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ABSTRACT
A typical cloud system has a large amount of telemetry data col-
lected by pervasive software monitors that keep tracking the health
status of the system. The telemetry data is essentially multi-dimensi-
onal data, which contains attributes and failure/success status of
the system being monitored. By identifying the attribute value
combinations where the failures are mostly concentrated (which
we call fault-indicating combination), we can localize the cause of
system failures into a smaller scope, thus facilitating fault diag-
nosis. However, due to the combinatorial explosion problem and
the latent hierarchical structure in cloud telemetry data, it is still
intractable to localize the fault to a proper granularity in an ef-
ficient way. In this paper, we propose HALO, a hierarchy-aware
fault localization approach for locating the fault-indicating com-
binations from telemetry data. Our approach automatically learns
the hierarchical relationship among attributes and leverages the
hierarchy structure for precise and efficient fault localization. We
have evaluated HALO on both industrial and synthetic datasets and
the results confirm that HALO outperforms the existing methods.
Furthermore, we have successfully deployed HALO to different
services in Microsoft Azure and Microsoft 365, witnessed its impact
in real-world practice.
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1 INTRODUCTION
Recent years have witnessed a rapidly growing demand for cloud
services. As major cloud service providers, such as Amazon AWS,
Microsoft Azure and Google Cloud, expand the capacities of their
cloud computing platforms, guaranteeing the platforms’ high avail-
ability has become the top priority [8]. Despite tremendous engi-
neering efforts on cloud maintenance, faults are still inevitable and
occur fairly frequently in large-scale cloud systems [10]. Slow fault
mitigation process could result in unplanned interruptions of the
services, which will not only incur significant financial losses due
to the violation of Service-Level-Agreement (SLA), but also expose
service providers to substantial reputation risk [20].

A typical cloud system is equipped with a large number of mon-
itors, which are programs that track the health status of system
components. These monitors generate telemetry data that could
provide the first-hand information about the system faults. The raw
telemetry data is usually organized as multi-dimensional tables con-
taining the failure/success status of the monitored subjects (such as
the responses of API requests) along with their attributes (such as
the data center, cluster, software version, etc). The failure/success
status in those tables can be further aggregated into counts by the
attribute values. By identifying the attribute value combination
where the failures are mostly concentrated, we may localize the
root cause of the failure into a smaller scope and provide useful
insights for fault diagnosis. Table 1 shows an illustrating example of
telemetry data collected from our cloud system. Given the insight
that the majority of failures occurred on the Cluster "PrdC01" when
the API "GET-FILES" was called, engineers can proceed to check
this API’s call stacks on cluster "PrdC01". They could then quickly
discover the root cause: the backend file system was crashed on
Cluster "PrdC01", which in turn caused an unusually high failure
rate on the "GET-FILES" API calls. This example illustrates the im-
portance of correctly identifying the attribute value combination
({"Cluster": "PrdC01", "API": "GET-FILES"}) that indicates the fault,
which we call fault-indicating combination in this paper.

Due to the scale and complexity of cloud systems, manual inves-
tigation on telemetry data is tedious and inefficient for identifying
the fault-indicating combination. While ad-hoc aggregations on
massive raw telemetry data could speed up this process, such ap-
proaches are difficult to generalize and error-prone. Recently, some
automated methods [3, 7, 18, 21] analyze telemetry data and pro-
vide insights to the engineering teams for fault diagnosis. These
methods identify fault-indicating attribute values through feature
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Table 1: An example of aggregated telemetry data

Attribute Columns Metric Columns

Datacenter OSVersion Cluster Node API Failures Successes

DC1 V_1.1 PrdC01 N01 GET-FILES 180 220
DC1 V_1.1 PrdC01 N01 POST-RESET 10 30
DC1 V_1.1 PrdC01 N02 GET-FILES 150 160
DC1 V_1.1 PrdC02 N03 GET-FILES 5 20
DC1 V_1.2 PrdC02 N03 POST-RESET 0 20
DC2 V_1.2 PrdC03 N04 GET-PWD 0 125
DC2 V_1.3 PrdC03 N05 GET-FILES 5 120
DC2 V_1.3 PrdC04 N06 POST-RESET 2 100
DC2 V_1.4 PrdC04 N06 GET-PWD 20 220
......

importance ranking or contrast pattern mining. Due to the notori-
ous combinatorial explosion problem and the intrinsic hierarchy
relationship in cloud telemetry data, existing methods often suffer
from low efficiency or accuracy.

We observe that attributes in the telemetry data tend to exhibit hi-
erarchical relations in which the values of one attribute (the superior
attribute) are determined by the values of another attribute (the infe-
rior attribute). Such phenomenon reflects the intrinsic hierarchical
architecture of cloud systems and can be commonly found in many
other large-scale distributed systems. For instance, the attributes
representing the physical organization of cloud systems often form
a strict hierarchical structure, such as the Node/Cluster/Datacenter
structure shown in Fig.1. With the hierarchical relationship, failures
concentrated on the value of a attribute can be also observed on the
corresponding values of its inferior and superior attributes simulta-
neously. For example, in Table 1, "Datacenter" could be regarded
as a superior attribute of "Cluster". The value {"Datacenter": "DC1"}
could form a "good" indicator of the fault because most failures
concentrated on “DC1”. However, this "insight" would motivate
engineers to look for non-existent issues on this large scope, which
distracts the diagnosis process. On the other hand, while values
from the inferior attribute Node {"Node":"N01"} and {"Node" : "N02"}
can localize the fault "perfectly", little can be learned from this
trivial "insight" and engineers may waste valuable time in trou-
bleshooting those two nodes separately. Therefore, to guide the
search for the fault-indicating combination, knowledge on the hi-
erarchical relationships should be leveraged. Unfortunately, most
of the existing work does not take the hierarchical property of
telemetry data into account thus they may mislead the direction of
fault diagnosis [3, 7, 21, 22].

In this paper, we propose a hierarchy-aware fault localization
approach named HALO to identify the fault-indicating combina-
tion from telemetry data. It leverages the learnt knowledge about
the hierarchical relationship among attributes to facilitate the fault
localization process. HALO divides the failure localization process
into two phases: 1) attribute-level search and 2) value-level search.
In phase one, HALO identifies the hierarchical relationship among
attributes and generates several attribute search paths. In phase
two, HALO performs top-down search of attribute values along the
hierarchically arranged search paths to form the fault-indicating
combinations. Through exploiting the hierarchical relationship, our
approach not only achieves high efficiency for large data volume,
but also can localize the fault to a proper level of granularity.

Datacenter: DC1

Cluster: PrdC01 Cluster: PrdC02

…… 

Node: N01 Node: N02

…… 

File System Fault

…… 

Datacenter: DC2

Cluster: PrdC03 Cluster: PrdC04

Node: N03 Node: N04 Node: N05 Node: N06

Figure 1: The strict hierarchical structure in Table 1
.

The effectiveness and efficiency of HALOwere evaluated by both
experiments and industrial practice. Experiments on real-world of-
fline production datasets shown that HALO can reach an average
accuracy around 0.80, about 36% higher than those of the compara-
tive methods. We also show that HALO can remain highly efficient
for extremely large dataset thanks to its search space reduction
achieved by hierarchy extraction. Finally, HALO has been success-
fully applied to Microsoft Azure Compute Service and Microsoft
365 Exchange Online Service. Both quantitative online A/B testing
and qualitative case studies conducted in the past 8 months have
confirmed HALO’s effectiveness in industrial practice.

