates a
challenge for a machine learning system to accept vectors of vary-
ing dimensions as input. Additionally, in many cases, the data for a
single or a group of climatic parameters might be unavailable, which
creates a requirement for a micro-climate prediction framework to
work with varying input dimensions. DeepMC solves this problem
by: First, decomposing the input into signals across various scales
for each feature and combining them through a paired cartesian
product; Then using a heuristic to apply specialized architecture for
specific scales. This heuristic assigns the components of the archi-
tecture based on the nature of the paired scales rather than specific
features, enabling adaptability for varying input dimensions. More
details are provided in Section 6.4.

3) Result accuracy: Generating high accuracy results is an obvi-
ous challenge for any real-world deployment of a machine learning
solution. In the context of micro-climate predictions, the challenges
described above - small quantity of labeled datasets, heterogeneity
of features, and non-stationary of input features make the learning
problem itself quite difficult. In this work, instead of predicting the
climatic parameter directly, we predict the error between the near-
est commercial weather station forecast and local micro-climate
forecast. This is based on the hypothesis that hyperlocalization
of weather station forecasts is easier to learn than learning the
relationships of the predicted climatic parameter with the predictor
climatic parameters from the ground-up. DeepMC performs better
than other commonly used models across multiple applications,
sensors, and farms, where accuracy is quantified with multiple met-
rics of accuracy (please see Section 7 for more details).

To the best of our knowledge, there is no other comprehensive

framework which can be consistently and accurately used for pre-
dicting various climatic parameters. We identify other related work
in literature for micro-climate prediction in Section 2

2 RELATED WORK

Digital transformation in many traditional industries such as agri-
culture, forestry, supply chain & logistics, and renewable energy has
increased the demand for accurate micro-climate predictions. There
are traditional statistical and algebraic time-series forecasting mech-
anisms, such as ARIMA [3], matrix factorization models [4] and
other statistical models such as genetic modeling, vector machines,
etc., see [24]. These mechanisms are not reliable for micro-climate
predictions because of the non-stationarity of data and sharp jumps
in signal profiles.

There is another body of work which predicts micro-climate for
a specific climatic parameter based on the area of interest. There
are many physical models available to characterize the weather
dynamics [23] but these models cannot be used as-is in practice due
to various factors such as constraints on model usability, data avail-
ability, and application-specific characteristics [37]. Deep learning
methods alleviate some of these challenges enabling learning re-
lationships between various climatic parameters, provided there
is enough high quality labelled datasets. They either use physical
models to forecast micro-climate or specialized neural networks.
For example, there has been work on rainfall predictions [13], soil
moisture predictions [17], wind speed Predictions [11, 22], and
micro-temperature predictions [31], among other work. Most phys-
ical models are only suitable for climate predictions over a broad
spatial area, therefore they are not very useful for micro-climates.
While, the specialized neural networks achieve good performance
for the specific climatic parameter they are designed for, they lack
generalizability across other micro-climate signals. Vanilla deep
learning models, such as MLP, LSTM, CNNLSTM and CNNs, are
insufficient for micro-climate predictions due to the inherent diffi-
culty in capturing the complex dynamics and interplay of climatic
parameters, especially during times when seasons transition. There
has been work to resolve this issue by developing hybrid systems
combining physical models with classical machine learning tech-
niques, for example see Galanis et al. [11]. These models still lack
generalizability and are harder to reproduce commercially. DeepMC
addresses the above shortcomings of previous work through the
contribution summarized in Section 3.

3 DEEPMC CONTRIBUTIONS SUMMARY
To summarize, the major contributions of this paper are:

(1) A versatile system for micro-climate prediction with real-
world deployment: This work develops a micro-climate pre-
diction framework which can be used for multiple input-
output paired climatic parameters. We highlight four real-
world deployments that characterize a diverse set of condi-
tions. We conduct a comprehensive validation of DeepMC
across various regions around the world and various micro-
climatic parameters. The predictions computed are being
used through real-world deployments of the FarmBeats sys-
tem in Ireland, India, Australia, Kenya, and United States.
The results presented here are computed for predictions



of local temperature, local wind speed, soil moisture, soil
temperature, radiation, and humidity. The framework is gen-
eralizable to other input-output combinations of the climatic
parameters.

(2) New technology and workflow: DeepMC proposes new ideas,
which address the challenges of solving and deploying real-
world micro-climate prediction systems; Specifically the fol-
lowing 4 parts address the problem of micro-climate pre-
diction in a new way and enables DeepMC to generate
compelling results: a) the design mechanism which enables
DeepMC to be used across multiple input-output climatic
parameters and to adapt to varying non-stationary signal
characteristics, b) the application of multi-scale learning and
a new mechanism for attention model for effective and accu-
rate micro-climate predictions, and c¢) Hyperlocalization of
weather station forecasts by predicting forecast error as an
endogenous variable. Also, we identify the key requirements
of engineering a real-world micro-climate prediction system
and propose ways to fulfill those. The workflow presented
here is consistent across various applications and can be used
as a blueprint for other micro-climate prediction problems.

