
Reinforced Anchor Knowledge Graph Generation for News
Recommendation Reasoning

Danyang Liu
University of Science and Technology

of China
Hefei, China

ldy591@mail.ustc.edu.cn

Jianxun Lian∗
Microsoft Research Asia

Beijing, China
jianxun.lian@microsoft.com

Zheng Liu
Microsoft Research Asia

Beijing, China
zheng.liu@microsoft.com

Xiting Wang
Microsoft Research Asia

Beijing, China
xitwan@microsoft.com

Guangzhong Sun
University of Science and Technology

of China
Hefei, China

Xing Xie
Microsoft Research Asia

Beijing, China
xing.xie@microsoft.com

ABSTRACT
News recommendation systems play a key role in online news read-
ing service. Knowledge graphs (KG), which contain comprehensive
structural knowledge, are well known for their potential to enhance
both accuracy and explainability. While existing works intensively
study using KG to improve news recommendation accuracy, us-
ing KG for news recommendation reasoning has not been fully
explored. A few works such as KPRN [18], PGPR [22] and ADAC
[25] have discussed knowledge reasoning in some other recommen-
dation domains such as music or movie, but their methods are not
practical for the news. How to make reasoning scalable to generic
KGs, easy to deploy for real-time serving and meanwhile elastic for
both recall and ranking stages remains an open question.

In this paper, we fill the research gap by proposing a novel
recommendation reasoning paradigm AnchorKG. For each article,
AnchorKG generates a compact Anchor Knowledge Graph, which
corresponds to a subset of entities and their 𝑘-hop neighbors in
the KG, restoring the most important knowledge information of
the article. On one hand, the anchor graph can be used to enhance
the latent representation of the article. On the other hand, the in-
teraction between two anchor graphs can be used for reasoning.
We develop a reinforcement learning-based framework to train the
anchor graph generator, in which there are three major compo-
nents, including the joint learning of recommendation and reason-
ing, sophisticated reward signals, and a warm-up learning stage.
We conduct experiments on one public dataset and one private
dataset. Results demonstrate that the AnchorKG framework not
only improves recommendation accuracy, but also provides high
quality knowledge-aware reasoning. We release the source code at
https://github.com/danyang-liu/AnchorKG .

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467315

CCS CONCEPTS
• Information systems→ Document representation; Recom-
mender systems; Data mining; • Computing methodologies
→ Knowledge representation and reasoning.

KEYWORDS
news recommender, knowledge graph, recommendation reasoning

ACM Reference Format:
Danyang Liu, Jianxun Lian, Zheng Liu, Xiting Wang, Guangzhong Sun,
and Xing Xie. 2021. Reinforced Anchor Knowledge Graph Generation for
News Recommendation Reasoning. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’21), August
14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3447548.3467315

1 INTRODUCTION
Online news reading services provide fresh information feeds for
people and become an indispensable part of people’s daily lives. To
build a more intelligent news recommender system, researchers
have long been eager to leverage knowledge graphs (KG) for boost-
ing models’ accuracy [6, 13, 14]. However, besides the capability of
improving recommendation accuracy, knowledge graphs also pos-
sess the ability to enhance recommendation explainability, which,
in fact, is more critical and challenging, but less explored.

In this paper, we focus on a crystal type of explainability known
as reasoning, inwhich explainable reasons are in the pattern ofmulti-
hop relational paths over a KG. In this line of research, [18] proposes
a knowledge-aware path recurrent network (KPRN) for improving
recommendation accuracy and providing reasoning by constructing
qualified paths between the user and the item. However, KPRN
can only be applied to small knowledge graphs with very limited
types of relations. In the news domain, the associated KG contains
thousands of relations, it is infeasible to fully enumerate all the paths
for each user-item pair. To avoid enumerating all paths, PGPR [22]
and ADAC [25] introduce reinforcement learning-based methods to
perform explicit reasoning. However, both PGPR and ADAC suffer
from several weaknesses. First, they seek a single path between the
source user and the target item. Usually, a news article contains
multiple entities. A single path may not be able to fully reveal the
relationship between the source and target objects. Second, the

https://github.com/danyang-liu/AnchorKG
https://doi.org/10.1145/3447548.3467315
https://doi.org/10.1145/3447548.3467315

A

c

i

d

e

B

m

h

n

A

c

h
i

d

e

j

f

B

m

h

n

l

Connecting
paths

News
articles

Activated
nodes/edges

Non-activated
nodes/edges

News article A

News article B

Figure 1: A toy example for illustrating the AnchorKG. Each
news article will generate one anchor knowledge graph in-
dependently. When discovering their relationships, the an-
chor graphs will be bridged by the overlapped entities and
reasoning paths (in yellow) will be constructed accordingly.

textual content of news articles is not well exploited. In addition,
they can only be applied to the recall stage of recommender systems
but are not able to score or reason a designated user-item pair (a
typical ranking stage), which limits their flexibility.

To address these issues, we propose a novel recommendation rea-
soning paradigm named Anchor Knowledge Graph (AnchorKG).
The basic idea is that, for each news article, we leverage a policy
network to generate a subgraph from the KG. This subgraph is
supposed to contain key entities in the news article, as well as some
necessary neighboring entities which connect the article entities
with multi-hop relational paths. We call this knowledge subgraph
an anchor graph because it only selects the most important knowl-
edge entities from the exponential growth of multi-hop relations
and serves as a footprint for the news article over the KG. Once
anchor graphs are generated, the knowledge-aware reasoning of
any two news articles can be conducted simply based on the interac-
tions of their corresponding anchor graphs. Figure 1 illustrates the
concept of AnchorKG. The advantages of the proposed paradigm
are three-fold. First (accuracy), the knowledge information con-
veyed in anchor graphs are concentrated (only important entities
are selected from all the connected paths) and deep (it contains
multi-hop useful relational paths), so anchor graphs can enrich the
representation of news articles and improve the accuracy of news
recommendations. Second (flexibility), the framework is applicable
for different stages of recommender systems, including the recall
stage and ranking stage. Meanwhile, reasoning results between
two items are not limited to a single path pattern anymore. Third
(scalability), the construction of an anchor graph only depends
on the news article itself, so the construction process can be fully
pre-computed and cached in the offline stage, then used for online
serving, which leaves a possibility for large-scale real time services.

How to train the anchor graph generator is non-trivial. Motivated
by [22, 25], we cast the anchor graph generation as a deterministic
Markov Decision Process (MDP) and adopt reinforcement learn-
ing techniques to optimize the framework. We regard each news

article as a virtual node in a KG, which connects to normal knowl-
edge entities with a special edge “mention”. The agent starts from
a virtual node and expands over the KG, with a policy network
to determine whether the navigated node should be absorbed or
ignored until the anchor graph reaches a certain size or a maxi-
mum level of hops. There are three main challenges in the model
training: (C1) how to guarantee that the selected nodes can provide
high-quality explainability; (C2) how to make the model converge
more quickly to a satisfying solution; (C3) how to coordinate the
reasoning paths and item recommendations, so that the discovered
reasoning paths are not just a post-hoc, uncoupled explanation for
the recommended items. To solve C1, we design immediate and
final rewards with knowledge-aware negative sampling for the
MDP states. These rewards can guide the policy network to expand
towards meaningful nodes rather than towards random or trivial
nodes. Meanwhile, we design a mechanism to select hard negative
pairs from KG, to further encourage the model to select more dis-
tinguishable nodes. To solve C2, we adopt the behavior cloning
[8] technique to warm start the model training. Specifically, we
construct a small dataset and train a KPRN [18] model to generate
reasoning paths between source-target pairs. The warm start stage
is an imitation learning process, where KPRN’s reasoning paths
will serve as ground-truth labels. As for C3, we develop a multi-task
alternative learning process to optimize both the recommendation
task and the anchor graph generation task jointly. We conduct com-
prehensive experiments on two news recommendation datasets.
Results demonstrate that the AnchorKG can not only improve the
model accuracy but also provide high-quality reasoning paths over
the KG. To summarize, we make the following major contributions:

• We propose a brand-new paradigm, AnchorKG, for news recom-
mendation reasoning over a knowledge graph. At its core is an
anchor graph generator, which generates a small topic-aware
subgraph from a general knowledge graph to cover key entities
and relations for the given news article. The anchor graph can be
used for both enhancing document representation and providing
knowledge reasoning between news documents.
• We develop a reinforcement learning-based optimization frame-
work to train the AnchorKG. The training framework includes
three major parts: a joint learning of recommendation task and
graph generation task, sophisticated reinforcement reward sig-
nals, and a warm start stage with behavior cloning.
• Experiments on two real-world news datasets demonstrate that
AnchorKG not only achieves best accuracy performance but also
provides high-quality reasoning knowledge paths.

