rVNF: Reliable, scalable and performant cellular
VNFs in the cloud

Antonios Katsarakis', Zhaowei Tan*, Matthew Balkwill*, Bozidar Radunovié¢*,

Andrew Bainbridge*, Aleksandar Dragojevi¢*, Boris Grot', Yongguang Zhang*
*Microsoft Research, {University of Edinburgh, {UCLA

Abstract

State management is one of the main design challenges
for virtual network functions (VNFs). While progress
has been made with conventional IP middle-boxes, much
less has been done in the cellular space. Cellular VNF's
have different design requirements. In addition to high
performance, they impose high availability and they
manage a complex set of states that require a strong
notion of transaction to achieve reliability. We argue
that the current state-of-the-art does not address well
these requirements.

This work introduces rVNF, an in-memory distributed
transactional data store designed for cellular VNFs.
rVNF has two parts. The first is a novel transactional
protocol that explores state access locality for efficiency.
The second one is a fast and replicated load balancer
that enforces the access locality through customized rout-
ing. The combination of the two allows us to build a
flexible state access API that can be combined into arbi-
trary transactions. rVNF is efficient, low-latency, highly
available and offers strong transactional semantics. Our
evaluation shows that rVNF can process several 100k
transactions per second, can virtualize existing cellular
core components and protocols with little effort, and
several times outperforms existing external data stores.

1 INTRODUCTION

Telecommunication operators and other service providers
increasingly move their cellular and other network work-
loads to private or public clouds. This is especially ev-
ident with the move to 5G that champions the cloud-
native architecture as one of its cornerstones. The cloud-
native network architecture introduces containerized
VNF (virtualized network function) deployments fea-
turing intelligent self-scaling and self-healing capabilities.
This promises to reduce network operational expenses
and improve quality of service. While operators are start-
ing to understand and embrace the operational value of
the cloud-native approach, the right technical abstrac-
tions remain elusive [10, 21, 35].

One of the most difficult issues in cloud-native archi-

tecture is managing network state. This is especially
pronounced in a cellular control plane. A cellular con-
trol plane updates complex user and connection state
and has several distinguishing requirements for state
management. One requirement is high performance. A
large cellular network has to manage millions of transac-
tions per second. Another requirement is high availability.
Each state update should either execute in its entirety or
not execute at all; a failure to do so may cause long out-
ages [25]. Cellular VNF state is also often implemented
using large and complex data structures that require
flexible access interfaces and strict transactional seman-
tics to prevent inconsistencies. Finally, local processing
improves performance. The locality is difficult to extract
as cellular protocols use different identifiers (e.g. IMSI,
tunnel ID, IP 5-tuple, etc.) to denote the same context.
We elaborate these requirements in detail in Section 2.

Most of the proposed 5G VNF designs in the industry
today address these requirements by borrowing micro-
service design patterns from web-based architectures
(e.g. [24]). However, these rely on existing open-source
data stores that are not optimized for cellular workloads
and can be very inefficient (e.g. they are reported to
process 10k-20k memory-bound transactions per multi-
core server [30]). In parallel, there has been much work
in the academic networking community on designing
scalable, reliable and efficient stateful VNFs (also called
middle-boxes) [12, 14, 17, 31, 32, 38, 44]. These designs
are much more efficient, processing 100k to 1M requests
per second per server. However, they have mainly fo-
cused on conventional IP middle-boxes, such as NATS,
firewalls, intrusion detection systems and web proxies.
None of them meet the full set of requirements for cel-
lular VNFs, particularly those for high reliability and
a strict transactional semantics. We present a detailed
comparison in Section 2.3.

One way to address the missing requirements would
be to build cellular VNFs directly on top of one of
the existing state-of-the-art distributed transactional
in-memory data stores [9, 15, 42, 43]. These systems pro-
cess general-purpose transactional workloads and provide
strict transactional semantics with general state access

and management primitives (e.g. object pointers and
B-trees [9]). However, they also address a more general
set of requirements, such as providing very large storage
space and supporting access patterns without locality
(e.g., graph search), and thus have to implement a gen-
eral and expensive reliable distributed atomic commit
(DAC [39]). In contrast, cellular and other VNFs have
relatively small replicated per-flow state (a few KBs,
at most), and mainly local access patterns (each flow
mainly accesses its own state [44]).

