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ABSTRACT
When interpreting A/B tests, we typically focus only on the statis-
tically significant results and take them by face value. This practice,
termed post-selection inference in the statistical literature, may neg-
atively affect both point estimation and uncertainty quantification,
and therefore hinder trustworthy decision making in A/B testing.
To address this issue, in this paper we explore two seemingly un-
related paths, one based on supervised machine learning and the
other on empirical Bayes, and propose post-selection inferential
approaches that combine the strengths of both. Through large-scale
simulated and empirical examples, we demonstrate that our pro-
posed methodologies stand out among other existing ones in both
reducing post-selection biases and improving confidence interval
coverage rates, and discuss how they can be conveniently adjusted
to real-life scenarios.
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1 INTRODUCTION
1.1 Background
Statistical inference, a major force behind the big data revolution,
builds bridges between massive amounts of data and the probabilis-
tic models governing their underlying generating processes, and
enables transformation of learning from one dataset tomore general
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populations [7, 36]. Typically, the goal of statistical inference is to in-
fer quantities associated with the probabilistic models, e.g., common
descriptive statistics (mean, median etc.), trained/fitted machine
learning model parameters, or model evaluation metrics (accuracy,
error rate etc.). In particular, the main output of the inference con-
sists of a point estimation and its corresponding confidence interval
[33], representing both a prediction of the unknown quantity’s value
and the associated uncertainty. Due to the well-known duality, in-
ferences yielding confidence intervals with nominal coverage rates
implies hypothesis tests with proper type-I error rates [34].

On-line controlled experiments (a.k.aA/B tests) arewidely used to
evaluate and optimize web products, e.g., search engines [6, 31, 43],
social networks [48], web streaming services [44, 46] and shared
economy platforms [26]. At its core, A/B testing aims at inferring the
treatment effects of new experiences and features on a set of metrics.
Typically, collecting feedback from users interacting with web prod-
ucts [30] is cost-efficient and near real-time, opening up both the po-
tential opportunities and the challenges of large-scaleA/B tests. First,
the amount of data for each experiment can be large. This is challeng-
ing forcomputationbutablessing foranalysis, as it allows theCentral
Limit Theorem [9] to kick in, and we don’t need to make strong as-
sumptions on the data generating process [12]. Second, the number
of analyses required for each experiment can be large. Experimenters
areoften interested ina set ofmetrics, ranging fromtens to thousands
[15]. Moreover, each metric can be analyzed for different segments
such as markets, operating systems and so on [16, 28]. Third, the
number of experiments conducted during a release cycle is large. The
types of changes teams make in a feature/treatment in those itera-
tions range fromminor configuration changes to complete rewrites.

1.2 Post-selection Inference in A/B testing
Post-selection inference naturally arises in simultaneous analyses.
We consider a standard A/B test with a treatment and a control
group of sample sizes 𝑁𝑇 and 𝑁𝐶 and metric values𝑌𝑇 and𝑌𝐶 , re-
spectively. Ametric could be in the form of an average across i.i.d.
samples, but is not limited to it. The central limit theorem entails
that when sample sizes are large enough, the estimated treatment
effect Δ = 𝑌𝑇 −𝑌𝐶 approximately follows a Gaussian distribution
with mean 𝜇 and variance 𝜎2

𝑇
/𝑁𝑇 +𝜎2𝐶/𝑁𝐶 .With i.i.d. observations,

𝜎2
𝑇
and 𝜎2

𝐶
are sample variances of the respective groups. With non

i.i.d. observations, we need to leveragemore advancedmethods (e.g.,
the Delta method [14]) to properly calculate the sample variances.
We define the effective sample size and pooled variance as

𝑁 =

(
1
𝑁𝑇

+ 1
𝑁𝐶

)−1
, 𝜎2=𝑁

(
𝜎2
𝑇

𝑁𝑇
+
𝜎2
𝐶

𝑁𝐶

)
.
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Consequently,Δ∼Normal(𝜇,𝜎2/𝑁 ) .Our goal is to infer the average
treatment effect 𝜇, andΔ is anunbiased estimator of 𝜇.However, ifwe
repeatedly samplemany times, and only report ifΔ> 𝜇+1.65𝜎/

√
𝑁 ,1

then by the tail probability, 5% of the cases wouldmeet this criterion,
all of which would over-estimate 𝜇.

This phenomenon is ubiquitous in modern data analysis. Indeed,
most statistical theories require us to pre-specify a scientific question
and then provide an answer, whether it’s “favorable” or not. How-
ever, in the post-selection scenario we ask multiple questions, and
choose to answer a subset after peeking at the data. In A/B testing, in
the presence of many metrics, segments, or treatments being tested,
even experts often filter down to only statistically significant results,
thus introducing biases. Another typical selection is to continuously
monitor results and stop collecting data when results are favorable
[13, 29]. Such practices seem to be sound procedures, lest we be
drowned by an ocean of noisy numbers. At the same time, they are
the epitome of post-selection inference. Intuitively, they introduce
bias (also known as “winner’s curse”, see [32]), because we tend to
select questions for which the data provides “favorable” answers.
Unfortunately, as intuitive as it sounds, assessing the post-selection
bias seems impossible for real-life data-sets, because we don’t know
the ground-truth we seek to estimate.

Figure 1: Each point represents a pair of scaled observed effects (Δs)
of a user engagementmetric from a random split of the same exper-
iment, and can be seen as two independent replications of the same
experiment. 𝑝−value selection (< 0.1) is applied to split A and 168 out
of 1026 experiments are selected and shown. Split B’s Delta is unbi-
ased without selection, regression of split B on split A gives a sense
of how split A’s Delta is biased. Two smoothed regression lines for
small and large sample sizes both show strong non-linearity of the
trueregressionand larger selectionbiaswhensample sizesare small.

An attainable alternative to assess post-selection bias is through
replication. For a given post-selected estimate, if we re-run the exact
sameexperimentandconduct the sameanalysiswithout selection for
the replication, the new estimate should be unbiased. By comparing
the two estimates, we can assess the bias. In practice, a pseudo-
replication pair can be formed by randomly splitting the experiment
traffic into two splits𝐴 and 𝐵 [8], where split𝐴 is treated as the first
run, andsplit𝐵 is its replication. For eachexperiment,weevaluate the
scaled observed effect (i.e., Δ standardized by its standard deviation)
1𝜇 is unknown in reality. This example is just for illustration.

for both splits𝐴 and𝐵. Figure 1 shows the scaledobserved effect pairs
(Δ𝐴,Δ𝐵) of 168 experiments, out of 1026 experiments conducted by
the same product team selected by the criterion of 𝑝−value<0.1. We
group the selected 168 experiments by whether their sample sizes
exceed twenty million2, on which we fit two separate smooth local
regression curves. If bothΔ𝐴 andΔ𝐵 are unbiased with independent
noises, the observations should be along the reference line Δ𝐵 =Δ𝐴 .
However, both curves are under/above the reference line for pos-
itive/negative values of Δ𝐴 . We know Δ𝐵 is unbiased because we
didn’t select based on it. Then Δ𝐴 must be upwardly biased when
positive and downwardly biased when negative. Moreover, the ad-
justment as illustrated by the local regression curve is non-linear
— both curves appear flat near 0 and seem to approach Δ𝐵 = Δ𝐴
asymptotically. In other words, the larger Δ𝐴 is, the lesser is the
adjustment needed. In addition, experiment sample size also affects
the adjustment, as seen from the two fitted smoothing curves. This
hinders the direct curve fitting since we don’t want the estimates to
depend on the subjective choice of grouping (20 million samples in
this example). We will discuss more about experiment splitting and
regression of these pairs in Section 2.2 as we survey related works.

