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Abstract

In this paper, we investigate the non-stationary
combinatorial semi-bandit problem, both in the
switching case and in the dynamic case. In the
general case where (a) the reward function is
non-linear, (b) arms may be probabilistically
triggered, and (c) only approximate offline or-
acle exists [Wang and Chen, 2017], our algo-
rithm achieves Õ(m

√
NT/∆min) distribution-

dependent regret in the switching case, and
Õ(V 1/3T 2/3) distribution-independent regret in
the dynamic case, where N is the number of
switchings and V is the sum of the total “distri-
bution changes”, m is the total number of arms,
and ∆min is a gap variable dependent on the dis-
tributions of arm outcomes. The regret bounds in
both scenarios are nearly optimal, but our algo-
rithm needs to know the parameter N or V in ad-
vance. We further show that by employing another
technique, our algorithm no longer needs to know
the parameters N or V but the regret bounds could
become suboptimal. In a special case where the re-
ward function is linear and we have an exact oracle,
we apply a new technique to design a parameter-
free algorithm that achieves nearly optimal regret
both in the switching case and in the dynamic case
without knowing the parameters in advance.

1 INTRODUCTION

Stochastic multi-armed bandit (MAB) [Auer et al., 2002a,
Thompson, 1933] is a classical model that has been exten-
sively studied in online learning and online decision making.
The most simple version of MAB consists ofm arms, where
each arm corresponds to an unknown distribution. In each
round, the player selects an arm, and the environment gener-
ates a reward of that arm from the corresponding distribution.

The objective is to sequentially select the arms in each round
and maximize the total expected reward. The MAB problem
characterizes the trade-off between exploration and exploita-
tion: On the one hand, one may play an arm that has not
been played much before to explore whether it is good, and
on the other hand, one may play the arm with the largest
average reward so far to accumulate the reward.

Stochastic combinatorial multi-armed bandit (CMAB) is a
generalization of the original stochastic MAB problem. In
CMAB, the player may choose a combinatorial action over
the arms [m], and thus there may be an exponential number
of actions. Each action triggers a set of arms, the outcomes
of which are observed by the player. This is called the semi-
bandit feedback. Moreover, some arms may be triggered
probabilistically based on the outcome of other arms [Chen
et al., 2016b, Wang and Chen, 2017, Kveton et al., 2015a,b].
CMAB has received much attention because of its wide ap-
plicability from the original online (repeated) combinatorial
optimization to other practical problems, e.g. wireless net-
working, online advertising, recommendation, and influence
maximization in social networks [Chen et al., 2013, 2016b,
Wang and Chen, 2017, Gai et al., 2012, Combes et al., 2015,
Kveton et al., 2014, 2015a,b,c].

All these studies focus on the stationary case, where the
distribution of arm outcomes stays the same through time.
However in practice, the environment is often changing. For
example, in network routing, some routes are not available
temporarily for maintenance; in influence maximization,
student users may likely use social media less frequently
during the final exam period; in online advertising and rec-
ommendation, people’s preferences may change due to news
events or fashion trend changes.

Motivated by such realistic settings, we consider the non-
stationary CMAB problem in this paper. Let Dt denote the
distribution of the arm outcomes (represented as a vector) at
time t. We use two quantities, switchings and variation,
to measure the changing of distributions {Dt}t≤T . The
number of switchings is defined as N := 1+

∑T
t=2 I{Dt 6=
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Dt−1}, and the variation is given as V :=
∑T
t=2 ||µt −

µt−1||∞, where µt is the mean outcome vector of the arms
following distribution Dt. A related definition is the total
variation V̄ :=

∑T
t=2 ||Dt−Dt−1||TV, where ||·||TV denotes

the total variation of a distribution. The performance of the
algorithm will be measured by the non-stationary regret
instead of the regret in the stationary case.

This problem is first considered by Zhou et al. [2019], where
the authors consider the non-stationary CMAB with approx-
imation oracle but no probabilistically triggered arms. Zhou
et al. [2019] only study the switching case, or the piecewise
stationary case, where the non-stationarity is measured by
N . Moreover, they add an assumption on the length of each
stationary segment and thus bound the switchings N to be
O(
√
T ). Different from their model and assumptions, we

consider the non-stationary CMAB in both the switching
case (measured by N ) and the dynamic case (measured
by V or V̄ ). We do not make assumptions on the number
of switchings N and the length of stationary periods. Our
contributions can be summarized as follow:

1. When we know the changing parameters N or V , we de-
sign algorithm CUCB-SW for the non-stationary CMAB
problem. We show that CUCB-SW has nearly optimal
distribution-dependent bound both in the switching case
and the dynamic case, and the leading terms in the re-
gret bounds are Õ(m

√
NT/∆min) and Õ(m

√
V T/∆min),

where m is the total number of arms and ∆min is gap vari-
able dependent on the distributions of arm outcomes (see
Section 3 for the precise technical definition). We also show
that CUCB-SW has nearly optimal distribution-independent
bound in the dynamic case and the leading term in the bound
is Õ(V 1/3T 2/3).

2. When parameters N or V are unknown, we design algo-
rithm CUCB-BoB, which achieves sublinear regret in terms
of T as long as N < cT γ or V ≤ cT γ for some constants
c and γ < 1. Moreover, the distribution-dependent bounds
in both cases and the distribution-independent bound in the
dynamic case are nearly optimal when N and V are large.

3. In a special case when (a) the total reward of an action
is linear in the means of arm distributions, (b) there is no
probabilistically triggered arms, and (c) we have an exact
oracle for the offline problem, we design ADA-LCMAB
that does not need to know the parameters N or V in ad-
vance. Our algorithm has distribution-independent regret
bounds Õ(min{

√
NT, V 1/3T 2/3 +

√
T}), which is nearly

optimal in terms of N , V , T in both the switching case and
the dynamic case.

1.1 RELATED WORKS

Multi-armed bandit Multi-armed bandit (MAB) prob-
lem is first introduced in Robbins [1952]. MAB problems
can be classified into stochastic bandits and adversarial ban-

dits. In the stochastic case, the reward is drawn from an
unknown distribution, and in the adversarial case, the re-
ward is determined by an adversary. Our model is a gen-
eralization of the stochastic case, as discussed below. The
classical MAB algorithms include UCB [Auer et al., 2002a]
and Thompson sampling [Thompson, 1933] for the stochas-
tic case and EXP3 [Auer et al., 2002b] for the adversarial
case. We refer to Bubeck and Cesa-Bianchi [2012] for a
comprehensive coverage on the MAB problems.

Combinatorial semi-bandit Combinatorial semi-bandits
(CSB) is a generalization of MAB, and there are also two
types of CSB, i.e., in the adversarial or stochastic settings.
Adversarial CSB was introduced in the context of shortest-
path problems by György et al. [2007], and later studied ex-
tensively [Lattimore and Szepesvári, 2018]. There is also a
large literature about stochastic CSB [Gai et al., 2012, Chen
et al., 2016b, Combes et al., 2015, Kveton et al., 2015b]. Re-
cently, Zimmert et al. [2019] propose a single algorithm that
can achieve the best of both worlds. However, most of the
previous works focus on linear reward functions. Chen et al.
[2013, 2016b] initialize the study of nonlinear CSB. Chen
et al. [2013] consider the problem with α-approximation
oracle, and Chen et al. [2016b] generalize the model with
probabilistically triggered arms, which includes the online
influence maximization problem. Wang and Chen [2017]
further improve the result and remove an exponential term
in the regret bound by considering a subclass of CMAB
with probabilistically triggered arms, and prove that the on-
line influence maximization belongs to this subclass. Chen
et al. [2016a] generalize the model in Chen et al. [2013] in
another way, and they consider the CMAB problem with a
general reward function that is dependent on the distribution
of the arms, not only on their means.

Non-stationary bandits Non-stationary MAB can be
viewed as a generalization of the stochastic MAB, where the
reward distributions are changing over time. To obtain opti-
mal regret bounds in terms of N or V , most of the studies
need to use N or V as algorithmic parameters, which may
not be easy to obtain in practice [Garivier and Moulines,
2011, Wei et al., 2016, Liu et al., 2018, Gur et al., 2014, Bes-
bes et al., 2015]. Until very recently, an innovative study by
Auer et al. [2019] solves the problem without knowing N or
V in the bandit case and achieves optimal regret. Nearly at
the same time, Chen et al. [2019] significantly generalizes
the previous work by extending it into the non-stationary
contextual bandit and also achieves optimal regret without
any prior information, but this algorithm is far from practical.
The works closest to ours are by Zhou et al. [2019] who also
considers non-stationary combinatorial semi-bandits, and
by Wang et al. [2019] who consider the piecewise-stationary
cascading bandit. There are also some works considering
non-stationary linear bandits [Russac et al., 2019, Kim and
Tewari, 2019], which is a generalization of linear combina-



torial bandits. However, the last two studies only achieve
optimal bounds when the algorithm knows N or V . Al-
though the algorithm in Zhou et al. [2019] is parameter-free,
they make other assumptions on the length of the switching
period. Moreover, they do not consider the probabilistically
triggered arms.

2 MODEL

In this section, we introduce our model for the non-
stationary combinatorial semi-bandit problem. Our model
is derived from Wang and Chen [2017], which handles non-
linear reward functions, approximate offline oracle, and the
probabilistically triggering arms.

We have m base arms [m] = {1, 2, . . . ,m}. At time
t, the environment samples random outcomes X(t) =

(X
(t)
1 , X

(t)
2 , . . . , X

(t)
m ) for these arms from a joint distri-

bution Dt ∈ D. The sample random variable X(t)
i has

support [0, 1] for all i, t. Let µi,t = E[X
(t)
i ] and we use

µt = (µ1,t, µ2,t, . . . , µm,t) to denote the mean vector at
time t. The player does not know Dt for any t. In round
t ≥ 1, the player selects an action St from an action space S
(could be infinite) based on the feedback from the previous
rounds. When we play action St on the environment out-
comeX(t), a random subset of arms τt ⊆ [m] are triggered,
and the outcomes of X(t)

i for all i ∈ τt are observed as the
feedback to the player. The player also obtains a nonneg-
ative reward R(St,X

(t), τt) fully determined by St,X(t)

and τt. Our objective is to properly select actions St’s at
each round t based on the previous feedback and maximize
the cumulative reward.

For the triggering set τt given the environment outcome
X(t) and the action St, we assume that τt is sampled from
the distribution Dtrig(St,X

(t)), where Dtrig(S,X) is the
probabilistic triggering function, and it is a probability dis-
tribution on the triggered subsets 2[m] given the action S
and environment outcome X . Moreover, we use pD,Si to
denote the probability that action S triggers arm i when
the environment triggering distribution is D. We define
S̃D = {i : pD,Si > 0} to be the set of arms that can be
triggered by action S under distribution D.

We assume that E[R(St,X
(t), τt)] is a function of St,µt,

and we use rS(µ) := EX [R(S,X, τ)] to denote the ex-
pected reward of action S given the mean vector µ. This
assumption is similar to that in Chen et al. [2016b], Wang
and Chen [2017], and can be satisfied for example when
variablesX(t)

i ’s are independent Bernoulli random variables.
Let optµt := supS∈S rS(µt) denote the maximum reward
in round t given the mean vector µt.

The previous model is similar to that in Wang and Chen
[2017], except that in this paper, we consider the non-
stationary setting where Dt can change in different rounds.

We assume that {Dt} are generated obliviously, i.e. the
generation of Dt is completed before the algorithm starts,
or equivalently, the generation of Dt is independent to
the randomness of our algorithm and the randomness of
the previous samples X(s), s < t. Next, we introduce
the measurement of the non-stationarity. In general, there
are two measurements of the change of the environment:
the first is the number of the swichings N , and the sec-
ond is the variation V or V̄ . For any interval I = [s, s′],
we define the number of switchings on I to be NI :=

1 +
∑s′

t=s+1 I{Dt 6= Dt−1}, which can be interpreted as
the number of stationary segments. As for the variation,
we define VI :=

∑s′

t=s+1 ||µt − µt−1||∞, which denotes
the total change of the mean. By the above definitions, we
have a simple fact that VI ≤ NI . Another similar quantity
is the total variation, and the formal definition is given as
V̄I :=

∑s′

t=s+1 ||Dt −Dt−1||TV, where || · ||TV denotes the
total variation of the distribution.

