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Large demand of DNN deployment on edge devices

Face Recognition AR/VROn-device video analytics

Mobile apps require low-latency inference



No one-size-fits-all model on Diverse Edge Devices

It’s challenging to design one-for-all DNN to meet latency requirements on 
diverse edge devices:

• Various NN optimizations in inference frameworks 

• Different hardware chips exhibit various computation/memory capability
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No one-size-fits-all DNN models



An Example
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Consider inference latency in the NN design process
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Latency: the important model design metric

To design a model that meets device latency requirements :
• Model design algorithms consider the inference latency in the design process
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How to get the inference latency of DNNs on various edge devices?



Measuring latency is expensive

Tremendous engineering efforts for 
model deployment

• Diverse inference frameworks

• Many chips

Time-consuming to measure a large 
number of models in NAS tasks

• ProxylessNAS explores ~0.3million 
models in one search
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Diverse inference frameworks and chips



Related works: Predicting the latency

FLOPs-based method
• Disadvantage: FLOPs is not a direct metric of inference latency

Operator-level method
• Sum all the operators’ latencies

• Disadvantage: unaware of graph optimization

Model graph-level method
• GCN learns the graph optimization

• Disadvantage: depends on the quality of training data (NN graphs), it’s 
hard to generalize on unseen graphs



nn-Meter: capture the hardware optimizations

Goal: accurately predict the latency of arbitrary DNN models 
on diverse edge devices

• Capture the various hardware optimizations that reduce model latency

• Be able to generalize on unseen model graphs

model nn-Meter Inference latency
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Challenge#1

• Too many device optimizations impact the inference latency
• Different optimizations are included in diverse inference frameworks and hardware chips

• Many of them are black-box 

• Model latency < sum (all the operators’ latencies)

• It’s hard to accurately predict latency by a cost model

• Our key insight: we identify the most important graph optimization technique, 
the operator fusion

Intel VPU Conv relu Fused 
Conv+relu

latency (ms) 0.073 0.029 0.074
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An operator fusion example: 27.5% time saved



Key idea of nn-Meter 

• Definition: a kernel is the basic scheduling unit, can be a single 
operator or a fusion of multiple operators

• Divide a whole model into kernels, conduct kernel-level prediction
• Model latency is the sum of all kernels
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nn-Meter tech#1: Automatic kernel detector

Fusion rule detection for black-box devices
• A set of test cases

• For every two operators, we generate 3 graphs

• Compare the latency difference Op1 and op2 are fusible if:

𝑇𝑜𝑝1 + 𝑇𝑜𝑝2 − 𝑇 𝑜𝑝1, 𝑜𝑝2 > 𝛼 ⋅ min(𝑇𝑜𝑝1, 𝑇𝑜𝑝2)

measured 

latency:

Op1

Op2

Op1 Op2test cases:

𝑇𝑜𝑝1 𝑇𝑜𝑝2 𝑇 𝑜𝑝1, 𝑜𝑝2



nn-Meter tech#1: Automatic kernel detector

Fusion rule detection for black-box devices
• A set of test cases:

• For every two operators, we generate 3 graphs

• Compare the latency difference

Kernel search by the fusion rules
• Apply the fusion rules to search maximum 

fused operators in target model

A resnet18 block example



Challenge#2

Large sample space for Conv-bn-relu
• Regarding latency, Conv-bn-relu is the 

most important kernel

• full size: 0.7 billion configurations 

• (total size: HW x K x S x Cin x Cout)

dimension Configuration space

Input HW 224,112,56,32,28,27,14,13,8,7,1

Kernel size K 1,3,5,7,9

Stride S 1,2,4

Channel in Cin Range(3,2160)

Channel out Cout Range(16,2048)

0.7 billion configurations of Conv-bn-relu



Challenge#2

Large sample space for Conv-bn-relu
• Regarding latency, Conv-bn-relu is the 

most important kernel

• full size: 0.7 billion configurations 

• (total size: HW x K x S x Cin x Cout)

Kernels show the non-linearity step 
latency pattern

• Random sample can miss hardware-
crucial data

Cout and latency show a step pattern

dimension Configuration space

Input HW 224,112,56,32,28,27,14,13,8,7,1

Kernel size K 1,3,5,7,9

Stride S 1,2,4

Channel in Cin Range(3,2160)

Channel out Cout Range(16,2048)

0.7 billion configurations of Conv-bn-relu



nn-Meter tech#2: Adaptive data sampler

Sample the most beneficial data (kernel configuration) 
instead of random sampling

❑Sample configurations that are likely to be considered in model design 
• Prior possibility distribution: learned from model zoo

❑Fine-grained sampling around inaccurate prediction data



nn-Meter Implementation

• 4 types of popular edge platforms

• Detected kernels: 22 (CPU), 26 (GPUs), 22 (VPU)

• Kernel predictors: RandomForest models 

Main kernel predictors and the performance



nn-Meter Evaluation

• Dataset: we generate 26k 
models and measure the latency 
on four devices

• AlexNets: 2000 model variants of 
AlexNet (re-sample channel 
number, kernel size for each layer)

• Large prediction scope



nn-Meter Evaluation

• Prediction accuracy: 99.0% (CPU), 99.1% (Adreno640 GPU), 99.0% 
(Adreno630 GPU) and 83.4% (Intel VPU) on our benchmark dataset

• Generalization performance on unseen model graphs
• Comparison baselines: FLOPS, FLOPS+MAC, BRP-NAS (GCN), 

• On average: nn-Meter achieves 89.2%, significantly better than FLOPs (22.1%), 
FLOPs+MAC (17.1%), and BRP-NAS (8.5%) 



nn-Meter Evaluation

• Comparing with operator-level prediction
• nn-Meter achieves +8%(CPU), +45.5%(GPU) and +75.1%(VPU) higher prediction 

accuracy

• Adaptive data sampling vs. random data sampling

• Low measurement cost for building predictors for new device

Prediction performance for conv-bn-relu Measurement cost



nn-Meter Opensource
https://github.com/microsoft/nn-Meter

• Prediction tools
• latency prediction on 4 devices

• Support tensorflow, onnx, pytorch, and NNI models

• Input models: model file or pytorch NN module instance

• Benchmark dataset
• 26k CNN model graphs and their latency

• Hardware-aware NAS algorithms in NNI
• Random search

• ProxylessNAS: gradient-based and RL

• Building tools
• Build latency predictors for custom devices

• (more types of inference frameworks and hardware chips)



nn-Meter Building Tools

Use nn-Meter to build latency predictor for your own device!

Backend Builder

Adaptive Data Sampling

Create Test Cases

Run Test Cases with Backend 
and Profile Their Latency

Detect Fusion Rule

User

Connect to Backend

Predictor Builder

Rule Tester

nn-Meter Builder

Prepare Backend

Config Experiment 
Parameters

nn-Meter 
Kernel Detector

Kernel Latency 
Predictor



Summary

• nn-Meter: an efficient and novel system to predict DNN model 
inference latency on various edge devices

• kernel-level prediction and adaptive data sampler

• Key insight #1: kernel can capture the runtime optimization

• Key insight #2: learn to sample the most important data 

• Evaluated a large dataset on four edge platforms

• Impressive high prediction accuracy
• 99.0% (CPU), 99.1% (Adreno640 GPU), 99.0% (Adreno630 GPU) and 

83.4% (Intel VPU)