2 METHODOLOGY
We first introduce some terminologies before describing our pro-
posed method.
Item-to-Item Recommendation. In this paper, we consider the
practical scenario of the item-to-item (I2I) recommendations, where
we aim to discover related items {𝑛 𝑗 } for a given item 𝑛𝑖 . I2I plays
an important role in recommendation systems, for instance, when
users finish reading one news articles, at the bottom of the page, I2I
provides some related articles for continue reading; in an industrial
two-stage (recall and ranking) system, I2I is frequently used as a
candidate recall component.

Knowledge Graph. The knowledge graph is organized as a set of
semantic triples: G = {(𝑒ℎ, 𝑟 , 𝑒𝑡) |ℎ, 𝑡 ∈ E, 𝑟 ∈ R}, where E and R
represent the set of entities and relations, respectively. We resort to
TransE [1] to learn a fixed low-dimensional representation vector
for entities and relations.
k-Hop Path A k-hop path is a continuous trajectory connecting a
source entity 𝑒0 and target entity 𝑒𝑘 over the knowledge graph by
k relations: 𝑝𝑘 = {𝑒0, 𝑟1, 𝑒1, 𝑟2, 𝑒2, · · ·, 𝑟𝑘 , 𝑒𝑘 |𝑒∗ ∈ E, 𝑟∗ ∈ R}.
Knowledge-AwareRecommendationReasoning.With the help
of knowledge graph G, given an item 𝑛𝑎 , we recommend a list
of items Ω𝑎 = {𝑛1, 𝑛2, ..., 𝑛𝑘 } related to it; meanwhile, for each
pair ⟨𝑛𝑎, 𝑛𝑖 ⟩, where 𝑛𝑖 ∈ Ω𝑎 , we provide a list of multi-hop paths
Δ𝑎⇔𝑖 = {𝑝1, 𝑝2, ..., 𝑝𝑚} connecting 𝑛𝑎 and 𝑛𝑖 over G, which can be
used to reason the potential relationships between the item pair.

2.1 A New Paradigm for Reasoning
We propose a new reasoning framework AnchorKG, which is short
for Anchor Knowledge Graph generation for recommendation rea-
soning, with the goal of achieving the following properties:
(1) The framework can seamlessly incorporate textual content and

knowledge graphs for both recommendation and reasoning.
(2) The reasoning formulation is not limited to a single path but

can include multiple paths.
(3) The framework is flexible to be applied to different components

of recommendation systems, such as the recall stage and the
ranking stage.

(4) The framework is applicable to serve real-time news recom-
mendations with large-scale knowledge graphs.

Anchor Graph. At the core of AnchorKG is the generation of
anchor graphs. The anchor graph X𝑎 = (E𝑎,R𝑎) of a given news
article 𝑛𝑎 is a subgraph extracted from the knowledge graph G,
where E𝑎 ⊆ E and R𝑎 ⊆ R. X𝑎 containing part of or all the
entities mentioned in 𝑛𝑎 as well as a selected set of the entities’
most important k-hop paths, 𝑘 ∈ [1, 𝐾] where K is the maximum
allowed number of hops.X𝑎 can be regarded as a footprint of𝑛𝑎 over
the knowledge graph. X𝑎 provides valuable auxiliary information
to the news content. Therefore, it can be incorporated to enhance
the document representation with a knowledge fusion moduleH𝜓 :
𝒗̂𝑎 = H𝜓 (𝒗𝑎,X𝑎). The updated document vector 𝒗̂𝑎 extends the
capability of measuring the similarity between two news articles,
which eventually leads to better recommendation accuracy.
Reasoning. Once the anchor graph for each news article has been
generated, to reason the relationship between two articles𝑛𝑎 and𝑛𝑏 ,
we can simply count the overlapped entities of the corresponding
anchor graphs X𝑎 and X𝑏 . Through the overlapped entities we can
establish high-order connectivity between 𝑛𝑎 and 𝑛𝑏 , in the form
of a collection of multi-hop paths: Δ𝑎⇔𝑏 = {𝑝0, 𝑝1, ...}. Each path
in Δ𝑎⇔𝑏 can be regarded as an evidence for explainable reasoning.

2.2 Anchor Graph Generation
We need a subgraph generation model 𝜋𝜃 to construct an anchor
graph X𝑎 for each news article 𝑛𝑎 . An intuitive method is to adopt
a model like KPRN [18], where we first enumerate all the possible 𝑘-
hop paths starting from entities of 𝑛𝑎 , then train a neural attention
model with supervised learning methods to select a few most im-
portant paths. However, in the news recommendation domain, the

associated knowledge graph usually contains thousands of relations
and millions of entities. A brute-force path enumeration process
like KPRN is very complex and unpractical. Moreover, we hope the
anchor graph generation of different articles can be individually
independent, without any contextual requirements (e.g., in KPRN,
we need to provide a target article before searching the qualified
paths). To this end, we resort to reinforcement learning techniques
to learn an anchor graph generator 𝜋𝜃 . The basic idea is, we train
an agent that starts from 𝑛𝑎 (which can be regarded as a virtual
node in the knowledge graph, connecting to all entities mentioned
in the article), then iteratively expands the subgraph by examining
whether the connecting neighbor nodes should be absorbed into
the subgraph, until the subgraph reaches a stopping criterion. An
overview of the proposed framework is illustrated in Figure 5 in
Appendix, with components formulated as follows.

2.2.1 TheMarkov Decision Process. We formulate the anchor graph
generation problem as a Markov Decision Process (MDP) [11]:𝑀 =

{S,A,R,P}, where S is a finite set of states during exploration,
A is a finite set of actions, R is the reward function from the
environment, and P is the transition probability function.
State: The state 𝑠𝑡 ∈ S at step 𝑡 is defined as a tuple (𝑛𝑎, E𝑡 ,R𝑡 , 𝐸𝑡),
where 𝑛𝑎 is the source news article, E𝑡 and R𝑡 denote the set of all
the absorbed entities and relations up to step 𝑡 , 𝐸𝑡 denotes the newly
absorbed entities at step 𝑡 . The initial state 𝑠0 = (𝑛𝑎, {𝑒𝑎}, ∅, {𝑒𝑎}),
where ∅ indicates an empty set and 𝑒𝑎 is the virtual node of the
article itself. 𝑒𝑎 connects to all entities which appear in the article
𝑛𝑎 with a special type of edge “mentioned”.
Action: For state 𝑠𝑡 at step 𝑡 , its action spaceA𝑠𝑡 is the set of outgo-
ing relationships of entities in 𝐸𝑡 : A𝑠𝑡 = {(𝑟, 𝑒) | (𝑒ℎ, 𝑟 , 𝑒) ∈ G, 𝑒ℎ ∈
𝐸𝑡 , 𝑒 ∉ E𝑡 }. Starting from the initial state 𝑠0 = (𝑛𝑎, {𝑒𝑎}, ∅, {𝑒𝑎}),
the agent will leverage a policy network 𝜋𝜃 to predict the most
promising outgoing relations and absorb to them the explored set
E𝑡 and R𝑡 , until the size of E𝑡 reaches a preset condition.
Reward: The reward function R measures the quality of the navi-
gated states. Different from [22, 25], we don’t have a well-defined
terminal state (which is the target entity in [22, 25]) serving as
ground-truth to provide direct terminal rewards. We define two
types of rewards to provide feedback from the environment:
• Immediate reward: at each step 𝑡 , after the agent performs an
action 𝑎𝑡 , we will get an immediate rewardR𝐼 based on the newly
added entities 𝐸𝑡 : R𝐼 = 𝑔𝑅𝐼 (𝐸𝑡).
• Terminal reward: after the agent reaches the final state 𝑠𝑇 , we
will get a soft task-aware reward on the generated anchor graph
by using it to conduct the item recommendation task and the
reasoning task: R𝑇 = 𝑔𝑅𝑇 (E𝑇 ,R𝑇).

The detailed implementation of 𝑔𝑅𝐼 and 𝑔𝑅𝑇 will be introduced in
Section 2.2.3.
Transition: Given a state 𝑠𝑡 = (𝑛𝑎, E𝑡 ,R𝑡 , 𝐸𝑡) and an action 𝑎𝑡 =
{(𝑟, 𝑒)} ⊆ A𝑠𝑡 , transition to the next state 𝑠𝑡+1 is deterministic:

P
(
𝑠𝑡+1 = (𝑛𝑎, E𝑡+1,R𝑡+1, 𝐸𝑡+1) |𝑠𝑡 , 𝑎𝑡

)
= 1 (1)

where 𝐸𝑡+1 = {𝑒 |𝑒 ∈ 𝑎𝑡 }, E𝑡+1 = E𝑡 ∪𝐸𝑡+1, R𝑡+1 = R𝑡 ∪ {𝑟 |𝑟 ∈ 𝑎𝑡 }.