V is a lower bound of V̄ (see Lemma 9 in Luo et al. [2018]).
In some cases, V̄ can be in order Θ(T ) while V is a con-
stant (just consider distribution varies but with the same
expectation). In non-stationary multi-armed bandits, V is
more frequently used compared with V̄ [Gur et al., 2014,
Auer et al., 2019]. V̄ is often used in contextual bandits
[Luo et al., 2018, Chen et al., 2019].

For convenience, we use N , V and V̄ to denote N[1,T ],
V[1,T ] and V̄[1,T ] respectively. When we use N to measure
the non-stationarity, we say that we are considering the
switching case. Otherwise, when we are using parameters
V or V̄ , we say that we are in the dynamic case. We also
define K = maxt,S |S̃Dt | to be the maximum number of
arms that can be triggered by an action in any round. Clearly,
we have K ≤ m.

Now we can introduce the measurement of the algorithm.
Given an online algorithm A, we assume that A has access
to an offline (α, β)-approximation oracle O, which takes the
input µ = (µ1, . . . , µm) and returns an action SO such that
Pr{rµ(SO) ≥ α · optµ} ≥ β. Here, α can be interpreted
as the approximation ratio and β is the success probability.
Based on the (α, β)-approximation oracle O, we have the
following definition of (α, β)-approximation non-stationary
regret:

Definition 1 ((α, β)-approximation Non-stationary Regret).
The (α, β)-approximation non-stationary regret for algo-
rithm A during the total time horizon T is defined as the
following:

RegAα,β := α · β ·
T∑
t=1

optµt − E

[
T∑
t=1

rSAt (µt)

]
,

where SAt is the action selected by algorithm A in round t.



Intuitively, the first term α · β ·
∑T
t=1 optµt is the best we

can guarantee with the total knowledge of the distributions
Dt for every round t, and the second term is the expected
reward selected by our algorithm A.

Our regret bounds are in the form Õ(Nγ1T γ2) for the
switching measurement and Õ(V γ3T γ4) for the variation
measurement. Note that if we allow the distributions Dt to
change arbitrarily in every round, we cannot learn the distri-
bution at all and there is no hope to get the non-stationary
regret bound “sub-linear” in terms of T . This implies that we
cannot get regret bounds with γ1+γ2 < 1 or γ3+γ4 < 1, be-
causeN and V are bounded by T and the above inequalities
would lead to sublinear regrets even for arbitrary changes
of Dt. Thus, the best one can hope for is to achieve regret
bounds with γ1 + γ2 = 1 or γ3 + γ4 = 1. Indeed, all of our
algorithms in the paper achieve such regret bounds. In this
case, as long as N or V is sublinear in T , we would achieve
a sublinear regret in T . Moreover, in this case, we also pre-
fer bounds with γ2 or γ4 as small as possible, because it
would lead to better regret bound in T as long as N or V
is sublinear in T . In many cases, our algorithms do achieve
the minimum possible γ2 or γ4, as we discuss later for each
algorithm.

We make the following assumptions on the problem instance
similar to those in Wang and Chen [2017], which shows
that many important CMAB application instances such as
influence maximization and combinatorial cascading bandit
satisfy these assumptions.

Assumption 1 (Monotonicity). For any µ and µ′ with µ ≤
µ′ (dimension-wise), for any action S, rS(µ) ≤ rS(µ′).

Assumption 2 (1-Norm TPM Bounded Smoothness). For
any two distributions D,D′ with expectation vectors µ and
µ′ and any action S, we have

|rS(µ)− rS(µ′)| ≤ B
∑
i∈[m]

pD,Si |µi − µ′i|.

3 GENERAL ALGORITHM FOR
NON-STATIONARY CMAB

In this section, we give an algorithm for the general CMAB
model defined in Section 2. We first give the algorithm
(CUCB-SW) when we know that parameters N or V that
measure the non-stationarity. Then, we show how to com-
bine the CUCB-SW with the Bandit-over-Bandit Cheung
et al. [2019] to get a parameter-free algorithm (CUCB-BoB).

3.1 NEARLY OPTIMAL REGRET WHEN
KNOWING N OR V

In this part, we show our algorithm for the non-stationary
CMAB problem when we know the parameter N or V .

Algorithm 1 Sliding Window CUCB: CUCB-SW

1: Input: m, Oracle O, time horizon T , window size w ≤
T (w depends on V or N , see Theorem 1)

2: for t = 1, 2, 3, . . . do
3: Ti,t ← number of time arm i has been triggered in

time max{t− w + 1, 1}, . . . , t− 1.
4: µ̂i,t ← empirical mean of arm i during time t −

w, . . . , t− 1; (1 if not triggered).
5: ρi,t ←

√
3 lnT
2Ti,t

(∞ if Ti,t = 0)

6: µ̄i,t = min{µ̂i,t + ρi,t, 1}
7: St ← O(µ̄1,t, µ̄2,t, . . . , µ̄m,t)
8: Play action St, observe samples from triggered set.
9: end for

We apply a standard technique and get a simple algorithm
CUCB-SW. Although the algorithm is simple and straight-
forward, the analysis is quite complicated. Our main contri-
bution is the analysis for CUCB-SW, especially when we
have the approximation oracle and the probabilistic trigger-
ing arms. We will first introduce our algorithm CUCB-SW,
and then state the regret bound and give some discussions
on the regret bound and proof sketch.

When we know the parameters N or V , we can apply the
sliding window technique to get the result for non-stationary
CMAB. The resulting algorithm is simple and included as
Algorithm 1: We use CUCB [Wang and Chen, 2017] in each
round, but we only consider the samples in a sliding window
with size w.

Generally speaking, in each round, we compute the empiri-
cal mean of each arm in a sliding window with size w. We
also compute the corresponding UCB value for each arm.
Then, we use the oracle O to solve the optimization problem
with the UCB value of each arm as input.

To introduce the regret bound for CUCB-SW, we need to
define the gap in the non-stationary case. Formally, we have
the following definition.

Definition 2 (Gap). For any distribution D with mean
vector µ. For each action S, we define the gap ∆D

S :=
max{0, α · optµ − rS(µ)}. For each arm i, we define

∆i,t
min = inf

S∈S:p
Dt,S
i >0,∆

Dt
S >0

∆Dt
S ,

∆i,t
max = sup

S∈S:p
Dt,S
i >0,∆

Dt
S >0

∆Dt
S .

We define ∆i
min = +∞ and ∆i

max = 0 if they are not
properly defined by the above definitions. Furthermore, we
define ∆i

min := mint≤T ∆i,t
min, ∆i

max := maxt≤T ∆i,t
max as

the minimum and maximum gap for each arm.

In the above definition, the gap ∆i,t
min,∆

i,t
max for a fixed

arm i and a fixed time is similar to the definition of gap in



Wang and Chen [2017]. However, their definition is based
on a single distribution D, and in our setting, we need to
generalize the definition from stationary case to dynamic
case where we need to take several distributions into account.
Our generalization from the stationary to the dynamic case
is similar to the generalization in Garivier and Moulines
[2011], which takes the minimum of the gap in each round.
With the above definition, we have the following regret
bound.

Theorem 1 (Regret for CUCB-SW). Choosing the length

of the sliding window to be w = min
{√

T
V , T

}
, we have

the following distribution-dependent bound,

Regα,β = Õ

∑
i∈[m]

K
√
V T

∆i
min

+
∑
i∈[m]

K

∆i
min

+mK

 .

If we choose the length of the sliding window to be w =
min

{
m1/3T 2/3K−1/3V −2/3, T

}
, we have the following

distribution-independent bound,

Regα,β = Õ
(

(mV )1/3(KT )2/3 +
√
mKT +mK

)
.

Note that since we have V ≤ N , we can change the param-
eter from V to N in both of the regret bounds. We first look
at the distribution-dependent bound. Unlike the distribution-
dependent bound for the stationary MAB problem, the
distribution-dependent bound here has order Õ(

√
T ). How-

ever, the Õ(
√
T ) term is unavoidable, since the distribution-

dependent bound is lower bounded by Ω(
√
T ) [Garivier and

Moulines, 2011]. Although Garivier and Moulines [2011]
only prove the lower bound in the switching case, it also
applies to the dynamic case since the switching case is a spe-
cial case of the dynamic case. In this way, our distribution-
dependent bound is nearly optimal in both cases in terms of
V , N , and T .

As for the distribution-independent bound, the leading term
in the dynamic case is (mV )1/3(KT )2/3. This term is op-
timal in terms of V and T and we cannot further improve
the exponential term. The second term

√
mKT is also nec-

essary, since this term will be the leading term when V is
very small, and the non-stationary CMAB degenerates to
the original stationary CMAB problem. It is well known
that
√
mT is the lower bound for stationary MAB problem

with m arms, so the second term is also optimal. In this way,
our distribution-independent bound is nearly optimal in the
dynamic case. However, the bound in the switching case
is not tight. Our upper bound is N1/3T 2/3 but the current
upper and lower bound for non-stationary MAB is

√
NT

[Auer et al., 2019, Chen et al., 2019]. Designing nearly op-
timal regret bound for the switching case is left as future
work.

The readers may find that the window lengths are not the
same in the theorem for distribution-dependent/independent

bounds. The different lengths are crucial to get optimal
bounds since we optimize the regret bounds by the window
length.

The readers may also be curious about the distribution
change of the triggering probability. Note that in the model
part (Section 2), we do not explicitly define the distribution
change of the triggering probability. However, the change of
the triggering probability can change the reward a lot. The
intuition is that, although we do not define the change of the
triggering probability, the triggering probability is “induced”
by the distribution of the outcome of each arm (e.g., the
triggering of an edge in influence maximization problem is
totally determined by the propagation probability of each
arm). Besides, because of the TPM bounded smoothness
(Assumption 2), the regret can also be bounded. In this way,
we transfer the regret due to the change of the triggering
probability to the regret due to the change of the arm out-
come distribution, which is also the key challenge in our
proof.

Now we briefly show our proof idea to handle the proba-
bilistically triggered arms. Like the proof in Wang and Chen
[2017], we first partition the action-distribution pair SD into
groups whereGi,j = {SD ∈ S×D|2−j < pD,Si ≤ 2−j+1}.
Generally speaking, Gi,j includes the action-distribution
pairs that S triggers arm i under distribution D with proba-
bility around 2−j . Then, we define another quantity Ni,j,t
for arm i that may be triggered in group Gi,j , and it
will count at time s in the sliding window ends at t if
2−j < pDs,Ssi ≤ 2−j+1. Intuitively, the expected number
of triggers of arm i during the sliding window can be upper-
bounded by 2−j+1Ni,j,t and lower bounded by 2−jNi,j,t.
Formally, we have the following definition for Ni,j,t.

Definition 3 (Counter). Given the sliding window size w
of the algorithm, in a run of the algorithm, we define the
counter Ni,j,t as the following number

Ni,j,t :=

t∑
s=max{t−w+1,0}

I
{

2−j < pDs,Ssi ≤ 2−j+1
}
.

The first step is to relate the (α, β)-approximation non-
stationary regret with the quantities Ni,j,t. All the terms
related to the triggering probability can be converted to
Ni,j,t. Next, we bound the formula with Ni,j,t. We show
that the formula is non-increasing with respect to Ni,j,t, and
we find another instance N ′ such that N ′i,j,t ≤ Ni,j,t. The
formula with N ′i,j,t is easier to get regret upper bound and
we use that quantity to bridge between the regret and the
upper bound.

3.2 PARAMETER-FREE ALGORITHM

In this section, we introduce our parameter-free algorithm
for the non-stationary CMAB problem. We combined the



Algorithm 2 CUCB with Bandit over Bandit: CUCB-BoB

1: Input: Total time horizon T , Block size L, Parameters
R = R2 −R1 where R1 ≤ rS(0) ≤ rS(1) ≤ R2.

2: Suppose 2k ≤ L < 2k+1. Set up an EXP3.P that has
k + 1 arms. Arm i corresponds to window size 2i.