The question we pose in this paper is whether we can
design a distributed transactional in-memory data store
that is optimized for cellular VNFs and its state access
patterns. To that end, we introduce a novel concept of
transparent locality-enforcing transactions and we design
and build a distributed transactional in-memory data
store called 7VINF based on this concept. rVNF has the
following key design principles:

Reliable Transactions: rVNF has strict transactional
semantics (highly-available and strictly serializable [36]).
A programmer can modify any object comprising the
state during a transaction. If a transaction is successfully
committed, all modified objects are guaranteed to be
seamlessly replicated on other nodes. Otherwise, the
transaction is aborted without altering the state. All
state is stored across rVNF nodes and there is no external
data store.

General memory abstraction: rVNF provides a trans-
actional memory abstraction and enables access to ob-
jects in memory using object references, similarly to [9].
This allows programmers to create arbitrary data struc-
tures on top of it, such as linked lists, nested structures,
etc. It also makes porting existing code much easier.

Access locality: rVNF instances are collocated with
the application instances to minimize access latency.
Moreover, rVNF enforces state locality whenever possi-
ble to improve performance. Each object in transactional
memory has an owner server that stores it locally and
has exclusive access to it. Most commonly, a transaction
is processed by a node that owns all relevant memory lo-
cations. This allows us to implement a dynamic primary
backup transactional system that is highly efficient and
requires only one round-trip to commit a transaction.
To help enforce locality, rVNF implements an object
ownership management protocol that transfers owner-
ship among nodes when required. Ownership transfer is
atomic and resilient to failures.

Scalability: Finally, rVNF comes with a flexible and
reliable load balancer that facilitates locality enforcement
and provides dynamic state sharding that is fast and

resilient to failures. It allows an external controller to
implement a scale in/out by simply modifying routes for
an arbitrary set of requests — the ownership management
protocol will automatically migrate corresponding states
when needed.

We have fully implemented rVNF in C over DPDK.
We ported the main components of a cellular core on
rVNF. We also ported SCTP transport protocol, allow-
ing several compute instances to share the same SCTP
transport protocol state and provide resilience to an
instance failure. We show that rVNF can forward over
2M packets per second per instance while processing
up to 1M small transactions per second. In our cellular
core evaluation, we show that the overhead of rVNF
replication is less than 30% compared to no replication.
rVNF with full replication offers several times better
performance than an external Redis data store without
replication. We also show that a fully replicated SCTP
session can achieve over 0.5 Gbps and recover from a
failure.

In summary, our contributions are:

e We propose a novel architecture for scalable and
reliable VNFs that provides strong transactional guar-
antees, state access through transactional memory, and
high reliability through seamless replication.

e We introduce the notion of transparent locality-
enforcing reliable transactions and build a new distributed
transactional protocol, optimized for VNF access pat-
terns through aggressive locality enforcement.

e We build an efficient implementation of rVNF and
present an evaluation on several key components and
protocols of cellular core control plane.

To the best of our knowledge, rVNF is the first sys-
tem that demonstrates the possibility of seamless fault
tolerance and scalability of all performance-critical com-
ponents of the control path of a cellular core.

2 MOTIVATION

In this section we present a brief overview of the state
management challenges and use them to derive major de-
sign requirements, followed by a brief review of the most
relevant existing works with respect to the requirements.

2.1 Overview and Challenges

Figure 1 shows a simplified architecture of a 5G core
network. The core network consists of control (AMF,
SMF, etc) and data plane network functions (UPF). The
control plane deals with connection and mobility manage-
ment (AMF), session management and data plane setup

_____ oy

1 Namf -: Nsmf

Figure 1: Simplified 5G core network overview (we omit many
more control plane elements for clarity).

(SMF), authentication, charging, etc. A user first authen-
ticates and establishes a connection through AMF, which
in turns finds the appropriate SMF to set up a data plane
session on a data plane element (UPF). This is similar to
OpenFlow where the control plane sets up the paths and
the data plane (UPF) forwards packets. Consequently,
we focus our attention on the control plane elements as
almost all of the network state is stored there'. For more
details on the architecture and protocols we refer the
reader to [1].

