
 

 

Abstract—Successful application of deep learning in medical 

image analysis necessitates unprecedented amounts of labeled training 

data. Unlike conventional 2D applications, radiological images can be 

three dimensional (e.g. CT, MRI) consisting of many instances within 

each image. The problem is exacerbated when expert annotations are 

required for effective pixel-wise labeling, which incurs exorbitant 

labeling effort and cost. Active Learning is an established research 

domain that aims to reduce labeling workload by prioritizing a subset 

of informative unlabeled examples to annotate. Our contribution is a 

cost-effective approach for U-Net 3D models that uses Monte Carlo 

sampling to analyze pixel-wise uncertainty. Experiments on the 

AAPM 2017 lung CT segmentation challenge dataset show that our 

proposed framework can achieve promising segmentation results by 

using only 42% of the training data. 
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I. INTRODUCTION 

ITH the widespread success of supervised deep learning 

on semantic image segmentation [1][2][3], the amount of 

labeled data required to train these networks has grown 

significantly. This has led to posing severe constraints on the 

applicability of deep neural networks in medical image analysis 

where only trained experts or qualified professionals can 

annotate data, and the costs associated with annotating 

sufficient examples is drastically high.  Moreover, manual 

inspection of medical images can be very tedious and time-

consuming [4], clinical experts have limited availability, and 

the imaging interpretation is subject to the experience of the 

specialist [5]. The problem is exacerbated in medical image 

semantic segmentation tasks, where effective pixel-level 

labeling is required. This challenge has resulted in the 

generation of significantly small public labeled datasets in the 

medical imaging field (30 for ISBI EM Challenge [6] and 85 

for Gland Segmentation Challenge Contest in MICCAI 2015 

[7]).  

To reduce the costs associated with manual annotation and 

enlarge the training datasets, a number of techniques based on 

active learning have been proposed [8][9][10][11]. The core 

idea is that the framework, iteratively, selects samples to be 

labeled next, leading to a system that could potentially learn 

from only a fraction of the data. In each iteration, the framework 

selects a subset of samples from a large collection of unlabeled 

images according to a policy and queries their labels. Once 

labeled, the new candidates are added to the training set and the 

training model is fine-tuned using the augmented training set. 

This process is then repeated, with the annotated samples 

increasing in size over time, until the performance on a  

validation set plateaus. A thorough review of literature on 

active learning solutions for medical image segmentation can 

be found in Tajbakhsh et al. [12], with different active learning 

methods that select candidates for annotation based on 

informativeness and diversity of the data. 

Existing uncertainty sampling techniques almost exclusively 

operate on 2D images and do not directly extend to many 

medical imaging modalities such as CT and MRI, which are 

inherently three-dimensional. To our knowledge, active 

learning applied to 3D U-Nets has not been investigated 

extensively. The work of [13] comes closest to ours in spirit, 

wherein the authors investigate active learning on  whole 3D 

images; most other approaches to date have considered 2D 

images [14][15][16]. 

In this work, we evaluate the utility of active learning on 3D 

medical imaging data from the AAPM 2017 lung CT 

segmentation challenge [17]. We focus on 3D U-Net based 

segmentation models [18], which have demonstrated state-of-

the-art results on various segmentation tasks in medical 

imaging and widely considered to be the de facto approach to 

semantic segmentation [19][20][21][22][23]. By introducing 

active learning with precise pixel-level uncertainty 

measurements on a publicly available dataset, our primary 

objective is to encourage increased adoption of active learning 

techniques within the medical imaging community. 

II. METHODS 

Fig. 1 shows an overview of the proposed approach. Our 

proposed methodology consists of two major components 

including network training on the initial set of labeled data and 

image uncertainty scoring on the unlabeled data. The following 

section describes them in more detail: 

Network Training: We choose 3D U-Nets as the architecture 

for segmentation, which remains one of the most popular  

convolutional neural networks (CNNs) in medical imaging  
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[18]. We first train the segmentation network using a small 

subset of training images that are randomly selected from the 

labeled dataset DL, for which ground-truth annotation has been 

acquired. 

Image Uncertainty Scoring: Next, our active learning 

method aims to query highly uncertain samples from the 

unlabeled dataset, DU. We utilize a sample selection policy 

based on Monte Carlo dropout. Implementing dropout has been 

shown as an effective method to prevent overfitting during 

training [9], while at test time, it enables us to understand pixel-

wise model uncertainty [14]. We then estimate the uncertainty 

of an individual image pixel by computing the variance of T 

different predictions generated by Monte Carlo sampling with 

dropout. The precision at pixel-wise uncertainty scores 

increases with increasing the number of dropout steps, T.  

