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ABSTRACT
Self-attention networks (SANs) have been intensively applied for
sequential recommenders, but they are limited due to: (1) the qua-
dratic complexity and vulnerability to over-parameterization in self-
attention; (2) inaccurate modeling of sequential relations between
items due to the implicit position encoding. In this work, we propose
the low-rank decomposed self-attention networks (LightSANs) to
overcome these problems. Particularly, we introduce the low-rank
decomposed self-attention, which projects user’s historical items
into a small constant number of latent interests and leverages item-
to-interest interaction to generate the context-aware representation.
It scales linearly w.r.t. the user’s historical sequence length in terms
of time and space, and is more resilient to over-parameterization. Be-
sides, we design the decoupled position encoding, which models the
sequential relations between items more precisely. Extensive exper-
imental studies are carried out on three real-world datasets, where
LightSANs outperform the existing SANs-based recommenders in
terms of both effectiveness and efficiency.
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1 INTRODUCTION
Sequential recommendations have received increasing interest re-
cently, due to their broad applicability in many online services (e.g.,
∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00
https://doi.org/10.1145/3404835.3462978

e-commerce and movies). Various methods based on RNN and CNN
have been designed for sequential recommenders (e.g., GRU4Rec [4]
and Caser [13]). In recent years, self-attention networks (SANs)
turn out to be more promising options, as they can model sequen-
tial dynamics from user’s historical behaviors better by letting the
items fully attend to the context (all items that the user interacted
with in the past). However, the SANs-based recommenders (e.g.,
SASRec [5] and BERT4Rec [12]) have two major shortcomings.

• SANs require user’s historical items to directly attend to each
other (called item-to-item interaction), which needs time and space
that grows quadratically with historical sequence length [1]. Thus,
the running cost may be prohibitive in practice. Besides, direct item-
to-item interaction is also vulnerable to over-parameterization1. A
typical sequential recommender involves the modeling of massive
items. However, many items do not have sufficient interactions due
to the items’ long-tail property. Therefore, infrequent items’ em-
beddings will not be well trained, whose related attention weights
(generated by item-to-item interaction) can be inaccurate.

• In vanilla SANs, the item embeddings and position embeddings
are directly added up. The recent work [7] shows that there are
no strong correlations between the item and the absolute position.
Thus, such a treatment may introduce noisy correlations and limit
the model’s capability of capturing the user’s sequential patterns.

Some prior works such as Linformer [16] and Performer [2] have
attempted to improve the efficiency of SANs. We argue that the
existing methods mainly focus on acceleration in general. However,
without considering the characteristics of user behaviors, their
performances might be limited in recommendation scenarios.

In this work, we propose a novel approach LightSANs, which
leverage the low-rank property of user history for acceleration.
Particularly, we assume that the majority of user’s historical items
can be categorized with no more than k (a small constant) latent
interests (the latent interest represents user preference towards a
certain group of items; in this work, it is a vector generated from the
sequence of user’s item embeddings). Based on this property, we
introduce the low-rank decomposed self-attention: the user history
is projected into k latent interests, and each of the user’s historical
items merely needs to interact with the k latent interests to es-
tablish its context-awareness (called item-to-interest interaction). It
makes SANs’ time and space complexities linear w.r.t. the length of
user history. Meanwhile, it avoids item-to-item interaction, which
makes the model more resilient to over-parameterization. On the

1Over-parameterization usually means the situation in which the amount of informa-
tion is insufficient to estimate a large number of parameters of deep networks, which
leads to inaccuracy and high cost for model’s inference [3, 9].
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Figure 1: The framework of LightSANs.

other hand, we calculate position correlations individually by our
proposed decoupled position encoding, which explicitly models
sequential relations between items. Therefore, it benefits the model-
ing of user’s sequential patterns by eliminating noisy correlations.

Our main contributions are summarized as follows:
•A novel SANs-based sequential recommender, LightSANs, with

two advantages: (1) the low-rank decomposed self-attention for
more efficient and precise modeling of context-aware represen-
tations; (2) the decoupled position encoding for more effective
modeling of sequential relations between items.