3: for ` = 1, 2, . . . , dTL e do
4: Set up an algorithm CUCB-SW for block `, choosing

the window size according to EXP3.P.
5: for t = (`− 1)L+ 1, . . . ,min{`L, T} do
6: Act according to the CUCB-SW in block `.
7: end for
8: R(`) is the total reward in block `.
9: Pass R(`)−R1

R to EXP3.P. // Normalize to [0, 1]
10: end for

Bandit-over-Bandit technique [Cheung et al., 2019] with
the previous sliding window CUCB algorithm (CUCB-SW),
and design our parameter-free algorithm CUCB-BoB for
general non-stationary CMAB problem.

Generally speaking, the Bandit-over-Bandit technique can
be summarized as follow: We first divide the total time
horizon T into several segments where each segment has
length L (the last segment may not). Although we do not
know the non-stationary parameters N or V , we can guess
N or V , or other parameters used by the algorithm when we
know the parameters N or V . For example, we can guess
the length of the sliding window of CUCB-SW. For two
different blocks, we may run the algorithm with different
guessing parameters. However, random guessing cannot
have a good performance guarantee, and we use a “master
bandit algorithm” to control our guessing. Whenever we
complete the algorithm for a block with some guessing
parameter, we feed the total reward in this block to the
master bandit algorithm, and the master bandit algorithm
will return us the parameter used in the next block.

In our non-stationary CMAB case, we combine the Bandit-
over-Bandit technique with the previous sliding window al-
gorithm CUCB-SW. First, we assume that we have EXP3.P
algorithm for the master bandit [Bubeck and Cesa-Bianchi,
2012], which is a variant of the original EXP3 algorithm.
We choose EXP3.P because it is easier to derive the regret
bound since the regret of EXP3.P is bounded, while the
original EXP3 only has pseudo-regret bound. Furthermore,
we also assume that there exists parameters R = R2 −R1

where R1 ≤ rS(0) ≤ rS(1) ≤ R2. This assumption aims
to bound the optimal value in each round. Without this as-
sumption, the reward in each round may be too large. Our
algorithm takes L as input, which denotes the length of
each block, and its proper value is given in Theorem 2.
We discretize the possible sliding window size in an expo-
nential way: The possible window size are 1, 2, 4, . . . , 2k

where 2k ≤ L < 2k+1. There are O(log2 L) number of
possible window sizes in total. Then in each block, we run

CUCB-SW with some window size, and we control the win-
dow size by the master EXP3.P algorithm. The only thing
left is that we need to feed the reward to the EXP3.P al-
gorithm. Here we assume that the reward in each round is
bounded, and we can compute the total reward in each block
and normalize it into [0, 1]. Please see Algorithm 2 for more
details.

Theorem 2. Suppose that there exist R1, R2 such that
R1 ≤ rS(0) ≤ rS(1) ≤ R2 for any S ∈ S and
R = R2 − R1. Choosing L =

√
mKT/R, we have the

following distribution-independent regret bound for Regα,β ,

Õ
(

(mV )
1
3 (KT )

2
3 +
√
R(mK)

1
4T

3
4 +R

√
mKT

)
.

Choosing L = K2/3T 1/3, we have the following
distribution-dependent regret bound

Õ

K√√√√∑
i∈[m]

TV

∆i
min

+
∑
i∈[m]

K
1
3T

2
3

∆i
min

+RK
1
3T

2
3

 .

In this theorem, we do not need different window lengths,
since the algorithm chooses for us. However, we need differ-
ent block sizes. The difference aims to optimize the sublin-
ear term in T (T 3/4 for distribution-independent and T 2/3

for distribution-dependent). We can choose L =
√
T in both

cases, then the sublinear term may be worse, and we may
also lose some factors in terms of m,K.

Note that since V ≤ N , we can also replace V by N in
the above regret bounds. First let’s focus on the distribution-
independent bound. As discussed in the previous section,
(mV )

1
3 (KT )

2
3 is nearly optimal and we can not improve

this term in terms of m,V, T . The last term R
√
mKT is

also nearly optimal. However, the term
√
R(mK)

1
4T

3
4 is

not optimal. Nontheless, this term is sublinear and the total
regret is also sublinear in T as long as V < cT γ for some
γ < 1. When we change V into N , as discussed before,
there is a gap between the bound (mN)1/3(KT )2/3 and
the existed lower bound

√
mNT . Despite of this, the total

regret bound is sublinear in T if N < cT γ for some γ < 1.

As for the distribution-dependent bound, the first term is
nearly optimal both in the dynamic case (measured by V )
and in the switching caseN . The sub-optimality comes from

the second term
∑
i∈[m]

K
1
3 T

2
3

∆i
min

. Despite this, the regret
bound is “sublinear” and it is nearly optimal when N or
V are large. Also, note that the first term is better than the
term for fixed window size because we are guessing the
best window size, which can take the gaps into account.
However, in the fixed window size scenario, the gaps are
unknown parameters and we can only optimize through V .

Next, we briefly show the intuition of the proof. We first
have the following theorem for the performance guarantee
of EXP3.P algorithm [Bubeck and Cesa-Bianchi, 2012].



Proposition 1 (Regret of EXP3.P). Suppose that the reward
of each arm in each round is bounded by 0 ≤ ri,t ≤ R′,
the number of arms is K ′, and the total time horizon is T ′.
The expected regret of EXP3.P algorithm is bounded by
O(R′

√
K ′T ′ logK ′).

The general idea of the proof is to decompose the (α, β)-
regret of algorithm CUCB-BoB into two parts: The first part
is the regret of the algorithm CUCB-SW with the best size
of sliding window; the second part is the difference between
the reward of CUCB-SW with best sliding window and the
reward of CUCB-BoB. The bound for the first part is given
in the previous section, and we want each block to be large.
Otherwise, the “best” window size cannot be reached. The
second part of the regret can be bounded by the EXP3.P
algorithm. If we select the length of each block as L, then
each reward is at order L. There are log2 T arms in total and
the time horizon for the EXP3.P algorithm is T

L . In this way,
the second term is at order Õ(L

√
T/L) = Õ(

√
TL), and

we want L to be small for the second part. Optimizing for
L, we can get the bound in Theorem 2.

There are two aspects that make designing a nearly optimal
parameter-free algorithm hard. The first is the combinatorial
structure of the offline problem: If we want to explore a
single base arm, we may afford a large regret, and if we
want to eliminate a base arm, we may affect a lot of actions.
The second is the approximation oracle: It is hard to detect
the non-stationarity through the reward of each round since
the rewards are not accurate. A very small change in the
input of the oracle may lead to a huge difference in the
output of the oracle. In the next section, we show that in the
restricted case of linear CMAB with exact offline oracle, we
do achieve near-optimal regret.

4 NEARLY OPTIMAL ALGORITHM IN
SPECIAL CASE

In this section, we propose a different algorithm that
achieves nearly optimal guarantee for non-stationary lin-
ear CMAB without any prior information. Our algorithm
is based on ADA-ILTCB+ of Chen et al. [2019] designed
for non-stationary contextual bandits, but adapted to Lin-
ear CMAB with exact oracles (i.e. α = β = 1). In ADA-
ILTCB+, the algorithm works on scheduled blocks with
exponentially increasing length. In each block, since there
is no restart in previous blocks, it is safe to adopt a previ-
ously learned strategy as the underlying distribution does not
change. To detect non-stationarity, the algorithm randomly
triggers some replay phases with different granularities and
compares the performance of each policy over these inter-
vals. If underlying distribution changes, which will cause
a gap between performances over different intervals for
the same policy, the algorithm will then detect it with high
probability, reset all parameters and restart.

Compared with contextual bandits, which only plays overm
arms, the size of action space S in CMAB can be exponen-
tially large in terms ofm. Though each action in CMAB can
be regarded as a policy and a base arm in contextual bandits
setting, a straightforward implementation of ADA-ILTCB+

[Chen et al., 2019] will cause a regret depends on |S|, which
is unsatisfactory. To deal with this issue, we make full use
of semi-bandit information, and adopt classic importance
weight estimator for underlying unknown linear reward µt
[Audibert et al., 2014, Zimmert et al., 2019]. In detail, we
calculate a distribution Q over the action space S at each
round, and play a random action S drawn from Q. For the
expectation q associated with distribution Q, apparently
for any i ∈ [m], µ̂i = Xi

qi
I(i ∈ S) constitutes an unbi-

ased estimation of µ at position i, where X is a random
observation with mean µ. For some notations, we use 1S
to represent corresponding binary m-dimensional vector of
a super arm S, and I{·} denotes the indicator function of
some event. Given an interval I , denote µ̂I :=

∑
t∈I µ̂t/|I|,

R̂egI(S) := µ̂>I 1ŜI − µ̂
>
I 1S as the empirical mean and

empirical regret in this interval, where µ̂t is the empirical es-
timation of µt at time t, ŜI := argmaxS∈S µ̂

>
I 1S . Conv(S)

represents the convex hull of S in the vector space, and de-
fine Conv(S)ν = {∀x ∈ Conv(S), s.t.∀i ∈ [m], xi > ν}.
Given a distribution Q over Conv(S)ν , denote its expecta-
tion as q := ES∼Q1S and define Var(Q,S) :=

∑
i∈S 1/qi.

Similar to contextual bandits, we show that the solution to
Follow The Regularized Leader (FTRL) with log-barrier for
CMAB also satisfies some nice properties as stated in the
following lemma. Besides, instead of using Frank-Wolfe
or other similar algorithm adopted in stationary or non-
stationary contextual bandits [Agarwal et al., 2014, Chen
et al., 2019], which is unavoidable as we deal with general
non-linear function, FTRL for linear combinatorial semi-
bandits can be solved efficiently with time complexity in
polynomial order of m and T when Conv(S) can be de-
scribed by a polynomial number of constraints [Zimmert
et al., 2019].

Lemma 1. For any time interval I , its empirical reward
estimation µ̂I , and exploration parameter ν > 0, let qνI be
the solution to following optimization problem (14) with
constant C = 100:

qνI = argmax
q∈Conv(S)ν

〈q, µ̂I〉+ Cν

m∑
i=1

log qi (5)

Let QνI be the distribution over N such that ES∼QνI [1S ] =
qνI , then there is

∑
S∈S

QνI (S)R̂egI(S) 6 Cmν (6)

∀S ∈ S, Var(QνI , S) 6 m+
R̂egI(S)

Cν
(7)



Algorithm 3 ADA-LCMAB

1: Input: confidence δ, time horizon T , action space S
2: Definition: νj =

√
C0

m2jL , where C0 = ln
(

8T 3|S|2
δ

)
, L = d4mC0e,B(i,j) := [ιi, ιi + 2jL− 1].

3: Initialize: t = 1, i = 1
4: ιi ← t
5: for j = 0, 1, 2, . . . do
6: If j = 0, set Q(i,j) as an arbitrary distribution over S; otherwise, let (q

νj
(i,j), Q

νj
(i,j)) be the associated solution and

distribution of equation (14) with inputs I = B(i,j−1) and ν = νj
7: E ← ∅
8: while t 6 ιi + 2jL− 1 do
9: Draw REP ∼ Bernoulli

(
1
L × 2−j/2 ×

∑j−1
k=0 2−k/2

)
10: if REP = 1 then
11: Sample n from {0, . . . , j − 1} s.t. Pr[n = b] ∝ 2−b/2

12: E ← E ∪ {(n, [t, t+ 2nL− 1])}
13: end if
14: Let Nt := {n|∃I such that t ∈ I and (n, I) ∈ E}
15: If Nt is empty, play St ∼ Q

νj
(i,j); otherwise, sample n ∼ Uniform(Nt), and play St ∼ Qνn(i,n)

16: Receive {Xt
i |i ∈ St} and calculate µ̂t according to equation (9)

17: for (n, [s, s′]) ∈ E do
18: if s′ = t and ENDOFREPLAYTEST(i, j, n, [s, t]) = Fail then
19: t← t+ 1, i← i+ 1 and return to Line 4
20: end if
21: end for
22: if t = ιi + 2jL− 1 and ENFOFBLOCKTEST(i, j) = Fail then
23: t← t+ 1, i← i+ 1 and return to Line 4
24: end if
25: end while
26: end for

Procedure: ENDOFREPLAYTEST(i, j, n,A):
Return Fail if there exists S ∈ S such that any of the following inequalities holds:

R̂egA(S)− 4R̂egB(i,j−1)(S) > 34mKνn log T (1)

R̂egB(i,j−1)(S)− 4R̂egA(S) > 34mKνn log T (2)

Procedure: ENDOFBLOCKTEST(i, j):
Return Fail if there exists k ∈ {0, 1, . . . , j − 1} and S ∈ N such that any of the following inequalities holds:

R̂egB(i,j)(S)− 4R̂egB(i,k)(S) > 20mKνk log T (3)

R̂egB(i,k)(S)− 4R̂egB(i,j)(S) > 20mKνk log T (4)



With above FTRL oracle, our full implementation for non-
stationary linear combinatorial semi-bandits is detailed in
Algorithm 5. According to Line 15 and our estimation
method, we know the expectation vector of our sampling
strategy and estimated vector µ̂t are calculated as:

qt =q
νj
(i,j)INt=∅ +

1

|Nt|
∑
n∈Nt

qνn(i,n)INt 6=∅ (8)

µ̂t,i =
Xt
i

qt,i
I(i ∈ St), ∀i ∈ [m] (9)

For two procedures of non-stationary test in Algorithm 5, as
we consider linear CMAB and have an exact oracle, which
is equivalent to an Empirical Risk Minimization oracle (i.e.
giving empirical loss function returns corresponding best
super arm), we can use the same technique as in Chen et al.
[2019] to solve two procedures with only six oracle calls.