The key insights from Figure 1 are:
(1) selection based onnoisy observations leads to biased estimate;
(2) theamountofbiasdependson the signal-noise-ratio andcould

be non-linear and sample-size-dependent.
In this paper, we do emphasize identifying the pitfalls of post-

selection and assessing its induced bias. The new methodologies
we propose, are aimed at rendering trustworthy treatment effect
estimation in A/B tests, that is immune to the post-selection bias.

1.3 Contributions and Organization
Beyond raising awareness of the necessity for trustworthy post-
selection inference, this paper makes the following contributions.
First, we comprehensively survey the existing literature and provide
a holistic view that facilitates development of newmethods. Second,
we propose two newmethods, both of which significantly improve
performance. Third, we present a solution for the cold-start sce-
nario, when only a small amount of historical experiment data exists.
Fourth, we conduct extensive simulation and empirical studies to
demonstrate the advantages of our proposed methodologies. To the
best of our knowledge,we are thefirst to evaluate bothpost-selection
biases and confidence interval coverage rates, using real-life exper-
iments. The new empirical Bayes method we propose, is shown to
provide, both accurate point-estimation and confidence intervals. It
is also adaptive to different treatment effect distributions. Finally, we
are sharing our implementationswith the community for replication
and adoption.

This paper is organized as follows. Section 2 reviews existing post-
selection methods. Sections 3 and 4 introduce two newmethods for
the post-selection adjustment, and propose a Bayes Factor bound
method for cold-start scenarios. Sections 5 and 6 highlight the advan-
tages of our proposedmethods via simulated and empirical examples,
respectively. Section 7 concludes and discusses future work. We pro-
vide R implementations of newmethods and simulation procedures,
for reproduction3.

2We explored different grouping mechanisms, all of which yielded similar results.
3https://aka.ms/exp/code/abpostselection
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2 SURVEYOF EXISTINGWORK
2.1 Conditional MaximumLikelihood
A conditional maximum likelihood estimate (CMLE) is a traditional
maximum likelihood inference conducted under some selection cri-
terion.More specifically, the distributionunder thenull hypothesis is
conditioned on the action of selection and the inference is conducted
accordingly. Reid et al. [38] studied the inference of a Gaussianmean
𝜇 with known variance 𝜎2, under the selection criteria |Δ| ≥ 𝐾, a
setup close to A/B testing. In this case, the CMLE is a solution of 𝜇
to the following equation

Δ−𝜇=𝜎
𝜙

(
𝐾−𝜇
𝜎

)
−𝜙

(
−𝐾−𝜇
𝜎

)
Φ
(
−𝐾−𝜇
𝜎

)
+1−Φ

(
𝐾−𝜇
𝜎

) . (1)

This CMLE has an intuitive explanation of iterative bias correction.
If we know 𝜇, then the expected selection bias E(Δ−𝜇 | |Δ| >𝐾) is
the right hand side of (1). Because we don’t know 𝜇, we equate the
expected bias to the observed bias Δ−𝜇 and obtain (1), by means of
an iterative procedure.

Remark 1. Lee and Shen [32] applied expected bias correction to
A/B testing, focusing on themarginal expectationE[(Δ−𝜇)1 |Δ |>𝐾 ]
instead of the conditional expectation, and stopping at the first itera-
tion. Consequently, their correction can be applied to a compound
estimation of a group of estimates, not to each individual.

2.2 Experiment Splitting
Coey and Cunningham [8] pointed out that we could leverage the
data points in Figure 1 (including those not passing the selection
criterion) to train a regression model to predict Δ𝐵 by Δ𝐴 . Because

E(Δ𝐵 |Δ𝐴)=E(𝜇 |Δ𝐴),
we immediately obtain a predictive model of 𝜇 given Δ𝐴 . Because
the regression is conditioned on observations, it takes post-selection
into account, similar to CMLE. Consequently, data splitting natu-
rally transforms post-selection inference into a standard supervised
learning problem. However, a notable missing piece is the proper
functional formof the learner that can capture the non-linear pattern
we saw in Figure 1. Linear or not, the predictivemodel should depend
on the sample size of each experiment (Coey and Cunningham [8]
trained on the split data when all experiments have similar sample
sizes). The trained model then needs to be properly “scaled up to full
sample size” when making predictions for future experiments.

2.3 Empirical Bayes
Bayesian methods are known to be immune to post-selection bias,
by conditioning on the observations [13, 20, 21, 35, 40]. Consider
a prior distribution 𝜇∼𝜋 and the subsequent data-generating pro-
cess Δ | 𝜇 ∼Normal(𝜇,𝜎2/𝑁 ).We can compute the posterior mean
E(𝜇 |Δ) by the classic Tweedie’s formula [21]. To be specific, let 𝑙 be
the marginal log-likelihood of Δ (with fixed sample size 𝑁 ),

E(𝜇 |Δ)=Δ+ 𝜎
2

𝑁
𝑙 ′(Δ), Var(𝜇 |Δ)= 𝜎

2

𝑁

{
1+ 𝜎

2

𝑁
𝑙 ′′(Δ)

}
. (2)

In particular, if 𝜇 ∼Normal(0,𝜏2), then 𝑙 ′(Δ) is a linear function of
Δwith the posterior mean

E(𝜇 |Δ)= 𝜏2

𝜎2/𝑁 +𝜏2
Δ. (3)

In practice, we can use historical A/B tests to estimate 𝜏 [11, 17]
and obtain the James-Stein shrinkage estimator [23]. Notice that,
although the shrinkage from (3) is linear in Δ, the shrinkage factor
depends on the sample size in a non-linear way, so this method gives
a very different estimator from fitting linear regression on split data.
But Gaussian prior is a strong assumption. Amore palatable assump-
tion for the prior is uni-modal with slowly decaying tails, always
shrinking Δ toward zero. When the tail of the prior is heavier than
Gaussian, the adjustment is smaller for larger effects. This proposal
is further supported by Figure 1, where the empirically fitted curves
are flat near zero, with increasing slope and therefore less adjust-
ments for bigger Δs. Similar findings suggesting effect distribution
having heavier-than-Gaussian tail were published previously [1, 27].
In other words, we almost don’t need to discount break-through
features with large treatment effects.

The salient challenge of Bayesian methods is the specification of
prior. This problem is partially alleviated by using real-life A/B tests
to searchwithin a family of prior distributions (Empirical Bayes). But
then the challenge is to find a family of priors that can cover a large
space of possibilities. Efron [21] suggested directly estimating 𝑙 ′(Δ)
nonparametrically from observed Δs. Unfortunately, this idea does
not apply when sample sizes vary and Δ given 𝜇 is heteroskedas-
tic. NESTmethod proposed by [25] addressed the heteroskedastic-
ity issue by extending Tweedie’s formula to a multivariate version
and applying a two-dimensional Gaussian kernel that weights ob-
servations by the distances in both location and scale. This new
model-free empirical Bayes method looks promising, but may re-
quire a large amount of training data due to its nonparametric nature.
Another practical challenge is that experimenters sometimes ques-
tion whether the historical experiments used to train the priors can
properly represent a new feature they are currently A/B testing.