2.2.2 AnchorKG Policy Network. We develop a neural policy net-
work that learns the probability distribution of taking actions 𝑎
given a state 𝑠𝑡 : 𝜋𝜃 (𝑠𝑡 , 𝑎𝑡) = 𝑃 (𝑎𝑡 |𝑠𝑡 , 𝜃), where 𝜃 is the parameter of

the policy network. We project the states and actions into a latent
semantic space. Specifically, state 𝑠𝑡 is modeled as

s𝑡 = 𝒗 ⊕ 𝝁𝑡 ⊕ 𝝎𝑡 (2)

where ⊕ is the vector concatenation operation, 𝒗 is the document
embedding of the current article, 𝝁𝑡 is the vector representation of
the anchor graph at step 𝑡 , and 𝝎𝑡 is the vector representation of
the newly added entities at step 𝑡 . To compute 𝝁𝑡 , we first refine
the embedding of each entity 𝑒ℎ in E𝑡 with its neighborhood, then
aggregate all the entities with a simple attention network:

𝒆′
ℎ
= 𝑇𝑎𝑛ℎ

©­­­­«
𝑾0

©­­­­«
𝒆ℎ ⊕

∑
(𝑒ℎ,𝑟 ,𝑒𝑡) ∈X𝑡 ,

𝑜𝑟 (𝑒𝑡 ,𝑟 ,𝑒ℎ) ∈X𝑡

(𝒓 + 𝒆𝑡)
ª®®®®¬
ª®®®®¬

(3)

𝛼0 (𝑒ℎ) = 𝒘2𝐸𝐿𝑈 (𝑊1𝒆
′
ℎ
), 𝛼 (𝑒ℎ) =

𝑒𝑥𝑝 (𝛼0 (𝑒ℎ))∑
𝑏∈E𝑡 𝑒𝑥𝑝 (𝛼0 (𝑒𝑏))

(4)

𝝁𝑡 =
∑
ℎ∈E𝑡

𝛼 (𝑒ℎ)𝒆′ℎ (5)

Where ELU is the exponential linear unit. Since 𝝁𝑡 provides most
of the information from the state, for 𝝎𝑡 we can use a much simpler
method, which is just the average of entity embeddings in 𝐸𝑡 :

𝝎𝑡 =

∑
𝑒ℎ ∈𝐸𝑡 𝒆ℎ
|𝐸𝑡 |

(6)

Each available action unit 𝑎𝑖 = (𝑟𝑖 , 𝑒𝑖) is modeled as the superposi-
tion of two vectors:

𝒂𝑖 = 𝒓𝑖 + 𝒆𝑖 (7)
Then, the policy network calculates the probability of taking an
action unit 𝑎𝑖 at state 𝑠𝑡 with the following equation:

𝜋𝜃 (𝑠𝑡 , 𝑎𝑖) =
𝑊3𝑅𝑒𝐿𝑈 (𝑊4 (𝒔𝑡 ⊕ 𝒂𝑖))∑

𝑎𝑘 ∈A𝑘
𝑊3𝑅𝑒𝐿𝑈 (𝑊4 (𝒔𝑡 ⊕ 𝒂𝑘))

(8)

In practice, to accelerate the generation process, we let the agent
absorb multiple outgoing relations at one action 𝑎𝑡 , instead of only
absorbing one relation unit (𝑟, 𝑒). Specifically, for every 𝑒 ∈ 𝐸𝑡 , we
set a hyper-parameter 𝑑 , which we call receptive field size, to denote
the number of outgoing relations to be absorbed. A small trick is
that we add a self-loop to connect an entity to itself. If the self-
loop is selected (by once or multiple times), the absorbed outgoing
relations for this entity will be fewer than 𝑑 . At different levels of
𝑘-hop paths, the receptive field sizes can be different. In practice,
the best setting is [5, 3, 2], which means that receptive field sizes
for 1-hop, 2-hop and 3-hop nodes are 5, 3 and 2, respectively. At
the first layer (in which entities are directly connected to the given
source node), we select at most 5 neighbors; at the second layer (in
which the entities are 2-hop away from the given source node), we
will absorb at most 5 × 3 neighbors in total, and so on.

2.2.3 Implementation of Rewards. In Section 2.2.1, the rewards
are comprised of two components: the terminal reward and the
immediate reward. Here we give a detailed definition for them.

Terminal Reward: After the generation process finishes, we
need to evaluate the quality of the generated anchor graph. Because
we expect to use the anchor graph to help both recommendations
and reasoning, we rely on the feedback from these two tasks to
define the terminal reward. Specifically, we have:

• Recommendation Reward. The anchor graph will help to enhance
the document representation: 𝒗̂𝑎 = H𝜓 (𝒗𝑎,X𝑎). We encourage
the anchor graph to adjust the document representation, so that
related item pairs become closer in the latent space, and unrelated
item pairs become less close. The reward can be formulated as

R (1)
𝑇

= E𝑖∼𝜅 (𝑎)𝑆𝑖𝑚(𝒗̂𝑎, 𝒗̂𝑖) − 𝛽 · E𝑗∼¬𝜅 (𝑎)𝑆𝑖𝑚(𝒗̂𝑎, 𝒗̂ 𝑗) (9)

where𝜅 (𝑎) indicates the set of related documents (positive labels)
to the article 𝑛𝑎 and ¬𝜅 (𝑎) indicates the documents not in 𝜅 (𝑎)
(negative labels). 𝑆𝑖𝑚(·, ·) is a similarity measurement, we use co-
sine similarity in this paper. 𝛽 is a weighting coefficient to adjust
the impact of negative samples, which is set to 0.2 empirically in
the experiments.
• Reasoning Reward. The reasoning process is established based on
the interactions between two anchor graphs. Suppose the anchor
graph for article 𝑛𝑎 is ready as X𝑎 = (E𝑎,R𝑎). The reasoning
reward is defined as:

R (2)
𝑇

=E𝑖∼𝜅 (𝑎)

[
tanh(|E𝑎 ∩ E𝑖 |

𝑙𝑜𝑔(|E𝑎 | · |E𝑖 |)
) + tanh(

𝑠𝑐𝑜𝑟𝑒𝜓 (X𝑎,X𝑖)
𝑙𝑜𝑔(|E𝑎 | · |E𝑖 |)

)
]

− 𝛽 · E𝑗∼¬𝜅 (𝑎)
[
tanh(

|E𝑎 ∩ E 𝑗 |
𝑙𝑜𝑔(|E𝑎 | · |E 𝑗 |)

) + tanh(
𝑠𝑐𝑜𝑟𝑒𝜓 (X𝑎,X𝑗)
𝑙𝑜𝑔(|E𝑎 | · |E 𝑗 |)

)
]

(10)

where tanh is the hyperbolic tangent function, | · | indicates
the cardinality of a set, ∩ is the intersection operation, 𝑠𝑐𝑜𝑟𝑒𝜓
measure the quality of overlapped part of X𝑎 and X𝑖 , which will
be instantiated in Section 2.3. Eq.10 encourages related items to
have more high-quality overlapping elements in their anchor
graphs, while let unrelated items have as few overlap as possible
in their anchor graphs. Similar to Eq.9, 𝛽 is set to 0.2 .