Since a super arm is pulled at each round for CMAB, it
will cause larger variance compared with pulling a single
arm in contextual bandits, which requires some additional
analysis. Besides, as there is no context in CMAB, we can
obtain much smaller constants in ADA-LCMAB compared
with original ADA-ILTCB+ [Chen et al., 2019]. Now, we
state the theoretical guarantee of our proposed algorithm for
non-stationary linear CMAB.

Theorem 3. Algorithm 5 guarantees RegA1,1 is upper
bounded by

Õ
(

min
{√

mK2NT,
√
mK2T +K(mV̄ )

1
3T

2
3

})
.

Note that in the previous theorem, the regret upper bound is
nearly optimal in terms of m,N, T and m, V̄ , T . Because
we know that the regret lower bound for stationary MAB
problem is Ω(

√
mT ) with m arms, we can construct spe-

cial cases to achieve regret lower bound Ω(
√
mNT ) in the

switching case, and Ω((mV̄ )1/3T 2/3) in the dynamic case.
The technique is standard and we refer Gur et al. [2014]
for more details on the construction of the special cases.
However, the dependent on K may not be tight, and we left
it as a future work item to tighten the dependency on K.

Another possible improvement is to change the measure-
ment V̄ in the regret bound into V . Although in the special
cases we construct for the lower bound, V and V̄ are at the
same order, in other cases V is just a lower bound on V̄ .
Improving V̄ into V is also left as future work.

5 CONCLUSION AND FURTHER
WORKS

In this paper, we study combinatorial semi-bandit (CSB)
in the non-stationary environment, an extension of clas-

sic multi-armed bandits (MAB). Our CSB setting also al-
lows non-linear reward function, probabilistically trigger-
ing behavior, and approximation oracle, which make our
problem more difficult compared with non-stationary MAB
or linear bandits. We first propose an optimal algorithm
that achieves Õ(m

√
NT/∆min) distribution-dependent re-

gret in the switching case and Õ(V 1/3T 2/3) distribution-
independent regret in the dynamic case, when N or V
is known. To get rid of parameter N or V , We fur-
ther design a parameter-free version with regret bound
Õ(
√
mNT/∆min+T 2/3/∆min) and Õ(V 1/3T 2/3+T 3/4)

respectively. For a special case where the reward function
is linear and we have an exact oracle, we design an optimal
parameter-free algorithm that achieves nearly optimal regret
both in the switching case and in the dynamic case.

As mentioned in Section 3 and 4, there are several interest-
ing further works. The most important one is to design an
optimal parameter-free algorithm for our general CSB. Sec-
ond, we mainly focus on the dependence on N , V or V̄ , and
T , How to improve the dependence on K is a meaningful
direction. Finally, a tight lower bound in terms of all the
above parameters is necessary for a full understanding of
this problem.
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APPENDIX

6 OMITTED PROOFS IN SECTION 3

In this section, we give the performance guarantees of our algorithm CUCB-SW and CUCB-BoB in the general case. We
first give some definitions and prove some basic lemmas in the first part. Then, as a warm up, we prove the corresponding
result of Theorem 1 in main content without the probabilistically triggered arms (Theorem 4 in appendix). Next, we prove
Theorem 1 in main content with probabilistically triggered arms (Theorem 5 in appendix). Finally, we prove Theorem 2 in
main content (Theorem 6 in appendix), which applies the Bandit-over-Bandit technique to achieve parameter-free.

6.1 FUNDAMENTAL DEFINITIONS AND TOOLS

First, we define the event-filtered regret. Generally speaking, it is the regret when some event happens.

Definition 4 (Event-Filtered Regret). For any series of events {Et}t≥1 indexed by round number t, we define
RegAα (T, {Et}t≥1) as the regret filtered by events {Et}t≥1, that is, regret is only counted in round t if Et happens in
round t. Formally,

RegAα (T, {Et}t≥1) = E

[
T∑
t=1

I{Et}(α · optµt − rµt(S
A
t )

]
.

For convenience, A, α, or T can be omitted when the context is clear, and we simply use RegAα (T, Et) instead of
RegAα (T, {Et}t≥1).

Then, we define two important events that will use in the event-filtered regret. The two events are Sampling is Nice
(Definition 5 and Triggering is Nice (Definition 8. We will also show that these two events happen with high probability.
The following propositions, definitions, and lemmas are all related with these two definitions.

Proposition 2 (Hoeffding Inequality). Suppose Xi ∈ [0, 1] for all i ∈ [n] and Xi are independent, then we have

Pr

{∣∣∣∣ 1n
n∑
i=1

Xi − E

[
1

n

n∑
i=1

Xi

] ∣∣∣∣ ≥ ε
}
≤ 2 exp

(
−2nε2

)
.

Definition 5 (Sampling is Nice). We say that the sampling is nice at the beginning of round t if for any arm i ∈ [m], we

have |µ̂i,t − νi,t| < ρi,t, where ρi,t =
√

3 lnT
2Ti,t

(∞ if Ti,t = 0) and µ̂i,t are defined in the algorithm, and

νi,t =
1

Ti,t

t−1∑
s=t−w+1

I {i is triggered at time s}µi,t.

If i is not triggered during time (t− w, t− 1], we define νi,t = µi,t. We use N s
t to denote this event.

We have the following lemma saying that N s
t is a high probability event.

Lemma 2. For each round t ≥ 1, Pr{¬N s
t } ≤ 2mT−2.

Proof. The proof is a direct application of Hoeffding inequality and a union bound. First when Ti,t = 0, we have ρi,t =∞
and the event N s

t happens. We first have

Pr{¬N s
t } = Pr{∃i ∈ [m], |µ̂i,t − νi,t| ≥ ρi,t}

≤
m∑
i=1

Pr{|µ̂i,t − νi,t| ≥ ρi,t}

=

m∑
i=1

Pr

{
|µ̂i,t − νi,t| ≥

√
3 lnT

2Ti,t

}



=

m∑
i=1

Γt∑
k=1

Pr

{
Ti,t = k, |µ̂i,t − νi,t| ≥

√
3 lnT

2Ti,t

}
.

Then, by the conditional probability and the Hoeffding inequality, we have

Pr

{
Ti,t = k, |µ̂i,t − νi,t| ≥

√
3 lnT

2Ti,t

}

= Pr{Ti,t = k}Pr

{
|µ̂i,t − νi,t| ≥

√
3 lnT

2Ti,t

∣∣∣∣Ti,t = k

}

≤Pr{Ti,t = k}2 exp

(
−2k

3 lnT

2k

)
≤2 exp

(
−2k

3 lnT

2k

)
=

2

T 3
.

Then we know that

Pr{¬N s
t } ≤

m∑
i=1

Γt∑
k=1

Pr

{
Ti,t = k, |µ̂i,t − νi,t| ≥

√
3 lnT

2Ti,t

}

≤
m∑
i=1

Γt∑
k=1

2

T 3

≤
m∑
i=1

t∑
k=1

2

T 3

=2mT−2.

Proposition 3 (Multiplicative Chernoff Bound). Suppose Xi are Bernoulli variables for all i ∈ [n] and
E[Xi|X1, . . . , Xi−1] ≥ µ for every i ≤ n. Let Y = X1 + · · ·+Xn, then we have

Pr {Y ≤ (1− δ)nµ} ≤ exp

(
−δ

2nµ

2

)
.

Definition 6 (Triggering Probability (TP) Group). Let i be an arm and j be a positive natural number, define the triggering
probability group (of actions)

Gi,j = {SD ∈ S× D|2−j < pD,Si ≤ 2−j+1}.

Definition 7 (Main content definition 3 restated). Given the sliding window size w of the algorithm, in a run of the algorithm,
we define the counter Ni,j,t as the following number

Ni,j,t :=

t∑
s=max{t−w+1,0}

I
{

2−j < pDs,Ssi ≤ 2−j+1
}
.

Definition 8 (Triggering is Nice). Given integers {jimax}i∈[m], we call that the triggering is nice at the beginning of round t
if for any arm i and any 1 ≤ j ≤ jimax, as long as 6 ln t ≤ 1

3Ni,j,t−1 · 2−j , we have

Ti,t−1 ≥
1

3
Ni,j,t−1 · 2−j .

We use N t
t to denote this event.

Lemma 3. Given a series of integers {jimax}i∈[m], we have for every round t ≥ 1,

Pr{¬N t
t } ≤

∑
i∈[m]

jimaxt
−2.



This lemma is exactly the same as Lemma 4 in Wang and Chen [2017]. The proof is a direct application of the Multiplicative
Chernoff Bound. We omit the proof here.

Finally, we extend the definition of gap for the ease of the analysis. First recall that we have the following definition of gap.

Definition 9 (Main content definition 2 restated). For any distribution D with mean vector µ. For each action S, we define
the gap ∆D

S := max{0, α · optµ − rS(µ)}. For each arm i, we define

∆i,t
min = inf

S∈S:p
Dt,S
i >0,∆

Dt
S >0

∆Dt
S ,

∆i,t
max = sup

S∈S:p
Dt,S
i >0,∆

Dt
S >0

∆Dt
S .

We define ∆i
min = +∞ and ∆i

max = 0 if they are not properly defined by the above definitions. Furthermore, we define
∆i

min := mint≤T ∆i,t
min, ∆i

max := maxt≤T ∆i,t
max as the minimum and maximum gap for each arm.

The previous definition of gap focus on a single distribution and a single arms. Furthermore, we define ∆t
min :=

infi∈[m] ∆i,t
min, ∆t

max := supi∈[m] ∆i,t
max as the minimum and maximum gap in each round, and ∆min :=

inft≤T ∆t
min,∆max := supt≤T ∆t

max as the minimum and maximum gap.

6.2 NON-STATIONARY CMAB WITHOUT PROBABILISTICALLY TRIGGERED ARMS

As a warm up, we first consider the case without the probabilistically triggered arms, i.e. pD,Si ∈ {0, 1}. Then S̃D = S and
we denote K = maxS |S|. Then, the TPM bounded smoothness becomes the following,

Assumption 3 (1-Norm Bounded Smoothness). For any two distributions D,D′ with expectation vectors µ and µ′ and
any action S, we have

|rS(µ)− rS(µ′)| ≤ B
∑
i∈S
|µi − µ′i|.

We define the following number:

κT (M, s) =


2B
√

6 lnT , if s = 0,

2B

√
6 lnT

s
, if 1 ≤ s ≤ `T (M),

0, if s ≥ `T (M) + 1,

where

`T (M) =

⌊
24B2K2 lnT

M2

⌋
.

Generally speaking, we bridge the regret and the upper bound by this number, and we use the technique similar to that in
Wang and Chen [2017].

Lemma 4. Suppose that the sliding window size is w. For any arm i ∈ [m], any T , and any numbers {Mi}i≤m,

T∑
t=1

I(i ∈ St) · κT (Mi, Ti,t) ≤
(
T

w
+ 1

)(
2B
√

6 lnT +
48B2K lnT

Mi

)
.