3 NEWMETHODOLOGIES
3.1 Motivation
We surveyed conditional maximum likelihood estimator (CMLE), re-
gression with experiment splitting (RwES) and empirical Bayes (EB).
Among them, CMLE appears rather limited, as it conditions on a pre-
scribed selection criterion instead of the observations. More impor-
tantly, practitionersoftenadoptfluid selectioncriteria (e.g., gradually
changing the 𝑝−value threshold) when analyzing A/B tests. Simula-
tion studies in later sections also show the inferiority ofCMLE. RwES
and EB both condition directly on the observations and share the
sameendgoal of directlymodelingE(𝜇 |Δ) .Ononehand,EB is a “gen-
erative” method, as it models the prior 𝜋,which subsequently deter-
minesE(𝜇 |Δ).On the other hand, RwES is a “discriminative”method,
as it takes the shortcut and directly models E(𝜇 |Δ) by regression.
Both RwESusing simple linear regression and EBwith Tweedie’s for-
mula (2) lack the ability to account for the non-linearity with respect
to the experiment sample size 𝑁 and/or the treatment effect Δ. In
the following sections, we propose an RwES-based and an EB-based
method that provide straight-forward solutions to address the issue
above. Finally, we unify the two frameworks into one, to provide
more flexibility and usability to practitioners from different fields.

3.2 TARwES: Theory-Assisted Regression
How can we assist RwES with a non-linear functional form? Empir-
ical Bayes! The EBmethod can be treated as a feature generator to
help formulate the non-linear functional form.We call this hybrid
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approach Theory-Assisted Regression with Experiment Splitting (TAR-
wES). As the name suggests, we use posterior mean formulas like (3)
from Empirical Bayes with various prior distributions as predictive
features in the RwES method. These features are combined with the
unadjusted observation Δ in the RwES step to fit a linear regression.
Forbetter regularity,wesymmetrize the trainingdata inRwESbymir-
roring each training data point (negative to positive, and vice versa).
The regression model also does not include an intercept, meaning
when Δ is 0 the prediction will always be 0. We emphasize that regu-
larization is anabsolutemust inTARwES, because thoseEBbased fea-
tures areall trying topredict the sameground-trutheffect 𝜇.Different
prior assumptions render these predictions different; some may fit
large effects better, while somemay fit small effects better. Neverthe-
less, these featurewill behighlycorrelated. In thereplicationcode,we
implemented ridge regression and non-negative least squares [41].
Potential prior candidates for the EB based features should have

the following two characteristics. First, they should capture both
thin-tailed and heavy-tailed scenarios. Second, to facilitate large-
scale computation, their exact or approximated posterior means
should exist in closed-forms. To fulfill these criteria, we used EBwith
Gaussian and Laplace prior. While the Gaussian prior satisfies the
thin-tailed scenario, we choose the Laplace prior with mean 0 and
variance𝜈2 to cover the heavy-tailed one, which is also an important
component of another new method proposed in the next section.
Not only does the Laplace prior yield a closed form posterior mean
and variance under Gaussian noise, i.e.,
E(𝜇 |Δ)=𝑤 (Δ) (Δ+𝑏)+(1−𝑤 (Δ)) (Δ−𝑏), (4)

Var(𝜇 |Δ)= 𝜎
2

𝑁
− 4𝜎4

𝑁 2𝜈2
(𝐹 (Δ)+𝐹 (−Δ)) 𝑓 (Δ)−2𝐹 (Δ)𝐹 (−Δ)

(𝐹 (Δ)+𝐹 (−Δ))2
, (5)

where

𝑏=
𝜎2

√
2

𝑁𝜈
, 𝑤 (Δ)=𝐹 (Δ)/(𝐹 (Δ)+𝐹 (−Δ)), (6)

𝐹 (Δ)=exp
(√

2Δ
𝜈

)
Φ

(√
𝑁

𝜎
(−Δ−𝑏)

)
, Φ−Gaussian CDF, (7)

𝑓 (Δ)= 𝜈
√
𝑁

𝜎
√
2
exp

(√
2Δ
𝜈

)
𝜙

(√
𝑁

𝜎
(−Δ−𝑏)

)
, 𝜙−Gaussian PDF, (8)

it generates bounded bias correction, i.e., for large positive Δ, the
regression prediction will move close to Δ −

√
2𝜎2/(𝑁𝜈) and for

negative Δ, the asymptote is Δ+
√
2𝜎2/(𝑁𝜈) , which fits well with

the observationmade from Figure 1. In contrast, the linearmultiplier
correction property from a Gaussian prior yields a correction that
grows as |Δ| increases boundlessly. Moreover, we found that t-prior
based features, the other potential heavy-tailed candidates, are less
useful compared toLaplace features throughsimulatedandempirical
studies 4. We refer readers to [37] for details of posterior mean and
variance inference of a Laplace and a t-prior with a Gaussian noise.

As a two-step hybrid method, TARwES combines the strengths
of RwES and EB. First, EB relies heavily on the choices of priors, but
in TARwES they are merely used as feature generators. We can use
multiple priors, each of which provides a possible non-linear form
of the regression function. The regression step using experiment
splitting can empirically pick the best combination. This makes it
more robust against prior mis-specification. Second, RwES cannot
capture the non-linearity of the adjustment w.r.t. sample size, but

4Therefore, going forward we exclude t-priors in TARwES.

TARwES captures this non-linearity within all the EB features be-
cause EB predictions like (3) already incorporate the effect of sample
size. We no longer need data hungry non-linear regression methods
like gradient boosted trees in the regression step. In fact, we rely on
EB features to capture most of the non-linearity, so in the regression
step we only need to perform simple linear regression (with regular-
ization). Also, we can train on split data and apply the model on full
datawithout the “scale up” problemRwES faces[8]. Third, someprior
parameters in EB method can be very hard to estimate. For example,
the degrees of freedom of a t distribution is hard to estimate when it
is small and the tail is heavy (the effective samples are only those at
the tails). Instead of estimating these parameters, TARwES method
allows us to treat these unknown parameters simply as different
features and lets the regression step to optimize them.

3.3 Ghidorah: The Three-HeadedMonster
In this section, we explore the direction of improving existing EB
methods to match the observations made in Figure 1. Instead of di-
rectlymodelingE(𝜇 |Δ) as in the TARwESmethod (introduced in the
previous section), we model the prior 𝜋 first and infer the induced
estimate for E(𝜇 |Δ) by applying the multivariate Tweedie’s formula
(cf. [25]). There are two noticeable advantages of EB methods over
the RwES methods. First, EB does not require data splitting. Also, it
generates more numerically stable variance prediction, which will
be detailed in Section 4.1.

Motivated by the "prior fusing" idea,we propose a special prior. As
the name indicates, the Ghidorah5 prior is a mixture of three compo-
nents – the first is zero representing practically negligible effect, the
second attends to a Gaussian prior for incremental effects, and the
third has a Laplace prior watching out for potential breakthrough,
heavier-than-Gaussian-tailed, effects. Note that the zero component
of Ghidorah is practically important. Our experience conducting
many real experiments suggests that for a mature product, in 70%
to 80% cases, a metric like Revenue may not display any chance of
movement and another 10% could be very weak movement (It is
not surprising that we don’t have many successful ideas to increase
revenue while keeping users happy). For these zero inflated cases,
without the Zero component (soft) filtering out these noisy data
points, the accuracy of the scale parameters for other components
can be significantly hurt.
We chose a mixture prior for its simple posterior mean and vari-

ance form. Let 𝜇𝐺 (Δ) and 𝜇𝐿 (Δ) be the respective posterior means
of the Gaussian and Laplace component, 𝑝𝐺 (Δ) and 𝑝𝐿 (Δ) the re-
spective posterior probabilities of the two components being active
(the rest is 0 component), and Var𝐺 (Δ) and Var𝐿 (Δ) the respective
posterior variances. We have

E(𝜇 |Δ)=𝑝𝐺 (Δ)𝜇𝐺 (Δ)+𝑝𝐿 (Δ)𝜇𝐿 (Δ) (9)
Var(𝜇 |Δ)=𝑝𝐺 (Δ)Var𝐺 (Δ)+𝑝𝐿 (Δ)Var𝐿 (Δ)

+𝑝𝐺 (Δ)𝜇𝐺 (Δ)2+𝑝𝐿 (Δ)𝜇𝐿 (Δ)2−E(𝜇 |Δ)2 (10)
For each new prediction, we can check the posterior probability of
each component and their contribution. When trained on historical
data, the larger the prior mixture probability for the Laplace head is,
the heavier tail the treatment effect distributes. Similarly, when the
zero component has a large weight, the metric is very hard to move.