One of the main novelties in 5G is the service-based ar-
chitecture (SBA) of a core network. Previous generations
of cellular used connection oriented interfaces between
components. These are stateful interfaces that require
peers to maintain a dedicated connection between them-
selves in order to issue or receive requests. In 5G, most
network function exposes a stateless RESTful API (e.g.
Namf and Nsmf in case of AMF and SMF, Figure 1).
This API can be used by other network elements to re-
quest a service from any other element without having to
set up a dedicated connection. However, 5G architecture
still maintains some connection oriented interfaces, such
as SCTP-based N2 interface between AMF and a base
station.

The architecture also proposes (but does not mandate)
a functional split of a network function into multiple
stateless instances executing the application logic and
a shared data store. The number of instances can scale
up or down depending on the demand and an external
request can be served by any instance. All instances
store their shared state in the data store (called UDSF -
unstructured data storage function). 3GPP standard [1]
does not specify the architecture of the data store nor
its interfaces with other network functions. This is left
to a specific implementation.

This architecture leaves several open questions regard-
ing the optimal state management of cellular VNFs. The
first set of questions is on what is the optimal split be-
tween an application logic and a data store. Should they

1See [28] for an efficient design of data plane elements.

be collocated or remote? If remote, should the applica-
tion fetch the entire state of the user before processing
the request (increasing the network overhead as parts of
the state may not be needed)? Or should it fetch only
the relevant parts of the state as the request is being
executed (increasing the processing latency with an extra
network RTT after each fetch)? Or should it cache the
state locally and only store modified parts of the state at
the data store (but it is not clear how to enforce caching
locality)?

The second set of questions is on what is the optimal
design of the data store layer. How to make it fast,
scalable and replicated for redundancy, and also expose
flexible interfaces? Should it perform some processing
itself by exposing more complex, application specific
calls? How can it be optimized for VNF access patterns?

The third set of questions is on how to support the
remaining stateful, connection-oriented interfaces. One
such example is the N2 interface that connects all base
stations to the network core. Similarly, a 5G network will
have to support existing 4G connection-oriented inter-
faces (e.g. diameter) for interoperability for the foresee-
able future. The challenge with the connection-oriented
interface is that if a connection fails, it is interpreted as
if that the peer is down and the service is interrupted.
This is why SCTP is commonly used on these interfaces
as it offers a degree of fault tolerance on network issues.
SCTP supports multi-homing and is able to switch from
one access network to another in case of a network fail-
ure, without dropping a connection. However, current
SCTP cannot move connection state from one server
to another, for scaling and reliability 2. The question
is whether we can make a data store flexible enough to
virtualize connection-oriented interfaces and transport
protocols.

2.2 Design Requirements

In order to address the above challenges, in this sec-
tion we discuss the main design requirements that state
management of cellular VNFs has to meet.

Reliability (REL): Cellular VNF's require high relia-
bility. This is important because different cellular VNF's
store different parts of a state for a single connection. If
one part of the state gets lost (e.g. due to a failure of a
VNF instance), this can create significant outages. For
example, [26] shows that if two core elements (in a 4G
network) get out of sync, the inconsistency can create
an outage for its users for up to 45 minutes.

2 Techniques such as S1Flex [41] and TLNA [1] provide some
support for scaling and reliability but are not supported by most
of the small cells today.

Performance and scaling (PERF): Mohammadkhan
et al. [22] estimate that a 4G network with 8M customers
generates about 100k user requests per second on average
on a control plane, which is consistent with other traffic
estimates [40]. This is likely to increase 10x-100x in 5G
with many more cellular IoT nodes predicted [22]. We
expect a single deployment of a cellular control plane to
support up to 10M control plane transactions per second
as a peak load. The deployment should also scale down
at times of lower traffic to save compute cost.

Flexible state access (FLEX): Cellular network com-
ponents may have to deal with a complicated state. E.g.,
as discussed in Section 2.1, one may need to virtualize
SCTP transport protocol to guarantee connection per-
sistence in case of endpoint failures. However, SCTP
is originally implemented as a part of Unix kernel and
extensively uses data structures form kernel header files
(lists, hash tables, etc.). A virtualization framework needs
to support all these data structures to avoid the need
for a complete rewrite of the protocol stack.