Proof. We devide the time {1, 2, . . . , T} into the following Γ segments [1 = t0 + 1, w = t1], [w + 1 = t1 + 1, 2w =
t2], . . . , [tΓ−1 + 1, tΓ = T ], where tj−1 = tj − w. Each segment has length w, except for the last segment. It is easy to
show that Γ ≤

⌈
T
w

⌉
.

Then we bound
∑T
t=1 I(i ∈ St)·κT (Mi, Ti,t). We first define another variable T ′i,t for every i, t. Suppose that tj−1 < t ≤ tj ,

which means that t lies in the jth time segment, let T ′i,t denote the number of times arm i has been triggered in time
[tj−1 + 1, t− 1].



Then we know that Ti,t ≥ T ′i,t, since the counter T ′i,t counts the triggered times in a time interval which is a subset of the
time interval for Ti,t. Because κT (M, s) is decreasing when s is increasing, we know that

T∑
t=1

I(i ∈ St) · κT (Mi, Ti,t) ≤
T∑
t=1

I(i ∈ St) · κT (Mi, T
′
i,t)

Then we bound the right hand side, and we have

T∑
t=1

I(i ∈ St) · κT (Mi, T
′
i,t) =

Γ∑
j=1

tj∑
t=tj−1+1

I(i ∈ St) · κT (Mi, T
′
i,t)

≤
Γ∑
j=1

w−1∑
s=0

κT (Mi, s)

≤
Γ∑
j=1

2B
√

6 lnT +

`T (Mi)∑
s=1

κT (Mi, s)


=

Γ∑
j=1

2B
√

6 lnT +

`T (Mi)∑
s=1

2B

√
6 lnT

s


≤

Γ∑
j=1

(
2B
√

6 lnT +

∫ `T (Mi)

0

2B

√
6 lnT

s
ds

)

≤
Γ∑
j=1

(
2B
√

6 lnT + 4B
√

6 lnT`T (Mi)
)

≤
Γ∑
j=1

(
2B
√

6 lnT + 4B

√
6 lnT

24B2K2 lnT

M2
i

)

≤
(
T

w
+ 1

)(
2B
√

6 lnT +
48B2K lnT

Mi

)
.

Then, we have the following simple lemma to bound the difference between the true mean of each round and the actual mean
for the round that we trigger. The lemma is simple to proof, and a detailed proof can be found in Zhao and Chen [2019].

Lemma 5. Suppose that the size of the sliding window is w. For every t and every possible triggering, we have

||νt − µt||∞ ≤
t∑

s=t−w+2

||µs − µs−1||∞.

Denote ∆t
S as ∆DtS for simplicity. At round t with action St, we use ∆St for short.

Lemma 6. Suppose that the size of the sliding window is w and fix the parameters Mi for each i ∈ [m] and defining
MSt = maxi∈StMi. Then we have

Reg({∆t
St ≥MSt}∧N s

t ∧¬Ft) ≤
∑
i∈[m]

(
T

w
+ 1

)(
2B
√

6 lnT +
48B2K lnT

Mi

)
+2(1+α)KB

t∑
s=2

||µs−µs−1||∞ ·w.

where Ft is denoted as the event that {rSt(µ̄t) < α · optµ̄t}

Proof. From the assumption of our oracle, we know that Pr{Ft} ≤ 1 − β. We also define MS = maxi∈S̄Mi for each
possible action S, and use define MS = 0 if S̄ = φ. We first show that when {∆t

St
≥MSt},N s

t ,¬Ft all happens, we have

∆t
St ≤

∑
i∈S̄t

κT (Mi, Ti,t−1) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.



First when ∆t
St

= 0, the inequality holds, and we just have to prove the case when ∆t
St
> 0. Let R1 denote the optimal

strategy when the mean vector is µ′t in which the i-th entry is µ′i,t = min{νi,t +
∑t
s=t−w+2 ||µs − µs−1||∞, 1}. Then we

know that µ′i,t ≥ µi,t. From N s
t and ¬Ft, we have

rSt(µ̄t) ≥α · optµ̄t ≥ α · rR1
(µ̄t) ≥ α · rR1

(νt)

≥α · rR1
(µ′t)− αKB

t∑
s=t−w+2

||µs − µs−1||∞

≥α · optµt − αKB
t∑

s=t−w+2

||µs − µs−1||∞

=rSt(µt) + ∆t
St − αKB

t∑
s=t−w+2

||µs − µs−1||∞

≥rSt(νt) + ∆t
St − (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞,

so we get

∆St ≤rSt(µ̄t)− rSt(νt) + (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤B
∑
i∈St

(µ̄i,t − νi,t) + (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.

Then when {∆t
St
≥MSt},N s

t ,¬Ft all happens, we have

∆t
St ≤B

∑
i∈St

(µ̄i,t − νi,t) + (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤−MSt + 2B
∑
i∈St

(µ̄i,t − νi,t) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤2B
∑
i∈St

(
µ̄i,t − νi,t −

MSt

2B|S̄t|

)
+ 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤2B
∑
i∈St

(
µ̄i,t − νi,t −

MSt

2BK

)
+ 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤2B
∑
i∈St

(
µ̄i,t − νi,t −

Mi

2BK

)
+ 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.

By the same proof in Wang and Chen [2017], it can be shown that

2B
∑
i∈St

(
µ̄i,t − νi,t −

Mi

2BK

)
≤
∑
i∈St

κT (Mi, Ti,t−1),

and thus we have

∆t
St ≤

∑
i∈St

κT (Mi, Ti,t−1) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.

From the previous 2 lemmas, we know that

Reg({∆t
St ≥MSt}∧N s

t ∧¬Ft) ≤
∑
i∈[m]

(
T

w
+ 1

)(
2B
√

6 lnT +
48B2K lnT

Mi

)
+2(1+α)KB

t∑
s=2

||µs−µs−1||∞ ·w.



Theorem 4. Choosing the length of the sliding window to be w = min
{√

T
V , T

}
, we have the following distribution

dependent bound,

Regα,β = Õ

∑
i∈[m]

K
√
V T

∆i
min

+
∑
i∈[m]

K

∆i
min

+mK

 .

If we choose the length of the sliding window to be w = min
{
m1/3T 2/3K−1/3V −2/3, T

}
, we have the following

distribution independent bound,

Regα,β = Õ
(

(mV )1/3(KT )2/3 +
√
mKT +mK

)
.

The proof is the same as the proof of Theorem 5, and we omit the proof here. The only difference is that, without the
probabilistically triggered arms, the constants in Lemma 6 is better than the corresponding lemma with the probabilistically
triggered arms.

6.3 NON-STATIONARY CMAB WITH PROBABILISTICALLY TRIGGERED ARMS

In this part, we consider the case with probabilistically triggered arms. Recall that the we have the main TPM bounded
smoothness assumption,

Assumption 4 (Main content assumption 2 restated). For any two distributions D,D′ with expectation vectors µ and µ′

and any action S, we have
|rS(µ)− rS(µ′)| ≤ B

∑
i∈[m]

pD,Si |µi − µ′i|.

Recall that S̃D = {i ∈ [m] : pD,Si > 0} is the set that can be triggered by action S with distribution D, and we denote
K = maxSD |S̃|. We define the following number:

κj,T (M, s) =


2B
√

72 · 2−j · lnT , if s = 0,

2B

√
72 · 2−j · lnT

s
, if 1 ≤ s ≤ `j,T (M),

0, if s ≥ `j,T (M) + 1,

where

`j,T (M) =

⌊
288 · 2−j ·B2K2 lnT

M2

⌋
.

This number is similar to the number defined in the previous part, but this time, we need to consider the probabilistically
triggered arms. Besides the M, s that are taken as inputs, we also have j and T as parameters.

Lemma 7. If {∆St ≥MSt},¬Ft,N s
t and N t

t hold, we have

∆St ≤
∑
i∈S̃Dtt

κji,T (Mi, Ni,ji,t−1) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞,

where ji is the index of the TP group with SDtt ∈ Gi,ji .

Proof. First, similar to the proof with no probabilistic triggering arms, we use the back amortization trick.

First when ∆St = 0, the inequality holds, and we just have to prove the case when ∆St > 0. Let R1 denote the optimal
strategy when the mean vector is µ′t, where µ′t is the vector constituted by µ′i,t = min{νi,t+

∑t
s=t−w+2 ||µs−µs−1||∞, 1}.

Then we know that µ′i,t ≥ µi,t. From N s
t and ¬Ft, we have

rSt(µ̄t) ≥α · optµ̄t ≥ α · rR1
(µ̄t) ≥ α · rR1

(νt)



≥α · rR1
(µ′t)− αKB

t∑
s=t−w+2

||µs − µs−1||∞

≥α · optµt − αKB
t∑

s=t−w+2

||µs − µs−1||∞

=rSt(µt) + ∆St − αKB
t∑

s=t−w+2

||µs − µs−1||∞

≥rSt(νt) + ∆St − (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞,

so we get

∆St ≤rSt(µ̄t)− rSt(νt) + (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤B
∑
i∈S̃t

pDt,Sti (µ̄i,t − νi,t) + (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.

Then when {∆t
St
≥MSt},N s

t ,¬Ft all happens, we have

∆St ≤B
∑
i∈S̃t

pDt,Sti (µ̄i,t − νi,t) + (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤−MSt + 2B
∑
i∈S̃t

pDt,Sti (µ̄i,t − νi,t) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤2B
∑
i∈S̃t

pDt,Sti

(
µ̄i,t − νi,t −

MSt

2B|S̃t|

)
+ 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤2B
∑
i∈S̃t

pDt,Sti

(
µ̄i,t − νi,t −

MSt

2BK

)
+ 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤2B
∑
i∈S̃t

pDt,Sti

(
µ̄i,t − νi,t −

Mi

2BK

)
+ 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.

Because of N t
t , same as the proof of Lemma 5 of Wang and Chen [2017], we can show that

2B
∑
i∈S̃t

pDt,Sti

(
µ̄i,t − νi,t −

Mi

2BK

)
≤

∑
i∈(S̃t)Dt

κji,T (Mi, Ni,ji,t−1).

In this way, we prove the following inequality

∆St ≤
∑

i∈(S̃t)Dt

κji,T (Mi, Ni,ji,t−1) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞,

when {∆St ≥MSt},¬Ft,N s
t and N t

t hold.

Then we have the following main lemma to bound the regret with probabilistically triggered arms.

Lemma 8. Suppose that the size of the sliding window is w and fix choose the parameters Mi for each i ∈ [m] and defining
MSt = mini∈ŜMi. Then we have

Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft)



≤
∑
i∈[m]

(
T

w
+ 1

)(
12(2 +

√
2)B
√

lnT +
576B2K lnT

Mi

)
+ 2(1 + α)KB

t∑
s=2

||µs − µs−1||∞ · w.

Proof. From Lemma 7, we know that when {∆Dt
St
≥MSt},¬Ft,N s

t and N t
t hold, we have

∆Dt
St
≤

∑
i∈(S̃t)Dt

κji,T (Mi, Ni,ji,t−1) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.

Then, sum over t = 1, . . . , T , we have

Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft) ≤

T∑
t=1

∑
i∈(S̃t)Dt

κji,T (Mi, Ni,ji,t−1) + 2(1 + α)KB

T∑
t=1

t∑
s=t−w+2

||µs − µs−1||∞

≤
T∑
t=1

∑
i∈(S̃t)Dt

κji,T (Mi, Ni,ji,t−1) + 2(1 + α)KB

t∑
s=2

||µs − µs−1||∞ · w.

Then we bound the first term. Like the proof without probabilistically triggered arms, we construct another counter N ′i,j,t−1,
which lower bound Ni,j,t−1. We divide the time {1, 2, . . . , T} into the following Γ segments [1 = t0 + 1, w = t1], [w+ 1 =
t1 + 1, 2w = t2], . . . , [tΓ−1 + 1, tΓ = T ], where tj−1 = tj − w. Each segment has length w, except for the last segment. It
is easy to show that Γ ≤

⌈
T
w

⌉
. Suppose that tk−1 < t ≤ tk, then define

N ′i,j,t :=

t∑
s=tk+1

I
{

2−j < pDs,Ssi ≤ 2−j+1
}
.