5See https://en.wikipedia.org/wiki/King_Ghidorah
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Fitting theparametersofGhidorahprior canbedoneviamaximum
marginal likelihood, also called MLE-II [3]. In fact, the model perfor-
mance could be further improved by incorporating the idea of Stein’s
unbiased risk estimate (SURE) that tries to optimize an unbiased es-
timate of the testing error of a model at the same set of predictors 𝑥
as in the same training set (as if we independently draw another re-
sponse𝑦𝑜 for those𝑥 ) [18, 19]. For example, Xie et al. [47] used SURE
in an Empirical Bayes setting to improve the prediction accuracy of a
James-Stein shrinkageestimator. In the caseofGhidorah, themixture
prior makes it hard to directly use SURE. We use SURE on each indi-
vidual head to get the initial estimates for the scale parameters and
then use Expectation-Maximization (EM) [10] to iteratively estimate
the scale parameters and component weights until convergence.
Similar to the Ghidorah method, the NEST method [25] is also

an EBmethod based on the multivariate Tweedie’s formula. It mod-
els the marginal distribution of the observations Δ using a non-
parametricapproachwitha two-dimensionalGaussiankernel,which
directly extends the f-modeling approach proposed in [21] to solve
the heteroskedastic problem. On the contrary, our method, termed
as g-modeling approach in [21], models the prior distribution with
a parametric mixture model. The Ghidorah method shows two ad-
vantages over the NESTmethod through our simulation study and
empirical analysis. First, the Ghidorah model is more transparent
and explainable, which is appealing to industry researchers. Second,
non-parametric methods typically require relatively larger number
of observations for accurate and numerically stable estimation, as
shown in the simulation study in Section 5, which may be a bottle-
neck for adoption by the A/B testing community.

3.4 TARwES+: Regression with Ghidorah
We presented TARwES and Ghidorah as two different methods. In
fact, theycomplementeachother.TARwES isa regression framework
utilizing EB based predictions as individual features, and Ghidorah
predictions can also be used as features here. We call the enhanced
method TARwES+, showcasing the flexibility of the TARwES frame-
work which can be improved further with better theory-assisted
features. Practitioners in a different field might empirically find bet-
ter mixture priors to be useful when benchmarked on their own
data-sets. Another enhancement to TARwES is to go beyond the
target metric and include observations or EB predictions of other
metrics as features. Consider

(𝜇1,𝜇2) ∼𝜋 (Δ1,Δ2) ∼Normal
(
(𝜇1,𝜇2),Σ

)
.

The informationΔ2 has for 𝜇1 is greater if 1) the correlation between
the underlying movement 𝜇1 and 𝜇2 is larger, or 2) the correlation
betweenthenoises inΣ is lower. Inoneextreme, 𝜇1=𝜇2 andnoisesare
uncorrelated. ThenΔ2 contains asmuch information asΔ1 has for 𝜇1.
But if thenoises arealsoperfectly correlated, thenΔ1=Δ2 andΔ2will
not behelpful.Whenconsidering thepractical benefit of addingextra
metrics it is crucial to separate the two types of correlations apart.
Many metrics with high movement correlation may also have high
noise correlations; for example, metrics derived from similar signals.

4 CONFIDENCE INTERVAL,
VARIANCEREDUCTIONANDCOLD START

4.1 Confidence Interval and Adjusted 𝑝−value
For the CMLE method, the confidence intervals are computed by
inverting the dual hypothesis testing problem [34, 38]. When se-
lection criteria are one sided, CMLE produces a very asymmetric

confidence interval, especially when the observed effect Δ is close
to the selection threshold. For EB method, with posterior mean and
variance, a 95% CI can be computed as

E(𝜇 |Δ)±1.96
√
Var(𝜇 |Δ) .

This assumesnormality of the posterior distribution,which is asymp-
totically true due to Bernstein-VonMises theorem [45]. In this paper,
we focus on empirical performance of this CI and take the symmetric
form as desired and required. For RwESmethods including TARwES,
the regression model estimates E(𝜇 |Δ), not Var(𝜇 |Δ). But we can
use another regression model to estimate E(𝜇2 |Δ). Let Δ𝐵 = 𝜇+𝜖𝐵
where 𝜖𝐵 is a noise independent of split A and 𝜇,

E(Δ2
𝐵 |Δ𝐴)=E(𝜇

2 |Δ𝐴)+2E(𝜇𝜖𝐵 |Δ𝐴)+E(𝜖2𝐵 |Δ𝐴)
=E(𝜇2 |Δ𝐴)+𝜎2/𝑁𝐵 .

Therefore,E(𝜇2 |Δ𝐴)=E(Δ2
𝐵
|Δ𝐴)−𝜎2/𝑁𝐵 can be used to predict the

second moment and the variance. It does require a separate model
to be trained andwe have to also make sure the predicted variance is
numerically stable. For example, regression model might produce a
negative variance. EBmethods have an advantage over RwES in this
regard. Note that, although many regression models also provides a
variance for the prediction, it is very different from the posterior vari-
ance we need as the two have completely different data generating
processes. In practice,we suggest using𝜎2/𝑁 in place ofVar(𝜇 |Δ), as
the latter is usually smaller than 𝜎2/𝑁 as explained below. 𝑝−value
can be defined as the smallest𝛼 such that the two sided 1−𝛼 symmet-
ric confidence interval excludes 0. We define adjusted 𝑝−value as

2×min{𝑃 (𝜇 ≥ 0|Δ),𝑃 (𝜇 ≤ 0|Δ)} . (11)
Although the posterior distribution itself and the Bayesian confi-
dence (or credible) interval containsmore information, users familiar
with 𝑝−value can treat this adjusted 𝑝−value in the same way they
use 𝑝−value to assess significance post selection.

4.2 Variance Reduction
Tweedie’s formula for the posterior variance (2) shows

Var(𝜇 |𝑋 )= 𝜎
2

𝑁
{1+ 𝜎

2

𝑁
×𝑙 ′′(Δ)} .

Posterior variance is smaller than 𝜎2

𝑁
when 𝑙 ′′(Δ) < 0. Thus, un-

certainty reduction is guaranteed if the marginal likelihood is log-
concave, because themarginal likelihood ofΔ is a convolution of the
prior density and a Gaussian density of noise. It can be shown that
the convolutionof two log-concave densities is log-concave. It is easy
to see Gaussian is log-concave. Therefore if our prior is log-concave,
the empirical Bayes confidence interval will be narrower than the
standard unadjusted 𝜎2/𝑁 .
Priors like Gaussian, Laplace are log-concave. However, it is

not true that the mixture of log-concave distribution is also log-
concave. Nevertheless, we found the Ghidorah prior is empirically
log-concave for a large range of Δ that we need to evaluate the pos-
terior variance for.When the variance is not reduced, we found from
(10) that they are cases where the posterior probabilities of the zero
and non-zero components are not close to 0 or 1. These are generally
uninteresting cases, and it is unclear whether there is a practically
significant treatment effect. Practically, we propose to cap the vari-
ance by𝜎2/𝑁 , so that the confidence interval is always reduced. Our
simulation and empirical study showed that this modification still
keeps good confidence interval coverage.
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4.3 Cold start:When there is no training data
EB require a certain number of observations Δ𝑖 ,𝑖 =1,...,𝑛 for param-
eter estimation. For A/B testing, this typically requires at least 50 to
100 historical experiment data points. This “cold-start” problem lim-
its the application of empirical Bayes method when experimenting
in a nascent area (a new product or new component to be A/B tested
and optimized). Motivated by these real-life scenarios, we propose
another method based on local𝐻1 bound [39].
We postulate a prior for the effect 𝜇 that is a mixture of 0 with

probability 𝑝 and a log-concave distribution with probability 1−𝑝 .
In statistical null hypothesis testing, the 0 component is the null
hypothesis𝐻0 and the alternative part is the alternative𝐻1. Because
of log-concavity, for positive Δ,

E(𝜇 |Δ,𝐻1) ≤Δ, Var(𝜇 |Δ,𝐻1) ≤𝜎2/𝑁 .