For a 2D image of [X×Y] pixels, we denote with 𝑃(𝑖,𝑡)
(𝑋 ,𝑌)

(𝑐) 

our network’s predicted probability for pixel (i) belonging to 

class (c) on run number t. Given this matrix of size [TxC] for 

each pixel, we use mean values of the variance of these values 

as an “uncertainty score”: 

 

𝑉𝑖
(𝑋,𝑌)

=
1

𝐶
∑ 𝑉𝑎𝑟(𝑃(𝑖,𝑡)

(𝑋 ,𝑌)(𝑐))𝐶
𝑐=1  (1) 

 

We then sum up all the pixel uncertainty values for the whole 

3D image, obtaining a numerical score for each patient to 

estimate the prediction confidence, where a higher score is 

associated with the most uncertain segmentations. Assigning a 

numerical uncertainty score for each image has been previously 

integrated in the cost effective active learning (CEAL) sample 

selection method [24].  

Next, the ground-truth annotations are collected for the 

selected unlabeled images, added to the labeled dataset and 

deleted from the unlabeled dataset. The segmentation network 

is then retrained on the updated training dataset. The active 

selection iteration is repeated until the annotation budget is 

exhausted or the entire dataset is labeled. 

III. RESULTS 

All experiments were conducted using the publicly available 

AAPM 2017 lung CT segmentation challenge [17] which 

contains thoracic CT scans acquired from 60 patients. The 

dataset contains free form dense annotations for 5 organs: spinal 

cord, right lung, left lung, heart, and esophagus.  The detailed 

descriptions of the dataset can be found in [25]. 

We use 50 random images from the challenge dataset, 

splitting it into 22 images for training, 22 for testing, and 6 for 

validation set. We start by training our network on 11 randomly 

selected images, then on each iteration we compute the 

uncertainty scores for each pixel, sum them up and select 5 

images with the highest total uncertainties.  We then estimate 

the uncertainty of an individual image pixel by running 

inference T = 5 times with dropout probability, p = 0.5. We 

construct a matrix of size [5 x 6] for each pixel, where C=6 is 

 

 
Fig. 2 Segmentation results using active learning compared to random 

selection. 
 

 

 

Fig. 1 Overview of the proposed method. 
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the number of classes (5 organs + background) in the dataset. 

We assess the segmentation quality with Dice Coefficient [3] 

which is presented in: 

 

𝐷𝑖𝑐𝑒 (𝐴, 𝐵) =  
2|𝐴𝐵̂|

|𝐴|+|𝐵|
 (2) 

 

where A represents the U-Net predicted masks for image and B 

its ground truth manual mask.  

Fig. 2 shows the model’s performance in segmenting the 

heart over multiple iterations of active learning. After running 

two active learning iterations with 24 training epochs per run, it 

already achieves a dice coefficient of 0.77 and it eventually 

outperforms random selection over 4 iterations by 0.11 points. 

We achieve validation dice coefficient of 0.77 on the second 

cycle when applying active learning sample selection, while 

training the same network on random sample selection results 

in dice coefficient of 0.52. This outperforms random by 0.25 

points. We can see that active learning selection method 

outperforms random selection on the first cycle by 0.15 points. 

Active learning selection method outperforms random selection 

by 0.11 on the last cycle, reaching a mean dice coefficient of 

0.87. This implies that annotating 42% of the objects in the 

images can already result in satisfactory segmentations, i.e., the 

annotation effort can be halved with no loss in 

performance. Fig. 3 shows our qualitative results where the 

result of random selection is compared to active selection for 

segmenting the heart of two different patients.  

In this study, we proposed an active learning-based method 

for training 3D segmentation models using the U-Net 

architecture, which has been relatively underexplored in the 

medical imaging literature. Our results on the AAPM lung 

segmentation challenge dataset confirm that comparable 

accuracies can be achieved by actively labeling less than half of 

the entire training dataset. Since 3D medical images require 

slice-level annotations by trained experts, our results are a step 

towards reducing the exorbitant costs of labeling medical 

images. Future directions include active slice selection based on 

similar uncertainty measures as well as empirical validation of 

our approach on a number of other publicly available datasets. 

ACKNOWLEDGMENT 

This research was conducted as part of the first author’s 

internship at Microsoft, Sunnyvale, CA. We would like to thank 

the Microsoft AI & Advanced Architectures group and Project 

InnerEye for computational resources, flexible codebase, and 

the many insightful discussions. The authors would like to 

thank M. Mesmakhosrowshahi and S. Bannur for their 

assistance. 

 

REFERENCES   

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep 
Convolutional Encoder-Decoder Architecture for Image 

Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 

12, pp. 2481–2495, 2017. 
[2] E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional 

Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. 

Mach. Intell., vol. 39, no. 4, pp. 640–651, 2017. 
[3] O. Ronneberger, P. Fischer, and T. Brox “U-Net: Convolutional 

Networks for Biomedical Image Segmentation,” in International 
Conference on Medical Image Computing and Computer-Assisted 

Intervention, 2015, pp. 234–241. 

[4] W. P. Segars et al., “Population of anatomically variable 4D XCAT 
adult phantoms for imaging research and optimization,” Med. Phys., 

vol. 40, no. 4, pp. 1–11, 2013. 

