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ABSTRACT
Efficient retrieval of audio events can facilitate real-time implemen-
tation of numerous query and search-based systems. This work in-
vestigates the potency of different hashing techniques for efficient
audio event retrieval. Multiple state-of-the-art weak audio embed-
dings are employed for this purpose. The performance of four clas-
sical unsupervised hashing algorithms is explored as part of off-the-
shelf analysis. Then, we propose a partially supervised deep hash-
ing framework that transforms the weak embeddings into a low-
dimensional space while optimizing for efficient hash codes. The
model uses only a fraction of the available labels and is shown here
to significantly improve the retrieval accuracy on two widely em-
ployed audio event datasets. The extensive analysis and comparison
between supervised and unsupervised hashing methods presented
here, give insights on the quantizability of audio embeddings. This
work provides a first look in efficient audio event retrieval systems
and hopes to set baselines for future research.

Index Terms— Audio events, efficient retrieval, hashing, quan-
tization, deep neural network.

1. INTRODUCTION

Audio Event Classification (AEC) is defined as the inherent abil-
ity of machines to assign a semantic label to a given audio seg-
ment [1, 2, 3]. It is an increasingly popular research area due to its
numerous applications in audio content understanding [4], surveil-
lance [5, 6], health monitoring [7], self-driving vehicles, accessibil-
ity devices, and advanced gaming systems. Audio events are gener-
ally given annotation labels by humans following some pre-defined
ontology [2], and most of the state-of-the-art AEC systems [3, 8]
utilize those semantic descriptors for supervised learning. In spite
of multiple efforts in learning better and more robust representations
(embeddings) of audio events [3], there is limited work for their ef-
ficient retrieval. Some classical audio retrieval algorithms have been
proposed in [9, 10], but no work can be found on efficient retrieval
techniques with modern audio embeddings, and detailed evaluation
on publicly available datasets. Fast retrieval can facilitate near-real-
time similarity search between a query sound and a database with
millions of audio events, which, in turn, can effectuate the imple-
mentation of the aforementioned systems. The work presented here
addresses the problem of efficient retrieval of audio events.

Efficient similarity search and retrieval can be performed
through Approximate Nearest Neighbor (ANN) search which en-
compasses quantization [11] and hashing [12] algorithms. As the
audio domain lacks relevant literature, most of the related work
is found in computer vision. Hashing and quantization methods
attempt to transform high-dimensional image embeddings into
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compact binary codes that can then be utilized for efficient im-
age retrieval [13]. ANN algorithms can be broadly classified into
two groups: unsupervised and supervised. Unsupervised methods
include classical hashing and quantization algorithms like Locality
Sensitive Hashing (LSH) [14] and Product Quantization (PQ) [11].
Unsupervised algorithms do not leverage human annotated data
labels and thus might suffer from the semantic gap dilemma [15].
In contrast, supervised algorithms like [16, 17] utilize available
semantic labels, and employ Deep Neural Networks (DNNs) to si-
multaneously learn audio embeddings and their hash codes. These
algorithms try to preserve the data patterns in the hash codes, which
can be helpful for accurate retrieval. This can be further expedited
by incorporating an extra objective for learning the feature patterns.
For example, Yue Cao et. al. [13] proposed a Deep Quantization
Network (DQN) for efficient image retrieval in a multi-task learning
framework where image similarity is learnt through a pairwise co-
sine loss and the hash codes are generated via Product Quantization.

This work formulates the efficient audio event retrieval problem
and proposes a deep supervised ANN algorithm suitable for the task.
The novelties and contributions of this paper are as follows:

• We address and formulate the efficient audio event retrieval prob-
lem using deep audio embeddings. To the best of our knowledge,
this work is the first of its kind.

• We employ multiple state-of-the-art audio embeddings for re-
trieval, and compare their performances.

• We apply classical unsupervised hashing algorithms and draw a
detailed comparison.

• By consolidating existing methods and audio domain knowl-
edge, we propose a supervised deep hashing model suitable for
quantizing audio events with minimal training.

• We show that the proposed supervised method has significant
benefits in retrieval performance across multiple datasets, even
when using only a fraction of the available training instances.