Strong notion of transaction (TRANS): In the op-
erations described above, a single control plane operation
may need to either update multiple objects atomically
or none. If it replicates the updated states in a sequence
of replications, it may fail half way through, leading to
inconsistencies and user-facing outages. A cellular VNF
thus needs transactions that are highly-available and
strictly serializable [36]; in other words, each transaction
must either be committed in its entirety or rolled back
completely.

Dynamic multi-key routing (MULTI): State access
locality (when a state is almost always accessed only by
a single compute instance) allows for state caching and
more efficient processing. IP-based VNF's enforce state
locality when processing requests by using IP-tuples to
route packets across instances. It is much more difficult
to do so with cellular VINF's as they often access the same
state with diverse, dynamically created keys. To see that,
consider an example of a session management protocol
between an AMF and an SMF. A session is removed
whenever it is idle for more than 15-30 seconds, and re-
established when a new data packet for that connection
appears. This is one of the most frequent control plane
operations in a cellular network.

An AMF requests a new session by posting a create
session request over Nsmf interface (Figure 1) to the
SMF with a set of parameters describing the user. If the
request is successful, the SMF responds with a unique
new session ID smContextRef. When the AMF wants to
subsequently delete the session, it posts a delete session

request to the SMF using the same smContextRef as a
key. However, it is difficult to enforce state locality of the
first (create) and the second (delete) requests because
smContextRef is known only after the create message
is executed. Therefore, any external load balancer will
not have seen the smContextRef by the time the delete
request arrives. Instead, we must be able to insert a
custom route for the newly created smContextRef key.

2.3 Overview of Existing Works

We present an overview of the most relevant related
works in Figure 2, categorized according to the key prop-
erties required for cellular VNFs. Most prior works of-
fer performance/scaling (PERF) and partial reliability
(REL), but none satisfy the full set of requirements.
For instance, only FTMB [38] satisfies the FLEX re-
quirement through a flexible state access API; however,
FTMB runs on a single node and does not support
scaling (PERF). Other works use custom state access
primitives, mainly constrained on key-value abstractions,
which are difficult to use to meet the FLEX requirement.

PERF REL | TRANS FLEX

MULTI

Split/Merge [32]
Pico Replication [31]
OpenNF [12]
FTMB [38]
StatelessNF [14]

S6 [44]

CHC [17]

SCALE [g]

ECHO [25]

SNENEN
NN

SSNENENEN

v
v

NENE-R

rVNF (this work) v v v v

Figure 2: Summary of the most relevant related works (P -
partial).

Pico Replication [31] and CHC [17] choose to cache
state locally and commit on occasional check-points for
performance reasons. They are thus not able to always
recover a lost state, violating REL. StatelessNF [14],
ECHO [25] and CHC [17] use an external data store.
StatelessNF [14] incurs a throughput penalty due to a
latency of an external store. CHC [17] does not con-
sider scalability and resilience properties of the data
store. SCALE [8] provides scalability but does not of-
fer reliability and transactions. ECHO [25] is the only
one implementing a strong transactional semantic but it
does not scale (uses a slow external data store). Cellular-
focused systems, SCALE [8] and ECHO [25], both serve
much lower volume of requests (in 1000s req/s per server)
than the other IP-based middle-boxes (in 100,000s req/s
per server).

SCALE [8] is the only system that addresses MULTI
requirement. All others base their flow routing on IP
5-tuple. In each of them, routing is done on a separate
routing component that is unaware of the application
semantics.

Finally, we look at the performance results of industry
deployments of scalable cellular VNF. There are no pub-
licly available performance reports on commercial cellular
cores. Instead, we look at an example of an IMS core, a
set of VNFs that provide voice calls on top of a cellular
network. Clearwater IMS core [24] by Metaswitch, is an
open source version of their commercial product deployed
in many operational networks. In a report [33], it is stated
that 5-nodes cluster, deployed on AWS c5.4xlarge (16
vCPUs each), are required to process state for 15k calls
and 3k registrations per second. Clearwater IMS core [24]
uses Cassandra as its transactional store, which is flexi-
ble but not very efficient; it is reported in [30] that a 10
server cluster processes around 20k requests/second per
8 cores server. Although an IMS workload is not directly
comparable with a cellular core, it suggests that these
kinds of designs cannot meet the scalability (PERF)
criterion with the performance similar to the IP-based
middle-boxes [12, 14, 17, 31, 32, 38, 44|, which measures
in 100,000s requests/sec per server.

