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ABSTRACT

People enjoy listening to music as part of their life. This makes mu-
sic an excellent choice for designing a user-friendly brain-computer
interface (BCI) for long-term use. We propose a novel BCI sys-
tem using music stimuli that relies on brain signals collected via
Smartfones, an EEG recording device integrated into a pair of head-
phones. In a user study of the proposed system, participants were
asked to pay attention to one of three musical instruments playing
simultaneously from separate spatial directions. We used a stimulus
reconstruction method to decode attention from EEG signals. Re-
sults show that the proposed system can achieve good decoding ac-
curacy (>70%) while providing superior user-friendliness compared
to a traditional EEG setup.

Index Terms— Auditory attention decoding, BCI, EEG, music

1. INTRODUCTION

A brain-computer interface (BCI) offers a covert and non-verbal way
to communicate with a computer. BCIs have great potential in appli-
cations including assistive technology and emotion monitoring [1].
Electroencephalography (EEG), due to its mobility, low cost, and
proven relevance to cognitive functions [2, 3], has become a popu-
lar choice for BCI design. Previous studies have demonstrated great
success in building EEG-based BCI systems using visual or auditory
stimuli. Chen et al. [4] designed a high-throughput visual BCI sys-
tem using flickering objects. When the user focuses on one of them,
a neural signature known as the steady-state visual evoked potential
(SSVEP) appears in EEG signals. However, SSVEP requires a stable
line of sight, which may not be available due to permanent or situ-
ational impairment (e.g., while driving). As an alternative solution,
researchers applied a similar idea to designing auditory BCI systems,
where the users were presented with multiple streams of pure tones
modulated at different frequencies. The modulation frequency of the
attended stream may result in a strong EEG component known as the
auditory steady-state response (ASSR) [5].

One major disadvantage of SSVEP or ASSR paradigms is the
use of flickering objects or modulated pure tones, which can cause
fatigue in users. Recent studies endeavored to use more naturalistic
and pleasant stimuli to improve the user-friendliness of BCI systems.
Huang et al. [6] used drip-drop sounds in their BCI design, creating
a relaxing auditory scene for the users. An et al. [7] designed an
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attention task with human-voiced syllables, and achieved a high ac-
curacy in detecting whether the user is paying attention. In another
study, An et al. [8] built an auditory BCI system with a sequence of
tones forming melodic patterns.

Here we explore the feasibility of using music stimuli for BCI
design. We decode a user’s attention to a particular musical instru-
ment while listening to polyphonic music. This idea was previously
attempted by Treder et al. [9], who embedded oddballs in music
streams and used the oddball-evoked response for attention decod-
ing. Despite achieving a high accuracy, their system averages 40 sec-
onds of data to generate one output, which may be slow for real-time
applications. Here, we adopt a different decoding method called au-
ditory attention decoding (AAD) [10] and decode attention within a
time window of just 8 seconds. The AAD method linearly combines
multi-channel EEG signals to reconstruct a stimulus envelope, which
tracks the envelope of the attended stimulus more strongly than the
unattended one. This method has been successfully applied in de-
coding attention to continuous speech for BCI purposes [11, 12]. To
further improve the user-friendliness of the design, we used Smart-
fones (mBrainTrain, Serbia) as the form factor, which is a compact
EEG recording device integrated into a pair of headphones. It is a
saline-based system with three sensors on top of the head and four
on each side around the ear, for a total of 11 sensors. It has less cov-
erage than a traditional EEG cap, but is a good option for this study
for its all-in-one design.

2. MATERIALS AND METHODS

2.1. Participants and Stimuli

Nine adults (34.0 &= 3.1 years old, 4 female) volunteered to par-
ticipate in this study. No participants reported a known history of
neurological disorder or hearing loss. The study was reviewed and
approved by the Institutional Review Board of Microsoft Research.
A written consent was obtained upon participation.