Experiments and results discussed here could serve as baseline for
audio event retrieval tasks, and encourage future research in the field.

2. HASHING OF AUDIO EVENTS

The proposed supervised hashing is inspired by the DQN model and
its recent success in computer vision applications [13]. We incorpo-
rate audio domain knowledge, and create a deep learning framework
which consists of three sub-modules:

1. An audio event embedding generator that produces a fixed low-
dimensional representation.

2. An (unsupervised) hashing module that quantizes a given em-
bedding, and is characterized by a certain quantization error.

3. A supervised similarity preserver which exploits available au-
dio labels, and increases similarity between the learned audio
embeddings of the same class.
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Fig. 1: Overview of the employed model for deep audio event hashing.

The overall model is trained in a multi-task learning environment
to reduce the quantization error as well as optimize the similarity
between the learned embeddings. Figure 1 depicts the overview of
the proposed system. The individual modules are described below.

2.1. Audio event embeddings

Assume a set of audio samples S = {xi, yi}Ni=1, where yi denotes
the semantic class label associated with audio xi. Generally, DNN
audio event classification models are trained in a supervised fashion
by optimizing the cross entropy loss across all audio classes. An
audio embedding f(xi) is defined as the output of an intermediate
layer of a pre-trained DNN model, and denotes a nonlinear trans-
formation of xi. Audio event embeddings are known to capture the
inherent semantic information associated with that particular audio
sample. In this work, we will exploit weak-supervision pre-trained
models since they have shown promising results in the recent litera-
ture [3, 8] and constitute state-of-the-art feature representations. We
will denote these embeddings as weak embeddings, eweak = f(x),
since they are trained with weak labels on out-of-domain data (see
Section 3.2.1). The weak embeddings are used as features for the
proposed supervised model to learn more quantizable embeddings.

To learn stronger audio embeddings by leveraging the human
annotations available in the in-domain dataset (see Section 3.1), an-
other stage of nonlinear transformation is applied via a Multi-layer
Perceptron (MLP) parameterized by Θ:

e = g(eweak;Θ) (1)
The two modules of the proposed system presented below operate
on embedding e.

2.2. Unsupervised hashing module

This module employs state-of-the-art Product Quantization (PQ) al-
gorithm [11], a hashing method that is based on the general idea of
Vector Quantization (VQ) [18].

2.2.1. Vector Quantization (VQ)

VQ maps a fixed dimensional vector, e ∈ RD into a codeword or
centroid, q(e) which belongs to a finite set called the codebook, C.
More formally, if I = 1, 2, . . . ,K is a finite index set:

e→ q(e) ∈ C = {ci : ∀i ∈ I} (2)
The quantization error, E is defined as:

E =
1

N

N∑
i=1

‖ei − q(ei)‖2 (3)

Under unconstrained conditions on the codebook, C, minimizing this
error leads to optimizing the K-Means clustering objective [11]:

minimize
1

N

N∑
i=1

‖ei −Chi‖2 s.t. ‖hi‖0 = 1,hi ∈ {0, 1}K (4)

Here, C is the matrix whose columns represent the codewords:
CD×K = [c1|c2| . . . |cK ] (5)

A K-codeword codebook produces B = log2K bits hash codes.

2.2.2. Product Quantization (PQ)

Note that VQ needs to keep a codebook of size 2B for B bits codes.
This restricts the number of bits it can accommodate, and for large
value of B, VQ becomes intractable [11]. PQ was proposed to cir-
cumvent this issue, especially when an exponentially large number
of codewords is desired. PQ decomposes embedding e intoM lower
dimensional subspaces, and then applies VQ independently on each
subspace. If ej ∈ RD/M = RD∗

, ∀j = 1, 2, · · · ,M , then:

e =
[
eT
1 |eT

2 | . . . |eT
M

]T
, (6)

and the optimization objective becomes:

minimize Q =
1

N

M∑
j=1

N∑
i=1

‖eij −Cjhij‖2 (7)

subject to ‖hij‖0 = 1,hij ∈ {0, 1}K
∗

(8)
Here, Cj contains K∗ codewords in the j th subspace:

[Cj ]D∗×K∗ = [cj1|cj2| . . . |cjK∗ ] (9)
Note that the effective codebook, C, becomes the cartesian product
of the codebooks of all subspaces: C = C1×C2 · · ·×CM . Therefore,
the effective codebook size becomes K = (K∗)M , but we need to
store only K∗M codewords. In this case, the codebook produces
B =M log2K

∗ bits codes, for K∗ codewords from M subspaces.