The major contributions of this paper are as follows:
• We propose HALO, an efficient automated hierarchical fault
localization approach to locate the fault-indicating combina-
tions from telemetry data effectively.

• We evaluated HALO on both real-world industrial and syn-
thetic datasets and demonstrated that HALO can achieve
much higher localization accuracy than the competing meth-
ods while remain efficient for large-scale data.

• We demonstrate the practical value of HALO on Microsoft
Azure Compute Service and Microsoft 365 Exchange Service.

2 BACKGROUND AND CHALLENGES
2.1 Problem Formulation
In cloud systems, telemetry data are collected from the spatially
distributed monitors and centralized to a remote database [2]. It
can then be fetched for fault diagnosis. As shown in Table 1, a
typical aggregated telemetry data D consists of multiple attribute
columns A = {𝐴1, 𝐴2, ......, 𝐴𝑑 } representing the features of the
monitored subject andmetric columnsM = {𝑀𝐹 , 𝑀𝑆 } representing
the aggregated number of failures and successes. Each row in D is
called a record. The main objective of this paper is to identify a fault-
indicating combination 𝜔 so that the failures in D are mostly con-
centrated on the subspace S determined by 𝜔 . Here S(𝜔) = 𝜎𝜔 (D)
where 𝜎 denotes a selection operator specified by the disjunctive
normal formula 𝜔 = {𝐴𝑖1 = 𝑣1 ∧𝐴𝑖2 = 𝑣2 ∧ · · ·𝐴𝑖 𝑗 = 𝑣 𝑗 } in which
each clause represents a value of an attribute column. We assume
that all attribute columns are filled with discrete values. Continuous
attributes, if encountered, are needed to discretized first.

2.2 Hierarchical Relationship in Cloud
The hierarchy among attributes of telemetry data reflects the in-
herent hierarchical architecture of a cloud system. For example,



as a physical node always belongs to a cluster, records with the
same node ID are expected to share the same cluster ID. Attributes
also frequently appear as "peer" to others without showing clear
hierarchical relation, such as "Node" and "API" attributes in Table 1,
because an API is provided by multiple nodes and one node also
supports different API functions. If knowing the values of attribute
𝐴 𝑗 would allow us to approximately deduce the values of another
attribute 𝐴𝑖 , we would say that there is strong hierarchical rela-
tionship between 𝐴𝑖 and 𝐴 𝑗 , attribute 𝐴𝑖 is superior to 𝐴 𝑗 , and
attribute𝐴 𝑗 is inferior to𝐴𝑖 . Otherwise we will regard𝐴𝑖 and𝐴 𝑗 as
peers. While the hierarchical relationships can be found frequently
in cloud systems, such relationships could vary under different sce-
narios and context. Therefore, we need to infer those relationships
from telemetry data systematically.

2.3 Challenges
We need to address the following challenges to find the fault-
indicating combinations.

Firstly, fault localization in multi-dimensional telemetry data
suffers from the combinatorial explosion problem, especially when
facing an extremely large data volume. As the number of possible
combinations increases exponentially with growing dimensions
and cardinalities, it is increasingly more challenging to find the
combination that can narrow down the problem scope precisely.

Secondly, in the presence of hierarchical relationship, how to
localize the fault with an appropriate granularity presents another
key challenge. As failures can be observed on different attribute
values along the hierarchy, the fault could be localized to a less-
optimal granularity. If the fault was localized to attribute values
inferior to the optimal one, effort would be wasted in checking the
fragmented components. If attribute values superior to the optimal
one were chosen, little insight can be learnt from the board scope
to guide the diagnosis process.

3 APPROACH
3.1 Overview
The overall framework of HALO (Fig.2) contains two major phases:
an attribute-level search phase to narrow the searching space down
to certain attributes; and a value-level search phase to further lo-
cate the fault-indicating attribute values. Specifically, the first phase
detailed in Sections 3.2 and 3.3 aims at identifying search paths
composed of hierarchically arranged attribute columns. HALO first
identifies the relationships among attributes to construct the At-
tribute Hierarchy Graph (AHG), then generates attribute search
paths by performing random walk on AHG. The second phase de-
tailed in Sections 3.4 and 3.5 constitutes of top-down search along
the hierarchically-arranged attribute paths for identifying the best
attribute value combinations. This phase adopts the self-adaptive
early-stopping mechanism to reduce the search space and enable lo-
cating the failures to a proper granularity. Reverse truncation is also
applied to polish the obtained value combinations for improving
their compactness.

3.2 Attribute Hierarchy Graph Extraction
To guide the search effectively and efficiently, we first need to orga-
nize all the attributes in telemetry data into an Attribute Hierarchy

Graph (AHG). An AHG constitutes of multiple levels that form an
ordered hierarchy. Each level contains one or multiple attributes.
Within the same level, attributes are peers. Between different levels,
attributes tend to exhibit hierarchical relationship.

As the core innovation of this paper, AHG is integrated into
HALO to guide both attribute-level and value-level searches. The
incorporation of attribute hierarchy allows us to handle both chal-
lenges in Sec.2.3. Firstly, the efficiency of fault localization is signif-
icantly improved. Searches guided by AHG not only helps avoid
plenty of redundant and repetitive combination explorations, but
also is conductive in ruling out the irrelevant values in inferior
attributes beforehand. For example, there are very few failures
emerging on Cluster "PrdC02" in Table 1. As attribute Cluster is
superior to attribute Node, ruling out Cluster "PrdC02" would also
eliminate all its subordinate nodes. Secondly, the attributes hierar-
chy is critical for localizing failures to an appropriate granularity.
Searching through hierarchy ensures that we can progressively
narrow down the problem space from a larger scope (superior level)
to a smaller scope (inferior level), which offers us the chance to
explore and stop at the scope that is most likely indicating the fault.

Still, to automatically extract AHG frommulti-dimensional teleme-
try data, we need to determine both the number of levels and the
allocations of attributes properly, which are non-trivial without any
prior knowledge. In this section, we focus on the technical details
of constructing AHG, including the pairwise relationship identifi-
cation, the skeleton extraction, and the skeleton-based clustering.

3.2.1 Pairwise Relationship Identification. To extract AHG, we
need to measure the relationship between any two attributes. For
instance, attribute "Cluster" is superior to "Node" as a node must
belong to one and only one cluster and a cluster hosts multiple
nodes. Thus, knowing the Node ID can determine the Cluster ID,
but not vice versa. This fact inspires us to consider the pairwise
conditional entropy defined in Eq.1:

𝐻 (𝐴𝑚 |𝐴𝑛) = −
∑

𝑣𝑖 ∈𝐴𝑚,𝑣𝑗 ∈𝐴𝑛

𝑝
(
𝑣𝑖 , 𝑣 𝑗

)
log

(
𝑝
(
𝑣𝑖 , 𝑣 𝑗

)
𝑝
(
𝑣 𝑗
) )

(1)

where 𝐴𝑚, 𝐴𝑛 represent attributes and 𝑣𝑖 , 𝑣 𝑗 denotes their values.
And we further define the Uncertainty Reduction (UR) in Eq.2.