3 rVNF DESIGN

rVNF is designed to satisfy the aforementioned require-
ments. It offers a strict transactional semantics and a
flexible API to access state data. It is efficient, has low
latency, and it is able to scale in and out by moving all
relevant state to a different node. Each state is reliably
replicated after every transaction commits on two or
more replicas and it is designed to recover from a failure
of one or more nodes.

We first overview the rVNF design and then discuss
the design of each component in detail.

3.1 Design Overview

rVNF architecture consists of two architectural compo-
nents: a group of application nodes (ANs) that can scale
in or out as needed, and a set of cheap and reliable load-
balancers (LB) collocated with the ANs. Each application
node runs application logic that has access to a shared
transactional memory and sockets.

We explain the role of each component in a walk-
through, illustrated in Figure 3. Packets coming from
external peers are received by LB (D. The LB parses the
packet headers using a custom stateless parser and ex-
tracts context metadata (e.g., IP 5-tuple, GPRS tunnel,
etc.). It then looks up the metadata in the routing store.

Load Balancers (LBs) Application Nodes (ANs)

P —— "
@| Shared sockets Transactional memory

-L i
Local Local 1@

memory |\\\\
)/

P —————
@ : B 1 @ I: | socket
=
| =3 Local . Local \
External (_)m 3 @ socket || App-logic 2 e '(}
peer | Py i
| (] |
| ® |
|

App. logic 1

L[] !
[/
.

/
/

socket App. logic n memory

|
|
|
|
Local Local 11'
|

Figure 3: rVNF software architecture. An LB is collocated
with an AN on the same physical server.

If the destination AN is found, it forwards the packet
to it @. If not, it selects an arbitrary destination using
a user-defined load-balancing algorithm (e.g., based on
the load at each AN) and stores the destination in the
routing store. The routing store is replicated across LBs.
The packet is next received by a local instance of a
shared socket layer on the AN, which provides a network
socket-like interface to applications. The application logic
fetches the packet through the socket API layer and
processes it. During processing, the application logic may
start a transaction and alter various objects that are part
of the state. Our transactional protocol introduces a new
concept of transparent locality-enforcing transactions.
Each object has a primary owner that is exclusively
allowed to modify it. The LB ensures that requests are
routed to primary owners as often as possible. Should
that not be the case (e.g., due to a scale-in), the instance
processing the packet requests to become a primary
owner for the relevant memory objects before processing
the transaction. All this is transparent to the application
logic. The transaction protocol is detailed in Section 4.
The application accesses the state objects through
transactional memory that provides object references
(similar to pointers) and key-value store abstractions.
An application can build various higher level memory
interfaces on top of it (lists, hash tables, etc.), as required
by flexible state access (FLEX) property. Primary own-
ership is managed per (memory and key-value store)
object. Note that the routing store is not a part of the
transactional memory, and operates independently.
During packet processing, the application may also
create response packets and send them out using the
shared socket interface. At the end of processing, the
application commits the transaction. At that point, all
state modifications are replicated to one or more repli-
cas @, and the outgoing packets are transmitted &
through a load balancer ®. Operations @ and ® are
performed atomically so that either all succeed, or none.
This provides strong transaction guarantees (TRANS)
and ensures reliability of each transaction (REL).
If an application logic creates a new state (e.g. for

a user or a flow) as a part of packet processing, it can
insert a new routing metadata, corresponding to the
new state, into the routing store with an API call @.
This addresses the multi-key routing issue (MULTT).
In the example from Section 2, an SMF can insert the
session ID (smContextRef) in the routing store once it
has been created. This will guarantee that the subsequent
messages with the same session ID get routed to the same
SMF instance.

