

Hidden Markov model diarisation with speaker location information

Jeremy Wong, Xiong Xiao, and Yifan Gong

Microsoft Speech and Language Group

Diarisation pipeline

Propose:

• Use speaker location information inside HMM clustering.

Prior work

- Use time-delay-of-arrival as observed variable in HMM [19, 20].
- Speaker location tracking using Kalman filters.

[19] J. Pardo et. al., "Speaker diarization for multiple-distant-microphone meetings using several sources of information", IEEE Transactions on Computers, vol. 56, no. 9, 2007

[20] D. Vijayasenan and F. Valente, "Speaker diarization of meetings based on large TDOA feature vectors", ICASSP, 2012

Sound source localisation

• Instantaneous speaker location is represented by Sound Source Localisation (SSL) vector, \mathbf{s}_t .

$$s_{ti} = P(\theta_t = i | \mathbf{o}_t)$$

- Estimate SSL vector from multi-channel audio using complex angular central Gaussian model [18].
- SSL explicitly represents where speaker is located.
- TDOA only implicitly captures speaker location information.

HMM clustering

$$p(\mathbf{D}_{1:T}, \mathbf{S}_{1:T}) \approx \sum_{\mathbf{q}_{1:T}} \prod_{t=1}^{T} p^{\kappa}(\mathbf{d}_t | q_t) p^{\gamma}(\mathbf{s}_t | q_t) P(q_t | q_{t-1})$$

Variables:

 $\triangleright \mathbf{d}_t$: speaker embedding

 $\triangleright \mathbf{s}_t$: SSL vector

 $> q_t$: HMM state, representing a speaker

• Assume that \mathbf{d}_t and \mathbf{s}_t are independent, given q_t .

Speaker embedding emission

• Speaker embedding observation log-likelihood is cosine distance.

$$\log p(\mathbf{d}_t|q_t) = w_t \mathbf{d}_t \cdot \boldsymbol{\mu}_{q_t}$$

Variables:

 $\triangleright \mu_{q_t}$: speaker embedding of HMM state q_t (HMM parameter)

 $\triangleright w_t$: duration of segment t

• Equivalent likelihood is von-Mises Fisher density function.

Speaker location emission

• Proposed speaker location observation log-likelihood is KL-divergence.

$$\log p(\mathbf{s}_t|q_t) = w_t \mathbf{s}_t \cdot \log \boldsymbol{\phi}_{q_t}$$

Variables:

 $\triangleright \phi_{q_t}$: average speaker location of HMM state q_t (HMM parameter)

Equivalent likelihood is continuous categorical density function.

E-M estimation

Auxilliary loss maximisation

$$\phi_i^{u+1} = \underset{\phi_i}{\operatorname{argmax}} \sum_{t=1}^{I} P(q_t = i | \mathbf{D}_{1:T}, \mathbf{S}_{1:T}, \phi_i^u) \gamma w_t \mathbf{s}_t \cdot \log \boldsymbol{\phi}$$
s.t. $\phi_i \ge 0$ and $\sum_i \phi_i = 1$

M-step update:

$$\phi_i^{u+1} = \frac{\sum_{t=1}^{T} P(q_t = i | \mathbf{D}_{1:T}, \mathbf{S}_{1:T}, \phi_i^u) w_t \mathbf{s}_t}{\sum_{j} \sum_{t=1}^{T} P(q_t = i | \mathbf{D}_{1:T}, \mathbf{S}_{1:T}, \phi_i^u) w_t \mathbf{s}_{tj}}$$

• ϕ represents average location of speaker throughout meeting.

Diarisation steps

- 1. AHC clustering.
- 2. Initialise HMM parameters from AHC hypothesis.
- 3. Fine-tune HMM parameters on test meeting using E-M algorithm.
- 4. Decode cluster sequence.

$$\mathbf{q}_{1:T}^* = \underset{\mathbf{q}_{1:T}}{\operatorname{argmax}} \prod_{t=1}^{I} P(q_t | \mathbf{D}_{1:T}, \mathbf{S}_{1:T})$$

5. Speaker tagging using the Hungarian algorithm.

Meeting transcription setup

- Multi-channel input.
- Post-ASR diarisation.

Data:

- dev: 51 meetings, 23 hours
- eval: 60 meetings, 35 hours
- Average of 7 participants per meeting

Speaker-attributed WER metric:

- Compute WER separately for each speaker.
- Average WERs over all speakers.

Experiments

		Speaker-attributed WER (%)	
Use SSL	E-M fine-tune	dev	eval
no	none	22.75	21.41
no	λ , η	22.47	21.15
Uniformly initialize $oldsymbol{\phi}$			
yes	λ, η, ϕ	21.62	20.42
Initalise $oldsymbol{\phi}$ from AHC hypothesis			
yes	λ , $oldsymbol{\eta}$	22.25	20.55
yes	λ, η, φ	21.61	20.37

- SSL is complementary to speaker embeddings.
- E-M fine-tuning of HMM parameters is beneficial.

Experiments

- After E-M, ϕ resembles average speaker position throughout whole meeting.
- When speaker moves, $oldsymbol{\phi}$ becomes multi-modal.

Summary

Proposed:

• Incorporate speaker location into HMM diarisation.

Results:

• Speaker location is complementary to speaker embeddings.

Future work:

• Investigate speaker movement tracking in diarisation.