UR (𝐴𝑚 |𝐴𝑛) = 1 − 𝐻 (𝐴𝑚 |𝐴𝑛)
𝐻 (𝐴𝑚) , (2)

where 𝐻 (𝐴𝑚 |𝐴𝑛)
𝐻 (𝐴𝑚) denotes the conditional entropy of 𝐴𝑚 given 𝐴𝑛

normalized by the entropy of𝐴𝑚 :𝐻 (𝐴𝑚) = ∑
𝑣𝑖 ∈𝐴𝑚

𝑝 (𝑣𝑖 ) log (𝑝 (𝑣𝑖 )).
Between 0 and 1, UR (𝐴𝑚 |𝐴𝑛) can be viewed as the percentage of
uncertainty reduction in𝐴𝑚 given𝐴𝑛 . If𝐴𝑚 is superior to𝐴𝑛 , such
as "Cluster" is to "Node", the uncertainty in 𝐴𝑚 can be significantly
eliminated given 𝐴𝑛 , then 𝐻 (𝐴𝑚 |𝐴𝑛) ≈ 0 and UR (𝐴𝑚 |𝐴𝑛) ≈ 1.
On the contrary, UR (𝐴𝑚 |𝐴𝑛) ≈ 0 if 𝐴𝑚 and 𝐴𝑛 are peer.

While UR can be defined in both directions, the hierarchy re-
lationship we interest in is essentially unidirectional. That is, we
mainly focus on identifying cases whether the values of one at-
tribute can be determined by the values of another attribute with
finer granularity. As the granularity of an attribute can be roughly
measured by its entropy, we will only consider the UR of attribute
with lower entropy given attribute with higher entropy, and define
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Figure 2: An overview of HALO.

the Hierarchy Intensity (HI ) as Eq.3.

HI (𝐴𝑚 → 𝐴𝑛) =
{
UR (𝐴𝑚 |𝐴𝑛) , 𝐻 (𝐴𝑚) < 𝐻 (𝐴𝑛)

−∞, otherwise. (3)

Here −∞ denotes an invalid HI . Among valid UR (𝐴𝑚 |𝐴𝑛),
high values close or equal to 1 would indicate strong hierarchical
relationship while small values indicate peers relation. A Pairwise
Relationship Graph (PRG) can be constructed using all valid HI as
weighted directed edges, as shown in the first panel of Fig. 3.

3.2.2 Skeleton Extraction. To transfer the Pairwise Relationship
Graph into AHG, the number of hierarchical levels has to be speci-
fied. For this purpose, we will firstly identify the hierarchy skeleton,
a sequence of attributes forming a strict hierarchical chain. Each
attribute in the skeleton forms the basis of a unique level. The rest
attributes can then be clustered into those levels to complete AHG.

We define that there is a strict hierarchy relationship from at-
tribute 𝐴𝑚 to 𝐴𝑛 if 𝐻𝐼 (𝐴𝑚 → 𝐴𝑛) ⩾ 𝜏 , where 𝜏 ∈ [0, 1] is the
threshold for identifying strict hierarchy relationship. In this paper,
we found 𝜏 = 0.9 is sufficient for most scenarios.

To extract the hierarchy skeleton, we start with the vertex with
the highest in-degree in PRG because lower-level attributes (such
as "Node" in Fig. 3) are always pointed to by higher-level attributes.
We then traverse the graph to add new attributes to the skeleton
iteratively given that a strict hierarchy relationship exists from the
new vertex to the previous vertex. When multiple candidates are
available, we will choose the attribute whose in-degree is closest to
the current attribute to improve the chance of obtaining a long skele-
ton. In Fig. 3, after startingwith "Node", both attributes "Cluster" and
"DataCenter" are valid candidates as bothHI (“𝐶𝑙𝑢𝑠𝑡𝑒𝑟” → “𝑁𝑜𝑑𝑒”)
andHI (“𝐷𝑎𝑡𝑎𝐶𝑒𝑛𝑡𝑒𝑟” → “𝑁𝑜𝑑𝑒”) exceed the threshold 𝜏 of strict
hierarchy. Since the in-degree of "Cluster" is closer to "Node" than
"DataCenter", it is more likely that "Cluster" is the direct superior
of "Node". Thus, we will select the "Cluster" as the next attribute
to be added to the skeleton. Afterward, "DataCenter" is added to
complete the skeleton: “𝐷𝑎𝑡𝑎𝐶𝑒𝑛𝑡𝑒𝑟” → “𝐶𝑙𝑢𝑠𝑡𝑒𝑟” → “𝑁𝑜𝑑𝑒”.
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Figure 3: The Extraction of Attribute Hierarchy Graph.

3.2.3 Skeleton-based Clustering. Based on the extracted skeleton,
we initialize the hierarchy levels, each of which is filled up with
an attribute from the skeleton. We aim to cluster the remaining
attributes into these hierarchy levels so that the attributes in the
same level are roughly peers and the attributes between different
levels exhibit significant hierarchy structure. This target can be
formulated into the following optimization problem:

H∗ = argmin
H

𝑛∑
𝑖=1

𝐼𝑖 −
𝑛−1∑
𝑖=1

𝐶𝑖 . (4)

In Eq.4, the optimal AHGH∗ is associated with small internal hier-
archy score 𝐼𝑖 within each hierarchy level and large cross hierarchy
score 𝐶𝑖 between adjacent hierarchy levels. 𝑛 denotes the number
of levels. Both 𝐼𝑖 and 𝐶𝑖 are defined below:

𝐼𝑖 =

∑ |H𝑖 |
𝑗=1

∑ |H𝑖 |
𝑘=1

HI
(
H 𝑗

𝑖
→ H𝑘

𝑖

)
|H𝑖 | ∗ (|H𝑖 | − 1) /2 ,

𝐶𝑖 =

∑ |H𝑖 |
𝑗=1

∑ |H𝑖+1 |
𝑘=1

HI
(
H 𝑗

𝑖
→ H𝑘

𝑖+1

)
|H𝑖 | ∗ |H𝑖+1 |

.

(5)

where |H𝑖 | denotes the number of attributes in the 𝑖-th level and
H 𝑗

𝑖
denotes the 𝑗-th attribute in the 𝑖-th level. To compute 𝐼𝑖 , only

valid 𝐻𝐼 (> −∞) is used. For 𝐶𝑖 , the invalid 𝐻𝐼 is considered to
penalize objective score and avoid cases where the cross hierarchy
level direction of a pair of attributes violates their 𝐻𝐼 direction.

To find the solution to Eq.4, we adopt a heuristic approach to
cluster the remaining attributes into existing levels one by one. The
pseudo-code is summarized in Algorithm 1. To alleviate the impact
of the order of attributes to be clustered on the final solution, we
will cluster "low impact" attributes first. Specifically, at each step,
we evaluate the influence on the objective score of every potential
move (clustering one remaining attribute into any level, line 5 ∼
line 9) and choose the one with the lowest impact to update the
hierarchy (line 10). This process is repeated till all attributes are
clustered. Finally, all edges crossing multiple levels are removed to
generate the final Attribute Hierarchy Graph, as shown in Fig.3.

