
Glinda: Supporting Data Science with Live Programming, GUIs
and a Domain-specific Language

Robert DeLine
rdeline@microsoft.com
Microsoft Research

Figure 1: Glinda provides live programming for a domain-specific language for data science workflows, including reading,
cleaning, and transforming data and building models.

ABSTRACT
Researchers have explored several avenues to mitigate data sci-
entists’ frustrations with computational notebooks, including: (1)
live programming, to keep notebook results consistent and up to
date; (2) supplementing scripting with graphical user interfaces
(GUIs), to improve ease of use; and (3) providing domain-specific

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445267

languages (DSLs), to raise a script’s level of abstraction. This pa-
per introduces Glinda, which combines these three approaches by
providing a live programming experience, with interactive results,
for a domain-specific language for data science. The language’s
compiler uses an open-ended set of “recipes” to execute steps in the
user’s data science workflow. Each recipe is intended to combine
the expressiveness of a written notation with the ease-of-use of a
GUI. Live programming provides immediate feedback to a user’s
input, whether in the form of program edits or GUI gestures. In a
qualitative evaluation with 12 professional data scientists, partic-
ipants highly rated the live programming and interactive results.
They found the language productive and sufficiently expressive and
suggested opportunities to extend it.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools.

https://doi.org/10.1145/3411764.3445267

CHI ’21, May 8–13, 2021, Yokohama, Japan Robert DeLine

KEYWORDS
data science, exploratory programming, domain-specific language,
live programming

ACM Reference Format:
Robert DeLine. 2021. Glinda: Supporting Data Science with Live Program-
ming, GUIs and a Domain-specific Language. In CHI Conference on Human
Factors in Computing Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3411764.3445267

1 INTRODUCTION
Computational notebooks have become a popular tool for data sci-
entists to analyze data and build models. Nonetheless, notebook
users experience a variety of frustrations [4], which have inspired
researchers to enhance the notebook user experience. One frustra-
tion is due to the notebook’s flexible execution model, in which a
user organizes script code into separately executable units (cells).
While this allows careful control over the order of execution, users
complain about “messy” notebooks with dead code, missing code,
and stale results [11] and about the rigor required to ensure that
results are replicable [4]. In response, researchers have invented
tools for sense-making over execution history [16, 18] and for au-
tomatically cleaning notebooks [11]. Other tools, like Tempe [6]
and Streamlit1, propose live programming as an alternative to cell-
based execution. Live programming ensures that a script and its
results are consistent and up to date, but provides less control over
execution.

Beyond execution, a second problem with notebooks is the re-
liance on scripting to accomplish most steps in a user’s workflow,
including basic plots. This is in contrast to data tools like spread-
sheets, Tableau [27], and PowerBI, whose graphical user interfaces
(GUIs) allow users to explore datasets and produce plots and dash-
boards. Scripting and GUIs represent a well-known trade-off be-
tween expressiveness and ease-of-use [12]. To combine the benefits
of both, researchers have enhanced notebooks with GUIs that write
script code on a user’s behalf. This generated code makes library
calls that are equivalent to a user’s GUI gestures [19], transforms
data through programming by example [7], or exposes a user’s
GUI selections as a scriptable dataset [31]. Converting a user’s GUI
actions into script code ensures that the actions are a persistent,
replicable part of the notebook.

Another way to simplify scripting is to raise the level of abstrac-
tion with a domain-specific language (DSL). Some DSLs for data
science are visual; some are textual. A visual language like Lobe2 or
Azure ML Studio3 presents a palette of drag-and-drop components,
which a user composes by forming connections between them. By
chaining components, a user can create entire workflows, from
data collection, cleaning and labeling, to model training, evaluation
and deployment. Textual DSLs, like Vega-Lite [25] for visualization
and Tea [14] for statistical analysis, provide a declarative, high-
level notation, with a compiler that intelligently fills in details. The
Vega-Lite compiler, for instance, chooses rendering details; the Tea
compiler chooses appropriate statistical tests. Both GUIs and DSLs

1https://streamlit.io/
2http://lobe.ai
3https://studio.azureml.net

employ a similar tactic of presenting a user with fewer, higher-
level choices, with the goal of increasing productivity and reducing
errors.

This paper introduces Glinda (GUI and Language for Interactive
Data Analysis), which combines live programming, GUIs, and a
DSL into a novel user experience for data science work. Glinda is an
extension to Visual Studio Code that provides a live programming
experience, with interactive results, for a domain-specific language
for data science (Fig. 1). The language is written in YAML, a popular
markup language with a lean syntax. A Glinda file describes a
set of named workflows, each with high-level, declarative steps
for reading, cleaning, transforming, and visualizing data and for
building, testing and deploying ML models. Executing a step in the
language produces an interactive visualization in the right-hand
pane, which provides immediate feedback about the step’s results
and progressive updates about ongoing computation. The example
in Fig. 1 trains a deep net on image data. After each training epoch,
the training curves update to show the latest loss and accuracy, in
the style of TensorBoard.4

All the visualizations are interactive and allow a user to browse
data in detail, for example, by sorting and filtering table columns
or by hovering over plot points to see tooltips. Some visualiza-
tions also allow GUI-based input, which provides a second way to
edit the YAML content. One example is a step for learning string
transformations by example (Fig. 2). When a user enters this step,
the visualization pane shows an editable table, which allows the
learned values to be corrected in place (A). This in-place correction
causes the new example to be added to the YAML (B), which in turn
causes the live programming algorithm to re-run. As this example
illustrates, the GUI provides an intuitive editing experience, the
DSL captures the high-level intent, and live programming keeps
these two consistent and up to date.

To accommodate the variety of current and future workflows,
Glinda’s compiler has an extensible architecture. To run a Glinda
file, the compiler translates YAML to Python, using an open-ended
set of recipes. Syntactically, a recipe is a Python function whose
docstring contain a YAML template. If a step’s YAML matches a
recipe’s template, that step is compiled as a call to the recipe’s
function. At a design level, a recipe simultaneously provides (1) a
syntax for capturing the intent behind a high-level operation and
(2) a user interface for providing feedback about computational
progress and results and (where advantageous) taking GUI-based
input to affect the computation. That is, each recipe is intended to
provide a thoughtful user experience for accomplishing one step in
a data science task.