2.3. Supervised similarity preserver module

We seek to improve the distinctive characteristics of the learned hash
codes by leveraging available audio labels [13]. The similarity pre-
server loss function increases the cosine similarity between two em-
beddings of the same class, and decreases similarity for embeddings
of different classes. More formally, the objective is:

L =
∑

tij∈T

(
tij −

〈ei, ej〉
‖ei‖‖ej‖

)2

(10)

where tij = +1 if yi = yj , otherwise tij = −1.

2.4. Multi-task training

Equation 7 can be compactly written as:

minimize Q =
1

N

N∑
i=1

‖ei − C̃h̃i‖2 (11)

where, C̃ is a diagonal block matrix containing all {Cj}Mj=1, h̃i =[
hT
1 |hT

2 | . . .hT
M

]T
. The overall minimization objective becomes:

min
Θ,C̃,{h̃i}Ni=1

L+ λQ (12)

where, λ is a weight parameter on the quantization error1. This loss
function is differentiable and can be minimized via minibatch SGD.
We perform PQ at every epoch to update C̃ and {h̃i}Ni=1, while we
update Θ for each minibatch. Note, that the MLP weights and the
codebook are randomly initialized before training.

1λ ∈ [10−5, 1] is chosen through cross-validation inside training set.



Table 1: Performance (% mAP) of audio event retrieval algorithms on DCASE dataset using VGGish and TLWeak weak embeddings
TLWeak (1024 dimensional) VGGish (128 dimensional)

Type of training Algorithm4 8 bits 16 bits 24 bits 32 bits 64 bits 8 bits 16 bits 24 bits 32 bits 64 bits

Unsupervised
(full database)

SH 8.14 10.97 11.93 12.84 13.31 9.23 11.34 12.18 12.85 12.90
ITQ 8.34 12.03 14.17 15.52 17.62 10.10 12.18 14.25 14.61 15.64
AGH 9.40 13.03 15.13 15.35 16.49 13.37 15.04 15.52 16.34 15.41
PQ 15.06 16.15 16.30 16.39 16.36 16.12 16.34 16.23 16.24 15.65

Supervised
(10% of database)

Audio DQN
(proposed) 39.07 44.24 45.50 45.77 46.83 33.84 38.93 39.68 40.31 41.43

Table 2: Performance (% mAP) of audio event retrieval algorithms on ESC-50 dataset using VGGish and TLWeak weak embeddings
TLWeak (1024 dimensional) VGGish (128 dimensional)

Type of training Algorithm4 6 bits 12 bits 18 bits 24 bits 48 bits 6 bits 12 bits 18 bits 24 bits 48 bits

Unsupervised
(full database)

SH 11.38 16.15 18.34 20.79 22.75 10.59 15.69 18.42 19.13 20.05
ITQ 12.48 21.17 25.43 28.22 32.92 8.72 13.82 18.11 19.92 21.67
AGH 13.46 25.43 30.72 33.27 34.98 13.68 21.15 24.47 24.42 25.38
PQ 27.00 28.40 29.40 29.90 30.10 18.55 18.31 19.00 18.80 17.33

Supervised
(12% of database)

Audio DQN
(proposed) 32.15 39.72 40.92 40.80 43.48 21.25 24.91 25.50 25.18 26.73

2.5. Approximate Nearest Neighbor search (ANN)

We employ Asymmetric Quantizer Distance (AQD) for ANN
search [11]. Given a query audio, we compute its embedding
representation, equery, using equation 1. Then, an exhaustive search2

is performed by computing AQD between equery and all database
samples, and finding the sample that gives minimum AQD:

xANN = argmin
xi∈S

‖equery − C̃h̃i‖2 (13)

A perfect retrieval system would put all the positive hits at the top of
the list ordered by AQD distance (see Section 3.3).