Combining the recommendation reward and reasoning reward, we
can get the terminal reward:

R𝑇 = 𝛼1 · R (1)𝑇
+ (1 − 𝛼1) · R (2)𝑇

(11)

where 𝛼1 ∈ [0, 1] is a hyper-parameter.
Immediate Reward: Terminal Reward can only be acquired

until the agent reaches an ending state. To make the policy network
converge better, we design some immediate rewards. For the sake
of notation simplicity, suppose the selected action at step 𝑡 absorbs
only one relation (𝑟, 𝑒), which means 𝑎𝑡 = {(𝑟, 𝑒)}. The immediate
reward is comprised of two parts:
• Coherence Reward. We encourage the agent to select entities
which have similar semantic topics (we call it coherence) to the
current news article 𝑛𝑎 . To this end, we build a reverse index to
track all the articles that mention an entity 𝑒 in the news title:
Γ(𝑒) = {𝑛1, 𝑛2, · · ·, 𝑛𝑘 |𝑛𝑖 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑒}. The coherence reward:

R (1)
𝐼
(𝑛𝑎, 𝑒) = 𝑐𝑜𝑠𝑖𝑛𝑒

(
𝒗𝑎,

∑
𝑛𝑖 ∈Γ (𝑒) 𝒗𝑖
|Γ(𝑒) |

)
(12)

• Hit Reward. We hope the entities mentioned by 𝑛𝑎 ’s related items
can be absorbed into the anchor graph. Thus, the hit reward is
defined as whether there is at least one document in 𝜅 (𝑎) which
mentions entity 𝑒 :

R (2)
𝐼
(𝑛𝑎, 𝑒) =

{
1 𝑖 𝑓 |{𝑛𝑖 |𝑛𝑖 ∈ 𝜅 (𝑎) ∧ 𝑛𝑖 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑒}| ≥ 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(13)

The immediate reward can be easily extended to actions 𝑎𝑚 which
contain multiple relations by accumulating the immediate reward
of every single relation:

R𝐼 =
∑

𝑒𝑖 ∈𝑎𝑚

(
R (1)
𝐼
(𝑛𝑎, 𝑒𝑖) + R (2)𝐼

(𝑛𝑎, 𝑒𝑖)
)

(14)

2.3 Item-to-item Recommendation
Once the anchor graph X𝑎 of article 𝑛𝑎 is generated, we can use
X𝑎 to enhance the original document representation of 𝑛𝑎 . Recall
that in Section 2.2.2 we present a method for state representation
𝝁𝑡 . Here, we use the same method to encode an anchor graph into
a latent vector, but use a different set of parameters since it is used
for recommendation purpose rather than for actor-critic learning.
We denote the state representation with 𝝁𝑇 , which will be used to
refine the document representation:

𝒗̂𝑎 = H𝜓 (𝒗𝑎,X𝑎) = 𝑇𝑎𝑛ℎ (𝑊5𝐸𝐿𝑈 (𝑊6 (𝒗𝑎 ⊕ 𝝁𝑇)) (15)

The closeness of two articles, 𝑛𝑎 and 𝑛𝑏 , is measured as the cosine
similarity between their knowledge-aware representations:

𝑆𝑖𝑚(𝒗̂𝑎, 𝒗̂𝑏) = 𝐶𝑜𝑠𝑖𝑛𝑒 (𝒗̂𝑎, 𝒗̂𝑏) (16)

𝑆𝑖𝑚(𝒗̂𝑎, 𝒗̂𝑏) will be the prime indicator of the similarity relationship
between an item pair. Meanwhile, we hope the anchor graph itself,
to some extent, can be used to judge the relationship between an
item pair. To this end, we design an auxiliary scoring model to
predict the label of an item pair with the path score 𝑠𝑐𝑜𝑟𝑒𝜓 :

𝑠𝑐𝑜𝑟𝑒𝜓 (X𝑎,X𝑏) =
∑

𝑝𝑖 ∈Δ𝑎⇔𝑏

𝜎

(
𝑊7 ∗ 𝑅𝑒𝐿𝑈 (𝑊8 ∗𝐺𝑅𝑈𝑝𝑎𝑡ℎ (𝑝𝑖))

)
(17)

where 𝜎 is the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function, Δ𝑎⇔𝑏 is the collection of con-
necting paths between anchor graph X𝑎 and X𝑏 . 𝐺𝑅𝑈𝑝𝑎𝑡ℎ (𝑝𝑖) is
a sequential path encoder with the Gated Recurrent Unit (GRU)
[4] to encode the path 𝑝𝑖 = (𝒓1 + 𝒆1, 𝒓2 + 𝒆2, · + ·, 𝒓 |𝑝𝑖 | + 𝒆 |𝑝𝑖 |) to a
latent vector.𝑊7,𝑊8 are learnable parameters. We hope the 𝑠𝑐𝑜𝑟𝑒𝜓
of positive item pairs to approach 1 and the 𝑠𝑐𝑜𝑟𝑒𝜓 of negative item
pairs to approach 0.

2.4 The Optimization Framework
In this section, we introduce the multi-task optimization frame-
work to train our AnchorKG. An overview of the training pipeline
is illustrated in Algorithm 1 and Figure 5 in the Appendix. We
start by introducing the actor-critic based reinforcement learning
framework to train the anchor graph generator.

2.4.1 Critic. The critic evaluates an action by estimating the action-
value function 𝑄 (𝑠, 𝑎) in the MDP environment. For the critic net-
work, we use a similar structure to the actor network (Eq.8), but
with a different set of parameters𝑊9 and𝑊10 to be learned:

𝑄𝜙 (𝑠𝑡 , 𝑎𝑖) =𝑊9 𝑅𝑒𝐿𝑈 (𝑊10 (𝒔𝑡 ⊕ 𝒂𝑖)) (18)

The critic network is trained with the Temporal Difference (TD)
method [10], which learns model parameters by bootstrapping from
the current estimate of the action-value function. It first calculates
a target 𝑞𝑡 according to the Bellman equation1:

𝑞𝑡 = R(𝑡) + E𝑎∼𝜋𝜃
[
𝛾 ·𝑄𝜙 (𝑠𝑡+1, 𝑎)

]
(19)

1https://en.wikipedia.org/wiki/Bellman_equation

where 𝛾 is a decay factor. Interestingly, in experiments we find that
setting it to 1.0 leads to the best performance. R(𝑡) is a compound
reward:

R(𝑡) = 𝛼2 · R𝐼 (𝑡) + (1 − 𝛼2) · R𝑇 (𝑡) (20)

where 𝛼2 ∈ [0, 1] is a weighting coefficient for coordinating the
importance of terminate reward and immediate reward. The critic
network is learned by minimizing the TD error:

L𝑐𝑟𝑖𝑡𝑖𝑐 (𝜙) = (𝑄𝜙 (𝑠𝑡 , 𝑎𝑡) − 𝑞𝑡)2 (21)

2.4.2 Actor. The actor aims to maximize the expected payoff of
each step w.r.t. the given Q-function:

𝐽𝑎𝑐𝑡𝑜𝑟 (𝜃) = E𝑎∼𝜋𝜃
[
𝑄𝜙 (𝑠𝑡 , 𝑎)

]
(22)

We use the policy gradient method [12] to optimize the actor net-
work. The gradients of 𝐽 (𝜃) 𝑤.𝑟 .𝑡 . 𝜃 are calculated as follows for
each sampled trajectory:

∇𝜃 𝐽𝑎𝑐𝑡𝑜𝑟 (𝜃) ≃ 𝑄𝜙 (𝑠𝑡 , 𝑎𝑡) · ∇𝜃 𝑙𝑜𝑔𝜋𝜃 (𝑠𝑡 , 𝑎𝑡) (23)

We omit the detailed formula derivation of Eq.23, as it is quite
straightforward based on existing literature. Interested readers may
refer to this helpful tutorial2 for more comprehensive introduction.

2.4.3 Warm Start Stage. If directly applying the actor-critic rein-
forcement learning method to train the AnchorKG model from
random initialized parameters, the model will show very poor con-
vergence properties [23, 25], due to the uncertainty from the actor
and the critic simultaneously, as well as the huge action space from
the complex generic knowledge graph. Thus, we adopt the idea
of behavior cloning [8], to guide the model training from expert
demonstrations as a warm start training process. Expert demon-
strations are extracted by running KPRN [18] on a small warm-up
dataset, in which for each positive item pair we sample one nega-
tive item pair. Note that due to the complexity of KPRN, it is not
feasible to serve the candidate recall task. So we compose the small
dataset to train KPRN as a ranking task. After KPRN converges, it
can produce some high-quality paths which can serve for reason-
ing. We take these paths as expert demonstrations and encourage
the policy network to generate paths identical to them. Note that
expert demonstrations extracted by KPRN are imperfect, they are
incomplete and may contain noise. This supervised learning stage
can result in a well-initialized policy network, which helps the
AnchorKG model converge to a satisfying solution after continuing
the RL training process.