This paper makes the following contributions:

• We introduce a user experience that extends an existing
development environment with interactive, exploratory fea-
tures to support data science work.

• We provide a declarative, domain-specific language for data
science workflows, with an extensible compiler architecture.

• We report the results of a qualitative evaluation with 12
professional data scientists doing exploratory data analysis.

4https://www.tensorflow.org/tensorboard/

https://doi.org/10.1145/3411764.3445267

Glinda: Supporting Data Science with Live Programming, GUIs and a Domain-specific Language CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 2: Many Glinda steps combine text editing with GUI interactions. Here, using the add_column_by_example recipe pro-
duces an editable table. When a learned value is wrong, the user can correct it in place (A). The user’s correction is then added
as a new example to the YAML (B).

2 BACKGROUND AND RELATEDWORK
2.1 Computational Notebooks
Computational notebooks have become a popular environment for
data science, particularly the exploratory stages [22, 24]. This user
experience allows a data scientist to create an arbitrary number of
small editors, called cells, each of which submits script code to an
interpreter session. Any visual response to a cell’s executed code is
shown directly below the cell. As such, a typical notebook is a kind
of literate program [21] that interleaves code and visual results, as
well as documentation written in markdown.

Combining an interpreter session with visual results make note-
books an effective environment for iterative data exploration [17].
However, current notebooks environments, like Jupyter Lab, Colab,
and Databricks, are not without their problems [4]. Enhancing the
notebook experience has become a popular research topic. One is-
sue is the problem of “messy” notebooks. The cell model is flexible
but also problematic for producing clear, replicable results: cells can
be executed in any order, leading to a “spaghetti” organization of
cells; cells are the only way to get feedback, leaving behind many
cells with short-term value; and cells can be overwritten or deleted,
which allows inconsistencies between the cell contents and the
interpreter execution state. Verdant [18] provides a light-weight
versioning system for notebooks to allow data scientists to under-
stand and retrieve alternatives they have explored. Gather [11]
helps data scientists “clean” notebooks by using program analysis
to produce a subset of cells that are needed to produce a chosen
result. Glinda’s live programming explores a different point in the
design space where these inconsistencies cannot occur, but the user
gives up direct control over execution.

Another shortcoming of notebooks is that the work is done
through scripting, with visualizations merely reflecting the script-
ing code. That is, scripting is primary; visualization is secondary.
Recent research aims to improve parity between the two. Mage [19]

provides anAPI to facilitate the creation of task-specific GUIswithin
the notebook, for example, for editing images, doing test/train splits,
or exploring confusion matrices. Wrex [7] allows a data scientist
to provide examples of data transformations inside a table tool
in the notebook. Wrex then synthesizes readable code from these
examples, for the data scientist to run in a cell. B2 [31] records
interactions with notebook visualizations to turn the user’s data
selections and filtering into script variables that can be computed
over. This parity between scripting and interactive visualizations is
also an ingredient of Glinda.

2.2 GUI-based Data Science Tools
Another approach to data science tools are environments with
graphical user interfaces. Commercial tools like Tableau [27] or
PowerBI and academic tools like Voyager [30] allow users to load,
manipulate, explore, visualize and create reports and dashboards
about data. While these tools’ user interfaces provide a wide range
of functionality, they lack open-ended nature of programming en-
vironments. Visual programming languages for data science, like
Azure ML Studio and lobe.ai, combine some of the benefits of
programming environments with the direct manipulation style of
GUI-based tools. These environments provide an extensible palette
of parts that can be dragged onto a canvas and connected to create
pipelines. For example, a box with a live camera feed could be fed to
an image processing box, which in turn is fed to a deep net model to
form a prediction. These environments are essentially as general as
programming environments, but with a GUI that scaffolds program
construction to avoid certain classes of errors. Glinda is similar in
spirit to these visual programming languages, but designed to fit
within a textual programming environment. Code completion and
code snippets act as a palette of parts to aid construction, and its
declarative syntax is higher-level and less technical than scripting
languages.

CHI ’21, May 8–13, 2021, Yokohama, Japan Robert DeLine

2.3 Domain-specific Languages
Another technique for making programming more accessible is to
design a domain-specific language (DSL), which aims for a direct-
ness of mapping between domain concepts (for example, finance)
and the syntax and semantics of the language. There are two kinds
of DSLs: an external DSL uses a traditional compiler infrastructure
and therefore has full control over syntax and semantics; an inter-
nal DSL is a stylized API in an existing general-purpose language
(often one with flexible syntax and expressive type systems, like
Haskell or F#) [9]. There are many DSLs for data science work,
particularly data queries, which Makrynioti and Vassalos have re-
cently surveyed [23]. Many of these are designed not so much to
support the end user, but for a high-performance implementation,
for example ML2SQL [26] or SystemML [2].

Some tools have DSLs for data science workflows, with the goal
of automating batch-style execution, particularly for replicability.
The Worflow Description Language 5 chains together the steps of
a data science workflow (which are often shell scripts), both to
make them understandable and to automate execution. The deep
net toolkit Caffee uses JSON as a declarative notation for describing
deep-net architectures to automate training [13]. Glinda is similar
to these, but with an emphasis on the editing experience, rather
than batch execution.

2.4 Live programming
Live programming (also called reactive programming) is a user
experience in which a programmer’s edits have an immediate and
visible effect [28]. This immediacy is intended both to increase
productivity and to improve comprehension [15]. The technique
is particularly useful in visual domains, like the design of user
interfaces [3, 10] and visualizations in data science (Tempe [6],
Observable6). In the context of data science, live programming
eliminates some of the inconsistency problems that the notebook
cell model creates. Glinda re-implements Tempe’s algorithm for
live programming, but without the emphasis on live streaming
data [5]. Tools like Tempe and Observable track data dependencies
to avoid unnecessary computation as values change. On the other
hand, Streamlit, a live-programming framework for creating data
apps, uses a naive implementation (continuous whole-program
re-execution, with user-provided hints about which computation
to memoize), but is available as a Python library, rather than an
environment to adopt.