Because κj,T (M, s) is monotonically decreasing in terms of s, we have

T∑
t=1

∑
i∈(S̃t)Dt

κji,T (Mi, Ni,ji,t−1)

≤
T∑
t=1

∑
i∈(S̃t)Dt

κji,T (Mi, N
′
i,ji,t−1)

≤
∑
i∈[m]

Γ∑
k=1

+∞∑
j=1

tk∑
s=tk−1+1

κj,T (Mi, s− tk−1 − 1)

≤
∑
i∈[m]

Γ∑
k=1

+∞∑
j=1

`j,T (Mi)∑
s=0

κj,T (Mi, s− tk−1 − 1)

≤
∑
i∈[m]

Γ∑
k=1

+∞∑
j=1

2B
√

72 · 2−j · lnT +

`j,T (Mi)∑
s=1

2B

√
72 · 2−j · lnT

s


≤
∑
i∈[m]

Γ∑
k=1

+∞∑
j=1

(
2B
√

72 · 2−j · lnT + 2 · 2B
√

72 · 2−j · lnT ·
√
`j,T (Mi)

)

≤
∑
i∈[m]

Γ∑
k=1

+∞∑
j=1

(
2B
√

72 · 2−j · lnT + 2 · 2B
√

72 · 2−j · lnT ·

√
288 · 2−j ·B2K2 lnT

M2
i

)

≤
∑
i∈[m]

Γ∑
k=1

(
12(2 +

√
2)B ·

√
lnT +

576 ·B2K · lnT
Mi

)

≤
∑
i∈[m]

(
T

w
+ 1

)(
12(2 +

√
2)B ·

√
lnT +

576 ·B2K · lnT
Mi

)
.



Then combining with Lemma 7, we have

Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft)

≤
∑
i∈[m]

(
T

w
+ 1

)(
12(2 +

√
2)B
√

lnT +
576B2K lnT

Mi

)
+ 2(1 + α)KB

t∑
s=2

||µs − µs−1||∞ · w.

Theorem 5 (Main content theorem 1 restated). Choosing the length of the sliding window to be w = min
{√

T
V , T

}
, we

have the following distribution dependent bound,

Regα,β = Õ

∑
i∈[m]

K
√
V T

∆i
min

+
∑
i∈[m]

K

∆i
min

+mK

 .

If we choose the length of the sliding window to be w = min
{
m1/3T 2/3K−1/3V −2/3, T

}
, we have the following

distribution independent bound,

Regα,β = Õ
(

(mV )1/3(KT )2/3 +
√
mKT +mK

)
.

Proof. First, from the definition of the filtered regret, we know that

Reg({}) ≤Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft) + Reg({∆Dt

St
< MSt}) + Reg(¬N s

t ) + Reg(¬N t
t ) + Reg(Ft).

The last 3 terms are rather easy to bound, we have

Reg(¬N s
t ) =

T∑
t=1

∆Dt
St

I{¬N s
t } ≤

T∑
t=1

Pr{¬N s
t }∆max ≤

π2

3
m ·∆max

Reg(¬N t
t ) =

T∑
t=1

∆Dt
St

I{¬N t
t } ≤

T∑
t=1

Pr{¬N t
t }∆max ≤

π2

6

∑
i∈[m]

jimax ·∆max

Reg(Ft) =

T∑
t=1

∆Dt
St

I{Ft} ≤
T∑
t=1

Pr{Ft}∆t
max ≤ (1− β) ·

T∑
t=1

∆t
max

We also know that

RegAα,β − Reg({∆Dt
St

< MSt})

=α · β ·
T∑
t=1

optµt − E

[
T∑
t=1

rSAt (µt)

]
− Reg({∆Dt

St
< MSt})

=Reg({})− (1− β)α ·
T∑
t=1

optµt − Reg({∆Dt
St

< MSt})

≤Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft) + Reg(¬N s

t ) + Reg(¬N t
t ) + Reg(Ft)− (1− β)α ·

T∑
t=1

optµt

≤Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft) +

π2

3
m ·∆max +

π2

6

∑
i∈[m]

jimax ·∆max

+ (1− β) ·
T∑
t=1

∆t
max − (1− β)α ·

T∑
t=1

optµt

≤Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft) +

π2

3
m ·∆max +

π2

6

∑
i∈[m]

jimax ·∆max.



Then we have

RegAα,β ≤ Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft) + Reg({∆Dt

St
< MSt}) +

π2

3
m ·∆max +

π2

6

∑
i∈[m]

jimax ·∆max.

Recall that from Lemma 8,

Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft)

≤
∑
i∈[m]

(
T

w
+ 1

)(
12(2 +

√
2)B
√

lnT +
576B2K lnT

Mi

)
+ 2(1 + α)KB

t∑
s=2

||µs − µs−1||∞ · w.

For the distribution dependent bound, we choose Mi = ∆i
min. Then, we have ∆Dt

St
≥MSt and Reg({∆Dt

St
< MSt}) = 0.

If we set w = min
{√

T
V , T

}
, we can get

RegAα,β = Õ

∑
i∈[m]

K
√
V T

∆i
min

+
∑
i∈[m]

K

∆i
min

+mK

 .

As for the distribution independent bound, if we set w = min
{
m1/3T 2/3K−1/3V −2/3, T

}
,Mi =

√
mK/w =

Θ(max{(mKV )1/3T−1/3),
√
mK/T}, we can get

RegAα,β = Õ
(

(mV )1/3(KT )2/3 +
√
mKT +mK

)
= Õ

(
(mN)1/3(KT )2/3 +

√
mKT +mK

)
.

6.4 THEORETICAL GUARANTEES OF CUCB-BoB

In this section, we show the performance guarantee of our algorithm CUCB-BoB. Before moving into the formal proof, we
will first introduce more on the EXP3 algorithm and its variant: EXP3.P algorithm.

Background on the EXP3 algorithm and its variant First we introduce the EXP3 algorithm and its variant EXP3.P
algorithm. EXP3 algorithm is a famous algorithm for the adversarial bandit problem. In the original paper that introduce the
Bandit-over-Bandit technique Cheung et al. [2019], the authors apply the EXP3 algorithm. However in our case, the regret
is complicated and to make the proof easier, we apply the EXP3.P algorithm. The difference is that, the EXP3 algorithm
has bounded “pseudo-regret”, but the EXP3.P algorithm has bounded “regret” with high probability, and thus has bounded
“expected regret”. It is know that the “pseudo-regret” is a weaker measurement than the “expected regret”, so for the ease of
analysis, we apply EXP3.P algorithm.

Algorithm 4 is the pseudo-code for the EXP3.P algorithm. In the algorithm, pi,t is the gain (reward) in round t of arm i,
and it satisfies 0 ≤ pi,t ≤ 1. It is easy to generalize the algorithm into the case where 0 ≤ pi,t ≤ R′, and we only have to
normalize to [0, 1] each time.

By choosing the parameters

β =

√
lnK ′

K ′T ′
, η = 0.95

√
lnK ′

T ′K ′
, γ = 1.05

√
K ′ lnK ′

T ′
,

we have the following performance guarantee for the EXP3.P algorithm.

Proposition 4 (Main content proposition 1 restated). Suppose that the reward of each arm in each round is bounded by
0 ≤ ri,t ≤ R′, the number of arms is K ′, and the total time horizon is T ′. The expected regret of EXP3.P algorithm is
bounded by O(R′

√
K ′T ′ logK ′).



Algorithm 4 EXP3.P

1: Input: Number of arms K ′, Total time horizon T ′, Parameters η ∈ R+, γ, β ∈ [0, 1].
2: Let p1 denote the uniform distribution over [K ′].
3: for t = 1, 2, . . . , T ′ do
4: Draw an arm It according to the probability distribution pt.
5: Compute the estimated gain for each arm

g̃i,t =
gi,tI{It = i}+ β

pi,t

6: Update the estimated gain G̃i,t =
∑t
s=1 g̃i,s.

7: Compute the new probability distribution over the arms pt+1 = (p1,t+1, . . . , pK′,t+1), where

pi,t+1 = (1− γ)
exp(ηG̃i,t)∑K′

k=1 exp(ηG̃k,t)
+

γ

K ′
.

8: end for

Proof of Theorem 2 in main content Now we prove Theorem 2 in main content (Theorem 6 in appendix). The main part
of the proof is to decompose the regret into 2 parts, and optimize the length of each block to balance 2 parts. Recall that we
have the following theorem.

Theorem 6 (Main content theorem 2 restated). Suppose that there exist R1, R2 such that R1 ≤ rS(0) ≤ rS(1) ≤ R2 for
any S ∈ S and R = R2 −R1. Choosing L =

√
mKT/R, we have the following distribution-independent regret bound for

Regα,β ,

Õ
(

(mV )
1
3 (KT )

2
3 +
√
R(mK)

1
4T

3
4 +R

√
mKT

)
.

Choosing L = K2/3T 1/3, we have the following distribution-dependent regret bound

Õ

K√√√√∑
i∈[m]

TV

∆i
min

+
∑
i∈[m]

K
1
3T

2
3

∆i
min

+RK
1
3T

2
3

 .

Proof. We suppose that each block has length L, and there are dTL e blocks in total. Then, the reward in each block is
bounded by R′ = RL, since the reward in each round is bounded by R. We also know that the total number of possible
length of sliding window is K ′ = dlog2 Le, and the time horizon for the EXP3.P algorithm is T ′ = dTL e.

From the definition of the (α, β)-approximation regret, we have

RegAµ,α,β =α · β ·
T∑
t=1

optµt − E

[
T∑
t=1

rSAt (µt)

]

=α · β ·
T∑
t=1

optµt − E

[
T∑
t=1

rSBt (µt)

]
︸ ︷︷ ︸

Term A

+E

[
T∑
t=1

rSBt (µt)

]
− E

[
T∑
t=1

rSAt (µt)

]
︸ ︷︷ ︸

Term B

,

where B is another algorithm with the same block size but with fixed window size w = 2k for some number k. From
Proposition 4, it is easy to know that for any fixed window size w and the induced algorithm B, the second term (Term B) is
bounded by

Term B ≤ Õ(R′
√
K ′T ′) = Õ

(
RL

√
T

L

)
= Õ

(
R
√
TL
)
.

Then, the remaining part is to select a window size w and bound Term A. We decompose Term A into sum of regret of each



block,

Term A = α · β ·
T∑
t=1

optµt − E

[
T∑
t=1

rSBt (µt)

]
=

dTL e∑
`=1

α · β · min{`L,T}∑
s=L(`−1)+1

optµt − E

 min{`L,T}∑
s=L(`−1)+1

rSBt (µt)

 .

Suppose that in each block ` ≤ dTL e, the variation in block ` is denoted by V`. Formally, we define

V` =

min{`L,T}∑
s=L(`−1)+2

||µs − µs−1||∞.

Now we bound the regret in each block. The bound is similar to the proof in Theorem 5. Choosing w = 2k where
2k ≤ min{m1/3T 2/3K−1/3V −2/3, L} < 2k+1 and Mi =

√
mK/w. If we have m1/3T 2/3K−1/3V −2/3 ≤ L, then the

regret in block ` < T
L is bounded by

Õ
(

(mV )1/3K2/3T−1/3 · L+m1/3(KT )2/3V −2/3 · V` +mK
)
.

The regret in last block is bounded by L, and Term A can be bounded by

Õ

(
(mV )1/3(KT )2/3 + L+mK

T

L

)
.

Then we consider the case when (mK)1/3T 2/3V −2/3 > L. This time, the regret in each block is bounded by

Õ
(√

mKL+mK
)
.

Then sum the regret in each block, we bound Term A by the following

Õ

(√
mKL

T

L
+ L+mK

T

L

)
= Õ

(√
mK/L · T + L+mK

T

L

)
,

where the last term is the regret for the last block. Sum them up, we know that Term A is bounded by

Term A ≤ Õ
(

(mV )1/3(KT )2/3 +
√
mK/L · T + L+mK

T

L

)
.

Then combining Term B, we have

RegAα,β = Õ

(
(mV )1/3(KT )2/3 +

√
mK/L · T + L+R

√
TL+mK

T

L

)
.

Choosing L =
√
mKT/R, the regret is bounded by

RegAα,β = Õ
(

(mV )1/3(KT )2/3 +
√
R(mK)1/4T 3/4 +R

√
mKT

)
.