3.3 Failure-aware RandomWalk
The goal of the attribute-level search phase is to extract sequences
composed of multiple attributes as the search paths, which is to be
used in the next phase. These attributes should be not only arranged
hierarchically according to the AHG but also strongly correlated
with the failures. In this way, it can offer the value-level search
process a better chance of localizing the fault correctly. Motivated



Algorithm 1: Skeleton-based clustering
Require :Skeleton, S

Remaining Attributes Set, R
Objective score function Eq.4, Obj

Ensure :Attribute Hierarchy Graph,H
1 H is initialized using S
2 while R ≠ ∅ do
3 min_obj = ∞; add_attr = 𝑁𝑜𝑛𝑒; add_level = 𝑁𝑜𝑛𝑒

4 for 𝐴𝑖 ∈ R, 𝑙𝑒𝑣𝑒𝑙 ∈ H .𝑠𝑖𝑧𝑒 () do
5 H ′ = copy(H)
6 H ′

𝑙𝑒𝑣𝑒𝑙
= H ′

𝑙𝑒𝑣𝑒𝑙
∪𝐴𝑖

7 𝑠 = Obj (H ′)
8 if 𝑠 < min_obj then
9 min_obj = 𝑠; add_attr = 𝐴𝑖 ; add_level = level

10 H𝑎𝑑𝑑_𝑙𝑒𝑣𝑒𝑙 = H𝑎𝑑𝑑_𝑙𝑒𝑣𝑒𝑙 ∪ add_attr
11 R .remove(add_attr )
12 return H

by both targets, we devise a failure-aware random walk on AHG to
generate attribute search paths. This random walk obeys two basic
rules: 1) skipping hierarchy levels is prohibited. 2) walking towards
the high failure-correlated attributes is preferred.

We use the information gain ratio 𝛾𝑖 between attribute column
𝐴𝑖 and the failure/success metrics columns as the failure-correlation
score to guide the random walk. A higher 𝛾𝑖 implies that failures are
more concentrated on 𝐴𝑖 , thereby it ought to have a higher search
priority. To generate a walking path, we firstly sample one attribute
from the first hierarchy level. We then iteratively sample its neigh-
boring attributes (from the same level or its inferior level) on AHG
as the next hop, until no neighboring attributes are available. The
sampling probabilities follow the distribution of the normalized
failure-correlation scores of the current attribute’s neighbors. To
guarantee the diversity of search paths, the procedures above will
be executed multiple times to obtain several walking paths.

3.4 Self-adaptive Top-down Search
In the second phase, HALO searches for the value combinations
along each hierarchy-arranged attribute search path in parallel.
Such combinations should cover most failures while keeping an
appropriate granularity, neither too broad nor too trivial. To meet
these requirements, two fundamental problems should be addressed.
Firstly, which attribute values should be incorporated into the fault-
indicating combination? Secondly, how to form a proper stop crite-
rion to terminate the search at the right moment and avoid exces-
sively deeper or shallower search along the path?

3.4.1 Self-adaptive Top-down Search Framework. In the value-search
phase of HALO, we propose a self-adaptive top-down search frame-
work summarized in the pseudo-code of Algorithm 2. HALO first
initializes a candidate combination collector Φ using all values from
the first attribute columns in path P (line 1) to trace the growth
of each candidate combination. Then, HALO sequentially scans
all attribute columns according to the attribute search path order,
i.e. from the higher-level attributes to the lower-level attributes

(line 3). For each attribute column, HALO merges its every value
into existing combinations in Φ and evaluates the election score of
these tmp_candidates (line 6∼7). The election score is used for mea-
suring the failure concentration on these tmp_candidates. Those
promising candidates with high election scores are reserved in the
collector Φ for continuing to incorporate values of the subsequent
attributes.

Algorithm 2: Self-adaptive Top-down Search Framework
Require :An Attribute Path P =

[
𝐴1, 𝐴2, ..., 𝐴 |P |

]
Election Scoring Function E (∗)
Damping Scoring Function D (∗)
Stop Search Threshold 𝛿

Ensure :Fault-indicating Combinations Result Set Ω of P
1 Initialize the combinations collector Φ = {𝑣𝑖 |𝑣𝑖 ∈ 𝐴1}
2 Initialize the combinations result set Ω = []
3 for 𝐴 𝑗 ∈

[
𝐴2, ..., 𝐴 |P |

]
do

4 election_score_list = [], tmp_candidates = []
5 for 𝑣𝑖 ∈ 𝐴 𝑗 , 𝜔𝑘 ∈ Φ do
6 tmp_candidates .𝑎𝑝𝑝𝑒𝑛𝑑 (𝜔𝑘 ∧ {𝐴 𝑗 = 𝑣𝑖 })
7 election_score_list .𝑎𝑝𝑝𝑒𝑛𝑑 (E

(
𝜔𝑘 ∧ {𝐴 𝑗 = 𝑣𝑖 }

)
)

8 𝑡ℎ𝑟 = OTSU (election_score_list) ;Φ = [];
9 for 𝜔 ′ ∈ tmp_candidates do
10 if D (𝜔 ′) ⩾ 𝛿 then
11 Ω = Ω ∪ 𝜔 ′ // stop searching
12 else if E (𝜔 ′) ⩾ 𝑡ℎ𝑟 then
13 Φ = Φ ∪𝜔 ′ //reserve candidates to keep searching

14 return Φ

The promising candidate combination selection is achieved by
an automatic thresholding method named OTSU [24] stemming
from image segmentation. The basic idea of OTSU is looking for
a threshold 𝑡ℎ𝑟 for splitting the election scores of the candidate
combinations into two groups to minimize intra-group variances
(line 8). The tmp_candidates with the election scores higher than
𝑡ℎ𝑟 are picked to renew the collector Φ (line 12 ∼ 13) and others
are pruned away. This process is similar to the beam search [23].
However, the general beam search requires a fixed search width
but in our approach, it is self-adaptively decided by OTSU.

Each candidate combination in the collector keeps merging the
attribute values iteratively along the attribute search path until the
termination condition is triggered. For each candidate combina-
tion, a damping score is calculated along with the election score.
If the damping score is higher than the threshold 𝛿 , HALO would
determine that current candidate combination has reached an ap-
propriate fault-indicating granularity, stop searching on the current
combination, and output it to the result list (line 10 ∼ 11).

3.4.2 Scoring Function Instantiation. We emphasize that our pro-
posed self-adaptive top-down search is a flexible framework as
the election and damping scoring function can be customized for
different scenarios. They can be specified by the customer through
the call-back functions. In this section, we introduce the default
instantiation of both scoring functions used in HALO.



Election Scoring Function. If more failures concentrate on a cer-
tain combination, we are more inclined to choose it as the fault-
indicating one. Inspired by this idea, we define the failure score
𝑆𝐹 on a combination 𝜔 as the harmonious average of 𝑆𝐴 (𝜔) and
𝑆𝐼 (𝜔), i.e. 𝑆𝐹 (𝜔) = 2·𝑆𝐴 (𝜔) ·𝑆𝐼 (𝜔)

𝑆𝐴 (𝜔)+𝑆𝐼 (𝜔) :

𝑆𝐼 (𝜔) =
∑
MF (𝜔)∑
MF

; 𝑆𝐴 (𝜔) =
∑
MF (𝜔)∑

MF (𝜔) +∑
MS (𝜔) (6)

where 𝑆𝐼 is the impact score denoting the percentage of failures on
the combination 𝜔 to the total failures. 𝑆𝐴 , the availability score,
measures the ratio of failures against the total number on 𝜔 .