3 DESIGN OVERVIEW
Glinda provides two complementary ways for data scientists to
express their intentions about their workflow. The first is through a
domain-specific language (DSL), which breaks down the workflow
into a series of named steps. Our design goal is for each step to
represent a logical unit of work, expressed in plain-spoken terms,
with useful defaults to allow the omission of unknown or uninter-
esting details. The second way is through interactive visualizations,
whose GUI style of interaction complement the DSL’s text editing
interactions. That is, the design goal is for each step to be expressed

5https://github.com/openwdl/wdl
6http://www.observablehq.com

through a thoughtful combination of text editing and GUI interac-
tions. Live programming is the engine that continually keeps these
two mutually consistent and up to date.

In addition, as an extension to Visual Studio Code, Glinda is
intended to fit comfortably within a development environment.
The Glinda user experience is launched whenever the user ed-
its a file with the extension .gda. Opening such a file creates a
second document tab that contains the interactive visualizations.
Glinda synchronizes the scrolling in these two documents, so that
a selected DSL construct and its corresponding GUI are both high-
lighted and visible. Glinda also uses familiar editor features, like
code completion, error diagnostics, and margin icons, to aid in
program construction and feedback. A Glinda file sits side by side
with other source files in a project. Features like source control and
real-time collaborative editing work on .gda files like any other
text files.

To give a sense of Glinda’s live programming, we describe some
key activities our user study. This section describes several of the
steps that our participants completed while following the study’s
tutorial. The tutorial analyzes a small dataset about passengers
aboard the Titanic. As a first step, a participant enters the following
YAML text into an empty .gda file:

titanic:
- data:

type: file
path: /data/titanic.csv

A Glinda file consists a collection of named workflows, where each
workflow is a list of steps that read data, transform data, visualize
data, and build models from data. In the text above, the participant
defines a single workflow named titanic, with a single step that
begins with data.

To give this YAML a computational meaning, Glinda keeps an
extensible collection of recipes. A recipe is a Python function with a
special docstring that contains a YAML template. To compile a step,
the Glinda compiler searches all recipes to find one whose template
matches the step’s YAML. If a matching recipe is found, the step is
compiled into a call to the recipe function. If no match is found, the
compiler reports an error. The matching algorithm is described in
Section 4.1. In this first step, the YAML matches a recipe that uses
the Pandas library to read a CSV file into a dataset. A few seconds
after entering the YAML text, a table appears in the visualization
pane (Fig. 3, top right). This table shows the size of the dataset, its
schema, and a sample of its rows (in this case, the entire dataset).
To allow the user to browse the data, the table provides standard
features for resizing, sorting and filtering columns.

Continuing the tutorial, a participant next uses code completion
to enter a second workflow step (Fig. 3, top). The code comple-
tion menu shows all available recipes. The participant chooses
model (decision_tree), which causes the following code snippet
to be inserted:

- model:
type: decision_tree
target:
uses:

To fill in the snippet placeholders (gray boxes), the participant can
again use code completion. The key target expects a column name

Glinda: Supporting Data Science with Live Programming, GUIs and a Domain-specific Language CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 3: (top) After a user enters the text on lines 1–4, the table visualization on the right immediately appears because of
Glinda’s live programming. Glinda provides code completions, which generate YAML snippets. (bottom) Steps in Glinda chain
together. Adjusting the slider in the sample step changes the data sample flowing into the model step. This causes the model
step to re-run and the learning curve to update.

as a value, so invoking code completion there brings up a list of
the active columns. The key uses expects a list of columns, which
can be similarly filled in with code completions. The combination
of a declarative language and code snippets makes writing Glinda
programs less like programming and more like filling in a form.

Once the participants has chosen a target column and at least
one uses column, live programming invokes the model recipe to
build a decision tree. Within a few seconds, the model’s training
curves appear in the visualization pane (Fig. 3, bottom right). The
participant sees that the model achieves a final accuracy around
80%. The tutorial then encourages the participant to comment and
uncomment the line containing Age, which alternately adds and
removes that feature from the model. The participant can watch
the training curve alternately shift between 75% and 80%.

A workflow’s steps are combined through function composition:
the output from one step is the input to the next step. (The tidyverse
APIs in R use the same concept, with an explicit piping syntax.) So
far, the participant has two steps: a data-reading step that flows

into a model-training step. The tutorial next asks the participant
to insert a sampling step between these two (Fig. 3, bottom). To
change the sampling strategy or size, the participant can edit the
corresponding key values in the text. Alternatively, by adding an
asterisk next to the key name, Glinda adds an appropriate GUI
element for updating that key’s value, in this case, a drop-down
list for strategy and a slider for fraction. (These elements are
similar to Juxtapose’s tuning variables [10].) Interacting with these
elements updates the YAML text and triggers live programming.
The newly updated sample flows into the model-building step,
which then rebuilds the model and updates the learning curve.

In short, the participants have several means for updating the
YAML content—text operations, code completions, code snippets,
GUI elements, and interactive visualizations. All of these changes
trigger the live programming algorithm (described in Section4.4) to
recompute results as necessary, creating a responsive exploratory
experience.

CHI ’21, May 8–13, 2021, Yokohama, Japan Robert DeLine

4 IMPLEMENTATION
Data science today encompasses a wide variety of workflows: tradi-
tional statistics and estimation, mining relational data, time series
analysis of logs, signal processing on sensor data, training deep
nets on unstructured data, and on and on. For Glinda to cover these
use cases, as well as future ones, requires extensibility. Here we
describe Glinda’s novel architecture to provide live programming
for a domain-specific language in an extensible way. We also cover
a few additional details about the language, which provide context
for the participants’ feedback in our study.

4.1 Matching recipes
As mentioned earlier, a recipe is a Python function with a special
docstring that contains a YAML template (Fig. 4-A). When the user’s
YAML (B) matches the YAML template, the user’s YAML is compiled
into a call to the recipe function (C). To understand the matching
algorithm, a quick overview of YAML is helpful.