We observe high accuracy of predictions across multiple applica-
tions. This work resulted in (MAPE) accuracy scores above 90%
for many real-world application tests on direct learning, with high
Root-Mean-Squared-Error (RMSE) and Mean-Absolute-Error (MAE)
scores as well. This is better than other models which address the
problem of micro-climate predictions for specific climatic parame-
ters.

4 ENGINEERING A REAL-WORLD
MICRO-CLIMATE PREDICTION SYSTEM

For this research, we identified several characteristics for engineer-
ing a real-world micro-climate prediction system.

e High Prediction accuracy: Micro-climate prediction aids var-
ious decisions on the farm - both for agricultural farms as
well as renewable energy farms. For instance in agriculture,
among others, certain operational decisions such as seeding,
irrigating, fertilizing, harvesting, etc. can have high econom-
ical and work-effort consequences. These decisions are sen-
sitive to minor changes in weather forecasts and therefore,
there is a general requirement for a high degree of accuracy
in the predictions.

e Data collection and data delivery: To develop a micro-climate
prediction system, we require real-time data from sensor lo-
cations at the farm. More often than not, applications which
require micro-climate prediction have very low network cov-
erage [25]. One objective is to get the farm data to cloud
storage reliably and in real-time. Additionally, it is also re-
quired to present the prediction results through a medium
which can be ingested and understood by the end-user in
real-time.

DeepMC is designed to satisfy each of the above requirements.
Section 5 presents how we satisfy the data requirements for both
- ingesting data to predict micro-climate and showcasing predic-
tions for the end-user to intake. Section 6 presents details on the
architecture and how it solves many of the challenges described in

this section above. Section 7 provides some real-world scenarios
where DeepMC is being used and demonstrates the performance of
DeepMC across various applications and regions around the world.
Section 8 concludes this paper with the impact of this work on en-
vironmental sustainability and in broader industrial applications.

5 DATA REQUIREMENTS

DeepMC uses weather station forecasts and IoT sensor deployments
as inputs through the FarmBeats platform to predict micro-climatic
parameters in real-time.

Weather Station Forecasts: Weather station forecasts are col-
lected for training and inference through commercial weather sta-
tions. The model is trained and tested with various weather data
providers - DarkSkyl, NOAAZ?, AgWeatherNet3, National Weather
Service* and DTN®.

IoT Sensor Climate Data: DeepMC uses FarmBeats [34] platform
to collect climatic and soil data from multiple sensors around the
world. FarmBeats is an end-to-end IoT platform for data-driven
agriculture, which provides consistent data collection from various
sensor types with varying bandwidth constraints. We chose the
FarmBeats system for this work because of high system reliability
and system availability, especially during events such as power and
Internet outages caused by bad weather - scenarios that are fairly
common for a farm. This data collected by FarmBeats IoT sensors
is persisted in the cloud and accessed there.

The actual parameters collected depend on the predicted vari-
able of interest. The superset of climatic parameters for which we
collect both the current as well as forecasted data includes Ambient
Temperature, Ambient Pressure, Humidity, Soil Moisture, Soil Tem-
perature, Radiation, Precipitation, Wind Speed, Wind Direction.

We use the FarmBeats platform dashboard to deliver micro-
climate predictions to the end-users using their Azure marketplace
offering®.

6 APPROACH: MICRO-CLIMATE
PREDICTION

The DeepMC learning framework is shown in Figure 1. The frame-
work is based on a sequence to sequence [32] encoder-decoder
framework. The encoder consists of 5 distinct parts: A) Pre-processor,
B) Forecast Error Computer, C) Wavelet Packet Decomposition. D)
Multi-scale deep learning, E) Attention Mechanism. The decoder is
a multi-layer LSTM and fully connected layer. Each component of
the framework is described in the following subsections with some
implementation details for the sake of reproducibility.

6.1 Pre-processing of sensor data

Sensor data is received using IoT sensors deployed on the farm. The
raw data which is received from the sensors is usually noisy with
missing data and with varying temporal resolution. We standardize
the temporal resolution using average values for the data collected.