Damping scoring function. Failures in cloud environment tend
to spread evenly over the records on the true fault-indicating com-
bination. In Table 1, the failures are uniformly spread across all
the records (line 1 and line 3) on {"Cluster": "PrdC01" "API": "GET-
FILES"}. On the contrary, the distribution of failures over corre-
sponding superior attribute is far from uniform. In this example,
failure rates are subject to large variety among the records from
datacenter "DC1" (line 1 ∼ line 5). It implies the true epicenter of the
failures lies on its inferior attributes, not on "DC1". Motivated by
this observation, we design the stopping rule based on whether the
availability scores of those records under the candidate combination
are balanced. In particular, for the current tmp_candidate 𝜔 ′, we
retrieve all related records and calculate each record’s availability
score as in Eq.6. The difference score 𝑆𝑑 between the estimated
availability scores distribution and the standard uniform distribu-
tion with the same dimension is measured by their JS-divergence.
A lower 𝑆𝑑 indicates that the distribution of records’ availability
scores under the current𝜔 ′ aremore close to uniform andwe should
stop the search instead of exploring the lower-level attributes.

3.5 Reverse Truncation
Each obtained fault-indicating combination is composed of values
from all attributes in the search path before the termination. Still,
values from superior attributes are redundant if the values from
inferior attribute values have pinpointed the fault location precisely.
For example, if HALO has already localized the fault to a cluster,
ID of associated data center and other superior attributes would be
unnecessary. To make the combinations more succinct, we perform
reverse truncation to polish the combination.

To be specific, for an obtained combination𝜔 = {𝐴1 = 𝑣1∧𝐴2 =

𝑣2 ∧ · · · ∧𝐴 |𝜔 | = 𝑣 |𝜔 |}, we calculate its election score E(𝜔). After
that, we enumerate its sub-combination in reverse order, 𝜔∗

1 =

{𝐴 |𝜔 | = 𝑣 |𝜔 |}, 𝜔∗
2 = {𝐴 |𝜔 |−1 = 𝑣 |𝜔 |−1 ∧ 𝐴 |𝜔 | = 𝑣 |𝜔 |}, · · · , 𝜔∗

|𝜔 | =
{𝐴 |𝜔 | = 𝑣 |𝜔 | ∧ · · · ∧ 𝐴1 = 𝑣1}. For each sub-combination, we
evaluate its election score E(𝜔∗) and compare it with the original
E(𝜔). If the difference for a certain 𝜔∗

𝑖
is smaller than a threshold

𝛼 , it means the current sub-combination is representative enough
and those preceding higher-level attribute values contribute little
to raising election score. Thus, we replace the original 𝜔 by 𝜔∗

𝑖
.

Finally, all truncated combinations from different attribute search
paths are put together and sorted according to their election scores
to form a ranking list. In practice, we recommend top of it to users.

4 EXPERIMENT
In this section, we conduct extensive experiments to evaluate the
effectiveness and efficiency of our proposed approach.

4.1 Experimental Setup
Datasets. We use different types of datasets to evaluate the effec-

tiveness and efficiency of HALO.
Production Datasets: The production datasets are collected

from three services in Microsoft named FuseBot, RescueBox and
Gandalf during the second half of 2020. Both FuseBot and RescueBox
are affiliated with Microsoft 365 Exchange. FuseBot is responsible
for the safe deployment of Microsoft 365 Exchange Online through
identifying the problematic Exchange build versions. RescueBox
is a fast recovery service in Microsoft 365 Exchange and is used
for automated mitigation actions. Gandalf [17] is a suite of AIOps
[10] solution in Microsoft Azure, a large-scale cloud computing
service. A total of 47 datasets were collected from these 3 services.
The number of raw records ranges from 779 to 67 million and the
number of attribute columns varies from 5 to 62. The ground truth
of fault-indicating combinations are all manually labeled by the
on-call engineers based on the postmortems of the incidents. We
organize those datasets into three groups by the service names.

SyntheticDatasets:Wealso created 5 groups of synthetic datasets
to evaluate HALO under a controlled environment. The first three
groups include simulated datasets with a fixed number of attribute
values in the true fault-indicating combination. The rest two groups
are composed with datasets in which all attributes exhibit pure
hierarchy/peer structure to explore HALO’s performance under ex-
treme circumstances. Each of the five groups consists of 8 datasets1,
where the number of raw records varies from 5000 to 1.2 million,
and the number of attribute columns varies from 6 to 10.

Comparative Methods. We compared HALO with three existing
methods proposed for the fault localization problem in large-scale
software systems. Tree Model based Predicate Extraction (TM-
PE) is a machine-learning based approach proposed in [3]. It trains
a random forest classifier to predict the success/failure status from
attribute values and extracts value combinations from the learnt
models. Fast Dimensional Analysis (FDA) [18] is a frequent pat-
tern mining method. It uses FP-Growth algorithm [6] to combine
the attribute values with a high support ratio among records with
failure status and relies on the association rule learning to select
the combination that is most unique to the failures. Lumos [21]
is a library for diagnosing regressions in the context of A/B test-
ing. Its fault localization component leverages the hazard scores to
evaluate individual attribute values’ relevance to the failures. All
methods including HALO report a ranking list of fault-indicating
attribute values or combinations. For the sake of evaluation, only
the results on the top of the ranking list is considered1.

Metrics. For each dataset D𝑖 , we evaluate the model accuracy
with the Sørensen–Dice coefficient [25] between the ground truth
combination 𝜔𝑖 and the combination 𝜔𝑖 reported by models. This
metric allows us to penalize both redundant and missing attribute
values. The average Sørensen–Dice coefficient across all datasets
within the same group is used as the final metric as shown in Eq.7,
1The details of datasets and implementation can be found in Supplementary Materials.



where 𝑁 is the number of datasets in a dataset group. This metric
has been widely used in [14, 16] for the fault localization problem.

SDC =

𝑁∑
𝑖=0

(
2 · 𝜔𝑖 ∩ 𝜔𝑖

|𝜔𝑖 | + |𝜔𝑖 |

)
/𝑁 (7)

4.2 Effectiveness
We first evaluated the effectiveness of HALO and all three compara-
tive methods on the production datasets and summarized the experi-
mental results in Table 2. Those results suggest that HALO performs
much better than other methods. It achieved about 0.80 SDC-Score,
about 36% higher than other methods on average. Among the com-
parative methods, FDA and TM-PE directly extract fault-indicating
attribute value combinations without accounting for the hierarchy
structure. Lacking mechanism for localizing failures into a proper
granularity, those two methods may pick irrelevant attribute values,
which lower the SDC-Scores. In contrast, as Lumos only evaluates
the attribute value individually while ignoring their interactions, it
tends to form incomplete solutions.