YAML has essentially three constructs: scalars, dictionaries and
lists. Scalars are Booleans, numbers, and strings (which are typically
not written inside quotes unless they contain certain characters).
Dictionaries are written with a colon (:) between the key and the
value; list items begin with a hyphen (-). Like Python, whitespace
in YAML is significant and reduces the need for syntactic brack-
eting. Specifically, indentation is used for nesting, and newlines
signify the end of constructs like list items and key-value pairs in
dictionaries. (There is also a second, compact syntax for dictionar-
ies and lists, which surround them with curly and square brackets,
respectively.) Scalars, dictionaries, and lists can be composed to
describe hierarchical data.

The matching algorithm is defined inductively over the YAML’s
structure. For scalars, the YAML template can either specify an
exact value to be matched (e.g. the string scatter_plot) or can
allow the user to choose a scalar value, subject to some constraints.
These constraints are written as a dictionary with dollar-sign keys:

• $type for the type of scalar expected, for example columnname
for the name of a column;

• $min and $max for the range of a numeric value;
• $default for the default value to be used if the key is omit-
ted; and

• $optional as shorthand to say the $default is the Python
value None.

For dictionaries, every key in the template must have a correspond-
ing key in the step YAML, unless the the value specifies $default
or $optional. For lists, there are two ways for a YAML template
to constrain the list items. For the common case of lists of scalars,
the template can use a $type specification with brackets to specify
the item types. For example, the template $type: [columnname]
matches a list whose items are all column names. The second way
to constrain list items is by reference to other recipes, as described
next.

To support compositionality, a template can specify its content by
reference to another template. Every YAML template has a $kind,
which is implicitly kind step, if omitted. A YAML template may
specify that part of its content must be of a certain $kind. For
example, Glinda has a set of recipes of kind layer for creating
layers in a deep net. The recipe for training a deep net specifies that

items in its layers list must match recipes of $kind layer. In short,
these dollar-sign keys allow a template writer to set expectations
about the YAML syntax, but without the need for a formal grammar
or parsing expertise.

Anyone with the skills to write a Python function can contribute
a new recipe to the collection. Glinda currently has recipes for
reading and manipulating tabular data (using Pandas), visualiz-
ing data (using Altair [29]), transforming data by example (using
PROSE Code Accelerator [7]), training predictive models (using
Scikit Learn), and training deep nets (using Keras). In most cases,
the recipe functions are thin wrappers for framework API calls.
Some recipes supplement the framework APIs with conveniences
or useful defaults. For example, the data recipe in the previous
section uses the provided path’s extension (.csv, .json, .xlsx) to
choose an appropriate Pandas function for reading the data. As an-
other example, the model recipes, by default, will choose encodings
for columns that cannot be used directly in training, for example,
one-hot encoding for categorical columns. For experienced data
scientists, these default encodings make common cases less verbose.
For those new to data science, these defaults scaffold the learning
process to avoid initial pitfalls.

YAML’s declarative, hierarchical syntax lends itself to a design
principle of allowing the user to omit details to rely on defaults.
For example, the simplest plot requires only a column name:

plot: Age

This plots the column’s distribution as a histogram with default
binning, colors, axis labels, etc. To override these defaults, the user
can add details:

plot:
type: histogram
column: Age
bin_size: 10
sideways: true

A second design principle is that similar functionality should have
similar YAML. Creating a scatter plot or line chart is similar to
creating a histogram:

plot: plot:
type: scatter_plot type: line_chart
x: Job x: Job
y: Age y: Age

These steps use different recipes whose templates were designed
to coordinate. Note that using the key type with a literal string
(histogram, scatter_plot, line_chart) is simply a convention
that exploits the recipe matching algorithm. We call any key with
a literal value, like type, a discriminator, in that it helps the user
discriminate among similar choices. Also, because code completion
lists are flat in VS Code, we add discriminators to the completion
labels to distinguish similar recipes (Fig. 3, top).

4.2 Compiling recipes
When amatching recipe is found for a step, Glinda compiles the step
into a call to the recipe’s function. Most of the arguments passed
in the call come from the YAML key values. Their position in the
call is determined by matching the names of the function’s formal
parameters. For example, in the function scatterplot (Fig. 4-A),
the YAML template has keys x, y, color, size, and tooltip, and

Glinda: Supporting Data Science with Live Programming, GUIs and a Domain-specific Language CHI ’21, May 8–13, 2021, Yokohama, Japan

A
def scatterplot(input, x, y, color, size, tooltip):
"""
plot:
type: scatter_plot
x: { $type: columnname }
y: { $type: columnname }
color: { $type: columnname; $optional: true }
size: { $type: columnname; $optional: true }
tooltip: { $type: [columnname]; $optional: true }

"""
args = {"x": x, "y": y, "tooltip": [x, y]}
if color in input:

args["color"] = color
args["tooltip"].append(color)

if size in input:
args["size"] = size
args["tooltip"].append(size)

if tooltip:
args["tooltip"] = tooltip

chart = alt.Chart(input).mark_circle().encode(**args)
respond_chart(chart)

B
spotify:
- data:

type: file
path: /data/spotify.csv

- sample:
strategy: random
size: 1000

- plot:

type: scatter_plot

x: energy

y: tempo

color: playlist_genre

C
spotify1 = pandas_read_file('/data/spotify.csv')
spotify2 = pandas_sample(spotify1, 'random', 1000)
scatterplot(spotify2, 'energy', 'tempo',

'playlist_genre', None, None)
spotify = spotify2

Figure 4: The Glinda recipe for scatter plots (A), a Python function whose doc string contains a YAML template. When the
recipe is used (B), the values supplied for keys x, y, color,size, and tooltip are passed as the corresponding arguments in a
call to scatterplot (C). When a recipe function has a parameter named input, then the passed argument is the output of the
previous step (spotify1).

the function has parameters with those same names. If the user’s
YAML is missing a key marked $default:V , then the compiler
passes valueV for that parameter; if it is marked $optional: true,
then the compiler passes None.

To combine steps into an overall computation, the Glinda com-
piler threads the calls together using assignments to intermediate
variables (Fig. 4-C). The result of the first step is assigned to a vari-
able (spotify1). This variable is then passed to the second step’s
function whose result is assigned to a second variable (spotify2).
Some recipes, like those for plots, do not produce results, so their
function calls are not bound to variables, for example, the call to
scatterplot in Fig. 4-C. The result of the final step that produces
an output is bound to the workflow’s name. Hence the final assign-
ment in Fig. 4-C assigns spotify2 to spotify.