Next, we consider the distribution dependent bound. Now, we choose w = 2k where 2k ≤ min
{√

T
V ·
∑
i∈[m]

1
∆i

min
, L
}
<

2k+1. First we consider the case when
√

T
V ·
∑
i∈[m]

1
∆i

min
≤ L. In this case, the regret in block ` (except for the last one) is

bounded by

Õ

L

w
·
∑
i∈[m]

K

∆i
min

+ w · V` +mK

 .

Summing up the regret in each block, we can know that Term A in this case is bounded by

Õ

K√√√√TV ·
∑
i∈[m]

1

∆i
min

+mKL

 .



Then consider the case when
√

T
V ·
∑
i∈[m]

1
∆i

min
> L. In this case, the regret for block ` is bounded by

Õ

∑
i∈[m]

K

∆i
min

+mK

 .

Summing up the regret in each block, we know that Term A is bounded by

Õ

T
L
·
∑
i∈[m]

K

∆i
min

+mK
T

L

 .

Combining the regret bound in each case, we know that

Term A = Õ

K√√√√TV ·
∑
i∈[m]

1

∆i
min

+
T

L
·
∑
i∈[m]

K

∆i
min

+mK
T

L

 .

Take Term B into account, we have

RegAα,β = Õ

K√√√√TV ·
∑
i∈[m]

1

∆i
min

+
T

L
·
∑
i∈[m]

K

∆i
min

+mK
T

L
+R
√
TL

 .

Choosing L = K2/3T 1/3, we can get

RegAα,β = Õ

K√√√√TV ·
∑
i∈[m]

1

∆i
min

+
∑
i∈[m]

K
1
3T

2
3

∆i
min

+RK
1
3T

2
3

 .

7 MORE DETAILS IN SECTION 4

7.1 DETAILED ALGORITHM

In this part, we give our full algorithm pseudo-code. Please see Algorihtm 5 for more details.

7.2 OMITTED PROOFS IN SECTION 4

Lemma 9 (Main content lemma 1 restated). For any time interval I , its empirical reward estimation µ̂I , and exploration
parameter ν > 0, let qνI be the solution to following optimization problem (14) with constant C = 100:

qνI = argmax
q∈Conv(S)ν

〈q, µ̂I〉+ Cν

m∑
i=1

log qi (14)

Let QνI be the distribution over N such that ES∼QνI [1S ] = qνI , then there is

∑
S∈S

QνI (S)R̂egI(S) 6 Cmν (15)

∀S ∈ S, Var(QνI , S) 6 m+
R̂egI(S)

Cν
(16)



Algorithm 5 ADA-LCMAB

1: Input: confidence δ, time horizon T , action space S
2: Definition: νj =

√
C0

m2jL , where C0 = ln
(

8T 3|S|2
δ

)
, L = d4mC0e,B(i,j) := [ιi, ιi + 2jL− 1].

3: Initialize: t = 1, i = 1
4: ιi ← t
5: for j = 0, 1, 2, . . . do
6: If j = 0, set Q(i,j) as an arbitrary distribution over S; otherwise, let (q

νj
(i,j), Q

νj
(i,j)) be the associated solution and

distribution of equation (14) with inputs I = B(i,j−1) and ν = νj
7: E ← ∅
8: while t 6 ιi + 2jL− 1 do
9: Draw REP ∼ Bernoulli

(
1
L × 2−j/2 ×

∑j−1
k=0 2−k/2

)
10: if REP = 1 then
11: Sample n from {0, . . . , j − 1} s.t. Pr[n = b] ∝ 2−b/2

12: E ← E ∪ {(n, [t, t+ 2nL− 1])}
13: end if
14: Let Nt := {n|∃I such that t ∈ I and (n, I) ∈ E}
15: If Nt is empty, play St ∼ Q

νj
(i,j); otherwise, sample n ∼ Uniform(Nt), and play St ∼ Qνn(i,n)

16: Receive {Xt
i |i ∈ St} and calculate µ̂t according to equation (9)

17: for (n, [s, s′]) ∈ E do
18: if s′ = t and ENDOFREPLAYTEST(i, j, n, [s, t]) = Fail then
19: t← t+ 1, i← i+ 1 and return to Line 4
20: end if
21: end for
22: if t = ιi + 2jL− 1 and ENFOFBLOCKTEST(i, j) = Fail then
23: t← t+ 1, i← i+ 1 and return to Line 4
24: end if
25: end while
26: end for

Procedure: ENDOFREPLAYTEST(i, j, n,A):
Return Fail if there exists S ∈ S such that any of the following inequalities holds:

R̂egA(S)− 4R̂egB(i,j−1)(S) > 34mKνn log T (10)

R̂egB(i,j−1)(S)− 4R̂egA(S) > 34mKνn log T (11)

Procedure: ENDOFBLOCKTEST(i, j):
Return Fail if there exists k ∈ {0, 1, . . . , j − 1} and S ∈ S such that any of the following inequalities holds:

R̂egB(i,j)(S)− 4R̂egB(i,k)(S) > 20mKνk log T (12)

R̂egB(i,k)(S)− 4R̂egB(i,j)(S) > 20mKνk log T (13)



Proof. Define loss function FI(Q) :=
∑
S∈SQ(S)R̂egI(S) + Cν

∑m
i=1 ln(1/qi) with decision domain ∆(S)ν := {Q ∈

R|S|+ |
∑
S∈SQ(S) = 1,∀i ∈ [m], qi > ν} (recall q is the expectation vector of Q). Because the decision domain ∆(S)ν

is compact and loss function FI(Q) is strictly convex in ∆(S)ν , there exists a unique minimizer. What’s more, it is not
difficult to see QνI induced by the solution to equation (14) is exactly the minimizer of loss function FI(Q). Now we prove
the lemma.

Define ∆(S)′ν := {Q ∈ R|S|+ |
∑
S∈SQ(S) 6 1,∀i ∈ [m], qi > ν}. We claim there is minQ∈∆(S) FI(Q) =

minQ∈∆(S)′ FI(Q), otherwise we can increase the weight of ŜI in ∆(S)′ν until it reaches the boundary, which always
decreases the loss value.

Since∇FI(Q)|Q(S) = R̂egI(S)− Cv
∑
i∈S 1/qi, according to KKT conditions, we have

R̂egI(S)− Cν
∑
i∈S

1

qνI,i
− λS −

∑
i∈S

λi + λ = 0 (17)

for some Lagrangian multipliers λS > 0, λi > 0, λ > 0. Multiplying both sides by QνI(S) and summing over S ∈ S give∑
S∈S

QνI(S)R̂egI(S) = Cν
∑
S∈S

QνI(S)
∑
i∈S

1

qνI,i
+
∑
S∈S

QνI(S)λS +
∑
S∈S

∑
i∈S

QνI(S)λi − λ

= Cν
∑
S∈S

QνI(S)
∑
i∈S

1

qνI,i
− λ

= Cmν − λ
6 Cmν

where the second equality is because of complementary slackness. Now we have proved the inequality (15) stated in the
theorem. What’s more, as R̂egI(S) > 0 for ∀S ∈ S, there is λ 6 Cmν.

Rearranging from equation (17), we know

∑
i∈S

1

qνI,i
=

1

Cν

(
R̂egI(S)− λS −

∑
i∈S

λi + λ

)

6 m+
R̂egI(S)

Cν

which finishes the proof of inequality (16).

For any interval I that lies in a block j of epoch i (i.e. [ιi + 2j−1L, ιi + 2jL − 1]), define εI := maxS∈S RegI(S) −
8R̂egB(i,j−1)

(S), αI =
√

2mC0

|I| log2 T , where RegI(S) :=
∑
t∈I optµt − rSt(µt). In Lemma 10 and Lemma 11, since

we consider the regret in epoch i, we use Bj to represent B(i,j) for simplicity.

Lemma 10. With probability 1− δ, ADA-LCMAB guarantees for any block j and any interval I lies in block j,∑
t∈I

optµt − rSt(µt) = Õ (|I|mKνn + |I|(KαI +K∆I + εIIεI>D3KαI ))

where D3 = 170.

Proof. First, according to Azuma’s inequality and a union bound over all T 2 intervals, with probability 1 − δ, for any
interval I, there is ∑

t∈I
optµt − rSt(µt) 6

∑
t∈I

Et[optµt − rSt(µt)] +O
(
K
√
|I| log(T 2/δ)

)
(18)

Now we bound the conditional expectation in above inequality.



Note

Et[optµt − rSt(µt)] =

{∑
S∈SQ

νj
j (S)(optµt − rS(µt)) if Nt = ∅∑

S∈S
∑
n∈Nt

Qνnn (S)
|Nt| (optµt − rS(µt)) if Nt 6= ∅

(19)

=

{∑
S∈SQ

νj
j (S)Regt(S) if Nt = ∅∑

S∈S
∑
n∈Nt

Qνnn (S)
|Nt| Regt(S) if Nt 6= ∅

(20)

Now, for any t ∈ I and n ∈ [j], there is∑
S∈S

Qνnn (S)Regt(S) 6
∑
S∈S

Qνnn (S)RegI(S) +O(K∆I) (nearly the same as Lemma 8 in Chen et al. [2019])

= 8
∑
S∈S

Qνnn (S)R̂egBj−1
(S) +O(K∆I) + εI

6 8
∑
S∈S

Qνnn (S)
(

4R̂egBn−1
(S) + 20mKνn−1 log T

)
+O(K∆I) + εI

(condition (12) doesn’t hold)

6 Õ(mKνn +K∆I) + εI

6 Õ(mKνn +K∆I +KαI) + εIIεI>D3KαI

Combining all above inequalities and using the fact
√
|I| log(T 2/δ) 6 O(|I|αI) finish the proof.

Next, we bound the dynamic regret in block j within epoch i, that is J := [ιi, ιi+1 − 1] ∩ [ιi + 2j−1L, ιi + 2jL− 1].

Lemma 11. With probability 1− δ, Algorithm 5 has the following regret for any block J :∑
t∈J

(optµt − rSt(µt)) = Õ
(

min
{√

mC0SJ |J |,
√
mC0|J |+ C

1
3
0 m

4
3 ∆

1
3

J |J |
2
3

})
To prove this lemma, we first partition the block into several intervals with some desired properties. As the greedy algorithm
in Chen et al. [2019] used to partition the block J is only based on the total variation of underlying distribution, we can
directly use the same greedy algorithm in non-stationary CMAB and have the same result:

Lemma 12 (Lemma 5 in Chen et al. [2019]). There exists a partition I1 ∪ I2 ∪ · · · ∪ IΓ of block J such tht ∆Ik 6

αIk ,∀k ∈ [Γ], and Γ = O(min{SJ , (mC0)−
1
3 ∆

2
3

J |J |
1
3 + 1})

Next, we give some basic concentration results for Linear CMAB. Define Ut(S) := Et[(rS(µ̂t)− rS(µt))
2].

Lemma 13. For any S ∈ S and any time t in epoch i and block j, there is

Ut(S) 6

{
KVar(Qνn(i,n), S) log T (∀n ∈ [Nt]) if Nt 6= ∅
KVar(Q

νj
(i,j), S) if Nt = ∅

Proof. If Nt 6= ∅, then Ut(S) 6 Et[r2
S(µ̂t)] = Et[(µ̂>t 1S)2] 6 K

∑
k∈S Et[µ̂2

t,k] 6 K
∑
k∈S

1
qt,k

, where qt is the
expectation of distribution Qt played at round t. According to our Algorithm 5, we know Qt = 1

|Nt|
∑
n∈Nt Q

νn
(i,n) when

Nt 6= ∅. Thus, qt = 1
|Nt|

∑
n∈Nt q

νn
(i,n) where qνn(i,n) is the expectation of distribution Qνn(i,n), and qt,k > qνn(i,n),k/|Nt|.

What’s more, as |Nt| 6 logT , we then finish the proof when Nt 6= ∅. If Nt is empty, the proof is exactly the same.

Lemma 14. With probability at least 1− δ/4, for any S ∈ S, we have

|rS(µ̂B(i,j)
)− rS(µB(i,j)

)| 6 λ

|B(i,j)|
∑

t∈B(i,j)

Ut(S) +
C0

λ|B(i,j)|
(∀λ ∈ (0,

νj
K

])

and for any interval A covered by some replay phase of index n,

|rS(µ̂A)− rS(µA)| 6 λ

|A|
∑
t∈A

Ut(S) +
C0

λ|A|
(∀λ ∈ (0,

νn
K

])



Proof. Using Freedman’s inequality with respect to each term in the summation just like Lemma 14 in Chen et al. [2019].

