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MOTIVATION

Task: Speech recognition

Problem
Hypothesis-level combination requires all models to use the
same mnput time segmentations.

Proposal
Allow ditferent time segmentations between models by splitting
and re-joining the hypothesis /N-best lists.

Applications
Allow combinations between:

e Different voice activity detection front-ends.

* Different unsynchronised recording devices.

e Overlapping inference.

* 1st pass used to refine time segmentation of 2nd pass.
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1st pass streaming ASR — diarisation — 2nd pass offline ASR
* ]1st pass ASR uses VAD segments.

* 2nd pass ASR uses per-speaker segments from diarisation.
* Want to combine 1st pass and 2nd pass hypotheses.

Data:
* dev - 51 meetings, 23 hours

* eval - 60 meetings, 35 hours
* Average of 7 participants per meeting
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MULTI-PASS COMBINATION

CONFUSION NETWORK SPLITTING

First-pass confusion networks
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Second-pass segments

Steps:

1.Convert N-best list into confusion network.

2. Estimate start and end times of confusion sets.

3. Estimate contusion set speaker from 1-best hypothesis.
4.5Split up confusion network into separate confusion sets.
5.Re-join consecutive confusion sets of the same speaker.
6. Do Confusion Network Combination (CNC).
Advantages:

* ]1-best is preserved after re-joining.

Disadvantages:

e Confusion set times are approximate.

* Context of language model scores is not preserved.

N-BEST LIST SPLITTING

First-pass N-best lists Split and re-joined first-pass hypotheses
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Steps:

1. Distribute hypothesis scores to words.

2. Estimate speakers for N-best words from 1-best hypothesis.
3.5plit up the N-best lists.

4.Re-join N-best lists according to segment time and speaker.
5.Do Minimum Bayes’ Risk (MBR) combination.
Advantages:

e Exact word start and end times are preserved.

e Context of language model scores is preserved.

Disadvantages:

* Hypothesis rank order may not be preserved after re-joining.

Spllt and re-joined first-pass confusion networks

HYPOTHESIS SCORES TO WORD SCORES
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(c) Backward suffix tree

(d) Average scores from both trees

* Black-box speech recogniser may not produce per-word scores.
* Want to estimate per-word scores from per-hypothesis scores.
Steps:

1.Convert N-best list into prefix and suffix trees.

2. Push weights to branches.

3. Take log-average of scores from prefix and suffix trees.

EXPERIMENTS

Distribution of hypothesis scores to words, on 1st pass eval

Split Per-word scores Speaker-attributed WER (%)
no | original 20.43
original 22.09
language model re-score 22.09
yes | prefix tree 20.62
sutfix tree 20.60
average 20.55

* Best performance with average of pretix and suffix trees.
Multi-pass combination (Speaker-attributed WER (%))

dev eval
Ist pass streaming hybrid 21.43  20.43
2nd pass offline hybrid 1993 19.13
2nd pass offline LAS 1991 19.04

CNC streaming hybrid + offline hybrid =~ 20.01  19.10
CNC streaming hybrid + offline LAS 19.71  18.71
MBR streaming hybrid + offline hybrid = 19.83  19.00
MBR streaming hybrid + offline LAS 1930 18.43
MBR oftline hybrid + offline LAS 19.11 18.24

e N-best list splitting outperforms confusion network splitting.
e Combination with no increase in 2nd pass computational cost.

 Hybrid + LAS outperforms hybrid + hybrid.
CONCLUSION

e Distribute hypothesis scores to words using trees.
e Combine different time segments by splitting N-best lists.