[5] O. Oktay et al., “Evaluation of Deep Learning to Augment Image-
Guided Radiotherapy for Head and Neck and Prostate Cancers,” 

JAMA Netw. open, vol. 3, no. 11, p. e2027426, 2020. 

 

 

Fig. 3 Qualitative results of segmentation for two different patients. Red contour is the manual segmentation and blue contour is the UNet 

generated segmentation with random selection or active selection. The results of training with fully labeled dataset is shown for comparison. 
 



 

 

[6] I. A. Carreras et al., “Crowdsourcing the creation of image 

segmentation algorithms for connectomics,” Front. Neuroanat., vol. 
9, no. November, pp. 1–13, 2015. 

[7] K. Sirinukunwattana et al., “Gland segmentation in colon histology 

images: The glas challenge contest,” Med. Image Anal., vol. 35, pp. 
489–502, 2017. 

[8] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active 

learning,” Knowl. Inf. Syst., vol. 35, no. 2, pp. 249–283, 2013. 
[9] Y. Gal, R. Islam, and Z. Ghahramani, “Deep Bayesian active 

learning with image data,” 34th Int. Conf. Mach. Learn. ICML 2017, 

vol. 3, pp. 1923–1932, 2017. 
[10] W. H. Beluch, T. Genewein, A. Nürnberger, and J. M. Köhler, “The 

Power of Ensembles for Active Learning in Image Classification,” 

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 
9368–9377, 2018. 

[11] Y. Siddiqui, J. Valentin, and M. Nießner, “Viewal: Active learning 

with viewpoint entropy for semantic segmentation,” Proc. IEEE 
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 9430–9440, 

2020. 

[12] N. Tajbakhsh, L. Jeyaseelan, Q. Li, J. N. Chiang, Z. Wu, and X. 
Ding, “Embracing imperfect datasets: A review of deep learning 

solutions for medical image segmentation,” Med. Image Anal., vol. 

63, p. 101693, 2020. 
[13] W. Kuo, C. Häne, E. Yuh, P. Mukherjee, and J. Malik, “Cost-

sensitive active learning for intracranial hemorrhage detection,” 

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. 
Lect. Notes Bioinformatics), vol. 11072 LNCS, pp. 715–723, 2018. 

[14] M. Gorriz, X. Giro-I-Nieto, A. Carlier, and E. Faure, “Cost-effective 

active learning for melanoma segmentation,” arXiv, no. Nips, 2017. 
[15] L. Yang, Y. Zhang, J. Chen, S. Zhang, and D. Z. Chen, “Suggestive 

annotation: A deep active learning framework for biomedical image 

segmentation,” Lect. Notes Comput. Sci. (including Subser. Lect. 
Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10435 LNCS, 

no. 1, pp. 399–407, 2017. 

[16] D. Mahapatra, B. Bozorgtabar, J. P. Thiran, and M. Reyes, 
“Efficient active learning for image classification and segmentation 

using a sample selection and conditional generative adversarial 

network,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes 
Artif. Intell. Lect. Notes Bioinformatics), vol. 11071 LNCS, pp. 

580–588, 2018. 
[17] L. Vinet and A. Zhedanov, “A ‘missing’ family of classical 

orthogonal polynomials,” Journal of Physics A: Mathematical and 

Theoretical, 2011. . 
[18] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. 

Ronneberger, “3D U-net: Learning dense volumetric segmentation 

from sparse annotation,” Lect. Notes Comput. Sci. (including 
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 

9901 LNCS, pp. 424–432, 2016. 

[19] S. Chen and M. De Bruijne, “An End-to-end Approach to Semantic 
Segmentation with 3D CNN and Posterior-CRF in Medical 

Images,” arXiv, no. Nips, pp. 3–6, 2018. 

[20] J. De Fauw et al., “Clinically applicable deep learning for diagnosis 
and referral in retinal disease,” Nat. Med., vol. 24, no. 9, pp. 1342–

1350, 2018. 

[21] T. Falk et al., “U-Net: deep learning for cell counting, detection, and 
morphometry,” Nat. Methods, vol. 16, no. 1, pp. 67–70, 2019. 

[22] Y. Zhou, S. Bai, C. Wang, X. Chen, E. Fishman, and A. L. Yuille, 

“Prior-aware Neural Network for Partially-Supervised Multi-Organ 
Segmentation,” pp. 10672–10681. 

[23] H. Chen, Q. Dou, L. Yu, J. Qin, and P. A. Heng, “VoxResNet: Deep 

voxelwise residual networks for brain segmentation from 3D MR 
images,” Neuroimage, vol. 170, no. April 2017, pp. 446–455, 2018. 

[24] K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin, “Cost-Effective 

Active Learning for Deep Image Classification,” IEEE Trans. 
Circuits Syst. Video Technol., vol. 27, no. 12, pp. 2591–2600, 2017. 

[25] J. Yang et al., “Autosegmentation for thoracic radiation treatment 

planning: A grand challenge at AAPM 2017,” Med. Phys., vol. 45, 
no. 10, pp. 4568–4581, 2018. 

 

 