Uhttps://darksky.net/dev
Zhttps://www.ncdc.noaa.gov/cdo-web/webservices/v2
Shttps://weather.wsu.edu/
“https://www.weather.gov/documentation/services-web-api
Shttps://cs-docs.dtn.com/apis/weather-api/
®https://azuremarketplace.microsoft.com/en-us/marketplace/apps/
microsoftfarmbeats.microsoft_farmbeats
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Figure 1: DeepMC architecture for the multi scale encode-decoder deep learning system. The architecture consists of 6 distinct
parts- A) The preprocessor, B) Forecast error computation, C) Wavalet packet decomposition, D) Multi-scale deep learning, E)
Attention Mechanism, F) Decoder. The attention mechanism is depicted in Figure 3.

We denote the weather data from the sensors as a tuple (zx, yi),
where y is the climatic parameter to be predicted, z is the multi-
variate predictors - the climatic data which affects the predicted
parameter and k is the time epoch when the corresponding values
were recorded. Also we denote the required temporal resolution
to be A, then the values (z;, y;) are the averaged values within the
time interval [k, k + A).
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For preprocessing and filling in missing values there has been a lot
of specialized work on weather sensor data [2, 15]. We use ARIMA
forecasting model [3] to fill in missing data because of its general
availability and ubiquitousness.

6.2 Forecast Error Computation

DeepMC uses weather station forecasts of the predicted variable
to learn better models for micro-climate predictions. In this work,
instead of predicting the climatic parameter directly, we predict the
error between the nearest commercial weather station forecast and
the local micro-climate forecast. This is based on the hypothesis
that hyperlocalization of weather station forecasts is more efficient
to learn than learning the relationships of the predicted climatic
parameter y with the other parameters z and auto-relationship of
the y with itself at earlier times. We denote the weather station
forecasts for the predicted variable as ;4+p, where £ € [0,L] is
the future interval from a given time ¢ for which the forecast is
recorded. For training purposes, we use historical weather forecasts
and sensor data. Therefore, the corresponding recording of the
sensor predicted data at time ¢ + £ is yy4¢. Then the forecast error
Upte 1S
Utre = Yrve — Yrse

DeepMC predicts us4¢ using data recorded at and before time
t for a retrospective horizon length of L’. The estimate of u4r
(denoted as #;4¢) alongside the weather forecast, is used to obtain

the prediction for the climatic parameter of interest,
Urat = Grae + Uere,
where 7 is the prediction of y.
One artifact of using the forecast error as the predictor signal
is that it does not inherently capture the effect of distance of the
weather station from the point of interest. For this purpose, we also

include a Relative Latitude (RLat) and Relative Longitude (Rlong)
as additional features.

RLat = Lat(Weather Station) — Lat(Micro — region),
RLong = Long(Weather Station) — Long(Micro — region).

Summarizing, the prediction problem takes in IoT sensor historical
data (z;—p, y;—¢) and weather station forecasts ;4 to estimate
Yr+¢, Where the estimate is denoted by J¢4¢, using an endogenous
variable, the forecast error u;4, and its estimate ii;4¢, where £ €
(0, L] is the future time interval and ¢’ € [0, L’] is the retrospective
time interval. In addition, the prediction problem also takes in
the geo-coordinates of the weather station {Lat(Weather Station),
Lat(Weather Station)} and the micro-region of interest {Lat(micro-
region), Lat(micro-region)}. For convenience we will denote the
historical data (z;—¢, ys—¢, {Rlat, Rlong}) = x;—p.

6.3 Wavelet Packet Decomposition

The Wavelet Packet Decomposition (WPD) is a classical signal
processing method built on Wavelet Analysis. Wavelet analysis
gives an efficient way to decompose time series from the time
domain to scale domain. It localizes the change across time within
different scales of the original signal [29]. In the last decade, there
has been some research on using WPD for time series forecasting
[13, 22, 29]. We use the same idea to decompose our input signals
into a combination of various scales. The multiscale decomposition
(WPD) uses low-pass and band-pass filters. Applying this pair of
filters to a time series leads to a first-order series which contains the
trend, the long scale dynamics, and a second one which contains
the details (shorter scale dynamics). The original time series may



be reconstructed by summing up the trend and the detail series.
The details for WPD are provided in the next paragraph.

The wavelet packet decomposition is based on the wavelet anal-
ysis. In wavelet analysis, the wavelet transform decomposes the
original signal into a mutually orthogonal set of wavelets. The
discrete wavelet is defined as

- kTon
k(1) = —")

1

_\II( 7
[ S,
o 0

where j and k are integers, so > 1is a fixed dilation step and transla-
tion factor, 79 depends on the dilation step. For further information
on interpretation of these terms please see Chun-Lin [6] The scaling
function and wavelet function of the discrete wavelet transform
are defined as:

®(2t) = Z hj()®(27+t - k)
k

v(2/t) = Z 9, (k)27 — k),
k

where g(k) and h(k) are the corresponding discrete filters for the
wavelet ¥. Then the original signal f(t) can be reconstructed as

f(t) = Z ZAj(k)CD(ZJt —k)+ Z Z D;(k)¥(2/t - k),
J Kk J Kk

where Aj and D; are approximation and detail coeffecients, respec-

tively, of the Wavelet Packet Transform (WPT) at level j. Expanding

and rearranging the outer summation terms, the coefficients of the

time series f(t) = {fz, V€ = [1,T]} can be cascaded as

coefficients(f) := {A1[¢], D1[£]}
= {{A)[e], D} [e1}, {AD [e], DY [e1}}

3

where Dj,(t) and Aj(¢) are detail and approximation coeffi-
cients at level n, respectively. The wavelet ¥ used is Daubechies
wavelet [6] with the corresponding scaling function ® and filters
h and g. A n level wavelet packet decomposition produces 2" dif-
ferent sets of coefficients. Figure 2 shows the wind speed signal
at various scales using wavelet packet decomposition for N = 5.
We can see that decomposing signal using WPD gives signals with
multiple levels of trends and details. In the context, of climatic
data, this corresponds variations such as long term trends, yearly
variation, seasonal variation, daily variations, etc. We denote the
wavelet packet decomposition for the predictor (x) and error signal
(u) as the sets w* = {w{,--- ,whw" = {w},---, wy}, respec-
tively, where N is the level of decomposition and wy, (n € [1, N])
is the reconstructed signal for predictor variable x using N levels
of decomposition. Please note that the predictor variable x;_y =
(z4—p, ys—p)VE' € [0,L"] , where for this section we have dropped
the time subscripts for the sake of readability. From context it is
clear that we are dealing with the predictor variable therefore, it
deals with data before the current time t. The predictor is usually
a multi dimensional variable, as it contains signals from multiple
sensors. For sake of convenience we represent the multi dimen-
sional predictor variable x = [xl,xz, e ,xs], where x5,s € S is
the signal from the s/ sensor. Then wX~ denotes the reconstructed

WPD Reconstructed Signal

Figure 2: Wind Speed - Wavelet Packet Decomposition

signal from wavelet packet decomposition at level n for predictor
signal x° for the s h sensor. Therefore wj is the combination of
all predictor signals reconstructed from WPD for each predictor
sensor signal at level n.This combined with w¥ is the output of this
layer:

(n.m)

X u
Owpp =W X Wy

= {(w, w});Vn,m € [1,N]},

where X is the cartesian product. Each element of the output con-
tains all combinations of various scales of the predictor signals
x and the error signal u. We do not generate all combinations of
various signals for each individual predictor sensor signal to keep
the size of the deep neural network manageable.

For training, the data is trained as paired variable (x, u), where
each paired set consists of {x;—p, ¢’ € [0,L"]} as the input and
{ut4¢,¢ € (0,L]} as the output.

6.4 Multi-Scale Deep Learning
Once we have prepared the output data from WPD in the previ-

ous step ol(/‘r/l’gg, Vn,m € [1, N], this data is the input data for the
deep learning network. We separate out the data into long scale
(n or m = 1), medium-scale (n,m € [2, N — 1]) and short scale (n
or m = N) signals. The long scale signals pass through a CNN-
LSTM stack. The medium-scale and the short scale signals pass
through a multi-layered CNN stack. For the data with short-term
dependencies (medium and short scale data), the CNN layer has
similar performance and faster computing speed when compared
to the LSTM recurrent layer, thus we use CNN network layers for
the medium and short scale data. While, for the long scale data,
the CNN network layers extract the deep features of the time se-
ries and the LSTM layer sequentially process the temporal data
with long-term and short-term dependence. Therefore CNNLSTM
architecture is used for long scale data.

We settled on this particular design choice because it achieved
the best performance compared across predictions of all climatic
parameters. The heuristic on choosing CNNs for short and medium
scale (n,m € [2,N — 1]) while CNNLSTM for long scale data
(m or n = 1) enables generalization of DeepMC across varying
dimension of the input considered. More implementation details
are in the Supplementary section A.
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6.5 Attention Mechanism

DeepMC uses a 2 levels of attention models. A similar attention
model is used in vision-to-language tasks [21]. The first level atten-
tion model is long range guided attention model which is used with
the CNN-LSTM output and it memorizes the long term dynamics of
the input time series. Various attention models have been used in
direct sequence to sequence RNNs to capture memory of the input
sequence (or time series representation) and pseudo-periods within
the time series [7, 35]. DeepMC uses a position based content at-
tention model described by Cinar et al. [35] for this level. DeepMC
uses multivariate version of the attention mechanism described
in [35] but for sake of keeping the equations legible we will omit
notations specifying for each individual feature vector in the formu-
lation below. The LSTM in the CNNLSTM encoder stack represents
each input /;,1 < i < T as a hidden state: h; = F(I;, hj—1), with
h; € R¥ and where the function F is a non-linear transformation
corresponding to the LSTM layers and H is the dimension of the
hidden layer. The LSTM decoder (described in Section 6.6) parallels
the encoder by associating each output m;, 1 < i < T’ to a hidden
state vector s; that is directly used to predict the output:

m; = G(mj-1, si-1, ¢i),

with s; € R ', H’ is the dimension of the decoder hidden layer, c;
is usually referred to as a context and corresponds to the output
of the memory model. For DeepMC function G corresponds to an
LSTM with a context integration. Using these notations the long-
range guided attention model based on the position based content
attention mechanism is formulated as RNN-7(%) in [7].