This threading of calls is determined by two special parameters
to recipe functions, input and parent. If a recipe has a parameter
called input, then the output of the previous step is passed for
this parameter. For example, since the scatterplot recipe takes
an input parameter, the call to scatterplot is passed spotify2,
the output from the previous step (Fig. 4-C). As mentioned earlier,
recipes can be hierarchically composed from other recipes by using
$kind. For example, the deepnet recipe takes a list of layers whose
recipes have $kind: layer. The special parameter parent gives a
recipe access to the containing recipe. For example, a convolutional
layer recipe needs access to the input shape from the containing
deep net. Finally, Glinda provides a recipe called use to insert the
result of one workflow into the computation of another. With this
ability, Glinda computations can be arbitrary directed acyclic graphs.
Glinda also provides compile-time loops to avoid repetition in the

YAML structure (for example, repetitive deep net layers) and limited
run-time loops for experiments like hyperparameter sweeps.

4.3 Expressions
Steps like filtering data and defining new columns require the use
of predicates and arithmetic. While it is feasible to encode these
expressions in YAML, the result would be tedious and read like a
syntax tree. Instead, Glinda provides an expression language based
on Python’s syntax, for example:

- filter:
keep: Age > 0

- add_column:
NormTicket: TicketCost / max(TicketCost)

Here, the first step filters the dataset to those rows whose Age col-
umn is positive; the second defines a new column called NormTicket
whose value for a given row is that row’s TicketCost divided by
the maximum value of the TicketCost column. Treating column
names as though they were scalar values is similar to Pandas in
Python, tidyverse in R, and SQL.

4.4 Live programming
Glinda uses DeLine and Fisher’s live programming algorithm [5],
adapted for Python rather than C#. Briefly, every time the user
pauses more than 500 ms, Glinda compiles the user’s YAML to
Python, as described in the previous section. If there are no com-
pilation errors (for example, syntactic errors in the YAML), the
compiler gives the Python code to the live programming algorithm.
This algorithm compares the latest Python code to the previous
version. All of the statements that have changed form an initial set

CHI ’21, May 8–13, 2021, Yokohama, Japan Robert DeLine

of statements to run. The algorithm then computes a dependency
graph for the new code. Any statement that depends on statements
in the set is then added to the set. This process of adding dependen-
cies is repeated until a fixed point is reached. The statements in the
final set are then run using a Python interpreter. (As an aside, com-
puting a dependency graph for a Python program presents many
technical difficulties not present in C# programs, mostly because
Python is a dynamically typed language. The live programming
algorithm is conservative in the face of these challenges: it assumes
a dependency exists unless the program analysis is certain it does
not. In practice, the algorithm typically runs the minimal amount
of code.)

Glinda uses the Jupyter Server as its Python interpreter for sev-
eral reasons. First, the Jupyter Server implements a socket-based
protocol for executing code, which means that the interpreter can
run locally or in the cloud. Second, the Jupyter Server’s protocol
provides a side-channel for reporting visualization results as the
Python code runs. This is what Jupyter Notebook and Jupyter Lab
use to display their visualizations, and Glinda does the same. Finally,
Jupyter Server supports many languages, not just Python. Currently
Glinda files compile only to Python. However, using the Jupyter
Server opens the possibility of compiling to other languages or even
multiple languages within a file. A major downside to using Jupyter
Server is that interrupting the Python kernel is slow and unreliable.
Ideally, as the user updates the YAML, any Python code currently
executing would be stopped in favor of running the most recent
code. Unfortunately, due to Jupyter Server’s limitations, Glinda’s
live programming runs Python code to completion.

5 QUALITATIVE EVALUATION
Ultimately, we would like to evaluate Glinda with multiple types of
roles on software development teams: data scientists; developers;
operations engineers; and non-programming roles like program
managers. For our initial study, we begin with data scientists. After
all, if data scientists feel that Glinda is inadequate or inappropriate
for doing data science work, there is little point in trying to convince
the other roles. Evaluating first with data scientists also allows us
to incorporate their expert feedback before testing with other roles.

5.1 Participants
We recruited participants through an invitation email sent to a
random sample of 200 data scientists at a large, USA-based soft-
ware company. The random sample was selected based on job title,
position in the organization (Human Resources and Legal were
excluded), and location (for convenience of running the study). The
invitation yielded 23 volunteers (11.5% response rate), of which
12 participated in the study. The participants (10 male, 2 female)
report a mean of 8.9 years of professional experience and 7.2 years
of working as a data scientist. They report spending between 10–50
(mean 28.2) hours per work week on data science activities.

5.2 Protocol
We conducted each session remotely over a video chat system, with
the ability to share the desktop and record the session. Each session
lasted 60 minutes, for which the participants were compensated
$25 USD. After signing a consent form, each participant connected

to a virtual machine in the cloud, which we set up in advance with
the necessary software and data. The rest of the session had four
parts: a data science task with a computational notebook (10 min);
an interactive Glinda tutorial (15 min); a data science task with
Glinda (20 min); and a final questionnaire (5 min). The purpose of
the notebook task was to warm them up for the creative task of
analyzing data and to allow the participant to contrast the expe-
riences of using a notebook versus Glinda. For the computational
notebook, we used VS Code Notebooks, which provides a user
experience nearly identical to Jupyter Notebooks, but within the
VS Code editor. We chose VS Code Notebooks to minimize the
differences between the notebook and Glinda experiences. That is,
we did not want to give Glinda an advantage when participants
compared the two experiences, simply due to its integration into a
development environment.

For both the notebook and Glinda tasks, the participant chose
from six Tidy Tuesday7 datasets, used to promote best practices in
the R community. The six datasets in the study were on the follow-
ing topics (with sizes given as rows × columns): Spotify song genres
(32, 833 × 24); hotel bookings (119, 390 × 33); cocktail ingredients
(2104×14); coffee bean ratings (1, 339×44); National Football League
games, teams, and attendance (10, 846 × 9, 5324 × 20, 638 × 16); and
cracked passwords (507×10). Each dataset had a local file path and a
link to a data dictionary on the Tidy Tuesday site. For both the note-
book and Glinda tasks, we invited the participant to choose their
own goal, like data cleaning, exploratory data analysis, creating
visualizations, or building models. In addition to the Glinda tutorial
described in Section 3, we also provided a “cheat sheet” poster to
describe all the available Glinda recipes, including those not cov-
ered in the tutorial. Throughout all the tasks, the experimenter was
available to answer questions.