2.4.4 Negative Sampling. Traditional negative instances sampler,
such as popularity-biased sampling [3] or dynamic negative sam-
pling [24], are not informative for optimizing the AnchorKG frame-
work. The reason is that, due to the large scale of the knowledge
graph and the vast amount of news articles, it is hard for two ran-
domly sampled news articles to have overlapping entities over the
knowledge graph. Some reward signals in our framework will sev-
erally suffer from the quality of negative instances. For example,
suppose there is a negative item pair (𝑛𝑎, 𝑛 𝑗), if 𝑛𝑎 and 𝑛 𝑗 locate
far away from the knowledge graph, there will definitely be no

2https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

https://en.wikipedia.org/wiki/Bellman_equation
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

overlap between their corresponding anchor graph. Thus, Eq.10
will downgrade to:

R̂ (2)
𝑇

= E𝑖∼𝜅 (𝑎)

[
tanh(|E𝑎 ∩ E𝑖 |

𝑙𝑜𝑔(|E𝑎 | · |E𝑖 |)
) + tanh(

𝑠𝑐𝑜𝑟𝑒𝑞

𝑙𝑜𝑔(|E𝑎 | · |E𝑖 |)
)
]

Without the supervision of the negative component, the policy
network is prone to covering trivial entities, such as popular enti-
ties like the United States. Thus, we design a simple but effective
knowledge-aware negative sampling strategy. We first randomly
sample a connectivity number 𝑘 ∈ [1, 2, 3], then conduct a random
walk along a k-hop path starting from the virtue article node 𝑒𝑛𝑎 ,
suppose the ending node is 𝑒𝑘 . Then we will uniformly sample
one article 𝑛𝑏 from Γ(𝑒𝑘) as the negative candidate if 𝑛𝑏 does not
belong to the positive candidate set of 𝑛𝑎 .

2.4.5 Multi-Task Learning. There are two tasks in our framework,
i.e. the anchor graph generation task (generator) and the item2item
recommendation task (recommender). These two tasks interact with
each other closely, with the generator providing knowledge-aware
signals for enhancing the recommender, and the recommender pro-
viding reward signals to help optimize the generator. The learning
objectives for the generator task are already discussed with Eq.21
and Eq.22. For the recommender task, learning objectives are com-
prised of two views, i.e., an embedding-based recommendation view
and a reasoning-based recommendation view. On the one hand, we
rely on the enhanced document representation 𝒗 to make precise
recommendations. Thus the training process is to maximize the
probability of positive candidate from a list of candidates mixed
with negative ones:

𝑃 (𝑗 |𝑖) =
𝑒𝑥𝑝 (𝛼 · 𝑆𝑖𝑚(𝒗̂𝑖 , 𝒗̂ 𝑗))∑

𝑗 ′∈𝜂 (𝑖) 𝑒𝑥𝑝 (𝛼 · 𝑆𝑖𝑚(𝒗̂𝑖 , 𝒗̂ 𝑗 ′))
(24)

L𝑟𝑒𝑐 (𝜓) = −𝑙𝑜𝑔
∏
(𝑖, 𝑗) ∈O+

𝑃 (𝑗 |𝑖) (25)

where, 𝛼 is a smoothing factor for the softmax function, which is
set to 10. O+ denotes the set of positive item pairs. 𝑆𝑖𝑚(·) is defined
in Eq.16, 𝜂 (𝑖) indicates the set of candidates item for 𝑛𝑖 , in which
only 𝑛 𝑗 is positive item and all the rest are negative items. On the
other hand, we hope the reasoning paths from anchor graphs can
distinguish positive instances from negative instances. To this end,
we further pose a binary cross-entropy loss:

L𝑟𝑒𝑎𝑠𝑜𝑛 (𝜓) = −
∑

(𝑖, 𝑗) ∈O+
𝑙𝑜𝑔

(
𝑠𝑐𝑜𝑟𝑒𝜓 (X𝑖 ,X𝑗)

)
−

∑
(𝑖, 𝑗) ∈O−

𝑙𝑜𝑔

(
1 − 𝑠𝑐𝑜𝑟𝑒𝜓 (X𝑖 ,X𝑗)

) (26)

where 𝑠𝑐𝑜𝑟𝑒𝑞 (X𝑖 ,X𝑗) is defined in Eq.17. Similar to [19], we adopt
an iterative optimization to train the generator task and the rec-
ommender task alternately. At each iteration, we first freeze the
recommender parameters (𝜓) and optimize the generator according
to Eq.21 and Eq.22, then freeze the generator parameters (𝜃 and 𝜙)
and optimize the recommender according to Eq.25 and Eq.26. The
iteration goes on until the model converges.

3 EXPERIMENTS
3.1 Experiment Settings
We conduct experiments on two datasets: MIND3 [21] and Bing
News4. MIND is the largest open-source English news dataset for
public research purpose, and Bing News is a private dataset ex-
tracted from Bing news service. We use Wikidata as the knowledge
graph for both datasets. After data cleaning, we get 410,268 positive
instances for MIND and 64,837 positive instances for the Bing News
dataset. The details about data processing step as well as the statis-
tics of the datasets can be found at A.1 in the Appendix. The positive
instances are split into training/validation/test set by 80%/10%/10%.
For the training/validation set, we sample 4 negative instances for
each positive instance. For the test set, we don’t sample negative
instances, the goal is to discover the positive items from the entire
set of item candidates.

We compare AnchorKG with two groups of models:
• DKN [14], NAML [20], SentenceBERT [9], KRED [6] are four
strong baselines which fully leverage textual content for news
recommendations. But they cannot provide reasoning.
• PGPR [22],ADAC [25] are two strong baselineswith knowledge-
aware reasoning ability. However, news contents are not sophis-
ticated modeled when compared to the first groups of baselines.

Considering that PGPR and ADAC can only be used in the recall
stage of recommender systems, in this section, we report experi-
ments based on the recall setting, i.e., given a source article 𝑎, the
task is to target the related articles {𝑏} from the entire space of arti-
cle candidates. We adapt DKN, NAML, and KREDmodels slightly to
make them fit for this scenario. The relationship between two items
is measured as the cosine similarity of their latent representations,
so we only need the text encoder component from these models,
and the models are all optimized by the softmax loss with Eq.25.
Hyper-parameters are reported in Appendix A.2.

We use the same top-𝑁 recommendation metrics as used in [22,
25]: Precision (Prec.), Recall, Normalized Discounted Cumulative
Gain (NDCG), and Hit Ratio (HR).

3.2 Overall Performance
Table 1 reports the top-𝑁 recommendation performance of different
models. We make the following observations:
• Embedding-based baselines, including DKN, NAML and KRED,
are designed for news recommendations with strong text en-
coders. They substantially outperform both PGPR and ADAC
across different metrics, verifying that a deep understanding of
news content is critical for recommendation performance. How-
ever, this group of methods cannot produce explainable reasons
for recommendations.
• ADAC and PGPR are path-finding-based methods for recommen-
dations and are recognized as state-of-the-art recommendation
reasoning methods over knowledge graphs. ADAC leverages
demonstrations to enhance the pathfinding strategy in the re-
inforcement learning framework, so its performance is slightly
better than PGPR, which matches the conclusions in [25]. Despite
their ability for reasoning, their major weakness lies in the low

3https://msnews.github.io/index.html
4https://www.bing.com/news

https://msnews.github.io/index.html
https://www.bing.com/news

Table 1: Overall recommendation performance of different models on two datasets. Results are reported in percentage (%).

MIND Dataset Bing News Dataset
Top-5 Top-10 Top-5 Top-10

NDCG Prec. Recall HR NDCG Prec. Recall HR NDCG Prec. Recall HR NDCG Prec. Recall HR
DKN 3.428 2.217 6.252 8.145 5.258 1.596 10.23 13.41 2.929 1.467 3.466 6.099 4.225 1.001 4.978 9.281
NAML 3.718 2.311 6.879 8.712 5.706 1.734 11.09 14.54 3.318 1.727 4.192 7.357 5.109 1.186 6.063 11.20
S-BERT 3.929 2.426 6.929 9.285 5.997 1.820 11.67 15.30 3.455 1.789 4.263 7.560 5.227 1.224 6.108 11.56
KRED 4.036 2.591 7.157 9.603 6.106 1.869 12.20 16.00 3.617 1.878 4.474 7.936 5.450 1.286 6.813 11.95
PGPR 2.484 1.618 3.894 5.731 4.130 1.229 6.701 9.898 1.752 0.983 1.851 3.306 2.168 0.624 2.630 4.851
ADAC 2.671 1.650 4.110 5.855 4.295 1.276 6.893 10.09 1.777 1.002 1.886 3.371 2.216 0.648 2.693 4.998

AnchorKG 4.301 2.805 8.186 10.755 6.621 2.112 14.71 17.92 3.866 2.046 4.733 8.370 5.623 1.497 7.513 12.49

accuracy of news recommendations, where the textual content
plays a key role in matching news relevance.
• AnchorKG combines the advantage of embedding-based methods
and path-find-based methods. It outperforms all the baselines
in terms of different metrics, and the conclusions are consis-
tent on two datasets, which demonstrates the effectiveness of
AnchorKG. Specifically, compared with the first group of base-
lines, AnchorKG is not only more accurate (which is achieved by
fusing an anchor knowledge graph into a strong text encoder Sen-
tenceBERT), but also able to give knowledge paths as explainable
reasons; compared with the second group of baselines, AnchorKG
is remarkably more accurate. We will further demonstrate the
reasoning performance comparison in Table 3.