The stimulus used in this study was a four-bar polyphonic piece
composed of short melodic excerpts adapted from three popular
songs (see Fig. 1a). Each excerpt was assigned to a separate voice
and instrument using MuseScore 3: vibraphone for “I’'m yours” by
Jason Mraz, piano for “Wherever you will go” by The Calling, and
harmonica for “Forever young” by Alphaville. We hypothesized that
using melodic excerpts from different songs for the three voices and
assigning a different instrument to each voice would help listeners
to pay attention to one voice at a time. The excerpts chosen followed
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Fig. 1. (a) Score sheet of the standard stimuli. (b) The 2" or 4™ bars
of the standard stimuli were modified to create oddball bars, colored
in red and blue.

the same chord progression (C major - G major - A minor - F major),
which would ensure an overall pleasant listening experience.

Each excerpt consisted of four bars, for a total duration of 8
seconds. Besides the original excerpts (Standards), we generated
oddball excerpts (Oddballs) by altering the second or the fourth bar
of the Standards (Fig. 1b). We created an oddball recognition task
(see Sec. 2.2) using these stimuli to motivate participants to listen
attentively. The excerpts were spatialized using a set of generic
head-related transfer functions [13] to form three streams, where the
perceived positions of vibraphone, harmonica, and piano were left,
center, and right, respectively. The loudness of these streams was
normalized using A-weighting, after which the streams were com-
bined into polyphonic mixtures.

2.2. Experiment

At the start of the experiment, the participants were asked to sit com-
fortably in front of a computer, read the instructions from the screen,
and familiarize themselves with the stimuli. The experiment con-
sisted of 28 trials for attention to vibraphone, 28 trials for attention
to piano, and 14 trials for attention to harmonica. For this study,
we only focused on generating binary outputs, i.e., distinguishing
attention to vibraphone from attention to piano. The data from the
attention to harmonica condition were only used for calculating the
decoder (see Sec. 2.3) and as a sanity check. All trials were divided
into 5 blocks with 14 trials per block, and their order was random-
ized for each participant. In the beginning of a trial, a left, right or up
arrow, was presented on the screen as a visual cue (VC) to direct at-
tention to the instrument on the left, right or center, respectively (see
Fig. 2). After a 1-second delay we played two repetitions of the mu-
sic mixtures through Smartfones. In the stream to be attended, the
first repetition was always a Standard, while the second repetition
could be either a Standard or an Oddball. The task for participants
was to identify whether the two repetitions were the same or differ-
ent in the attended stream, and answer with a mouse click. Visual
feedback (FB) was provided by a green dot displayed for a correct
answer, or a red dot for an incorrect answer.

2.3. Auditory attention decoding

EEG signals, sampled at 500 Hz, were passed through a Hamming
windowed sinc FIR bandpass filter (2-8 Hz), and were split into
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Fig. 2. A trial started with a visual cue (VC) directing attention to
the instrument on the left, right or center. It was followed by two
music stimuli. Visual feedback (FB) was provided after an answer
(ANS) was received.

epochs starting from the onset of each stimulus. Attention was de-
coded using AAD [10]. The envelopes of the individual voices in
the stimuli (cf. Fig. 1) were extracted using the Hilbert Transform,
and then lowpass filtered at 8 Hz and downsampled to 64 Hz to de-
rive the stimulus feature s(¢) (Fig. 3). The response feature, r(t),
was derived by downsampling the bandpass filtered EEG signals to
64 Hz. The AAD algorithm sought to find a decoder g(7,n) that
could linearly map 7(t) back to s(t) [14] as:

5(t) :ZZr(t—i—T,n)g(T,n), (1)

T

where §(t) is the reconstructed stimulus feature, n denotes the EEG
channel index, and 0 < 7 < 600 ms specifies a range of time-
lags relative to the instantaneous occurrence of the stimulus feature,
which is used to model the latency between a stimulus envelope and
its corresponding envelope-following response in EEG signals. The
decoder g(7,n) is essentially a spatial-temporal filter that linearly
transforms the EEG signals at time-lags 7 from O to 600 ms post-
stimulus to predict the corresponding auditory input. We can esti-
mate g(7,n) by minimizing the mean-square-error between the ac-
tual stimulus envelope s(t) and the reconstructed envelope 5(¢) plus
a regularization term:

min Y [s(t) =37 +AD D g(r,n)’, ©)

where A is the regularization parameter set to avoid over-fitting. The
optimal A can be determined through cross-validation [15]. The de-
coder g can be computed using the following equation:

g=(RTR+A)"'RTs, 3)

where R is the matrix of response features r(t) delayed by all pos-
sible values in 7 with zero padding [14].