We can bound the posterior mean by
E(𝜇 |Δ)=𝑃 (𝐻1 |Δ)E(𝜇 |Δ,𝐻1) ≤𝑃 (𝐻1 |Δ)Δ (12)

and the posterior variance by

Var(𝜇 |Δ)=𝑃 (𝐻1 |Δ)Var(𝜇 |Δ,𝐻1)+𝑃 (𝐻1 |Δ){1−𝑃 (𝐻1 |Δ)}E(𝜇 |Δ,𝐻1)2

≤𝑃 (𝐻1 |Δ)𝜎2/𝑁 +𝑃 (𝐻1 |Δ)3{1−𝑃 (𝐻1 |Δ)}Δ2 (13)
Sellke et al. [39] derived a bound for 𝑃 (𝐻1 |Δ) when the distribu-

tion of 𝜇 under 𝐻1 is assumed to be “local,” which is a uni-modal
distribution centered at 0 with both decaying tails6

𝑃 (𝐻1 |Δ)
𝑃 (𝐻0 |Δ)

≤ 𝑝

1−𝑝 ×(−𝑒𝑧log(𝑧)) , (14)

where 𝑧 is the 𝑝-value of the two-sided hypothesis test. For any
given prior odds 𝑝/(1−𝑝), (14) bounds the posterior odds, and hence
the posterior 𝑃 (𝐻1 |Δ). We then use this to bound both posterior
mean and variance in (12) and (13). For negative Δ, we get the lower
bound for posterior mean and upper bound for posterior variance.
We use these bounds as if they are the posterior mean and variance
themselves. Empirical study from real experiment data later in the
paperwill showthat thismethodworkssurprisinglywell forproperly
chosen prior odds.

5 SIMULATION STUDIES
We conduct simulation studies to compare the performances of TAR-
wESandGhidorahwith existingmethods–CMLE,EBwithGaussian,
Laplace and Huber prior, NEST, RwES with linear regression and
gradient boosted trees.7 We control the ground-truth effect 𝜇 to di-
rectlymeasure prediction accuracy in RMSE and confidence interval
coverage. Recall that 𝜏2 is the prior variance and 𝜎2/𝑁 is that of the
noise. Therefore 𝜏2𝑁 /𝜎2 represents the signal-noise-ratio (SNR). To
mimic experiments with different scale, we simulate the sample size
𝑁 from 0.2, 0.5, 1 and 2 millions with equal probability. We conduct
three in-depth studies using different priors and they are ordered
from simple to hard. For RwES and TARwES, we simply use 𝜎2/𝑁
in place of Var(𝜇 |Δ) to skip a second regression model for variance
for the reason we explained in Section 4.1. In each study, we first
use only 100 training data points (simulated historical experiments),
and then increase it to 1000 to see how the performance changes
with increased training data. Besides RMSE and confidence interval

6See [39] for the exact technical assumption. This is not so important in our context,
as we will be focusing on the empirical performance of the method, and not so much
on its theoretical properties.
7R code for implementation of all the mentioned methods as well as simulations are
available at https://aka.ms/exp/code/abpostselection.

coverage, we also look at variance reduction/shrikage𝑉𝑎𝑟𝑆 by tak-
ing the ratio of Var(𝜇 |Δ) to the baseline unadjusted MLE’s variance
𝜎2/𝑁 . For CMLE, a z-score threshold of 1.96 was used (comparable
to 5% p-value threshold). We first compute its confidence interval
using inverted conditional hypothesis testing, and its width to infer
an equivalent variance. For Unadjusted, RwES and TARwES, since
we simply took𝜎2/𝑁 as variancewe don’t need to report variance re-
duction rate (they are 1). In all cases, we selected SNR tomake 10% to
15% 𝑝−values less than 0.1 and 6% to 8% less than 0.01, in an attempt
tomatchwith the selection rate we observed in real experiments. All
RMSE numbers are scaled with the unit of 0.1 for easier comparison.
All SNR numbers are computed with 1 million sample size (SNR =
1E6×𝜏2/𝜎2). In each study, we also implemented the theoretical con-
ditional mean and variance to show or approximate the best possible
results assuming we do know the true oracle prior distribution.

5.1 Case 1: Gaussian Prior with SNR 0.1
Results in Table 1. Gaussian prior is the simplest andwe expectmany
existing methods such as J-S shrinkage to do well. In this setting, we
saw about 15.2% cases passed 𝑝−value 5% threshold and 6.5% passed
1%. Our main observations are the following. First, all methods im-
proved upon unadjusted prediction. Second, CMLE showed higher
RMSE. Its confidence interval coverage is 100% but with variance
ratio of 4 to 6. This means the high coverage is at the cost of much
wider intervals.As expected,CMLEconfidence interval canbewildly
asymmetric when the cutoff threshold is closer to the observed Δ.
Numerical stability of CMLE confidence interval remains an issue.
Based on its poor RMSE, we did not seek to further improve its sta-
bility. Third, not surprisingly, EB with Gaussian prior showed good
performance, and with 1000 training data it is very close to the theo-
retical best. But Ghidorah performed almost the same, as did Huber
prior. Their performance for 100 training points is already close to EB
with Gaussian prior. RwES methods weren’t as good as EB methods.
GBT’s performance improved significantly with increased training
data. TARwES significantly improved upon RwES, and was at par
with Ghidorah and Gaussian EB for 1000 training data. Lastly, NEST
method showed the worst RMSE and yielded slightly undercovered
confidence interval in general but the performance improves with
larger training set, which indicates that a non-parametric method
does require more samples to perform accurate inference.

5.2 Case 2: 50% Zero and 50% T-prior
with degrees of freedom 3 and SNR 0.4

Results inTable2.With50%0effectand50%heavytailed t-distribution,
14.5% passed𝑝−value threshold 5% and 6.5% less than 1%. This case is
harder thanGaussian prior and could create issues forGaussian prior
EB. With only 100 training data, only 50 data points are effective
for estimating prior scale parameter, and the other 50 are adding
noise. We found that RwES with linear and GBT, and NEST strug-
gled even with 1000 training data — they are not much better than
Unadjusted, and GBT and NEST are worse than linear regression.
Ghidorah gave the best results, followed by Laplace prior. At 100
training data, Ghidorah already beat the approximated theoretical
best (usingfirst order approximation for t-prior as exact formuladoes
not exist [37]) in both RMSE and coverage. Increasing training data
further improved RMSE and interval coverage. Both Gaussian and
Huber prior showedmediocre performance, as does CMLE. TARwES
is only slightly worse than Ghidorah with 1000 training data.