3.3 Ablation and Hyper-Parameters Study
We study the necessity of key components, including the knowledge-
aware negative sampler, thewarm-up learning stage, and the reward
signals. For the knowledge-aware negative sampler, we replace it
with a popularity-based negative sampler (marked as w/o KG nega-
tive sampler). For the warm-up learning component, we compare
an AnchorKG model without enabling this stage (denoted as w/o
KG negative sampler). From Table 2 we can observe that changing
either of these two components will lead to a performance drop,
which demonstrates the effectiveness of these two components.

As for the influence of reward signals, key ingredients include
the immediate reward & terminal reward, and the recommendation
reward & reasoning reward. These ingredients are linearly com-
pounded together, so we examine their effectiveness by varying

Table 2: Ablation study on removing the knowledge-aware
negative sampler or the warm-up learning stage. Results are
reported in percentage (%) based on top-10.

NDCG Prec. Recall HR
MIND Dataset

AnchorKG 6.621 2.112 14.71 17.92
w/o KG negative sampler 6.462 2.028 14.45 17.47
w/o warm-up learning 6.287 2.006 14.06 17.12

Bing News Dataset
AnchorKG 5.623 1.497 7.513 12.49

w/o KG negative sampler 5.442 1.302 6.987 11.82
w/o warm-up learning 5.454 1.383 7.086 12.11

(a) 𝛼2 in Eq.20 (b) 𝛼1 in Eq.11

Figure 2: A study of the influence of the immediate reward
(left) and the terminal reward (right) on MIND, by varying
𝛼2 in Eq.20 and 𝛼1 in Eq.11, respectively.

the corresponding weighting coefficients, i.e. 𝛼1 in Eq.11 and 𝛼2
in Eq.20. The results are reported in Figure 2a and Figure 2b. We
observe that a proper setting for 𝛼2 is 0.1, and that for 𝛼1 is 0.9.

3.4 The Quality of Reasoning
Next, we study the reasoning ability of AnchorKG. As revealed in
[22, 25], designing quantitative metrics for evaluating the quality
of explainable reasoning is very challenging and subjective. In
this section, besides case studies, we advocate using two metrics
for quantitative analysis. The first measure is average number of
connecting paths for positive item pairs. The second measure is the
GRU path score from Eq.17. Recall that to encourage the model to
pick up high-quality paths, we design a GRU-based path encoder to
score every path. Results can be found in Table 3. PGPR and ADAC
use a single path for reasoning, so their accumulated path scores

Table 3: The quantitative analysis of reasoning capability.

Method Avg. #.
Connect Paths

Sum of
Quality Score

Max Single Path
Quality Score

MIND Dataset
PGPR 1 0.626 0.626
ADAC 1 0.651 0.651

AnchorKG 5.29 3.769 0.807
Bing News Dataset

PGPR 1 0.589 0.589
ADAC 1 0.593 0.593

AnchorKG 3.55 2.173 0.796

Elon Musk

SpaceX Starlink

US

Canada

Twitter

Tesla

Merlin

mention

CEO

mention

mention

mention

m
e

n
ti

o
n

manufacturer
application of

Internet
service

industry

Aerospace

Falcon

product

occupation

entrepreneur

SolarCity Car brand

owned by is a

Satellite
internetuse of

Google
investor

Errol
Musk

Figure 3: The generated anchor knowledge graph for one
piece of case study news from the MIND dataset.

are equivalent to their maximum single path scores. On average,
AnchorKG can discover 5.29 paths on MIND and 3.55 paths on Bing
News dataset for each positive item pair. What is more, the average
maximum single path score is also significantly higher.

To illustrate how AnchorKG generates a subgraph over the
knowledge graph, we offer a real news article example from MIND:

Elon Musk sends a tweet through SpaceX’s Starlink broadband
satellite. The company reportedly hopes to bring Starlink broadband
services in the US and Canada by the middle of next year. As SpaceX
pushes to take over the night sky with 30,000 Starlink satellites, CEO
Elon Musk tested the orbiting routers’ internet connectivity early Tues-
day with a message to his nearly 29 million Twitter followers. "Sending
this tweet through space via Starlink satellite," he wrote, before fol-
lowing up to express his surprise. "Whoa, it worked!!"

Entities in the article are highlighted with underline. Due to the
space limit, we can only draw part of the anchor graph in Figure
3. From Figure 3, it is straightforward to see that the generated
anchor graph is biased towards the SpaceX related topics. Entities
such as US, Canada and Twitter is ignored due to their irrelevance,
even though they are directly connected to the news node. Elon
Musk owns dual identities, i.e. the CEO of Tesla and the founder of
SpaceX. However, for this news article, the topic is only related to
SpaceX. We observe that the generated anchor graph indeed covers
more entities related to SpaceX, with some flaw that a few general
entities, such as Internet service, are also included.

Figure 4 demonstrates a knowledge-aware reasoning result for
a typical pair of news items related to sports. The most important
single path is 𝑝𝑎𝑡ℎ 1 : 𝑛𝑎

𝑚𝑒𝑛𝑡𝑖𝑜𝑛−−−−−−−→ 𝐴𝑇𝑃 𝐹𝑖𝑛𝑎𝑙𝑠
𝑚𝑒𝑛𝑡𝑖𝑜𝑛←−−−−−−− 𝑛𝑏 , which

indicates that both articles focus on reporting ATP Finals. However,
considering that there are so many articles which have mentioned
ATP Finals, a single reasoning path may not be sufficiently convinc-
ing. Thanks to the anchor graphs, we can generate multiple reason-

ing paths, such as 𝑝𝑎𝑡ℎ 2 : 𝑛𝑎
𝑚𝑒𝑛𝑡𝑖𝑜𝑛−−−−−−−→ 𝑁𝑎𝑑𝑎𝑙

𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒 𝑖𝑛
−−−−−−−−−−−−→

𝑈𝑆 𝑂𝑝𝑒𝑛
𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒 𝑖𝑛
←−−−−−−−−−−−− 𝐵𝑒𝑟𝑟𝑒𝑡𝑡𝑖𝑛𝑖

𝑚𝑒𝑛𝑡𝑖𝑜𝑛←−−−−−−− 𝑛𝑏 , and 𝑝𝑎𝑡ℎ 3 :

𝑛𝑎
𝑚𝑒𝑛𝑡𝑖𝑜𝑛−−−−−−−→ 𝑁𝑎𝑑𝑎𝑙

𝑐𝑜𝑢𝑛𝑡𝑟𝑦
−−−−−−−→ 𝑆𝑝𝑎𝑖𝑛

𝑐𝑜𝑢𝑛𝑡𝑟𝑦
←−−−−−−− 𝐶𝑎𝑟𝑟𝑒𝑛𝑜 𝐵𝑢𝑠𝑡𝑎 𝑚𝑒𝑛𝑡𝑖𝑜𝑛←−−−−−−−

𝑛𝑏 , and so on, which strongly enhance the evidence.

4 RELATEDWORK
4.1 KGs for Recommendation Accuracy
Knowledge graphs have been widely used to improve the recom-
mendation accuracy. [13] proposes RippleNet, which stimulates
the propagation of users’ preferences over knowledge entities by
expanding users’ potential interests along links in the knowledge
graph iteratively. [16] develops an end-to-end multi-task training
framework (MKR), with the goal of utilizing knowledge graph em-
bedding to assist the recommendation task. The key component of
MKR is the cross & compress units, which can share latent features
and learn high-order interactions between items in recommender
systems and entities in the knowledge graph. Similarly, [2] also
considers the joint learning of recommendation and knowledge
graph completion. With the emerging techniques of graph neural
networks (GNN), some researchers devise GNN-based models to
utilize knowledge graphs for recommendation systems [15, 17]. As
for news recommendation domain, using knowledge graphs to en-
hance the representation of news articles is an effective approach.
[14] proposes a knowledge-aware convolutional neural network
(KCNN) to fuse semantic-level and knowledge-level representations
of news articles. [6] introduces KRED, which leverages KGs to en-
hance an arbitrary type of article representation. However, all these
works focus on improving the accuracy performance of recom-
mender systems. In this paper, we focus more on recommendation
reasoning with knowledge graphs.