Table 2: Evaluation results on production datasets

Methods FuseBot RescueBox Gandalf
TM-PE 0.404 0.510 0.414
FDA 0.476 0.688 0.333
Lumos 0.404 0.458 0.333
HALO 0.844 0.760 0.771

To further validate the effectiveness of HALO systematically
under controlled conditions, we applied all four methods on syn-
thetic datasets and summarized results in Table 3. Here "DG-N"
denotes a dataset group in which the ground truth combination
contains exactly 𝑁 attribute values. "Peer-Only" and "Hierarchy-
Only" refers to the groups with pure peer/hierarchy relationship
among all attribute columns. From this table, we found that the
accuracy of all methods decreases gradually as the length of the
ground truth combination increases, due to the fact that the longer
combination is more difficult to be perfectly identified. Even though,
HALO had the least accuracy degradation and still outperformed
other methods. In the "Hierarchy-Only" group with perfect hier-
archy structure, the advantage of HALO can be fully exploited to
obtain perfect result. In the "Peer-Only" dataset group, while HALO
cannot extract valid hierarchy structure, it can still leverage the
failure-aware random walk to guide the value-level search towards
the more promising attributes. Under this extreme circumstance,
HALO exhibited robust performance and received scores better
than those of other methods.

4.3 Efficiency
4.3.1 Performance comparsion under different data volume. Opera-
tors and developers are expected to immediately locate the failures
so that they can take actions in time. Thus, the efficiency of the lo-
calization algorithm is crucial for accelerating the diagnosis process.
We studied the running time of HALO and other three methods
on datasets with different data scales. We plotted the results along

Table 3: Evaluation results on synthetic datasets

Methods DG-1 DG-2 DG-3 Peer Only Hierarchy Only
TM-PE 0.850 0.846 0.750 0.553 0.533
FDA 1.000 0.938 0.842 0.738 1.000
Lumos 0.821 0.821 0.790 0.646 0.400
HALO 1.000 0.975 0.915 0.856 1.000

with corresponding log-log regression lines in Fig.4. The horizon
axis denotes the records number in raw telemetry data and the
vertical axis denotes the running time. Both axes are in log scale.

We can conclude from this figure that the running time of HALO
increases slowly with the rising volume of telemetry data because
the regression line of HALO approximate horizontal. In TM-PE
and FDA, the majority of the running time is spent on the model
fitting and pattern extraction, or frequent pattern mining, which
all become much slower for large volume of data. As a single at-
tribute value evaluation method, the computation in Lumos does
not involve complicated combination generation procedure and is
much faster than other methods. However, the results in Table 2
show that the accuracy of Lumos is considerably inferior to HALO.

4.3.2 Performance comparison under different settings. In HALO,
the hierarchy extraction in the attribute-level search and the early
stop in the value-level search are both conducive to reducing the
search space. To validate the usefulness of both components, we
summarized the number of attribute-value combinations to be
searched under different settings on a large-scale dataset (67,504,971
records and 6 attribute columns) in Fig .5. We can see that both
components contribute significantly to the search space reduction.
Without hierarchy extraction and early stop, we need to search
through about 457K possible combinations, a huge number for prac-
tical application. If we only enable either hierarchy extraction or
early stopping, the size of search space can be reduced to 63K and
14K, respectively. With both components invoked as in HALO, the
total search space can be narrowed down to only 6K.

5 INDUSTRIAL PRACTICE
So far, HALO has already successfully applied to multiple scenarios
in Microsoft 365 and Azure Cloud, including safe deployment, API
availability regression investigation, live migration performance
bottleneck analysis, and VM abnormal rebooting diagnosis, etc.
In this section, we will present the online evaluation of HALO
and then share its impact in production and our experience from
real-world deployment.

5.1 Online Evaluation in Production
In Microsoft 365 Exchange online service, FuseBot is a safe de-
ployment service, which is responsible for diagnosing whether a
certain Exchange software deployment should be responsible for
system incidents. Due to the Progressive Delivery process, there
would be multiple build versions co-existing in the production en-
vironment. Traditional solution to this task was called as Version
Comparison, which ranks these different build versions according
to their aggregated failure rates. However, the diagnosis results did
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not meet the expectations due to the existence of ambient faults,
which are caused by non-software issues, such as disk corrupt,
network timeouts, and power loss [12, 15]. These ambient faults
were often misidentified by the Version Comparison solution as
the software-related problems, which led to many false positive
results. We built a shadow running service equipped with HALO
for better fault localization. We performed an online A/B testing
from March 2020 to June 2020. The goal of this online A/B testing is
to verify how many software faults can be correctly identified and
whether ambient faults can be successfully eliminated by HALO,
in comparison to the traditional Version Comparison solution. The
results are summarized in Fig. 6.

Fig. 6 shows that Version Comparison wrongly categorized 15
ambient faults as software-related issues (i.e., False Positives, FP).
It is because that "software version" is generally a high-level at-
tribute in the hierarchy structure of the telemetry data, the fail-
ures caused by ambient faults usually concentrate at lower-level
attribute values and accumulate on corresponding superior build
versions. Therefore, traditional Version Comparison is prone to
report false-positive cases. On the contrary, HALO exploits the
hierarchy relationship to localize the fault to attribute values of a
proper level and thus successfully eliminated 12 of 15 false alarms
in online A/B testing. We also found that the numbers of true soft-
ware faults captured by Version Comparison and HALO are close
to each other. The True Positive (TP) cases are 12 vs. 14. It shows
that HALO is also capable of identifying software-related issues.

HALO has been shipped into Microsoft 365 FuseBot service
since June 2020. It has successfully identified tens of problematic
Exchange Online build versions, and achieved 86.9% precision and
93.0% recall. It is estimated to save about hundreds of Time-to-
Mitigate (TTM) hours, thanks to its fast fault localization process.
The identified cases included dozens of high severity problems,
which triggered urgent rollback mitigation actions.
5.2 Case Study
5.2.1 Cross Dependency in Safe Deployment . Deployment safety
is important for the maintenance of Microsoft 365. Once a problem-
atic software rollout is confirmed, on-call engineers are required
to roll back the bad deployment and fix the problem as soon as
possible. Besides the ambient issue presented above, complex cross
dependency among micro-services in Microsoft 365 is another in-
tractable problem for identifying the bad deployment. It is common
to find out that a burst of failures in a certain service is caused by a
deployment event of another service, rather than by bugs in its own
software. This leads to a big challenge for rapid fault diagnosis.

In our practice, we once encountered an increasing of failures on
the REST API availability signal of the Messages Ingestion service.
Intuitively, this service’s deployment version was marked as the
prime suspect. However, 3 hours after the investigation was kicked
off, engineering teams still could not find anything wrong with this
service and fell into confusion. At the same time, HALO reported
an attribute value combination composed of the Messages Ingestion
service and a newly deployed Exchange software version, which is
depended by the former. More than 97% failures are concentrated
on this combination. Noting the potential correlation between those
two services, on-call engineers inspected activities logs from both
services and realized that the store protocol team from Exchange
service should be involved in the investigation. Only 5 minutes later
after this teamwas informed, the root cause, a class casting failure in
an event handler, was found. This event handler was incompatible
with the Messages Ingestion service and caused failures on the
REST API availability. This alert was quickly escalated to a higher
severity and this Exchange deployment version was rolled back at
once. Thanks to the HALO’s engagement, the potential break out
of this bad rollout was successfully avoided in an early stage.

5.2.2 Hardware Failure Analysis using off-the-shelf HALO. As a
general solution, HALO has been applied to Microsoft 365 Res-
cueBox and Azure Gandalf services as a third-party off-the-shelf
diagnosis tool for different customized scenarios. In this way, en-
gineers from both services are able to query telemetry data and
seamlessly invoke HALO to conduct analysis. Especially during
the hardware failure analysis process, the diverse fault root causes,
heterogeneous telemetry data schema and diverse metrics require
on-call engineers to execute the diagnosis tool according to their
own different site conditions.