RNN — 7 .

eij =vktanh(Wasi—t + Ua((1® AM) © hj)Apr—;
ajj = softmax(ejj),c; = Z]T.zl aijhj,
where W, Uy, w € R2HX(T+T)
with the entire DeepMC deep learning architecture, AGD) e RT js
a binary vector that is 1 on dimension (i+7T — j) and 0 elsewhere, ©
denotes the element wise multiplication (Handmard product) and
A € R™T has 1 on its first T coordinates and 0 on the last T".
The second level attention model is scale guided attention model
and is used to capture the respective weighting of different scales.

and v, are trained in conjunction

wsds2s 25053 5601 150503 250605 50607 0150509

Figure 4: Micro-Climate Wind Speed prediction compar-
isons at the 24th hour with a resolution of 1 hour over a 10
day period

The scale guided attention model uses an additive attention mecha-
nism described here. The outputs of the multi-scale model (includ-
ing the output of the long-range guided attention mechanism on
the CNNLSTM stack) is represented as o(mm) m n e [1,N]. For
sake of convenience, we introduce a single index j for the tuple
(m, n). Then the attention mechanism context vector c; is defined
as:

N2
cj= Y ajjol).
J
The weight rxi’ g of each output o) is computed by

_exp(eij)
TN,
Zk:l €ik

where e;; = tanh (w{?(si_lgo(j))), w{j,i € [1,T'];j € [1,N?]
is trained in conjunction with the entire DeepMC deep learning
architecture.

6.6 Decoder

The DeepMC decoder uses LSTM to generate a sequence of L out-
puts, which is equal to the number of future timesteps to be pre-
dicted. The decoder LSTM layer receives a multivariate encoded
time series and produces a vector for each step of prediction. Each
output of the LSTM is connected with 2 layers of time distributed
fully connected layer.

7 REAL WORLD DEPLOYMENTS

DeepMC is deployed across many different regions of the world
using the FarmBeats [34] technology. In this section, we present 4
real world scenarios in agriculture and energy which are a projec-
tion of common situations effected by weather conditions. We also
show some results in comparison to common models used to solve
prediction tasks in addition to comparisons with some variations
on DeepMC.
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Figure 5: Micro-Climate Wind Speed prediction RMSE com-
parisions over 24 hour predictions

7.1 Comparison: Micro-Wind Speed
Predictions

We compare DeepMC with other deep learning architectures and
forecasting techniques across wide variety of climatic parameters.
Figure 4 shows the wind speed predictions at the 24th hour over a
period of 10 days with 1 hour resolution. Figure 5 plots the RMSE
for each hour prediction and compares with other models. It is ob-
served that DeepMC has significantly better performance compared
to other models and is more likely to follow the details and trends of
the time series data. Other models used for comparison (in this case
for Wind Speed) are the CNNLSTM model proposed in [22], modi-
fied CNNLSTM with LSTM decoder, regular convolutional network
with LSTM decoder, a vanilla LSTM based forecaster, and a vanilla
CNN based forecaster. Another interesting observation is that the
performance of all models decrease as the horizon of prediction
increase, which is to be expected as it is more accurate to predict the
next immediate hour vs a forecast on the 24th hour. Figure 6 plots
the RMSE(Root Mean Squared Error), MAE(Maximum Absolute
Error) and MAPE(Maximum Absolute Percentage Error) values for
micro-wind speed predictions using various models, averaged over
all 24 step predictions. The DeepMC model outperforms other com-
monly used models on all metric. The RMSE value averaged over
all prediction steps for DeepMC is 1.52, MAE value is 1.2 and MAPE
is 4.89. In comparison this gives a promoting percentage of 44.1%
and 37.5% of RMSE, 19.1% and 27.5% of MAE, and 49.3% and 86.01%
of MAPE over CNNLSTM network (the next best performing Deep
Learning network) and ARIMA, respectively. Promoting percent-
age is defined as the percentage increase in accuracy compared to
baseline. The predictors used for predicting micro-temperature are:
a) From the IoT sensors - Ambient Temperature, Ambient Humidity,
Precipitation, Wind Speed; b) From the weather station - historical
Wind Speed forecasts. This data was collected for a period of 2
years with 1 hour resolution.