Auditory attention was decoded from each epoch. For each par-
ticipant, we first pooled all epochs of EEG signals except for the one
to be decoded to form the response feature 7(¢). The envelopes of
corresponding target voices were concatenated to form the stimulus
feature s(t). With the decoder g calculated via (3), we reconstructed
a stimulus envelope §(t) using (1). We then correlated §(¢) with the
envelopes of each of the vibraphone, piano and harmonica voices in
that epoch to generate three correlation coefficients using Pearson’s
correlation: Pvibr, Ppian, Pharm, respectively. We hypothesize that
the correlation between the reconstruction and the envelope of the
target instrument to be higher than the ones with the unattended in-
strument. To verify this hypothesis, we examined the difference be-
tween pvibr and ppian Using a paired t-test. The Benjamini-Hochberg
method was used to control the false discovery rate (FDR) in multi-
ple comparisons (alpha = 0.05).
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Fig. 3. Illustration of the auditory attention decoding algorithm

2.4. Segment-based feature selection

The AAD method introduced in Sec. 2.3 uses an entire §-second
epoch to decode auditory attention. However, participants may not
sustain their attention throughout the whole epoch, for example due
to interference from a distracting stream, or due to the way they
scheduled their attention to perform the task. During periods of re-
duced attention to the target instrument, the neural representation of
the masking stimuli might interfere with or mask the target stimu-
lus. We hypothesize that excluding data from periods of reduced
attention may reduce noise and improve the overall decoding perfor-
mance. We added a segment-based feature selection step to exclude
irrelevant time segments from decoding. After an epoch-specific de-
coder g was calculated, we applied it on multiple segments of EEG
signals instead of the whole epoch. These segments were 2 s in du-
ration with an overlap of 80%, resulting in a total of 18 segments per
epoch. The strength of attention during each segment was estimated
by comparing the strength of the correlation of the EEG with the vi-
braphone and the piano envelopes. Specifically, we calculated the
absolute value of the segment-wise correlation difference (|SCD],
Fig. 4a), defined as:

ISCD,| = |pvibr,k — ppian,k|, 4)

where k = {1, --- , 18} is the segment index, and pvibr,k OF Ppian,k
represent the correlation between a segment-wise reconstruction
with its corresponding segment-wise vibraphone envelope or piano
envelope, respectively. If attention to either the vibraphone or piano
is strong during a particular segment, the neural response for that
segment should resemble the attended instrument voice more than
the unattended one, i.e., |SCD| should be non-zero. During segments
with reduced attention, [SCD| should approach zero.

Segments with small [SCD| values were excluded from analysis.
The threshold was determined by the distribution of all |[SCD]| val-
ues in the training data (see Fig. 4c). Values above the median of the
distribution were retained (see Fig. 4d). The correlations pyibr, i and
Ppian,k Of surviving segments in each epoch were averaged to cal-
culate pyibr and ppian after feature selection, respectively. A paired
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Fig. 4. Tlustration of the process of segment-based feature selec-
tion. (a) The correlation difference (SCD) was calculated for each
segment in each epoch. (b) |[SCD| sorted for each epoch (for visual-
ization only). (c) The median of the distribution of all |[SCD| values
was used as the threshold. (d) The same figure as in (b), but with
sub-threshold values masked by grey.

t-test was conducted to reveal any statistically significant change in
these correlation measures with and without feature selection (alpha
=0.05, FDR corrected).

2.5. Classification

We used pyinr and ppian as the features to decode attention to vibra-
phone and attention to piano. We trained and tested a subject-specific
linear support vector machine using leave-one-out cross-validation
with 1000 repetitions. Classification was run on data with and with-
out feature selection separately.