In September 2020, some monitors reported that CPU Internal
ERRor (IERR) failures in Azure Compute Service increased signifi-
cantly. The incident manager called up both the OS teams and the
infrastructure teams to investigate this problem. They queried CPU
and VM telemetry data and invoked HALO API. HALO reported an
attribute value combination, including a microcode version and a
hardware SKU (Stock Keeping Unit) ID. It was a critical finding as
it provided crucial insight into the dependency between software
and hardware. This alert was bumped to the higher priority and
the engineering team started to investigate along the clues given
by HALO. Finally, it was concluded that this issue was caused by a
bug in CPU microcode. It was interesting that only the machines
with power capping enabled, such as the hardware SKU we found,
are sensitive to this bug (which would be triggered by the frequent



throttling when the power capping limit is breached). The engi-
neering team decided to temporally disabled power capping on the
impacted machines of this SKU. This issue was eventually resolved
after a microcode patch from CPU vendors was applied.

6 RELATEDWORK
Much work has been proposed for fault diagnosis with telemetry
data. For example, Raff et.al [22] ran a two sample Z-test on each
column and rank all the columns by the p-values. While this ap-
proach can be used to find relevant attribute columns, it can not
identify the fault-localizing attribute value. Pool et. al [21] proposed
Lumos as an A/B testing approach capable of fault diagnosis. It ap-
plied Bias Normalization to reduce false alarm rate, and hypothesis
tests on one-hot encoded attribute columns to narrow down the
problem scope to attribute values. Castelluccio et. al [7] developed a
modified version of STUCCO, a contrast set mining algorithm [4, 5],
to find attribute-value pairs that are significantly different between
software crash reports. Similarly, Lin et. al [18] utilized FP-Growth,
an association rule mining algorithm [13], to find frequent sets
among the failed records.

Other prior work utilized machine learning algorithms for fault
diagnosis with telemetry data. For example, the Fa system [11] used
margin-based agglomerative clustering [19] and a Partition-Check-
Merge algorithm to match the new failed records with previously
annotated failed reasons. However, the fact that it requires pre-
labeled records as input data makes it unsuitable for our use case.
Chen et. al [9] presented an approach to diagnose the failures by
training a decision tree, and used the split rule of the tree nodes
as the diagnosis result. Based on this method, Bansal et. al [3]
proposed TM-PE, which relies on random forest for rule extraction
and improvement on precision and robustness.

7 CONCLUSION
Rapid fault diagnosis is vital for the maintenance of cloud systems.
In this paper, we propose HALO, an efficient hierarchical fault
localization approach to locating the fault-indicating combinations
from telemetry data. Our approach divides the telemetry data based
failure localization process into two phases: 1) attribute-level search,
where hierarchical relationship among attributes are identified, and
2) value-level search, where the fault-indicating combinations are
identified. The exploit of the hierarchical relationship allows HALO
to localize fault to a proper level of granularity with high efficiency.
Experiments on real-world production datasets shown that HALO
can reach an average accuracy of about 0.80, which is about 36%
higher than that of the comparative methods. HALO has also been
successfully applied to Microsoft Azure and Microsoft 365, and its
effectiveness is confirmed in industrial practice.

ACKNOWLEDGEMENT
We thank our partners Cathy Chen, Keyan Zhang, Weikun Zhong,
QijunHong, Junbo Qin, Botao Zhang, Victor Rühle, Xukun Li for the
close collaboration, thank Robert Gu, Jim Kleewein, Murali Chinta-
lapati, Melur Raghuraman, Lidong Zhou, Hsiao-Wuen Hon for their
great support. Hongyu Zhang is supported by ARC DP200102940.

REFERENCES
[1] Kusto. https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/.
[2] Observability, telemetry, and monitoring. https://cloud.ibm.com/docs/java?

topic=cloud-native-observability-cn.
[3] C. Bansal, S. Renganathan, A. Asudani, O. Midy, and M. Janakiraman. Decaf:

diagnosing and triaging performance issues in large-scale cloud services. Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering:
Software Engineering in Practice, 2020.

[4] S. Bay and M. Pazzani. Detecting change in categorical data: mining contrast
sets. In KDD ’99, 1999.

[5] S. Bay and M. Pazzani. Detecting group differences: Mining contrast sets. Data
Mining and Knowledge Discovery, 5:213–246, 2004.

[6] C. Borgelt. An implementation of the fp-growth algorithm. In Proceedings of the
1st international workshop on open source data mining: frequent pattern mining
implementations, pages 1–5, 2005.

[7] M. Castelluccio, C. Sansone, L. Verdoliva, and G. Poggi. Automatically analyzing
groups of crashes for finding correlations. Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017.

[8] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang, and
D. Zhang. An empirical investigation of incident triage for online service systems.
In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pages 111–120. IEEE, 2019.

[9] M. Y. Chen, A. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer. Failure diagnosis
using decision trees. 2004.

[10] Y. Dang, Q. Lin, and P. Huang. Aiops: real-world challenges and research innova-
tions. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pages 4–5. IEEE, 2019.

[11] S. Duan, S. Babu, and K. Munagala. Fa: A system for automating failure diagnosis.
2009 IEEE 25th International Conference on Data Engineering, pages 1012–1023,
2009.

[12] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman, X. Lin,
T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, et al. Fail-slow at scale: Evidence
of hardware performance faults in large production systems. ACM Transactions
on Storage (TOS), 14(3):1–26, 2018.

[13] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discovery, 8:53–87, 2006.

[14] B. Hofer, A. Perez, R. Abreu, and F. Wotawa. On the empirical evaluation of
similarity coefficients for spreadsheets fault localization. Automated Software
Engineering, 22(1):47–74, 2015.

[15] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and R. Yao.
Gray failure: The achilles’ heel of cloud-scale systems. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems, pages 150–155, 2017.

[16] J. Kim and E. Lee. Empirical evaluation of existing algorithms of spectrum based
fault localization. In The International Conference on Information Networking 2014
(ICOIN2014), pages 346–351. IEEE, 2014.

[17] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang, Q. Lin, Y. Wu,
S. Levy, et al. Gandalf: An intelligent, end-to-end analytics service for safe
deployment in large-scale cloud infrastructure. In 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20), pages 389–402, 2020.

[18] F. Lin, K. Muzumdar, N. Laptev, M.-V. Curelea, S. Lee, and S. Sankar. Fast dimen-
sional analysis for root cause investigation in a large-scale service environment.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4:1 –
23, 2020.

[19] K. Munagala, R. Tibshirani, and P. Brown. Cancer characterization and feature
set extraction by discriminative margin clustering. BMC Bioinformatics, 5:21 –
21, 2003.

[20] V. Nair, A. Raul, S. Khanduja, V. Bahirwani, Q. Shao, S. Sellamanickam, S. Keerthi,
S. Herbert, and S. Dhulipalla. Learning a hierarchical monitoring system for
detecting and diagnosing service issues. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 2029–
2038, 2015.

[21] J. Pool, E. Beyrami, V. Gopal, A. Aazami, J. Gupchup, J. Rowland, B. Li, P. Kanani,
R. Cutler, and J. Gehrke. Lumos: A library for diagnosing metric regressions
in web-scale applications. Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery Data Mining, 2020.