7.2 Solar Farm: Micro-radiation predictions

Micro-radiation predictions are required to estimate the electricity
produced at solar farms. This scenario is for a commercial solar
farm site. These predictions are fed into an optimization model to
fulfill price and energy commitments by the utility company in the
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Figure 6: RMSE, MAPE and MAE comparision for Micro-
Climate Wind Speed predictions

Figure 7: DeepMC Micro-Climate radiation prediction at the
24th hour and 1 hour resolution with Bollinger Bands

energy markets. Radiation received at the solar panel is sensitive
to seasons of high overcast or rain. Figure 7 plots the predictions
across months during the overcast season and after. The predictors
used for predicting micro-radiation are: a) From the IoT sensors
- Ambient Temperature, Ambient Humidity, Precipitation, Wind
Speed, Radiation, and cloud cover; b) From the weather station -
historical radiation forecasts. The training data available was over
a period of 12 months and testing was conducted over a period
of 3 months, both with 15 minute resolution averaged over each
hour. The predictions attain a high accuracy for the month after the
monsoon in July, with scores MASE? = 1.86, MAE= 65.14, RMSE =
116.30. While there is a slight decrease in performance during the
monsoon season in June, with MASE = 1.96, MAE = 68.61, and RMSE
= 125.44. The plots also show a 20 Bollinger Bands which gives an
idea of the uncertainty in predictions. We observe here that the
uncertainty estimates are "targeted”, i.e. there is more uncertainty
in predictions when the reality is also more uncertain. The bands
are tighter when we are more certain. This observation gives us a
straw man verification of the underlying model. Table 1 compares
DeepMC’s MAE, MAPE and RMSE scores with other commonly
used models.

7We use Mean Absolute Scaled Error[18] rather than MAPE because of the division by
Zero isse



DeepMC CNN LSTM CNNLSTM ARIMA

RMSE 1245 167.4 192.3 155.6 530.60
MAE 68.15 111.77 130.99 90.02 397.45
MASE 1.95 3.20 3.75 2.89 11.39

Table 1: Micro-radiation Prediction Scores for various mod-
els

25

Temperature (C)
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Figure 8: DeepMC Micro-Climate temperature 6 day sequen-
tial predictions with a resolution of 6 hour

7.3 Fertilization: Micro-temperature
predictions

This scenario is the one presented in the Introduction. The farmer
owns approximately 9000 acres of land across a region which is
quite hilly. There are many distinct micro-climate regions in this
farm. Climatic parameters vary significantly among various regions
of the farm and also between the nearest commercial weather fore-
cast provider and the readings on the ground. The farmer uses
DeepMC predictions for advisory on temperature forecasts at spe-
cific locations on his farm. In this scenario, the farmer consults
DeepMC for temperature predictions for specific locations to plan
logistics and operations for fertilization. Figure 8 shows a 6 day
forecast with a temporal resolution of 6 hours. The figure shows
the comparison of the results obtained by DeepMC with Dark Sky
weather forecast (from the nearest station) and the actual tempera-
tures recorded using IoT sensors in retrospect. Based on DeepMC’s
predictions the farmer postponed his fertilization for the period be-
tween 07-April-2019 to 11-April-2019 as the temperature predicted
by DeepMC were below freezing. Instead, had the farmer relied
on weather station forecasts, which consistently showed temper-
atures above freezing (more that 5C), then he would have been
at risk of endangering the crop losing upto 20% in yield. In many
places, especially small holder farms, this percentage is significant
enough to decide whether the farmers will be able to achieve basic
sustenance of food and supplies in the coming year or not. For
this particular farm and location, DeepMC predictions for ambient
temperature has recorded RMSE of 1.35 and MAPE of 7.68% (im-
plying accuracy of 92.32%) for the data recorded in Figure 8. The
predictors used for predicting micro-temperature are: a) From the
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Figure 9: DeepMC Micro-climate soil moisture 4th day pre-
diction with 6 hour resolution over a period of 10 months

IoT sensors - Ambient Temperature, Ambient Humidity, Precipita-
tion, Wind Speed; b) From the weather station - historical ambient
Temperature forecasts.