4.2 KGs for Recommendation Reasoning
Another major merit of knowledge graphs is that they can endow
recommender systems with explainability ability. Connectivity be-
tween two nodes with a multi-hop path over the graph can serve
as knowledge-aware reasoning, because it reveals the semantic re-
lationship between two nodes. [18] searches all potential paths
connecting the user and the item, then adopt an LSTM on paths to
capture the sequential dependencies of nodes for user preference
inference. Reasoning is conducted by selecting the paths with high-
est preference scores. To avoid enumerating all possible paths, [22]
proposes a reinforced method called Policy-Guided Path Reason-
ing (PGPR), with three key components including a soft reward
strategy, a user-conditional action pruning strategy, and a multi-
hop scoring approach. [25] argues that the path-finding process in
previous methods will result in issues with respect to convergence
and explainability, so the authors design a demonstration-based
knowledge graph reasoning framework, with a key component of
Adversarial Actor-Critic (ADAC) model. OUr paper is most related
to this line of research, we have pointed out the motivation and
difference between this paper and existing works in Section 1.

5 CONCLUSIONS
In this paper, we propose a novel knowledge-aware reasoning par-
adigm, AnchorKG, for news recommendation and reasoning. An-
chorKG generates a compact anchor knowledge graph for each
article individually, and the relationship reasoning between any
two articles can be efficiently conducted by interactions between
their anchor graphs. We formulate the anchor graphs generation as
a Markov Decision Process and solve it with reinforcement learning

'Super sad' Nadal out of Paris Masters, doubt
for ATP Finals. Rafael Nadal pulled out of the
Paris Masters with an abdominal injury just
minutes before the scheduled start of his
semi-final against Denis Shapovalov on
Saturday, and admitted his participation at the
ATP Tour Finals was in doubt. The 33-year-old
has battled multiple injuries throughout his
career and also pulled out of the Paris Masters
on his last appearance in 2017 before the
quarter-finals.

Berrettini into world top 10 and boosts ATP
Finals bid. Matteo Berrettini on Friday ensured
he would become only the fourth Italian man
to break into the world top 10 when he
reached the semi-finals of the Vienna ATP
event. The 23-year-old defeated Moscow
champion Andrey Rublev 7-5, 7-6 (7/4), giving
the third seed a last-four clash against home
favourite Dominic Thiem. Top seed Thiem was
leading Pablo Carreno Busta 5-0 when the
Spaniard called it quits in their quarter-final.
Berrettini, who made...

US Open

Nadal

Spain

ATP Finals

Shapovalov

Paris
Masters

tennis

Carreno
Busta

Thiem

Rublev

Berrettini

mention mention

News article A News article B

participate in

Figure 4: An example of reasoning results between two news articles based on their anchor graphs on MIND.

techniques, without the demand of enumerating all the possible
connecting 𝑘-hop paths. The AnchorKG paradigm possesses a few
important merits. First, the generated anchor graph can be used
to enhance the representation of news articles, so the accuracy of
recommendations can be improved. Second, the interactions be-
tween the corresponding anchor graphs of two articles can naturally
serve as reasoning paths for explainability. Third, the generation
process of anchor graph does not require any contextual informa-
tion (such as a given target candidate). Therefore, once the offline
anchor graphs are cached, our model is practical for efficient on-
line serving. Extensive experiments on one public dataset and one
industrial dataset demonstrate the effectiveness of AnchorKG. For
future work, we plan to conduct experiments with the AnchorKG
paradigm on the user-to-item recommendation scenario.

REFERENCES
[1] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In NIPS’13 (Lake Tahoe, Nevada). Curran Associates Inc., USA, 2787–2795.

[2] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. [n.d.].
Unifying Knowledge Graph Learning and Recommendation: Towards a Better
Understanding of User Preferences. In The World Wide Web Conference, WWW
2019, San Francisco, CA, USA, May 13-17, 2019. 151–161.

[3] Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. 2017. On sampling strategies
for neural network-based collaborative filtering. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

[4] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
2014. On the Properties of Neural Machine Translation: Encoder–Decoder Ap-
proaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation. Association for Computational Linguistics,
Doha, Qatar, 103–111. https://doi.org/10.3115/v1/W14-4012

[5] Danyang Liu, Ting Bai, Jianxun Lian, Xin Zhao, Guangzhong Sun, Ji-Rong Wen,
and Xing Xie. 2019. News Graph: An Enhanced Knowledge Graph for News
Recommendation. In KaRS@CIKM 2019, Beijing, China, November 7, 2019. 1–7.

[6] Danyang Liu, Jianxun Lian, Shiyin Wang, Ying Qiao, Jiun-Hung Chen,
Guangzhong Sun, and Xing Xie. 2020. KRED: Knowledge-Aware Document
Representation for News Recommendations. In Fourteenth ACM Conference on
Recommender Systems (RecSys ’20). New York, NY, USA, 200–209.

[7] Ting Liu, Andrew W Moore, Ke Yang, and Alexander G Gray. 2005. An investiga-
tion of practical approximate nearest neighbor algorithms. In Advances in neural
information processing systems. 825–832.

[8] Dean A Pomerleau. 1991. Efficient training of artificial neural networks for
autonomous navigation. Neural computation 3, 1 (1991), 88–97.

[9] Nils Reimers and Iryna Gurevych. [n.d.]. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). 3982–3992.

[10] Richard S Sutton. 1988. Learning to predict by themethods of temporal differences.
Machine learning 3, 1 (1988), 9–44.

[11] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[12] Richard S Sutton, David AMcAllester, Satinder P Singh, and YishayMansour. 2000.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems. 1057–1063.

[13] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. RippleNet: Propagating User Preferences on the Knowledge
Graph for Recommender Systems. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy,
October 22-26, 2018. ACM, 417–426.

[14] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep
Knowledge-Aware Network for News Recommendation. In Proceedings of the
2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France,
April 23-27, 2018. ACM, 1835–1844.

[15] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wen-
jie Li, and Zhongyuan Wang. [n.d.]. Knowledge-aware Graph Neural Networks
with Label Smoothness Regularization for Recommender Systems. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. 968–977.

[16] Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi
Guo. 2019. Multi-Task Feature Learning for Knowledge Graph Enhanced Recom-
mendation. In The World Wide Web Conference, WWW 2019, San Francisco, CA,
USA, May 13-17, 2019. ACM, 2000–2010.

[17] XiangWang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT:
Knowledge Graph Attention Network for Recommendation. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. ACM, 950–958.

[18] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng
Chua. 2019. Explainable reasoning over knowledge graphs for recommendation.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 5329–5336.

[19] Xiang Wang, Yaokun Xu, Xiangnan He, Yixin Cao, Meng Wang, and Tat-Seng
Chua. 2020. Reinforced Negative Sampling over Knowledge Graph for Recom-
mendation. In Proceedings of The Web Conference 2020 (Taipei, Taiwan) (WWW
’20). Association for Computing Machinery, 99–109.

[20] Chuhan Wu, Fangzhao Wu, Mingxiao An, Jianqiang Huang, Yongfeng Huang,
and Xing Xie. [n.d.]. Neural News Recommendation with Attentive Multi-View
Learning. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019. 3863–3869.

[21] Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian,
Danyang Liu, Xing Xie, Jianfeng Gao, Winnie Wu, and Ming Zhou. 2020. MIND:
A Large-scale Dataset for News Recommendation. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Online, 3597–3606.

[22] Yikun Xian, Zuohui Fu, S Muthukrishnan, Gerard De Melo, and Yongfeng Zhang.
2019. Reinforcement knowledge graph reasoning for explainable recommenda-
tion. In Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval. 285–294.

[23] Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. Deeppath: A
reinforcement learning method for knowledge graph reasoning. arXiv preprint
arXiv:1707.06690 (2017).

[24] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-n
collaborative filtering via dynamic negative item sampling. In Proceedings of
the 36th international ACM SIGIR conference on Research and development in
information retrieval. 785–788.

[25] Kangzhi Zhao, Xiting Wang, Yuren Zhang, Li Zhao, Zheng Liu, Chunxiao Xing,
and Xing Xie. 2020. Leveraging Demonstrations for Reinforcement Recommenda-
tion Reasoning over Knowledge Graphs. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.

https://doi.org/10.3115/v1/W14-4012

A APPENDIX
For a better understanding of our work, we provide a demo at
https://www.youtube.com/watch?v=B8vOVZ1ZYr4.