Define EVENT1 as the event that bounds in Lemma 14 holds, then EVENT1 holds with probability at least 1− δ/4.

Lemma 15. Assume EVENT1 holds, and there is no restart triggered in Bj , then the following hold for any S ∈ S:

RegBj (S) 6 2R̂egBj (S) + 10mKνj

R̂egBj (S) 6 2RegBj (S) + 10mKνj

Proof. We prove this lemma by induction. When j = 0, it’s not hard to see RegB0
(S) 6 K 6 10mKν0,

R̂egB0
(S)− RegB0

(S) = rŜB0
(µ̂B0

)− rS(µ̂B0
)− rSB0

(µB0
) + rS(µB0

)

6 rŜB0
(µ̂B0

)− rS(µ̂B0
)− rŜB0

(µB0
) + rS(µB0

) (by the optimality of SB0
)

6 2

(
ν0

KL

∑
t∈B0

Ut(S) +
KC0

ν0L

)
(by the definition of EVENT1 with λ = ν0/K )

6 2(K +K/2)

6 4K

which implies R̂egB0
(S) 6 5K 6 10mKν0.

Now, assume the inequalities hold for {0, . . . , j − 1}, then for any t ∈ Bj and any n ∈ [1, j], there is

Var(Qνnn , S) 6 m+
R̂egBn−1

(S)

Cνn

6 m+
2RegBn−1

(S) + 10mKνn−1

Cνn

6
RegBn−1

(S)

3νn
+mK

6
RegBn−1

(S)

3νj
+mK

Combining Lemma 13 above and Lemma 19 in Chen et al. [2019] gives the result in this theorem.

Lemma 16. Assume EVENT1 holds. Let A be a complete replay phase of index n, if for any S ∈ S, equation (11) in
EndofReplayTest doesn’t hold, then the following hold for all S ∈ S:

RegA(S) 6 2R̂egA(S) + C3mKνn

R̂egA(S) 6 2RegA(S) + C3mKνn

where C3 = 15

Proof. According to Lemma 10 and Lemma 13, we have

Var(Qνnn , S) 6 m+
R̂egBn−1

(S)

Cνn

6 m+
4R̂egBj−1

(S) + 20mKνn log T

Cνn

6
30 log T

C
mK +

16R̂egA(S) + 136mKνn log T

Cνn
( because of EndOfReplayTest)

6
R̂egA(S)

3νn
+

166 log T

C
mK

Combining Lemma 13 and Lemma 19 in Chen et al. [2019] proves the result.



Lemma 17. Assume EVENT1 holds. Let A = [s, e] be a complete replay phase of index n, then the following hold for all
S ∈ S:

RegA(S) 6 2R̂egA(S) + 4mKνn + V̄[ιi,e]

R̂egA(S) 6 2RegA(S) + 4mKνn + V̄[ιi,e]

Proof. For any t ∈ A, there is

Var(Qνnn , S) 6 m+
R̂egBn−1

(S)

Cνn

6 m+
2RegBn−1

(S) + 10mKνn

Cνn
( because of Lemma 15)

6
1

2
mK +

2RegA(S) + 2mV̄[ιi,e]

Cνn
( because of Lemma 8 in Chen et al. [2019])

6
RegA(S)

3νn
+

1

2
mK +

2mV̄[ιi,e]

Cνn

Combining Lemma 13 above and Lemma 19 in Chen et al. [2019] proves the result.

Lemma 18. Assume EVENT1 holds. Let I = [s, e] be an interval in the fictitious block J ′ with index j, and such that
V̄I 6 αI , εI > D3KαI , then

(1) there exist an index nI ∈ {0, 1, . . . , j − 1} such that D3mKνn+1 log T 6 εI 6 D3mKνn log T ;

(2) |I| > 2nIL;

(3) if the algorithm starts a replay phase A with index nI within the range of [s, e− 2nIL], then the algorithm restarts
when the replay phase finishes.

Proof. For (1), on one hand εI 6 K 6 D3mKν0; on the other hand, εI > D3KαI > D3mKνj log T because of the
definition of αI , νj and |I| 6 |J ′ | 6 2j−1L. Therefore, there must exist an index nI such that the condition holds.

For (2), since D3KαI 6 D3mKνnI log T , we have |I| > 2nIL.

For (3), we show that the ENDOFREPLAYTEST fails when the replay phase finishes. Suppose for ∀S ∈ S, Eq.(11) doesn’t
hold, then according to Lemma 16, we know RegA(S) 6 2R̂egA(S) + C3mKνnI . Besides, we know there exists S′ such
that

RegA(S′) > RegI(S′)− 2KV̄I (because of Lemma 8 in Chen et al. [2019])

> 8R̂egBj−1
(S′) + εI − 2KV̄I (because of the definition of εI)

> 8R̂egBj−1
(S′) + (D3/2− 2)mKνnI log T

Combining above two inequalities, we have

R̂egA(S′) > 4R̂egBj−1
(S′) +

0.5D3 − 2− C3

2
mKνnI log T

= 4R̂egBj−1
(S′) + 34mKνnI log T

which is the Eq.(10) in ENDOFREPLAYTEST, thus the algorithm will restart.

Proof of Lemma 11. Consider the fictitious partition constructed in Lemma 12, for the first Γ− 1 intervals, using Lemma
10 with respect to each interval as there is no restart. For the last interval Γ, we also use Lemma 10 but with the fictitious
planned interval in the same way as in paper Chen et al. [2019].

Thus, for block j (i.e. [ιi, ιi+1 − 1] ∪ [ιi + 2j−1L− 1, ιi + 2jL− 1]), there is∑
t∈J

optµt − rSt(µt)



6
Γ∑
k=1

∑
t∈Ik

∑
n∈Nt∪{j}

mKνn︸ ︷︷ ︸
Term1

+

Γ−1∑
k=1

K|Ik|αIk +K|IΓ|αI′Γ︸ ︷︷ ︸
Term2

+

Γ−1∑
k=1

|Ik|εIkIεIk>D3KαIk
+ |IΓ|εI′ΓIεI′Γ>D3KαI′

Γ︸ ︷︷ ︸
Term3

Using exactly the same technique as Chen et al. [2019] and Lemma 18 above, one can prove

Term1 6 O(log(1/δ)
√
C0mK2jL)

Term2 6 O(log T
√
C0mKΓ|J |)

Term3 6 O(log(1/δ) log T
√
C0mKΓ2jL)

Combining all above inequalities and Lemma 12 finishes the proof.

Theorem 7 (Theorem 3 restated). Algorithm 5 guarantees RegA1,1 is upper bounded by

Õ
(

min
{√

mK2NT,
√
mK2T +K(mV̄ )

1
3T

2
3

})
.

Proof. First, we bound the regret in an epoch i (i.e. Hi = [ιi, ιi+1 − 1]). For block j in epoch i, we denote it as
Jij = [ιi + 2j−1L, ιi + 2jL− 1] ∩Hi. As the last index of j is at most j∗ = dlog(|Hi/L|)e, we have

E

[∑
t∈Hi

optµt − rSt(µt)

]
6 Õ

L+

j∗∑
j=1

√
C0mK2SJij2jL


= Õ

(√
C0mK2SHi |Hi|

)
Similarily, using Hölder inequality, we have

E

[∑
t∈Hi

optµt − rSt(µt)

]
6 Õ

(√
C0mK2|Hi|+KC

1
3
0 m

1
3 V̄

1
3

Hi |Hi|
2
3

)
According to Lemma 19 below, we know there is at most E := min{S, (C0m)−

1
3 V̄

2
3T

1
3 + 1} number of epochs with high

probability, thus summing up the regret bound over all epochs, we have

T∑
t=1

E
[
optµt − rSt(µt)

]
6 Õ

(
E∑
t=1

√
C0mK2SHi |Hi|

)
6 Õ

(√
C0mK2ST

)
and

T∑
t=1

E
[
optµt − rSt(µt)

]
6 Õ

(
E∑
t=1

(√
C0mK2|Hi|+KC

1
3
0 m

1
3 V̄

1
3

Hi |Hi|
2
3

))
6
(√

C0mK2T +KC
1
3
0 m

1
3 V̄

1
3T

2
3

)

Lemma 19. Denote the number of restart by E. With probability 1− δ, we have E 6 min{S, (C0m)−
1
3 V̄

2
3T

1
3 + 1}.

Proof. First, we prove that if for all t in epoch i with V̄[ιi,t] 6
√

mC0

t−ιi+1 , restart will not be triggered at time t.

For ENDOFBLOCKTEST, suppose t = ιi + 2jL− 1 for some j, then for any S ∈ S, k ∈ [0, j − 1], we have

R̂egBj 6 2RegBj (S) + 10mKνj (because of Lemma 15)



6 2RegBk(S) + 10mKνj + 4mV̄[ιi,t] (because of Lemma 8 in Chen et al. [2019] )

6 4R̂egBk(S) + 34mKνj (because of above condition and definition of νj)

Similarly, there is R̂egBk 6 4R̂egBj + 34mKνj . Thus, ENDOFBLOCKTEST will not return Fail.

For ENDOFREPLAYTEST, suppose A ⊂ [ιi, t] be a complete replay phase of index n, and V̄[ιi,t] 6
√

mC0

|A| , we have

R̂egA 6 2RegA(S) + 4mKνn +mV̄[ιi,t] (because of Lemma 17)

6 2RegBj−1
(S) + 4mKνn + 5mV̄[ιi,t] (because of Lemma 8 in Chen et al. [2019] )

6 4R̂egBk(S) + 20mKνn (because of above condition and definition of νj)

Similarly, there is R̂egBj−1
6 4R̂egBj + 20mKνn. Thus, ENDOFBLOCKTEST will not return Fail.

With above result, now we prove the theorem. If there is no distribution change which implies V̄[ιi,t] = 0 then the algorithm
will not restart. Therefore we have E 6 S.

Denote the length of each epoch as T1, . . . , TE , according to above result, we know there must be V̄Hi >
√

mC0

Ti
. By

Hölder’s inequality, we have

E − 1 6
E−1∑
i=1

T
1
3
i T
− 1

3
i

6

(
E−1∑
i=1

Ti

) 1
3
(
E−1∑
i=1

T
− 1

2
i

) 2
3

6 T
1
3

(
V̄√
mC0

) 2
3

6 (mC0)−
1
3 V̄

2
3T

1
3

7.3 NON-STATIONARY LINEAR CMAB IN GENERAL CASE

In section 4, we need to solve an FTRL optimization probelm in Algorithm 5 and find a distribution Q over the decision
space S such that its expectation is the solution to FTRL, which can only be implemented efficiently when Conv(S)ν is
described by a polynomial number of constraints Zimmert et al. [2019], Combes et al. [2015], Sherali [1987]. In general, the
problems with polynomial number of constraints for Conv(S)ν is a subset of all the problem with linear reward function
and exact offline oracle, but there are also many of them whose convex hull can be represented by polynomial number
of constraints. For example, for the TOP K arm problem, the convex hull of the feasible actions can be represented by
polynomial number of constraints. Another non-trivial example is the bipartite matching problem. The convex hull of all
the matchings in a bipartite graph can also be represented by polynomial number of constraints. This is due to the fact
that, by applying the convex relaxation of the bipartite matching problem, the constraint matrix of the corresponding linear
programming is a Totally Unimodular Matrix (TUM), and the resulting polytope of the linear programming is integral, i.e.
all the vertices have integer coordinates. In this way, each vertex is a feasible matching, and the polytope is the convex hull.

To make it more general and get rid of the constraint about polynomial description of Conv(S)ν , instead of solving FTRL
and then calculating corresponding distribution Q, what we need to do is to find a distribution Q such that it satisfies
inequalities (15) and (16) given in Lemma 9. In fact, we can achieve this goal using similar methods as in Agarwal et al.
[2014], Chen et al. [2019] to find a sparse distribution over S efficiently through our offline exact oracle or equivalently an
ERM oracle 1.

1We also need to add a small exploration probability over m super arms where i-th super arm contains base arm i in Step 15 of
Algorithm 5 just like Chen et al. [2019].
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