7.4 Phenotyping Research:
Micro-soil-moisture predictions

The producer is interested in experimenting with different growing
techniques for vine tomatoes. The vine tomatoes are susceptible
to rot if they are too close to the soil with high moisture values.
Generally, growers use trellises to lift up the vines and provide
structural stability. The trellises add more challenges to manage the
crops over the growing season. The producer here is interested in
growing tomatoes without the trellises. This critically depends on
being able to predict the local soil moisture values accurately. The
producer uses DeepMC for advisory on micro-soil-moisture condi-
tions. The predictors used for predicting micro-soil-moisture are: a)
From the IoT sensors - Ambient Temperature, Ambient Humidity,
Precipitation, Wind Speed, Soil Moisture and Soil Temperature;
b) From the weather station - historical Soil Moisture forecasts.
The results are shown in Figure 9 with the recorded RMSE value
of 3.11 and MAPE value of 14.03% (implying a 85.97% accuracy).
Soil moisture values are highly sensitive to changing weather, as
the moisture increases rapidly during times of heavy rainfall and
slowly decreases during extended dry periods, which is observed
in Figure 9. DeepMC tracks these sharp changes fairly accurately,
and much better than the weather station forecasts, which is an
evidence of the robustness of the model.

8 DISCUSSION, SUSTAINABILITY, AND
CONCLUSION

Micro-climate predictions through DeepMC allow for better cost
control by generating predictions based on relatively affordable IoT
sensors. The predictions computed enables our partner farmers to
apply chemicals with better timing allowing them to be as effective
as possible. Many weeds that are controlled by chemicals are gain-
ing resistance, so the more effective the chemical is at the time of
application, the more likely that the weed will not develop resis-
tance to it. This allows for less chemical application overall. Thus



helping with sustainable agriculture. Another way that DeepMC
helps with environmental issues is by helping to make commercial
operations of non-renewable energy production successful. Energy
utility companies can fulfill their power and price commitments
in the energy market if they can successfully predict radiation and
wind-speed at their solar and wind farms, respectively.

The supplementary section A provides various implementation
details for the readers to experiment and build upon the micro-
climate prediction framework presented here. Also we present how
the DeepMC architecture allows itself to be used as a platform where
specialized models provided by domain experts can be embedded
to increase the collective performance of predictions, and thus
allowing for commercial adoption at scale.

DeepMC is observed to achieve compelling results on multiple
micro-climate prediction tasks. To the best of our knowledge, this
is the most versatile study and framework for micro-climate pre-
diction for multiple climatic parameters and multiple geographical
conditions around the world. Still, in this study, we found many
opportunities for further improvement for better reliability, robust-
ness, and accuracy. Specifically, the model is brittle on transfer
learning. We observe that it requires careful hyper-parameter tun-
ing and initialization to achieve good performance. Additional work
using GANSs can be explored to increase the transfer-ability of the
DeepMC framework. Nonetheless, there are plenty of demonstrable
cases where DeepMC is being used and aiding decisions on the
farms effectively. This work pushes the boundaries of engineering
a real-world micro-climate prediction framework.
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SUPPLEMENTARY MATERIAL
A DEEPMC IMPLEMENTATION DETAILS

This section describes some of the implementation details of the
DeepMC architecture to aid reproducibility.

A.1 Preprocessing of sensor data:

As mentioned in Section 6.1 we use the ARIMA forecasting model
to fill in missing data. We use the python module statsmodels®
with parameter values: Number of time lags of the autoregressive
model, p = 5; Degree of differencing, d = 1 and; Order of the
moving-average model, g = 0.

A.2 Forecast Error Computation:

Using the notations defined in Section 6.2 we use various values
for L and L’ depending on the problem of interest. Typically L’ > L
and in the range of L,L’ ~ 24 which can signify 24-hour retro-
spective and predictive interval with 1-hour resolution or 3-day
retrospective and predictive interval with 6-hour resolution or any
such combination.

A.3 Wavelet Packet Decomposition

Wavelet Packet Decomposition is described in Section 6.3. We use
a 5 level decomposition using Daubechies wavelet function.

A.4 Multi Scale Deep Learning

owpp(m, n)
mn#*1

1-D Convolutional Batch 1-D Convolutional Batch 1-D Convolutional Flatten Layer
Layer Normalization Layer Normalization Layer

Figure 10: CNN stack

The architecture described in Figure 1 and Section 6.4 contains
a CNN stack and a CNN-LSTM stack. The CNN stack (Figure 10)
uses three 1-D convolutional layers with filter sizes of 4 and ReLU
activation function for each layer. Each layer is batch normalized
before passing onto the next layer. The last layer flattens the output.
The CNN-LSTM (Figure 11) stack uses two 1-D convolutional layers
with filter sizes of 4 and ReLU activation function for each layer.
Each layer is batch normalized before passing onto the next layer.
The output of the last layer is passed through an LSTM layer with
ReLU activation function and a dropout rate of 20%. The convolu-
tional layers use a He Normal [16] Initialization.

A.5 Decoder

The decoder described in Section 6.6 uses a 20 node LSTM layer
with the ReLU activation function. Additionally, the decoder also
uses ReLU activation for the first dense layer and a linear activation
function for the second dense layer. The first dense layer has 50
nodes for each of the time series steps and the second dense layer
has 1 node for each of the time series steps.