A.1 Dataset Details
MIND is the largest open-source English news recommendation
dataset for public research purpose, constructed from the user
click logs of Microsoft News. The Bing News dataset contains one
month’s impression logs extracted from a news reading service of
our company. The original MIND dataset contains 1 million users
and more than 161k news articles, and the Bing News dataset con-
tains 141k users and 1.7 million news articles. In this paper we
consider the item-to-item recommendation scenario, so we con-
vert the dataset into relationships between items. Each instance
can be formulated as a triple (𝑎, 𝑏,𝑦𝑎,𝑏), where 𝑦𝑎,𝑏 ∈ [0, 1] is
the label indicating whether the item pair (𝑎, 𝑏) is related or not.
Positive label is determined by a co-click score, which is defined
as #.𝑢𝑠𝑒𝑟𝑠 𝑐𝑙𝑖𝑐𝑘 𝑏𝑜𝑡ℎ 𝑎 𝑎𝑛𝑑 𝑏√

#.𝑢𝑠𝑒𝑟𝑠 𝑐𝑙𝑖𝑐𝑘 𝑜𝑛 𝑎×
√
#.𝑢𝑠𝑒𝑟𝑠 𝑐𝑙𝑖𝑐𝑘 𝑜𝑛 𝑏

. We manually compare the
article pairs with different co-click scores, and empirically set a
threshold of 0.05. As long as the co-click score is greater than
this threshold, the pair of articles is judged as a positive instance.
Through this setting, we get 410,268 pairs of positive instances
from the MIND dataset and 64,837 positive instances from the Bing
News dataset. The basic statistics of our experimental dataset is
depicted in Table 4. We use Wikidata 5 as the the knowledge graph

Table 4: Statistics of the item2item news datasets after data
cleaning.

MIND Dataset Bing News Dataset
. articles 161,013 31,991

#. positive pairs 410,268 64,837
#. entities per title 1.2 1.1
#. entities per article 16 3.4
#. words per article 639 58
#. unique entities 205,223 16,487

for experiments. Wikidata is a free and open knowledge base, we
download the whole graph from its storage page6. Considering that
the original Wikidata is a generic knowledge graph which may
contain a lot of news-irrelevant entities and relations, we do some
graph pruning to select a subgraph fromWikidata, and add a group
of topic nodes to the knowledge graph, following the techniques
introduce in News Graph [5]. The MIND dataset provides entities
mentioned in articles, and their IDs can be joined with Wikidata’s
entity IDs. For the Bing News dataset, we have a commercial NER
toolkit to link knowledge entities to the Wikidata. We first gather
all the entities from the dataset, then extend their 1-hop connecting
entities in Wikidata. Next, we collect all the relations connecting
these entities. After that, we will get a subgraph from Wikidata,
which will be used throughout our experiments. The basic statistics
of knowledge graphs can be found in Table 5.

5https://www.wikidata.org/wiki/Wikidata:Main_Page
6https://dumps.wikimedia.org/wikidatawiki/entities/

Table 5: Statistics of the knowledge graph.

the original Wikidata Wikidata after pruning
#. entities 67,719,428 3,275,149
#. triples 413,467,881 31,963,632
#. relations 6,896 1,091

A.2 Hyper-Parameter Settings
Thanks to the authors of related papers, all the baseline methods are
open-source and can be found at GitHub. We adopt their original
implementations and make some minor changes for our experi-
ments. The embedding size for entities and relations in TransE is
128. For NAML, the number of CNN filters is 400 and windows
size is 3. For DKN, the number of CNN filters is 100 and windows
sizes are [1,2,3]. For KRED and AnchorKG, we use SentenceBERT
[9] as the basic document encoder, because it modifies the BERT
network and uses Siamese network structures to derive semanti-
cally meaningful embeddings that can be compared using cosine
similarity. For all models, the final document embedding size is set
to 128. The maximum path length of PGPR and ADAC is set to 3
as suggested in their papers. For a fair comparison, the maximum
depth of AnchorKG is also set to 3. Intermediate parameters𝑊∗ in
AnchorKG are also set to 128 series, e.g., R1×128 or R128×128.

A.3 Impact of Receptive Field Size
The receptive field size is introduced in Section 2.2.2. It is intuitive
that if the size is set too large, it will be hard for model to converge
due to the exponential growth of the scale and meanwhile too much
noisy signals will be absorbed in. On the other hand, if the size if
set too small, useful information will inevitably be excluded. From
Table 6 we can see that a proper setting will be [5, 3, 2].

A.4 A Graphical Illustration of AnchorKG
To help readers get an intuitive sense of the framework, we provide
a graphical illustration of the model in Figure 5 as well as a pseudo-
code in Algorithm 1.

Table 6: A study on impacts of the receptive field sizes for
anchor graphs generation on the MIND dataset. Results are
reported in percentage (%) at top-10.

Sizes NDCG Prec. Recall HR
[5, 5, 5] 6.356 2.060 14.24 17.38
[5, 5, 1] 6.523 2.091 14.49 17.66
[5, 3, 3] 6.568 2.093 14.53 17.66
[5, 3, 2] 6.621 2.112 14.71 17.92
[3, 3, 2] 6.291 2.017 14.05 16.89
[3, 2, 1] 6.190 1.955 13.75 16.36

A.5 Discussions about Online Serving
We briefly discuss how AnchorKG is feasible for online serving.
Since the generation of anchor graphs is individually independent,
we can finish the anchor graph generation process for all articles

https://www.youtube.com/watch?v=B8vOVZ1ZYr4
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://dumps.wikimedia.org/wikidatawiki/entities/

FC

FC

state vector action vector

FC

FC

state vector action vector

maximize
expectation

minimize
TD error Critic Network Actor Network

entity related articles

reverse index
scores

article
vector

anchor
graph

embedding-based
recommendation

anchor
graph

reasoning-based
recommendation

GRU path
encoding

generate
anchor graph

terminal
rewards

state
transition

action
performing

KG Environment

immediate
rewards

alternative
training

Terminal Rewards

Immediate Rewards

Figure 5: An overview of our proposed AnchorKG, which is formulated as a reinforcement learning framework with aMarkov
Decision Process. An agent interacts with the Knowledge Graph (KG) environment, and get two types of rewards, i.e. the
immediate reward and the terminal reward.

Algorithm 1 AnchorKG Training Pipeline
Input: positive news pairs set: N ; base embeddings V of news;

knowledge graph G;
Output: AnchorKG generator: 𝜋𝜃 ; news enhancement module:
H(𝜓); reasoning module: 𝑠𝑐𝑜𝑟𝑒 (𝜓);

1: Randomly initialize all parameters;
2: Warm up training of generator parameters in {𝑄𝜙 , 𝜋𝜃 } ⊲

Section 2.4.3;
3: repeat
4: for each pair (𝑛1, 𝑛2) in N do
5: Perform negative sampling for (𝑛1, 𝑛2) ⊲ Section 2.4.4
6: Generate anchor graphs X with 𝜋𝜃 ⊲ Section 2.2.2;
7: Calculate immediate rewards: 𝑅𝐼 with Eq.(14)
8: Refine the document representation: 𝒗̂ with Eq.(15);
9: Calculate recommendation reward: R (1)

𝑇
with Eq.(9)

10: calculate reasoning reward: R (2)
𝑇

with Eq.(10)
11: calculate final reward R(𝑡) with Eq.(20)
12: Update generator-related modules {𝑄𝜙 , 𝜋𝜃 } with

Eq.(21) and Eq.(22)
13: UpdateH(𝜓) with Eq.(25);
14: Update 𝑠𝑐𝑜𝑟𝑒 (𝜓) with to Eq.(26);
15: end for
16: until converge

in a offline distributed inference manner, enhance articles represen-
tation vectors with the anchor graphs, and then cache the results.
In the recall stage, positive candidates can be retrieved by an ap-
proximate nearest neighbor searching (ANN) [7] module, based on
the enhanced article representation vectors. The reasoning paths

of any given item pairs (which is a typical ranking scenario) can be
derived from the interactions of the corresponding anchor graph,
which should be fast due to the compact structure of anchor graphs
(usually less than 50 entities).

	Abstract
	1 introduction
	2 Methodology
	2.1 A New Paradigm for Reasoning
	2.2 Anchor Graph Generation
	2.3 Item-to-item Recommendation
	2.4 The Optimization Framework

	3 experiments
	3.1 Experiment Settings
	3.2 Overall Performance
	3.3 Ablation and Hyper-Parameters Study
	3.4 The Quality of Reasoning

	4 related work
	4.1 KGs for Recommendation Accuracy
	4.2 KGs for Recommendation Reasoning

	5 conclusions
	References
	A Appendix
	A.1 Dataset Details
	A.2 Hyper-Parameter Settings
	A.3 Impact of Receptive Field Size
	A.4 A Graphical Illustration of AnchorKG
	A.5 Discussions about Online Serving