3. EXPERIMENTAL SETTING

3.1. Datasets

2018 DCASE challenge, Task-2 [20]: The dataset contains ∼ 9.5K
training and∼ 1.6K test audio files from 41 audio classes, annotated
using the Google AudioSet Ontology [2]. We employ this dataset for
detailed analysis and ablation studies of the proposed system.
ESC-50 [21]: To evaluate the generalization capability of the pro-
posed system, we also employ ESC-50 dataset [21]. This dataset is
much smaller comprising of 2000 audio samples from 50 classes.
The performance is measured through five-fold cross-validation.

3.2. Models

3.2.1. Weakly supervised audio embeddings

We employ two state-of-the-art weak embeddings (Section 2.1):
“VGGish” [3] and “TLWeak”3 [8]. VGGish are 128-dimensional
embeddings trained on ∼ 5 M hours of weakly labeled YouTube
videos [3]. TLWeak are 1024-dimensional embeddings trained on
class-balanced AudioSet dataset [2]. The compact representations of
both types of embeddings make them suitable for transfer learning.

3.2.2. MLP model and PQ parameters

The proposed MLP model has three dense layers of [512, 256, E]
units, where E is the dimension of the output embedding e (equa-

2Non-exhaustive search can be implemented by standard algorithms like
the inverted multi-index [19].

3We will use this term throughout the rest of the paper.

tion 1). In this work E = 2×B where B is the required number of
bits, a parameter of the model. Similarly, we set the default number
of codewords in each subspace to be K∗ = 256 (see equation 9).

The number of subspaces M depends on the number of bits
through B = M log2K

∗ = M log2 256 = 8 ×M . For example:
for a 32-bits code, we need M = B/8 = 4 subspaces. Therefore,
the effective codebook size is (K∗)M = 2564 ≈ 4.3B; but the ac-
tual required storage is K∗ ×M = 256× 4 = 1024 codewords. If
VQ was used instead of PQ, we would need to store the full 4.3B-
word codebook, at which point the problem becomes intractable.

3.3. Evaluation metric

For evaluating the audio retrieval task, we adopt Mean Average
Precision (mAP@R) metric where R is the number of retrieved
items [13, 16]. Metric mAP varies ∈ [0, 1], and is high when posi-
tive retrievals (hits) are at the top. Setting R equal to the elements in
the entire database is common in retrieval literature [22]. It incorpo-
rates hits even at the end of the list but at the cost of a higher penalty.
The average mAP performance is reported for all experiments, over
10 repetitions of random MLP model and codebook initialization.

4. RESULTS AND DISCUSSIONS

4.1. Comparison between different algorithms

The retrieval experiments incorporate three sets of samples: train,
test, and database. The unsupervised algorithms do not require la-
bels for training and are trained on the entire database. The proposed
supervised audio DQN method assumes the availability of a fraction
of the annotated database (∼ 10%), which is used for training. The
exact percentage may vary slightly, depending on rounding effects
for each random sampling of the dataset. The train set is pooled ran-
domly from the classes of the database via uniform sampling. The
test set is the same as in the official instructions of the individual
datasets. Note that the off-the-shelf unsupervised algorithms are ap-
plied on the weak embeddings, eweak; while the proposed supervised
model works on the learned embedding, e (see Section 2.1).

Table 1 compares performance of the different unsupervised al-
gorithms and the proposed audio DQN method, for an increasing
number of hash code bits B (and increasing number of subspaces
M , see Section 3.2.2). Here mAP is computed over all retrieved
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Fig. 2: Effect of training data size on retrieval performance for
DCASE. mAP is computed on the full retrieved list (Section 3.3).

and ranked items. An extensive set of classical unsupervised hash-
ing algorithms was computed4 [23], but due to space limitation we
only report the top performing four methods in Table 1: Spectral
Hashing (SH) [24], Iterative Quantization (ITQ) [25], Anchor Graph
Hashing (AGH) [26], and Product Quantization (PQ) [11]. PQ out-
performs all unsupervised methods for both VGGish and TLWeak
embeddings.