8https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima_model ARIMA.html

owpp(m, n),
morn=1

1-D Convolutional Batch 1-D Convolutional Batch LST™M

Layer Normalization Layer Normalization Layer

Figure 11: CNN-LSTM stack

The entire model, as summarized in Figure 1, is trained using
the mean squared loss function with Adam optimizer [20].

B ENGINEERING A REAL-WORLD
MICRO-CLIMATE PREDICTION
FRAMEWORK

In addition to the points mentioned in Section 4, there are a few
other challenges to overcome for a micro-climate prediction frame-
work to be feasible. Firstly, in most live deployments we observed
that the amount of data is quite less, and there is a general expec-
tation for the model to learn quickly with less data. To overcome
this problem we implemented a GAN based solution to transfer
models learned at another site. The details are provided in Sub-
section B.1. Additionally, most often frameworks like DeepMC are
used by domain experts such as Agronomists, Energy researchers,
etc. In many cases, the domain experts have a specialized model
for forecasting a specific micro-climate parameter. Although, these
models lack in their generalizability and fail to capture short-scale
dynamics but they do provide precise modeling of the specific use
case and a good understanding of long-range dynamics. With the
scale-based approach (with emphasis on attention mechanisms) for
DeepMC, we observed that these 3rd party models can easily be
combined into the base DeepMC framework. This enables DeepMC
to be used as Platform-as-a-Service (PaaS), which allows for scal-
ability and ease of use. Figure 12 shows how 3rd party scales and
models can be combined with the base DeepMC framework. Once
the specific model or scale is ingested then the entire network is
retrained end-to-end. We tested this approach by combing ARIMA
outputs with the base DeepMC for the micro-radiation prediction
described in Section 7.2. The accuracy increased by a promoting
percentages of Prassg = 12.9%, Pprase = 12.7% and Pyiap = 9.7%
with the new RMSE = 107.58, MASE = 1.73 and MAE = 60.37.

B.1 Transfer Learning using GAN

We use GAN [14] to transfer models learned on one domain to
sensors where a sufficient paired labeled dataset is not available.
GANSs have been extensively used in image-based tasks but their
exploration in time series data is limited and developing [10, 36]. In
the context of microclimate time series data we interpret generator
as the microclimate predictor, while the discriminator is a binary
time series classifier, which discriminates between the predicted
microclimate parameter (y/y¢) and actual observations (y;+¢). The
generator is the DeepMC model, while the discriminator uses the
InceptionTime model by Fawaz et al. [9]. Figure 13 shows the gan
architecture used for transfer learning. The GAN archtecture uses
the InceptionTime [9] model for the discriminator. The model is
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plotted in Figure 14. This model uses various stacks of convolu-
tional layers each which has ReLU as the activation function. The
convolutional layers marked a. are all similar with 32 filters each of
3, 5 and 8 kernel size. The convolutional layer marked b. uses 128
filters with kernel size 1. The global pooling layer pools and aver-
ages the input across time resulting in a vector of dimension 128
which is fed into the fully connected layer with 1 node and sigmoid
activation function. The discriminator is trained using the binary
cross entropy with Adam optimizer. During transfer learning, the
DeepMC model is updated while trying to beat the adversary which
discriminates between the predicted results and the actual observa-
tion on the target domain. The algorithm is presented in Algorithm
1.

Additional note: The discriminator, as it is trained, provides high
accuracy (> 99%+ accuracy) for time series classification. Although,
when the generator is pitted against the adversary (the discrimi-
nator model) and updated, in some cases the generator model is
observed to settle in a local optimum where it learns just enough
basic characteristics to fool the discriminator but the accuracy of
the generator on the new domain is not greatly improved. It will
be interesting to explore new methods to address these problems.
Similar issues are observed in generative image-based tasks and
a modified GAN called CGAN was proposed by Mirza et al. [26]
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Figure 14: GAN Discriminator: InceptionTime model which
classifies between time series predicted from DeepMC
model and actual observations.

Algorithm 1: DeepMC GAN model for transfer learning

Result: Updated DeepMC model
for Number of training iterations do

for Number of training iterations do
Sample minibatch of training samples for the

discriminator model;

Train\Update the discriminator model;
end
Freeze the discriminator weights from updating;
Sample minibatch of training sample for the combined
DeepMC and discriminator model;
Update the generator DeepMC model (while pitted
against the adversary);

end

to address similar problems. We are experimenting with a mod-
ified conditioned GANSs for time series generative tasks such as
micro-climate prediction described in this paper. In this case, the
new generator is a modified DeepMC framework conditioned on
the actual weather output.
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