• Extensive experiments on three benchmark recommendation
datasets, where LightSANs outperform various SANs-based meth-
ods in terms of both effectiveness and efficiency.

2 APPROACH
We focus on the next-item recommendation in this work. Given the
ordered sequence of user u’s historical items up to the timestamp-t :
{iu1 , · · · , i

u
t }, we need to predict the next item, i.e., iut+1. We aim

to enhance the classical SANs to make them lighter and better.
Specifically, we propose LightSANs, which leverage low-rank de-
composed self-attention for precise modeling of items’ relevance,
and decoupled position encoding for explicit modeling of items’ se-
quential relations. The overall framework of LightSANs is depicted
in Figure 1, and the details will be introduced next.

2.1 Low-Rank Decomposed Self-Attention
We use the low-rank decomposed self-attention to generate context-
aware representations. It projects items into k latent interests and
integrates the item with the context through interacting with latent
interests. Such a workflow reduces the complexity from O(n2) to
O(nk) and effectively mitigates the over-parameterization problem.

2.1.1 Item-to-Interest Aggregation. We assume that the majority
of user’s historical items can be categorized with no more than k

(a small constant) latent interests. Thus, we propose a learnable
projection function f : Rn×d → Rk×d , to aggregate the historical
items into latent interests. Given the item embedding matrix H ∈

Rn×d (n: #items, d : cardinality of hidden-dimension) as input, we
first compute the item-to-interest relevance distribution D ∈ Rn×k :

D = softmax(H · Θ⊤), (1)

where Θ ∈ Rk×d is a learnable parameter. Then, we use the distri-
bution D to aggregate the input item embedding matrix, and obtain
the interest representation matrix H̃ ∈ Rk×d :

H̃ = f (H) = D⊤ · H =
(
softmax(H · Θ⊤)

)⊤
· H. (2)

Firstly, thanks to f , the item embedding matrix H (n × d) is
converted to the low-rank interest representation H̃ (k × d). This
aggregation will help decrease the size of the attention matrix effec-
tively, and thus the feed-forward pass of the networks will become
more efficient. Besides, interaction with the latent interests can be
more reliable than the direct attention to other items, because the
latent interests capture the user’s overall preferences reflected by
the item sequence, according to Eq. 2. As a result, attention weights
related to infrequent items under item-to-interest interaction will
be more accurate, which mitigates the over-parameterization issue.

Our item-to-interest aggregation is similar to the low-rank lin-
ear mapping of Linformer [16] in format. However, there are two
main differences between them. Firstly, our model is parameterized
with a (k × d)-dimensional matrix Θ, while the mapping matrix in
Linformer is (n × k)-dimension. We argue that a fixed value of n in
parameters makes it hard for the model to be adapted to varying se-
quence length. Secondly, item-to-interest aggregation projects items
to the latent interest space through a learnable item-to-interest rel-
evance distribution while Linformer achieves it through a direct
linear mapping. We empirically demonstrate that the performance
based on linear mapping is limited because items and latent inter-
ests do not follow a simple linear relation (Section 3.2.1).
2.1.2 Item-to-Interest Interaction. We convert the input embedding
sequence X into three matrices Q,K,V ∈ Rn×d through linear
projections WQ ,WK ,WV ∈ Rd×d , and feed them into our low-
rank decomposed self-attention. The original K and V (n ×d) in the
vanilla multi-head self-attention are mapped into K̃ and Ṽ (k × d)
via item-to-interest aggregation f :

S̃i = softmax(
Qi · K̃⊤

i√
d/h

)Ṽi = softmax(Qi · f (Ki )
⊤√

d/h
)f (Vi ), (3)

where h is the number of attention heads, and i is the head ID. The
{̃S1, · · · , S̃h } are concatenated as the final S̃, which is the context-
aware representation. We apply multiple layers of the above self-
attention to facilitate in-depth fusion of the item and the context.