3. RESULTS AND DISCUSSION

3.1. Correlation with envelopes

The correlation between the reconstructed envelope and the attended
stimulus envelope is strongly modulated by attention, even with-
out feature selection. When the participants were paying attention
to the vibraphone, their average p.in: Was significantly higher than
ppian (p<0.001, Fig. 5a). When attention was on the piano, ppian
was greater than pyin,. However, the difference was not found to
be statistically significant (p=0.063). In both conditions, pharm Was
around O for all participants.

With the segment-based feature selection, the differences be-
tween pvibr and ppian Were magnified. For the attention to vi-
braphone condition, feature selection significantly boosted pyibr
(p<0.001, Fig. 5b) and suppressed ppian (p<<0.001). Similarly,
pvibr Was suppressed by feature selection when attention was on
piano (p=0.007), with ppian statistically unchanged (p=0.906). We
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Fig. 5. (a) Correlation between the reconstruction and the envelope
of vibraphone (pvibr), piano (pPpian) or harmonica (pharm) Without
feature selection. Each line represents a subject. (b) Comparison of
correlations with feature selection (w/ FS) and without (w/o ES). **,
p< 0.01; *** p< 0.001; FDR corrected for multiple comparisons.

conclude that the proposed feature selection method identified seg-
ments relevant for the classifier to determine which instrument the
participant paid attention to.

3.2. Decoding accuracy

Experimental results indicate that the proposed method allows de-
coding of attention to music. Without feature selection, the aver-
age decoding accuracy was 63.77%, which is above the significant
chance level (60.71%) with 95% confidence [16] (see Fig. 6). We
also observed great individual variability in the results, a known ob-
servation in many auditory BCI studies [7, 17].

The positive effect of feature selection on correlation mea-
sures (see Sec. 3.1) resulted in a boost in decoding accuracy. With
segment-based feature selection, the average decoding accuracy im-
proved to 71.23% (Fig. 6), with a performance gain observed for all
participants. Notably, this gain was more remarkable for subjects
with a low decoding score before feature selection was implemented
— the subjects with a decoding accuracy below 65% (Subject 4, 8, 2
and 1, see Fig. 6) benefited an average of 11.0% from feature selec-
tion, which led to much smaller individual variability in the results.
The decoding performance achieved in this study is comparable to
previous works on auditory BCI using the same linear decoding
method [11, 12], despite the use of a user-friendly EEG recording
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Fig. 6. Decoding accuracy with feature selection (w/ FS) and without
(w/o FS). The average for w/ FS is 71.23%. The subjects are sorted
by their decoding accuracy w/o FS in ascending order.

Table 1. Comparison with previous studies using AAD

Study Sensors Sample  Accu. ITR
(#, type) length (s) (%) (bits/min)

O’Sullivan 128, gel ~60 89.0 0.50
etal. [10]

Ciccarelli 64, gel 10 66.0 0.45

etal. [12] 18, dry 10 59.0 0.14

here 11, 8 71.2 1.01

saline

device with fewer sensors, less spatial coverage and lower signal-
to-noise ratio compared to a conventional EEG cap. In addition,
since we decoded attention with short data (8 seconds), the overall
efficiency of the BCI system, evaluated by its information transfer
rate (ITR) [18], is higher than similar studies with longer decoding
windows (1.01 bit/min compared to <0.50 bits/min) [10, 12] (see
Table 1).1 One limitation of this study, however, is the small number
of participants recruited (nine), which will be improved in follow-up
studies in the future.

4. CONCLUSIONS

This study investigated the feasibility of building a user-friendly BCI
system by decoding auditory attention. The proposed system relies
on short musical stimuli with three voices. Due to its harmonic na-
ture, this stimulus type may be more pleasant to listen to than pre-
viously proposed auditory stimuli like modulated pure tones or tone
sequences and thus better suited for long-term use in a BCI system.
Furthermore, the proposed system uses a compact headphone-based
form factor with fewer sensors and requires much less effort in sys-
tem setup than a traditional EEG system, which may be an appealing
feature for novel users.

1Only results obtained from linear AAD were compared with results in
this study. ITR was calculated based on the number of classes, sample length
and decoding accuracy reported in these studies.
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