6

https://aka.ms/exp/code/abpostselection


Table 1: Gaussian Prior
Case 1: Gaussian Prior(SNR=0.1) 100 Training Data Points 1000 Training Data Points
Method Selected 𝑝−val RMSE Coverage 𝑉𝑎𝑟𝑆 RMSE Coverage 𝑉𝑎𝑟𝑆
Unadjusted 6.5% <0.01 2.17 70.6% - 2.17 70.6% -

15.2% <0.05 2.16 78.1% - 2.16 78.1% -
100% All 1.46 95.0% - 1.46 95.0% -

Theoretical 6.5% <0.01 0.68 94.5% 0.54 0.68 94.5% 0.54
(known prior) 15.2% <0.05 0.71 94.7% 0.50 0.71 94.7% 0.50

100% All 0.77 94.9% 0.41 0.77 94.9% 0.41
CMLE 6.5% <0.01 1.69 100% 5.93 1.69 100% 5.93

15.2% <0.05 1.30 100% 5.53 1.30 100% 5.53
100% All 1.06 100% 4.17 1.06 100% 4.17

Gaussian 6.5% <0.01 0.76 90.1% 0.52 0.70 94.0% 0.54
15.2% <0.05 0.77 90.9% 0.48 0.72 94.4% 0.50
100% All 0.78 92.6% 0.40 0.77 94.7% 0.42

Laplace 6.5% <0.01 0.77 97.1% 0.83 0.78 97.7% 0.85
15.2% <0.05 0.77 96.0% 0.70 0.74 97.7% 0.73
100% All 0.78 91.8% 0.39 0.74 93.5% 0.85

Huber 6.5% <0.01 0.71 92.8% 0.52 0.69 94.4% 0.54
15.2% <0.05 0.73 92.9% 0.48 0.72 94.6% 0.50
100% All 0.77 93.7% 0.40 0.77 94.8% 0.42

Ghidorah 6.5% <0.01 0.76 94.3% 0.69 0.71 95.7% 0.66
15.2% <0.05 0.77 93.9% 0.62 0.73 96.0% 0.61
100% All 0.78 91.0% 0.38 0.77 94.2% 0.41

RwES(Linear) 6.5% <0.01 1.07 87.3% - 1.01 89.8% -
15.2% <0.05 1.00 92.1% - 0.94 94.0% -
100% All 0.86 97.9% - 0.83 98.4% -

RwES(GBT) 6.5% <0.01 1.22 81.9% - 0.95 91.5% -
15.2% <0.05 1.07 89.7% - 0.88 95.1% -
100% All 0.91 97.0% - 0.82 98.5% -

TARwES 6.5% <0.01 0.83 95.5% - 0.70 98.5% -
15.2% <0.05 0.81 97.2% - 0.72 99.0% -
100% All 0.79 99.1% - 0.77 99.4% -

NEST 6.5% <0.01 2.05 89.4% 0.62 1.15 91.9% 0.51
15.2% <0.05 1.90 91.5% 0.55 1.04 92.7% 0.59
100% All 1.32 94.1% 0.48 0.89 93.4% 0.49

Table 2: Mixture of 50% Zero and 50% T
Case 2: 50% Zero/50%T-prior(df=3,SNR=0.4). 100 Training Data Points 1000 Training Data Points
Method Selected 𝑝−val RMSE Coverage 𝑉𝑎𝑟𝑆 RMSE Coverage 𝑉𝑎𝑟𝑆
Unadjusted 7.6% <0.01 1.95 79.5% - 1.99 79.5% -

14.5% <0.05 2.17 71.6% - 2.18 71.6% -
100% All 1.45 95.0% - 1.46 95.0% -

Theoretical(approx) 7.6% <0.01 1.45 88.3% - 1.45 88.3% -
(Known Prior) 14.5% <0.05 1.45 88.2% - 1.45 88.2% -

100% All 0.90 96.9% - 0.90 96.9% -
CMLE 7.6% <0.01 1.63 100% 5.46 1.63 100% 5.46

14.5% <0.05 1.45 100% 5.34 1.45 100% 5.34
100% All 1.08 100% 4.11 1.08 100% 4.11

Gaussian 7.6% <0.01 1.91 71.3% 0.61 1.80 75.9% 0.64
14.5% <0.05 1.65 78.5% 0.58 1.55 82.1% 0.61
100% All 0.96 93.9% 0.52 0.93 95.2% 0.55

Laplace 7.6% <0.01 1.37 89.2% 0.91 1.33 90.9% 0.93
14.5% <0.05 1.30 91.1% 0.80 1.26 92.9% 0.83
100% All 0.85 95.0% 0.48 0.83 96.1% 0.50

Huber 7.6% <0.01 1.85 70.8% 0.61 1.78 76.0% 0.64
14.5% <0.05 1.59 78.4% 0.57 1.54 82.3% 0.61
100% All 0.94 93.7% 0.50 0.92 95.2% 0.54

Ghidorah 7.6% <0.01 1.34 89.5% 0.94 1.26 93.1% 0.98
14.5% <0.05 1.28 91.0% 0.86 1.20 94.0% 0.91
100% All 0.82 91.2% 0.36 0.80 92.8% 0.38

RwES(Linear) 7.6% <0.01 2.33 68.3% - 2.18 71.6% -
14.5% <0.05 1.94 80.8% - 1.82 83.0% -
100% All 1.07 96.5% - 1.02 97.0% -

RwES(GBT) 7.6% <0.01 3.49 51.5% - 2.71 67.6% -
14.5% <0.05 2.70 69.9% - 2.23 79.2% -
100% All 1.31 94.3% - 1.11 96.1% -

TARwES 7.6% <0.01 1.56 85.6% - 1.36 91.1% -
14.5% <0.05 1.42 90.4% - 1.27 94.1% -
100% All 0.88 98.1% - 0.83 98.6% -

NEST 7.6% <0.01 2.59 84.2% 0.77 2.47 88.8% 0.88
14.5% <0.05 2.26 86.7% 0.78 2.12 91.7% 0.87
100% All 1.29 94.8% 0.52 1.14 95.1% 0.51

5.3 Case 3: 90% Zero and 10% T-prior
with degrees of freedom 3 and SNR 10

Results in Table 3. This is the hardest case. With 100 training data,
only 10 points are effective for prior parameter estimation, with 90
points adding noise. This prior represents no effect or break-through.
This can be seen from the fact that among 11.6% with 𝑝−value less
than 5%, 7.14% are less than 1%. RMSE of Unadjusted prediction post-
selection of 𝑝−value<0.01 wasn’t too bad — very little adjustment is
needed at tail. Similar to the last case, two RwESmethods (especially

Table 3: Mixture of 90% Zero and 10% T-prior
Case 3: 90% Zero/10% T-prior(df=3,SNR=10) 100 Training Data Points 1000 Training Data Points
Method Selected 𝑝−val RMSE Coverage 𝑉𝑎𝑟𝑆 RMSE Coverage 𝑉𝑎𝑟𝑆
Unadjusted 7.14% <0.01 1.94 82.7% - 1.94 82.7% -

11.6% <0.05 2.40 57.5% - 2.40 57.5% -
100% All 1.46 94.9% - 1.46 94.9% -

Theoretical(approx) 7.14% <0.01 1.61 90.4% - 1.61 90.4% -
(Known Prior) 11.6% <0.05 1.53 91.2% - 1.53 91.2% -

100% All 0.65 98.5% - 0.65 98.5% -
CMLE 7.14% <0.01 1.69 100% 4.75 1.69 100% 4.75

11.6% <0.05 1.60 100% 4.92 1.60 100% 4.92
100% All 1.04 100% 4.00 1.04 100% 4.00

Gaussian 7.14% <0.01 3.73 54.4% 0.75 2.90 65.3% 0.83
11.6% <0.05 3.25 58.1% 0.74 2.70 61.6% 0.82
100% All 1.39 94.8% 0.73 1.28 95.3% 0.80