We can see a significant boost in performance for the proposed
audio DQN model compared to the unsupervised methods. We hy-
pothesize the creation of more relevant embeddings for the task,
as the similarity preserver module forces the embeddings to come
closer for audio events of the same class (Section 2.3). This, in
turn, assists the inherent PQ algorithm to find more compact clusters
(or codewords). The further incorporation of quantization error in
the loss function encourages the model to produce better hash codes
which result in more accurate retrieval. A comparison of the weak
audio embeddings shows that TLWeak outperforms VGGish for the
task. This can be attributed to the higher dimension of the TLWeak
embeddings that generally help retain more detailed feature informa-
tion; such finer details can be absent in a smaller embedding space.

Table 2 draws a similar analysis on ESC-50 dataset. Among the
unsupervised algorithms, interestingly, AGH outperforms PQ for a
high number of bits. Also note that we employ only 12% of the
database for supervised training in ESC-50. This gives only 4 sam-
ples per class, hence, in total 50 × 4 = 200 training samples. Due
to the limited amount of training data, we reduced the value of K∗

from the default 256 to 64 (see Section 3.2.2) so that enough training
samples exist for the K-Means algorithm (K∗ < 200). Even with
this strictly limited labelled data, the proposed supervised method
still outperforms the unsupervised algorithms. Comparing results
between datasets, the lower performance achieved for ESC-50 can
be attributed to the availability of fewer per-class examples.

4.2. Effect of training set size

In this experiment, we analyze the retrieval performance for a vary-
ing training set size (assume that we have additional labeled samples
in the database, beyond ∼ 10%). Figure 2 shows gradual improve-
ment in mAP as we increase the amount of labeled training data. The
gap in performances between the two sets of features increases with

4Locality Sensitive Hashing (LSH), Kernelized LSH (KLSH), Binary Re-
constructive Embedding (BRE), Density Sensitive Hashing (DSH) obtained
even lower performance and are not reported here.
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training samples; this can be attributed to the better generalization of
high-dimensional TLWeak embeddings in this case.

4.3. Ordering of the retrieved items

Figure 3 shows the variation of mAP@R for increasing R for
DCASE dataset at 64 bits. Metric mAP@R corresponds to per-
formance when looking only at the top R retrieved items in the
list. Low R values are important in applications such as web-based
search engines, where hits are desirable at the top of the retrieved
list. The case of R = 1 is basically a hit or miss scenario. Notice the
jump after R = 1, which can be expected as increased R values are
more probable to contain hits. The fairly flat performance illustrates
the strength of the proposed method even when we look at the lower
elements in the retrieved list (high R). Note that the map@R for
10% of data will not remain flat beyondR = 100 items. For instance,
the red line (solid line with circle marker) that has 60% mAP@R
for R = 100, will go down to ∼ 40% when R matches the entire
database size as shown in Figure 2.

5. CONCLUSION AND FUTURE DIRECTIONS

This work provides a first look into retrieval and ranking of audio
events, outlines potential challenges and illustrates its benefits for
real system architectures, and creates baselines that can encourage
future research in the field. We employed two state-of-art audio em-
beddings, and analyzed performance of classical unsupervised hash-
ing algorithms on two audio event datasets. By combining weak
audio embeddings with a supervised similarity objective and a quan-
tization module, we proposed a deep hashing framework particularly
suitable for efficient audio retrieval. Extensive experiments show the
usefulness of the proposed supervised training even when we allow
annotations for just a small portion of the database.

As a future step, training directly on lower level features can help
better understand the importance of transfer learning for audio event
retrieval. A closer look into the model layout can help understand
the contribution of using concurrent hash learning as opposed to hav-
ing a sequential optimization framework. Finally, the incorporation
of non-exhaustive search algorithms combined with ranking mod-
ules suited for audio events could substantially decrease retrieval
time, while increase precision of retrieved results: for example, gen-
erating hash codes that preserve hierarchical information of audio
events [2, 27] might be extremely useful for fast and semantically-
driven retrieval, even for unseen classes of audio events.
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