6 RESULTS AND DISCUSSION
Overall, the data scientists’ response to Glinda was quite positive,
as reflected in both their remarks and responses to the usability
questionnaire (Fig. 5). The majority asked for an installer so they
could use the tool again after the study, and several requested follow-
up meeting with their teams to discuss accommodating their data
sources and practices.

The questionnaire ended with four open-response questions
about their experiences:

• What aspects of using Glinda do you like?
• What aspects of using Glinda do you dislike?
• Are there aspects of Glinda that are better than using note-
books like Jupyter Notebook, Colab, Databricks, etc?

• Are there aspects of notebooks that are better than using
Glinda?

Their responses to these items, plus a transcription of their remarks
during the tasks, are the sources of the quotes below.

6.1 Liveness
The participants responded the most positively to live programming
and its immediate, interactive visualizations. The initial step of the
tutorial, which pops up a table display, often elicited a spontaneous

7https://github.com/rfordatascience/tidytuesday

Glinda: Supporting Data Science with Live Programming, GUIs and a Domain-specific Language CHI ’21, May 8–13, 2021, Yokohama, Japan

 ! " # $ % $ # " ! & ' () * $% $$ $#

+,-./01,234,50246782594,95:/7;5<725.0:,/:4-/;=

+,-./01,234,>64782594>,.6,>;594>,?6.@67AA50@,2.,B4,/:4-/;=

C.50@,1727,:854084,D.6E,50,FG,H.14,5:,/:4-/;=

I;5017,D7:,47:J,2.,/:4=

I;5017,D./;1,B4,/:4-/;,-.6,:37650@,AJ,D.6E,D523,8.;;47@/4:=

+,-4;2,946J,8.0-51402,/:50@,I;5017=

+,-./01,I;5017,/:4-/;,-.6,D.6E50@,.0,1727,:854084,27:E:=

+,-./01,52,47:J,2.,4K?64::,AJ,5024025.0:,50,I;5017=

+,D./;1,5A7@504,2372,A.:2,?4.?;4,D./;1,;4760,I;5017,L/58E;J=

+,D./;1,;5E4,2.,/:4,I;5017,-64L/402;J=

:26.0@;J,15:7@644

:.A4D372,15:7@644

15:7@644

04/267;

:.A4D372,7@644

7@644

:26.0@;J,7@644

 !"#$%"!

Figure 5: The twelve participants’ responses to a usability questionnaire were overall quite positive. They particularly appre-
ciated the responsiveness of interactive visualization and live programming.

“oh”, “wow”, or “cool”. Many commented that live programming’s
visualizations automated a task they do explicitly in notebooks. One
participant wrote, “The idea of workflow and execution under the
hood were very fascinating. I tend to call display at intermediate
steps to see if the data looks ok or the plot looks ok. The fact that the
workflow did that for me saved me a lot of time.” Another said, “I
liked the interactive visualizations quite a lot. I found it easier to use
than the notebook equivalents where I’d have to arduously define
what I want visualized instead of just giving the name of a column.”
Consistently, a similar moment of delight was adjusting the slider
in a sample step and seeing the downstream computations update:
“Oh my god, this is wild. It’s like a complete GUI experience.”

That said, several participants were concerned about how live
programming would cope with large datasets or slow operations
like training a deep net: “I guess that is one of my worries with
this kind of always-updating thing is when your datasets start to
get large, when you have a lot of columns or a lot of features...I
don’t know what a good solution to that is, because I really like
it. Maybe you could always be sampling by default.” (In fact, re-
searcher have previously used continuous sampling for incremental
visualization [8].) Several participants suggested that Glinda should
provide a way to pause computation temporarily. One participant
wrote “reactive is too aggressive”, and a few expressed a preference
for the explicit execution control in notebooks.

6.2 High-level, Declarative Language
The participants also felt that expressing their intentions in a high-
level declarative notation made them more productive: “I would
have taken maybe an hour to write all this by myself in Pandas. It
took like three seconds here....I think this tool has a lot of potential.
I mean the time saving is insane.” Another participant similarly
wrote, “it lets me skip a lot of work.” Indeed, during the warm-up
notebook task, half the participants opened a web browser to search
for details about the APIs they were using. Their feedback also made
it clear that high-quality code completions are a crucial aspect of this
productivity. This is partly due to the feature’s familiarity: “I really
like the code completions. Everything just blended in with what I
expect from VS Code.” More importantly it scaffolded their use of
an unfamiliar language. Many named code completion as a favorite
feature, for example, “Loved the way how the code completion
worked and the way in which the code completion was also able to
suggest the features of my dataset after initializing it.”

In addition to productivity, some participants also felt that the
high-level notation improves reusability: “Declarative syntax. YAML
is simple. Provides a framework that encourages packaging code
for reuse.” In particular, the high level of abstraction, particularly
the implicit chaining of steps, reduces the bureaucratic details that
can interfere with code reuse. Several participants were also excited
by the possibility of writing their own recipes to capture common
team practices for reuse: “Code also feels way more reusable when
defining recipes than in isolated Notebooks”

A few participants were hesitant to give up low-level control
over their work, for example, “recipes are abstract, black-boxed
making it harder to debug”. Another wrote: “I like having access to
the ‘lower’ level objects. I can imagine Glinda making hard things
harder while making moderate to easy things easier.” One area of
for further work is the recipe authoring experience, for example
the ability to “go to definition” from a recipe instance in YAML
to the corresponding recipe function in Python. Similarly, a user
should be able to write the YAML for a non-existent recipe and then
create from it a new recipe function in Python. Better support for
recipe authoring may help open the black box that worried some
participants.