Laplace 7.14% <0.01 1.97 81.0% 0.97 1.78 83.2% 0.99
11.6% <0.05 1.96 84.1% 0.91 1.89 84.7% 0.95
100% All 0.95 97.7% 0.64 0.98 97.9% 0.70

Huber 7.14% <0.01 3.34 57.3% 0.78 2.77 66.6% 0.84
11.6% <0.05 2.98 59.5% 0.76 2.60 63.0% 0.82
100% All 1.32 95.0% 0.74 1.25 95.4% 0.80

Ghidorah 7.6% <0.01 1.64 90.6% 0.99 1.60 91.3% 1.00
14.5% <0.05 1.56 91.1% 0.91 1.52 91.7% 0.90
100% All 0.65 97.11% 0.20 0.64 97.1% 0.19

RwES(Linear) 7.14% <0.01 3.80 54.8% - 2.90 60.0% -
11.6% <0.05 3.35 66.5% - 2.73 70.9% -
100% All 1.48 95.9% - 1.34 96.5% -

RwES(GBT) 7.14% <0.01 10.8 22.4% - 7.24 45.1% -
11.6% <0.05 8.52 45.5% - 5.85 61.6% -
100% All 3.04 91.0% - 2.04 95.1% -

TARwES 7.14% <0.01 2.47 72.7% - 1.97 79.1% -
11.6% <0.05 2.29 80.4% - 1.97 85.0% -
100% All 1.02 97.6% - 0.98 98.1% -

TARwES+ 7.14% <0.01 2.09 81.9% - 1.62 90.5% -
11.6% <0.05 1.89 86.5% - 1.54 91.8% -
100% All 0.75 98.1% - 0.65 98.6% -

NEST 7.14% <0.01 3.29 76.8% 0.86 2.57 84.5% 1.03
11.6% <0.05 2.97 79.5% 0.88 2.39 87.2% 1.00
100% All 1.26 96.6% 0.56 1.02 97.7% 0.55

GBT), NEST, and EB with Gaussian and Huber prior didn’t do well.
Ghidorah still performed the best, very close to the approximated
theoretical best. Laplace prior was better than Gaussian and Huber
prior, but wasn’t as good as Ghidorah, with a big gap. We think the
reason is that all EB priors without modeling zero component did
poorly in estimating the scale parameter because they cannot re-
move 90% noisy data points in this process. As a result, TARwES also
didn’t perform well similar to its theory-assisted features. We added
Ghidorah prediction as an additional feature in TARwES to make
TARwES+. It greatly improved TARwES and was close to Ghidorah
with 1000 training data. Even though it containsGhidorah prediction
as a feature, at 100 training data it performed worse than Ghidorah
since the extra layer of regression increases model complexity and
has slightly higher variance.

6 REAL EXPERIMENTS DATA STUDIES
We evaluated and compared our newmethods to existing methods
using a real experiment data-set from a business unit of a large prod-
uct with millions of active users. We did a thorough data quality
check and experiments with known trustworthy issues such as sam-
ple ratio mismatch [24] were filtered out. All experiments ran for 1
week.We further only included experiments with at least 1m sample
size and the remaining sample size ranges from1m tomore than 50m.
More than 1000 experiments were used in this study, from which
we randomly put half as the training set and the rest as the test set.
For experiments in both sets, we further split them into two. This is
required for testing as we will apply various methods to split A and
compare it with the “ground-truth” observed in split B. For training,
EB based methods like Ghidorah do not need splitting, while RwES
and TARwESmethods train on split data.

We lookedat two top linemetrics, onemeasuringuser engagement
and the other, site performance (page-loading-time). Table 4 shows
the results on the test set. For the engagement metric, 13.1% (68/519)
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𝑝−values were less than 5% and 6.6%(34/519) less than 1%; the site
performance metric had 14.4%(75/522) less than 5% and 7.7%(40/522)
less than 1%. These numbers are common for a mature product that
has been under heavy optimization using A/B testing. We included
TARwES+, which adds Ghidorah prediction as one of the features in
addition to Gaussian and Laplace priors. We also included Local𝐻1
method we proposed that can be used without any training data. We
used a naive prior odds of 1:1 and also a rough expert’s guess version
wherewe use 1:7 for engagementmetric and 1:6 for site performance
metric to make the prior probability of𝐻1 close to the proportion
of 𝑝−values less than 5%. We also included LaplaceFitGhidorah, a
Laplace distribution (which is log-concave, as mentioned earlier) fit
to Ghidorah, by minimizing KL-divergence with an approximation
toGhidorah. TheGhidorah approximation comprised a low variance
Normal distribution, instead of the zero component of Ghidorah,
in addition to the Normal and Laplace components. We removed
RwES with GBT from the contestants given inferior results from
simulation studies.
We drew the following conclusions. Most methods helped to re-

duce RMSE and improved coverage, except RwES with linear regres-
sion. This is partly due to a large range of different sample sizes, un-
like the situation of all similar sample sizes reported in [8]. Ghidorah
did very well and was the best in both accuracy and coverage, while
significantly reduced confidence interval width when 𝑝−values are
not small. Huber prior and LaplaceFitGhidorah closely followed
Ghidorah for both metrics. Laplace and Gaussian prior showed a
clear gap to Ghidorah, Huber, and LaplaceFitGhidorah. TARwES
uses Gaussian and Laplace EB as its features so its performance is
similar to the two. TARwES+ added Ghidorah as a new feature. It
also did very well and was close to Ghidorah. For local𝐻1 methods,
the performance depends heavily on the prior odds. 1:1 prior odds
clearly wasn’t good.With a bit domain knowledge tuning, 1:7 and
1:6 priors for the two metrics showed much better results, albeit still
not as good as Ghidorah and TARwES+. Nevertheless, the fact that
local 𝐻1 method with a rough expert’s guess can already greatly
improve accuracy of treatment effect prediction over unadjusted and
even achieve similar performance of James-Stein (Gaussian prior) is
satisfying. It is extremely easy to apply in practice. NEST in general
performs poorly, partially due to the fact that the training sample
size is not large enough to estimate the marginal density accurately
with a non-parametric f-modeling approach[22].

Using real experiment data, the performance of Laplace prior and
Huber prior differed from the simulation studies, indicating that
the simulated priors and the true prior distributions are still differ-
ent. Nevertheless, Ghidorah performed exceedingly well in all cases,
making it a very robust and dependable choice.

7 CONCLUDINGREMARKS
In the big data era,A/B testing has become an integral step inmodern
software development. To facilitate data-driven decisionmaking, we
conduct more and more experiments, build more and more metrics,
and drill down to more and more segments. While enjoying the rich
insights revealed by such practices, we should not blindly trust the
results produced. In particular, we should not screen in an ad-hoc
fashion, based on statistical significance, and take the filtered results
by their face value. Instead, the key question that both researchers
and practitioners should ask is – given the ubiquity of post-selection
in A/B testing, how do wemake post-selection adjustments in a way
that is both theoretically sound and practically feasible?

Table 4: Evaluation on two metrics from real experiments. Bold
numbers are the best results or very close to the best.