The complexity of our self-attention is reduced from O(n2) to
O(nk), as the item only needs to attend to a constant number of
latent interests. Although many efficient Transformers [16] achieve
the same complexity reduction, they require a fixed value of n,
which is inflexible on varying sequence length. Some efficient Trans-
formers also try to reduce the complexity from the perspective of
hidden-dim (i.e., from n × d to n × k) [2, 14]. However, the running
cost will still be vulnerable to long sequences, and the acceleration
is achieved with the potential loss of context representation quality.



Table 1: Statistics of the datasets after preprocessing.

Dataset # Users # Items # Actions # Avg.length Sparsity

Yelp 56,590 75,159 2,290,516 40.47 99.94%
Books 19,214 60,707 1,733,934 90.24 99.85%
ML-1M 6,040 3,629 836,478 138.51 96.18%

2.2 Decoupled Position Encoding
Conventional SANs-based recommenders mix up item embeddings
(E) and position embeddings (P) to introduce the sequential rela-
tions, i.e., (E + P). As a result, the relevance between two items
(e.g., item i and item j) is (Ei + Pi )(Ej + Pj )⊤, which equals to
EiE⊤j + PiP⊤j + EiP⊤j + PiE⊤j . However, the item-to-position corre-
lations (EiP⊤j and PiE⊤j ) are not very strong, and they may limit
the model’s capability of capturing sequential relations from a se-
quence [7]. In this work, we propose decoupled position encoding
to model sequential relations between items, which is independent
of modeling context-aware representations:

S̃ = Ãitem · f (EWV ) + Ãpos · EWV , (4)

where f is from Eq. 2; Ãitem is attention matrix calculated in Eq. 3:
Ãitem = softmax(Q · f (K)⊤/

√
d/h), and Q = EWQ ,K = EWK ;

Ãpos is calculated as: Ãpos = softmax(PQ · (PK )⊤/
√
d/h), and

PQ = PUQ , PK = PUK and UQ ,UK ∈ Rd×d are learnable pa-
rameters. According to the above equation, Ãpos is independently
calculated parallel to Ãitem (the item-to-interest interaction). By do-
ing so, the sequential relations are explicitly specified without being
affected by the item-to-position correlations, which improves the
representation quality of our low-rank decomposed self-attention.

Besides, Ãpos can be computed once and shared across all the
users within a common batch, as it is independent of the specific
input. In other words, the computation cost of Ãpos is almost neg-
ligible for both training and testing stages.

2.3 Prediction Layer and Loss Function
Same as Transformer [15] to endow the model with nonlinearity,
we apply a fully connected feed-forward network to S̃l in each
self-attention layer l and obtain the result F̃l . With the first t items
encoded, the next item is predicted based on the last-layer’s output
F̃Lt of the t-th item (L is the number of self-attention layers). We use
inner-product to measure user’s preference to an arbitrary item i:

Pr (i |{iu1 , ..., i
u
t }) = ⟨̃FLt ,Ei ⟩. (5)

Finally, we adopt the cross-entropy loss to train our model:

L = −log
exp (⟨̃FLt ,Eд⟩)∑ |I |
i=1 exp (⟨̃F

L
t ,Ei ⟩)

, (6)

where item д is the ground truth item, |I | is the number of all items.

3 EXPERIMENT
3.1 Experimental Settings
3.1.1 Datasets and ImplementationDetails. Weuse three real-world
benchmark datasets, including Yelp, Amazon Books, and ML-1M,
with their statistics shown in Table 1. Following previous works [5,
12], we apply the leave-one-out strategy for evaluation, and employ
HIT@K and NDCG@K to evaluate the performance. For each user,
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Figure 2: Efficiency w.r.t Sequence Length onML-1M dataset.
SASRec is out of memory at sequence length = 512.

we rank the ground truth item in the test set with all other items
of the dataset. The models are implemented based on a popular
open-source recommendation framework RecBole [17]. All codes,
datasets and parameter settings are open-sourced2.

3.1.2 Baseline Models. Two kinds of baselines are considered, (1)
general recommendation methods: Pop, FPMC [10], GRU4Rec [4],
NARM [8], SASRec [5] and BERT4Rec [12]; (2) efficient Transformers:
Synthesizer [14], LinTrans [6], Linformer [16] and Performer [2].
We mainly introduce the second kind of methods.