6.3 Language Design
Overall, participants liked having a high-level, declarative notation
and found it productive. However, a few spotted design flaws in the
current Glinda language. For example, one participant noticed than
Python-like expressions could appear when defining a new column,
but not when choosing the size of a data sample, which requires
an integer constant: “One thing that’s confusing to me is when
I’m allowed to use Python expressions in place. I clearly wasn’t
allowed [in the sample size]. I wonder if it’s a typing problem or
an expression-not-allowed problem.” Another asked: “Can I have a
list of columns as a variable? If I want to something more sophisti-
cated...I want to do the same training on a list of different feature
sets.” They tried to define a top-level name for a list of columns
and to use the variable name for the model’s uses key. This does
not work because Glinda interprets the variable name as a column
name.

The heart of the issue is that Glinda currently has two compet-
ing notions of compilation: one based on lexical scoping (workflow
names, use steps, and expressions); and one based on template

CHI ’21, May 8–13, 2021, Yokohama, Japan Robert DeLine

matching. More work is needed to reconcile these two. One poten-
tial solution would be a phased compilation: first resolving lexical
names, then doing the recipe matching.

Most of the participants were aware of YAML, but had not
worked with it before. While all of the participants were able to
write YAML productively from the start, there were a few common
pitfalls. The most frequent problem is that a space character is
compulsory after both the hyphen for list items and the colon for
dictionary keys. For example, - data is parsed a list item, while
-data is parsed as a five-character string. A more serious issue
is due to YAML’s simplicity: small syntactic changes create unin-
tended differences in structure. For example, several participants
accidentally omitted the initial hyphen when forming a list of steps,
for example:

titanic:
- data

type: file
path: /data/titanic.csv

plot: Age # missing initial hyphen

Here, the participant intended plot to be a step in the workflow
titanic. Instead, the text above defines a top-level constant called
plot with the string value Age. Similarly, had plot been indented
by two spaces (without a hyphen), it would be key of the data
step, rather than its own step. In short, because the syntax is so
simple, mistaken programs can still be legal programs. Addressing
this issue requires a trade-off between expressiveness and checking.
For example, forbidding top-level constants from having the same
names as recipes would allow the program above to be reported as
erroneous.

6.4 Supporting Data Science
Many participants noticed feature gaps in the current recipes. For
example, several participants wanted greater control over the ap-
pearance of visualizations, like axis bounds, axis labels, and titles.
They wanted the ability to edit these in place through GUI controls,
but to have their choices recorded in the YAML. Similarly, some
participants wanted explicit control over the hyperparameters of
model training, be able to override implicit choices about data en-
coding, and the ability to choose different metrics besides accuracy.
Participants consistently complained about explicitly listing the
columns to use as features during training. They wanted abbre-
viations for lists of columns, for example a star notation to mean
all columns except the prediction target. All of these suggestions
would require only small changes to existing recipes.

Many participants wanted the ability to export the Python code
that the Glinda compiler produces. Glinda has an item on the con-
text menu called “Show Compiled Markup”, which we showed par-
ticipants when they brought up this topic. The menu item opens a
read-only Python file containing the Glinda compiler output, which
updates automatically with live programming. In a similar vein,
several participants asked for a feature to export the visualization
pane (or the pane and YAML together) as HTML. Their goal was to
share a report with other roles on the team, particularly program
managers and executives. This communication use case was why
they wanted careful control over appearance of visualizations.

7 CONCLUSION
The professional data scientists in our study were surprisingly en-
thusiastic about Glinda, given that they have entrenched work
practices with notebooks, Python, and its libraries. The combina-
tion of a declarative language, live programming, and interactive
visualizations created an iterative exploratory experience that sev-
eral participants described as more productive than writing Python
in notebooks. In short, these data scientists found Glinda not only
a plausible way, but a desirable way to do data science work.

Data science has become a routine part of software development,
both in the design of the user experience and in support of the
development process [1, 20]. Many roles now involve data: devel-
opers incorporate ML models alongside their hand-written logic;
operations engineers use models to predict failures and resource
usage; and program managers use data to understand customer
behavior. Glinda’s use of a DSL and GUIs might make data science
work more approachable to these other roles. After incorporating
the data scientists’ feedback, the next step of the research agenda
is to evaluate Glinda with two additional user groups: developers
and operations engineers (who have programming skills) and pro-
gram managers (who often do not). Given that there are already so
many tools and notations for data science, one could reasonably
ask whether there is room for another.8 We believe that the goal of
democratizing data science across all roles on software teams could
be a sufficient “killer app” to justify room for a new notation.

REFERENCES
[1] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece

Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, New York, NY, USA, 291–300.

[2] Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Fred-
erick R. Reiss, Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda. 2016.
SystemML: declarative machine learning on spark. very large data bases 9, 13
(2016), 1425–1436.

[3] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, SeanMcDirmid, Michal
Moskal, Nikolai Tillmann, and Jun Kato. 2013. It’s alive! continuous feedback
in UI programming. In Proceedings of the 34th ACM SIGPLAN conference on
Programming language design and implementation. ACM, New York, NY, USA,
95–104.

[4] Souti Chattopadhyay, Ishita Prasad, Austin Z Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. ACM, New York, NY, USA, 1–12.

[5] Robert DeLine and Danyel Fisher. 2015. Supporting exploratory data analysis
with live programming. In 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, New York, NY, USA, 111–119.

[6] Robert DeLine, Danyel Fisher, Badrish Chandramouli, Jonathan Goldstein,
Michael Barnett, James F Terwilliger, and John Wernsing. 2015. Tempe: Live
scripting for live data.. In 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Vol. 15. IEEE, New York, NY, USA, 137–141.

[7] Ian Drosos, Titus Barik, Philip J Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. ACM, New York, NY, USA, 1–12.

[8] Danyel Fisher, Igor Popov, Steven Drucker, and MC Schraefel. 2012. Trust me,
I’m partially right: incremental visualization lets analysts explore large datasets
faster. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, New York, NY, USA, 1673–1682.

[9] Martin Fowler. 2010. Domain-specific languages. Pearson Education, London,
UK.