User Engagement Metric Site Performance Metric
Method 𝑝−val Count RMSE Coverage 𝑉𝑎𝑟𝑆 Count RMSE Coverage 𝑉𝑎𝑟𝑆
Unadjusted <0.01 34 5.61 82.4% - 40 7.56 77.5% -

<0.05 68 6.38 80.9% - 75 6.89 81.3% -
All 519 4.55 93.4% - 522 4.59 94.3% -

CMLE <0.01 34 4.54 100% 5.36 40 6.52 97.5% 5.20
<0.05 68 3.88 100% 5.31 75 5.27 98.7% 5.20
All 519 3.44 100% 4.06 522 3.62 99.8% 4.09

Ghidorah <0.01 34 3.79 91.2% 1.00 40 4.67 92.5% 1.00
<0.05 68 3.33 94.1% 0.95 75 3.93 94.7% 0.92
All 519 2.73 92.7% 0.21 522 2.55 94.8% 0.32

Normal <0.01 34 4.92 82.4% 0.91 40 6.74 85.0% 0.83
<0.05 68 5.47 85.3% 0.89 75 5.82 88.0% 0.83
All 519 4.05 93.8% 0.86 522 3.91 95.6% 0.79

Laplace <0.01 34 4.61 88.2% 0.99 40 5.85 90.0% 0.98
<0.05 68 4.97 91.2% 0.96 75 5.09 90.7% 0.94
All 519 3.63 94.6% 0.74 522 3.39 96.0% 6.94

Huber <0.01 34 4.04 91.2% 0.90 40 4.91 95.0% 0.91
<0.05 68 3.63 92.6% 0.77 75 4.07 94.7% 0.80
All 519 2.91 94.2% 0.42 522 2.72 95.4% 0.45

LaplaceFitGhidorah <0.01 34 4.03 91.2% 0.91 40 5.02 95.0% 0.85
<0.05 68 3.63 92.6% 0.78 75 4.09 93.3% 0.72
All 519 2.90 94.2% 0.42 522 2.65 94.4% 0.36

RwES(linear) <0.01 34 8.89 79.4% - 40 10.03 72.5% -
<0.05 68 7.21 88.2% - 75 7.48 82.7% -
All 519 4.08 96.7% - 522 3.88 96.6% -

TARwES <0.01 34 5.92 85.3% - 40 5.40 95.0% -
<0.05 68 5.17 91.2% - 75 4.34 96.0% -
All 519 3.42 97.7% - 522 2.73 98.5% -

TARwES+ 0.01 34 3.81 91.2% - 40 4.92 95.0% -
0.05 68 3.35 95.6% - 75 4.12 96.0% -
All 519 2.73 97.9% - 522 2.60 98.5% -

LocalH1(1:1) <0.01 34 5.32 82.4% 1.00 40 7.27 85.0% 1.00
<0.05 68 5.50 86.8% 1.00 75 6.20 89.3% 1.00
All 519 3.50 95.0% 0.63 522 3.57 95.6% 0.66

Left: LocalH1(1:7) <0.01 34 4.34 88.2% 1.00 40 6.40 90.0% 1.00
Right:LocalH1(1:6) <0.05 68 3.80 94.1% 1.00 75 5.19 90.7% 1.00

All 519 2.82 93.3% 0.30 522 2.93 94.1% 0.36
NEST <0.01 34 5.08 82.4% 0.97 40 6.81 82.5% 0.94

<0.05 68 5.69 85.3% 0.95 75 6.13 86.7% 0.92
All 519 4.13 93.8% 0.87 522 4.18 95.6% 0.88

This paper provided an extensive discussion on post-selection in-
ference in A/B testing, with comprehensive literature reviews, novel
proposals andempirical studies. First,we raised awareness in theA/B
testing community about this important and challenging problem,
by highlighting that untrustworthy post-selection inference might
result in biased treatment effect estimations and under-covered con-
fidence intervals. Moreover, trustworthy post-selection inference
appeared to be highly non-trivial in the context in A/B testing, due
to various reasons such as heterogeneous historical experiments,
the need for non-linear adjustments, the lack of ground truth for
evaluation, and the possibility of limited training data. Second, after
comprehensively surveying two lines of existing methods – empir-
ical Bayes (EB) and regression with experiment splitting (RwES), we
provided two newmethods, TARwES and Ghidorah. Simulation and
empirical studies confirmed that Ghidorah was a robust, adaptive
and training data efficient empirical Bayes method. In particular,
we found that Ghidorah can be trained with as few as 50 historical
experiments. Moreover, we could further improve upon Ghidorah’s
already outstanding performance, by combining it with TARwES.
Finally, for cold start scenarios with no training data, we proposed a
local Bayes Bound basedmethod, which, with proper domain knowl-
edge of the prior odds of the null and alternative hypotheses, could
serve as a good startingpoint of trustworthypost-selection inference
of A/B tests.We shared our implementation of all methods described
in the paper, for the purpose of reproduction and adoption by the
community.

There aremultiple future research directions based on the current
work. First, we will apply the proposed methodologies to an even
broader set of real-life experiments, and search for examples where
the hybrid approach TARwES+ significantly out-performs others.
Second, although in this paper we focus on estimation and inference
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(which are more important from a business perspective), it would
be interesting to deeply connect our proposals with class multiple
testing adjustment procedures such as false discovery rate [4, 5].
Third, it is important to better understand the log-concave region for
the Ghidorah prior from a theoretical perspective, which might lead
to more robust and efficient solutions. Fourth, it is possible to gen-
eralize the current work to more complex causal inference scenarios
such as non-randomized observational studies or factorial designs.
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A APPENDIX FORREPRODUCIBILITY
Weprovide R implementations of all models described and the repro-
duction of all simulation study results. This supplementary section
details the steps to reproduce our results. Real experiments data used
in empirical study are sensitive and not disclosed.

A.1 Reproduce simulation study
Open the replication.ipynb file. Run this notebook to reproduce re-
sults in Section 5. Make sure to run the code in order so the same
random seed will apply.
In the first cell in the notebook we install xgboost package for

RwES with GBT. Installation may take a while.

A.2 Simulation code
All code for simulation reside in simulation/simulation.R. The sim-
ulation entry point is evaluateSim.

This function takes another function called priorGen to simulate
from different ground-truth prior distributions. It also takes a list
of methods to evaluate. The list of methods is simply a vector of R6
class instances for post-selection inference methods described in
this paper. This function does the main evaluation loop to simulate
trainingand testingdata, runallmethods to computeRMSE, variance
reduction rate and interval coverages. It uses common interfaces
implemented by each method to train and predict.

Function simulateData is themain simulation function implement-
ing the simulation setup.

A.3 Code Organization
All methods are organized in the methods folder, with their own
subfolders shown in Table 5. All methods implemented the same
interface using R68:
• An initialize function (constructor) which takes a training data.
To initialize a R6 class, use $new(trainingdata) syntax.

• A train function to fit the model on the training data to get hyper-
parameters. For methods do not train on training data, this func-
tion is no-op.

• A predict function to take a test data and predict the true treatment
effect. When includeVar is set to be true, predict also outputs the
estimated variance for the prediction used for confidence interval.
Most methods we implemented are R6 classes to be initiated by a

training data. For methods that require other initialization parame-
ters, such as oracle Bayesian posterior using knownpriors as the best
case comparison, they are functions that return a R6 instance. For
example, KnownNormalPrior(sigma) is an instance implementing a
Gaussian prior with standard deviation sigma.
Table 5: Methods with corresponding R6 class names and locations
in source code
Folder Methods R6class

methods/BaselineUnadjusted Unadjusted MLE baselineUnadjust
methods/BFBound localH1 bound localH1Bound(priorOdds=)
methods/EBHuberSURE Huber EB HuberPriorEB
methods/EBmle Gaussian and Laplace EB NormalPriorEB, LaplacePriorEB
methods/knownprior Theoretical Posterior Known*Prior (* are priors)
methods/MixturePrior Ghidorah ZeroNormalLaplaceMixEB
methods/poostselect CMLE postSelectZCut(zcut=)
methods/nest NEST NEST

methods/split RwES simpleSplitting(Linear), bstSplitting(GBT)
TARwES TARwESSplitting,GhidorahSplitting(TARwES+)

8R6 documentation https://r6.r-lib.org/
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