(1)Linformer reduces the length dimension ofK andV fromn to
k throughn×k linear mappings. However, themapping components
have to be re-trained given different sequence lengths, as the param-
eters of linear mappings require a fixed value of n. (2) Synthesizer
leverages synthetic attention weights, which are factorizations of
two randomly initialized low-rank matrices; Performer leverages
Fast Attention via positive Orthogonal Random features approach
(FAVOR+) to approximate the full-scale attention kernels. Both
methods reduce the hidden-dim cardinality (from d to k), in con-
trast to reducing sequence length cardinality as LightSANs and
Linformer (from n to k). (3) Linear Transformer (LinTrans) uses
a kernel-based formulation of self-attention and the associative
property of matrix products to calculate the attention weights. The
complexity is changed from O(n2) to O(nd), which means it only
works for the cases where n ≫ d . The time and space complexities
of LightSANs (O(nk)) are the same as Linformer and Performer.

3.2 Main Results
3.2.1 Evaluation on Effectiveness. The overall performance is re-
ported in Table 2, and we have the following observations. All
SANs-based methods are better than other approaches because of
the high-quality context-aware representations generated from the
multi-head self-attention. LightSANs and LightSANs-ape (this vari-
ant replaces decoupled position encoding with the absolute position
encoding in vanilla SANs [5] to evaluate the performance of our
low-rank decomposed self-attention) yield more competitive results
than other approaches across all evaluation metrics. Such results
indicate that our proposed self-attention, highlighted by its item-to-
interest interaction, generates more effective context-aware repre-
sentation. Besides, LightSANs outperform LightSANs-ape , thanks
to the decoupled position encoding.

2https://github.com/RUCAIBox/LightSANs

https://github.com/RUCAIBox/LightSANs


Table 2: Performance comparison (%) of all methods on three datasets. The best performance and the second best performance
methods are denoted in bold and underlined fonts respectively.

Datasets Metric Pop FPMC GRU4Rec NARM SASRec BERT4Rec Synthesizer LinTrans Linformer Performer LightSANs-ape LightSANs

Yelp HIT@10 1.7 2.31 4.37 4.49 5.09 4.89 4.97 4.72 4.60 4.74 5.06 5.48
NDCG@10 0.82 1.08 2.15 2.29 2.76 2.62 2.63 2.45 2.41 2.43 2.66 2.89

Books HIT@10 3.95 7.97 8.08 8.16 8.43 8.10 8.16 8.61 8.12 8.66 8.22 8.76
NDCG@10 1.56 3.98 4.02 4.12 4.14 4.03 4.05 4.20 4.03 4.23 4.06 4.25

ML-1M HIT@10 8.15 12.32 21.30 21.75 22.11 21.99 21.40 22.56 14.66 18.73 22.37 22.84
NDCG@10 4.04 5.89 10.91 10.98 11.21 10.99 10.84 11.32 7.28 10.10 11.51 11.45

Table 3: Comparison w.r.t #Parameters and GFLOPs.

Datasets Metrics SASRec LightSANs-ape LightSANs

Yelp Params(M) 4.916 4.919 (1.00 times) 4.936 (1.00 times)
GFLOPs 9.552 5.635 (0.58 times) 8.067 (0.84 times)

Books Params(M) 3.995 3.998 (1.00 times) 4.015 (1.01 times)
GFLOPs 18.005 9.183 (0.51 times) 14.663 (0.81 times)

ML-1M Params(M) 0.345 0.350 (1.01 times) 0.367 (1.06 times)
GFLOPs 28.910 13.219 (0.46 times) 22.968 (0.79 times)