[22] P. Raff and Z. Jin. The difference-of-datasets framework: A statistical method
to discover insight. 2016 IEEE International Conference on Big Data (Big Data),
pages 1824–1831, 2016.

[23] D. R. Reddy et al. Speech understanding systems: A summary of results of the
five-year research effort. department of computer science, 1977.

[24] M. Sezgin and B. Sankur. Survey over image thresholding techniques and quan-
titative performance evaluation. Journal of Electronic imaging, 13(1):146–165,
2004.

[25] V. Verma and R. K. Aggarwal. A comparative analysis of similarity measures akin
to the jaccard index in collaborative recommendations: empirical and theoretical
perspective. Social Network Analysis and Mining, 10:1–16, 2020.

https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/
https://cloud.ibm.com/docs/java?topic=cloud-native-observability-cn
https://cloud.ibm.com/docs/java?topic=cloud-native-observability-cn


A SUPPLEMENTARY MATERIALS
A.1 Experimental Setting
We carried out our experiments on a server which runs on 64-bit
Windows Server 2016. It owns two Inter(R) Xeon(R) CPU E5-2690
v4 @ 2.60GHz 2.59GHz processors and 512 GB of memory. HALO is
implemented with Python 3.7.8 and data is queried with Kusto [1].

A.2 Implementation Details of Comparative
Methods

A.2.1 TM-PE. TM-PE is proposed in a diagnosis and triaging sys-
tem for performance issues in large-scale cloud services [3]. In the
diagnosis component, TM-PE treats the success/failure status as
the target labels and the other attributes as the features to train a
random forest classifier for fitting the telemetry data. After that,
TM-PE used a parser to extract correlated predicates and scope pred-
icates from the trained model to capture the attribute values that
are directly correlated to failures or indicate their scope. These
predicates are composed of either positive form 𝐴𝑖 = 𝑣 → {𝑇𝑟𝑢𝑒}
or negative form 𝐴𝑖 = 𝑣 → {𝐹𝑎𝑙𝑠𝑒}. For adapting to our scenarios,
we only collected all positive form predicates and regarded them
as the possible fault-indicating combinations.

A.2.2 FDA. Fast Dimensional Analysis (FDA) is a framework that
automates the root cause analysis on structured logs in a large-scale
service environment. FDA firstly uses the well-known frequent-set
mining algorithm FP-Growth to find the frequent combinations that
coexist with failures repeatedly. Secondly, the lift and support met-
rics are used to filter out some irrelevant patterns. We utilized the
Python package pyfpgrowth2 to perform the FP-Growth algorithm
and implemented the filtering procedure described in their paper by
ourselves. For each frequent combination found and survived from
the filtering process, we consider it as a possible fault-indicating
one.

A.2.3 Lumos. Lumos is a python library for diagnosing metrics
regressions in web-scale applications. Different from regression
diagnosis, any attributes in telemetry data, including some static
ones (such as the device type or geographical location), could be
helpful for fault localization. Therefore, we regard all attributes in
our scenarios as the hypothesis features [21]. We do not consider
bias check and normalization process for invariant features and
only took advantage of the hypothesis feature ranking component
in Lumos. As introduced in their paper, we calculate the hazard
score for all attribute values. This score is defined as the difference
between the control and treatment datasets of the conditional prob-
ability of feature occurrence given that a failure occurred [21]. We
selected those attribute values whose hazard score is larger than
a self-adaptive threshold and treated them as the fault-indicating
ones.

A.3 Parameter Tuning
We fine-tuned the related parameters of all algorithms, specifically:

• TM-PE: threshold for score difference between left child and
right child, diff _threshold = 0.3

2https://pypi.org/project/pyfpgrowth/

• FDA: minimum support in FP-Growthmin_support = 0.5 ∗∑
𝐷 𝑀𝐹 , thresholds used in pruning, 𝐻𝑙𝑖 𝑓 𝑡 = 1.1, 𝐻𝑠𝑢𝑝𝑝 =

1.1
• Lumos: threshold for hazard score 𝑠𝑐𝑜𝑟𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is set
adaptively to 𝜇𝑠 + 3𝜎𝑠 , where 𝑠 represents all hazard scores
and 𝜇, 𝜎 denote the mean and standard deviation, respec-
tively

• HALO: stop search threshold 𝛿 = 0.1, strict hierarchy thresh-
old 𝜏 = 0.9, reverse truncation threshold 𝛼 = 0.8, number of
search paths = 20.

A.4 Details in Evaluation
The output of either TM-PE, FDA, or HALO is a ranking list of
possible fault-indicating combinations. From the practical point of
view, engineers and operators tend to focus on the top result in the
diagnosis report. Therefore, wemeasured Sørensen–Dice coefficient
by taking the top-1 combination. The raw output of Lumos is a
ranked list of fault-indicating attribute values, not combinations.
For fairness, we took those top ranked values whose hazard score
is higher than the fine-tuned threshold.

In addition, we set a timeout limit of 7200 seconds (i.e., 2 hours).
If the runtime of an algorithm on a dataset exceeds this, we will ter-
minate it and output the empty result. In our practice, if a diagnosis
algorithm requires more than 2 hours to complete, it is impractical
as engineers may have already localized the problem manually.

A.5 Synthetic Datasets Generation
The synthetic datasets DG-1, DG-2, DG-3 and Hierarchy Only are
generated in the following steps:

(1) Generate a tree to emulate the hierarchical structure among
attributes

(2) Transform the tree into a table of attributes
(3) Choose a row randomly, and pick some of its attribute values

as the ground truth combination
(4) Assign the metrics to each row based on whether the row

matches the true failure-indicating combination

A

FG

B DC

FE H E

Column 1

Column 2

Column 3

Figure A1: The generated tree structure
An example of the tree structure can be found in Fig. A1. Each

layer represents am attribute column and each node represents a
value. At each level, a reuse rate is determined. When a new node
is to be mounted, it may use a previous value at the probability
of reuse rate, or generate a new one. If the reuse rate is zero, all
values in the next layer will be unique, leading to a pure hierarchy



relationship. If the reuse rate is non-zero, certain values may appear
again under different previous-column values.

Table A1: Transformed attribute table

Column 1 Column 2 Column 3
A B E
A B F
A B G
A C F
A C H
A D E

Table A1 shows the attribute table converted from the tree. Af-
ter that, we randomly select some attribute values as the ground
truth combination. For example, if the first row and Column 2, Col-
umn 3 are chosen, then the failure-indicating combination will be

{“Column 2”: “B”, “Column 3”: “E”}. For the records satisfying this
combination,𝑀𝑆 are sampled from a distribution with small mean
value, and𝑀𝐹 are sampled as such with large mean value. For the
other records, the distribution for𝑀𝑆 has a large mean while that
of𝑀𝐹 has a small one.

When generating DG-1, DG-2 and DG-3, we use various reuse
rates in step (1) and select the length of ground truth combination
respectively in step (3). For Hierarchy Only, the reuse rate is always
set to zero.

The way we generate “Peer Only” dataset is slightly different
because the procedure above inevitably introduces hierarchical
relationship to a certain degree. We make sure that all columns are
peer by making them all independent. When synthesizing the table
of attributes, a value pool is generated for each attribute column
in advance, and all values are selected i.i.d. from its corresponding
pool. Then we conduct step (3) and step (4) as previously stated to
assign the metric columns.
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