8https://xkcd.com/927

Glinda: Supporting Data Science with Live Programming, GUIs and a Domain-specific Language CHI ’21, May 8–13, 2021, Yokohama, Japan

[10] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klem-
mer. 2008. Design as Exploration: Creating Interface Alternatives through Par-
allel Authoring and Runtime Tuning. In Proceedings of the 21st annual ACM
symposium on User Interface Software and Technology (Monterey, CA, USA)
(UIST ’08). Association for Computing Machinery, New York, NY, USA, 91–100.
https://doi.org/10.1145/1449715.1449732

[11] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Rob DeLine.
2019. Managing Messes in Computational Notebooks. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, New York,
NY, USA, 1–12. https://microsoft.github.io/gather/

[12] Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. 1985. Direct
Manipulation Interfaces. Human–Computer Interaction 1, 4 (1985), 311–338.

[13] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional
Architecture for Fast Feature Embedding. In MM 2014 - Proceedings of the 2014
ACM Conference on Multimedia. ACM, New York, NY, USA, 675–678. https:
//doi.org/10.1145/2647868.2654889

[14] Eunice Jun, Maureen Daum, Jared Roesch, Sarah Chasins, Emery Berger, Rene
Just, and Katharina Reinecke. 2019. Tea: A High-Level Language and Runtime
System for Automating Statistical Analysis. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology (New Orleans, LA,
USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA,
591–603. https://doi.org/10.1145/3332165.3347940

[15] Hyeonsu Kang and Philip J Guo. 2017. Omnicode: A novice-oriented live program-
ming environment with always-on run-time value visualizations. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology.
ACM, New York, NY, USA, 737–745.

[16] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 1265–1276.
https://doi.org/10.1145/3025453.3025626

[17] Mary Beth Kery and Brad A Myers. 2017. Exploring exploratory programming.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, New York, NY, USA, 25–29.

[18] Mary Beth Kery and Brad A Myers. 2018. Interactions for untangling messy
history in a computational notebook. In 2018 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, New York, NY, USA, 147–155.

[19] Mary Beth Kery, Donghao Ren, FredHohman, DominikMoritz, KanitWongsupha-
sawat, and Kayur Patel. 2020. mage: Fluid Moves Between Code and Graphical
Work in Computational Notebooks. In Proceedings of the ACM Symposium on
User Interface Software and Technology. ACM, New York, NY, USA, 140–151.

[20] Miryung Kim, Tom Zimmermann, Rob DeLine, and Andrew Begel. 2017. Data
Scientists in Software Teams: State of the Art and Challenges. IEEE Transactions
on Software Engineering 44, 11 (September 2017), 1024–1038.

[21] Donald Ervin Knuth. 1984. Literate programming. Comput. J. 27, 2 (1984), 97–111.
[22] Sam Lau, Ian Drosos, Julia M Markel, and Philip J Guo. 2020. The Design Space of

Computational Notebooks: An Analysis of 60 Systems in Academia and Industry.
In 2020 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, New York, NY, USA, 1–11.

[23] Nantia Makrynioti and Vasilis Vassalos. 2019. Declarative data analytics: a survey.
IEEE Transactions on Knowledge and Data Engineering Early, Access (2019), 1–1.

[24] Bernadette M Randles, Irene V Pasquetto, Milena S Golshan, and Christine L
Borgman. 2017. Using the Jupyter notebook as a tool for open science: An
empirical study. In 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL).
IEEE, New York, NY, USA, 1–2.

[25] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans. Visualization
& Comp. Graphics (Proc. InfoVis) 23, 1 (2017), 341–350. http://idl.cs.washington.
edu/papers/vega-lite

[26] Maximilian Schüle, Matthias Bungeroth, Dimitri Vorona, Alfons Kemper, Stephan
Günnemann, and Thomas Neumann. 2019. ML2SQL - Compiling a Declarative
Machine Learning Language to SQL and Python. In Advances in Database Technol-
ogy - 22nd International Conference on Extending Database Technology, EDBT 2019,
Lisbon, Portugal, March 26-29, 2019, Melanie Herschel, Helena Galhardas, Berthold
Reinwald, Irini Fundulaki, Carsten Binnig, and Zoi Kaoudi (Eds.). OpenProceed-
ings.org, Konstanz, Germany, 562–565. https://doi.org/10.5441/002/edbt.2019.56

[27] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A system for query,
analysis, and visualization of multidimensional relational databases. IEEE Trans-
actions on Visualization and Computer Graphics 8, 1 (2002), 52–65.

[28] Steven L Tanimoto. 2013. A perspective on the evolution of live programming.
In 2013 1st International Workshop on Live Programming (LIVE). IEEE, New York,
NY, USA, 31–34.

[29] Jacob VanderPlas, Brian E Granger, Jeffrey Heer, Dominik Moritz, Kanit Wong-
suphasawat, Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, Ben Welsh, and
Scott Sievert. 2018. Altair: Interactive statistical visualizations for python. Journal
of open source software 3, 32 (2018), 1057.

[30] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. 2016. Voyager: Exploratory Analysis via Faceted Brows-
ing of Visualization Recommendations. IEEE Trans. Visualization & Comp. Graph-
ics (Proc. InfoVis) 22, 1 (2016), 649–658. http://idl.cs.washington.edu/papers/
voyager

[31] Yifan Wu, Joseph M Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
Code and Interactive Visualization in Computational Notebooks. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
ACM, New York, NY, USA, 152–165.

https://doi.org/10.1145/1449715.1449732
https://microsoft.github.io/gather/
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/3332165.3347940
https://doi.org/10.1145/3025453.3025626
http://idl.cs.washington.edu/papers/vega-lite
http://idl.cs.washington.edu/papers/vega-lite
https://doi.org/10.5441/002/edbt.2019.56
http://idl.cs.washington.edu/papers/voyager
http://idl.cs.washington.edu/papers/voyager

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Computational Notebooks
	2.2 GUI-based Data Science Tools
	2.3 Domain-specific Languages
	2.4 Live programming

	3 Design Overview
	4 Implementation
	4.1 Matching recipes
	4.2 Compiling recipes
	4.3 Expressions
	4.4 Live programming

	5 Qualitative Evaluation
	5.1 Participants
	5.2 Protocol

	6 Results and Discussion
	6.1 Liveness
	6.2 High-level, Declarative Language
	6.3 Language Design
	6.4 Supporting Data Science

	7 Conclusion
	References