Additional observations: GRU4Rec and NARM perform better
than Pop and FPMC, thanks to the utilization of neural networks.
NARM performs better than GRU4Rec, as it uses the attention
mechanism to model the user’s sequential behavior in each session.
3.2.2 Evaluation on Efficiency. The efficiency is compared between
SASRec (the representative of original self-attention) and Light-
SANs. The computation cost is measured with gigabit floating-point
operations (GFLOPs) on the self-attention module with position
encoding; meanwhile, the model scale (measured with #Parameters)
is also presented. As shown in Table 3, different models have almost
the same amount of parameters, because the item embedding layer
and feed-forward networks are the dominant components. Despite
the similar model scales, significant acceleration is achieved by
the proposed methods. Especially on ML-1M dataset with longer
sequences than others, LightSANs-ape achieve more than 2× speed-
up performance. LightSANs are slower than LightSANs-ape , this is
because our decoupled position encoding needs extra computation
cost to model user’s sequential patterns. It is a trade-off between
model’s efficiency and additional performance gain. Meanwhile,
LightSANs are still more efficient than the original self-attention.

Furthermore, we plot the memory usage and inference time of
LightSANs and other SANs-based methods w.r.t. sequence length,
while holding the total number of items fixed (all are tested on a
Tesla P40 GPU). As shown in Figure 2, with the increase of sequence
length, the cost of SASRec grows dramatically due to its quadratic
complexity. Besides, for LightSANs-ape , LightSANs and other meth-
ods (LinTrans, Linformer, Performer), the memory usage retains
relatively lower, and the inference speed is faster at long sequences.
Although the model scale of LighSANs is slightly larger than SAS-
Rec, our approach decreases the complexity of attention matrix
from O(n2) to O(nk), which significantly reduces the memory cost.
3.3 Detailed Performance Analysis
We conduct effectiveness analysis of key designs in LightSANs, as
shown in Table 4.

• Effectiveness of decoupled position encoding. The posi-
tion encoding directly influences the modeling of items’ sequen-
tial relations in SANs. Here we examine three types of position

Table 4: Effectiveness analysis about key componenets of
LightSANs. {HIT, NDCG}@10 is adopted for evaluation.

Model Yelp ML-1M
HIT NDCG HIT NDCG

Base Methods SASRec 5.09 2.76 22.11 11.21
LightSANs 5.48 2.89 22.84 11.45

Position
remove position 4.68 2.45 19.63 9.78
absolute position 5.06 2.66 22.37 11.51
relative position 5.08 2.70 22.01 11.06

Low-Rank remove low-rank 4.95 2.61 22.34 11.19
Decomposition SVD 3.36 1.69 13.29 6.74

encoding applied to our self-attention. Firstly, without position em-
beddings, the performances drop a lot on both datasets, especially
on ML-1M dataset with longer sequences. This means position
information is essential to self-attention. Besides, both absolute
(LightSANs−ape) [5] and relative [11] position encoding are worse
than decoupled position encoding, which verifies the rationality of
decoupling items’ relevance and sequential relations.

• Effectiveness of item-to-interest aggregation. Since our
item-to-interest aggregation is an essential component for modeling
context-aware representation, we examine how it affects the final
performance comparing with a simple decomposition method. We
remove the low-rank decomposition part from LightSANs, where
the performance becomes significantly lower. Besides, the accuracy
drops on Yelp dataset while it performs similarly on ML-1M dataset
compared with SASRec. For both cases, the acceleration achieved
by the low-rank decomposition brings no negative effect to the pre-
diction quality. We also apply singular value decomposition (SVD)
to K and V, choosing the item embeddings with larger singular
values from the sequence. However, this simplification does not
work as it is hard to be optimized in an end-to-end way.

4 CONCLUSION
In this paper, we proposed a Transformer variant LightSANs for
next-item recommendation. Compared with orignal self-attention
achitecture, LightSANs can learn context-aware representation for
user history more effectively, and capture sequential relations be-
tween items more efficiently. Our approach can yield high-quality
recommendation results with improved efficiency. Extensive exper-
iments have shown that our approach outperforms a number of
competitive baselines. As future work, we will test the model’s per-
formance on very long sequences, e.g., thousands of actions in each
user history. Besides, we will also consider applying LightSANs to
more scenarios beyond next-item prediction, e.g., pre-trained user
models [18].
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