When an application decides to scale out (PERF),
it simply instantiates a new AN. An external controller
can then modify an arbitrary set of existing routes to
point to the new AN, at a desired pace. There is no need
to pause for scaling, the state will be transferred to the
new AN when needed using the ownership protocol. Scale
in is analogous. Recovery protocol (REL) works in a
similar fashion, as follows: the transactional protocol
first recovers all states and creates new state replicas to
replace those that resided on the crashed node. It then
assigns primary ownership to new nodes for those objects
that belonged to the failed node, and adds corresponding
routes to LBs.

In the context of the cellular network architecture from
Figure 1, transactional memory, shared sockets and LB
can be seen as implementing the data store layer (UDSF)
functionality, and providing service to the application
logic (hosting AMF, SMF, etc.). For performance, our
design proposes to always collocate an instance of an
application with an instance of a data store. However,
these instances are logically separate thanks to well
defined interfaces. The application logic remains stateless
in the sense that a programmer does not have to worry
about replicating state (as proposed by 5G service-based
architecture) but we provide a much richer data store
API than conventional stateless architectures.

3.2 Load Balancer (LB)

The load balancer serves three purposes. The first one is
to perform application-level routing on custom metadata
extracted from packets. The second one is to participate
in the dynamic state sharding and ownership protocol.
Finally, it provides a reliable group membership for ap-
plication nodes.

At the core of the load balancer is a routing store,
a replicated key value store. It uses the Hermes proto-
col [16] for replication, which provides strong consistency,
fault-tolerance, and high throughput. A load balancer
instance is collocated with an application node instance,
which reduces extra latency of going through a load
balancer.

Load balancer can be configured to accept different pro-

tocols, and for each of them it provides a custom header
processing function that extracts routing metadata (e.g.,
IP 5-tuple, GPRS tunnel ID, etc.). The extracted meta-
data is used as a key, and if a matching routing entry
is found in the routing store, the packet is routed ac-
cordingly. Otherwise, a custom routing algorithm picks
a new route (e.g., based on the overall load, locality of
AN, etc.) and stores it in the routing store along with
a time-stamp. Application logic can insert, modify or
delete routes through an API to enforce locality where
needed.

The second function of the load balancer is to maintain
a reliable record of the sharding metadata: the locations
of the replicas of each object and the identity of the
primary owner. An update of a sharding metadata needs
to atomically modify all replicas across the load balancer
ensemble as well as the local states on ANs (since not
all of the ANs might be collocated with load balancers).
For this, the Hermes protocol does not suffice as it can-
not guarantee that the state ownership transfers will
occur only after any relevant ongoing transaction is fully
committed. We design our own transactional protocol,
described in Section 4.

Finally, the load balancer provides a reliable group
membership protocol, similar to Zookeeper. This is needed
to avoid inconsistencies during network partitioning of
ANs, where several groups of disconnected ANs believe
themselves as the only surviving group. It is the LBs
that make the ultimate decision on which ANs are still
functioning.

3.3 Elastic Application Nodes (AN)

Application nodes (ANs) run application code. They also
run an in-memory distributed transactional data store
and provide two APIs to the applications: transactional
memory and sockets. These APIs are designed to hide
complexities of state management and reliability, while
providing interfaces that are familiar to programmers.
The data store is collocated with the application to
minimize access latency.

Transactions, replication and ownership: Cellular
VNF state is a set of memory objects. It is mostly local
per-user context (e.g. object pertaining to a flow or a
device) and only a small amount of the context is shared
(c.f. [44]), so our design optimizes for the former. We use
the load balancer to keep the state of a single per-user
context on the same node as much as possible. This state
sharding leads us to use a primary-backup transactional
model [6]. Each object has a single primary node and
several backups nodes. The primary replica is the only
one allowed to modify the object, and it is called an

owner of the object. Each modification is replicated to the
backups for reliability. The transaction and ownership
protocols are described in detail in Section 4.

A transaction typically involves modifying several ob-
jects from a single context. Since in most cases the
primary owner of all the objects is the same AN, this AN
executes the entire transaction locally, without a wait.
Moreover, it can continue executing the next transac-
tion without waiting for the replication to finish, as the
ownership guarantees that no one else is modifying the
same state at the time. This makes transactions fast. A
transaction has to wait only if the AN has to acquire
ownership (e.g. in case of scaling or failure), which is
transparent to the application. For very few cases of
shared memory objects that are frequently written by
multiple user contexts (such as flow counters), we in-
troduce special atomic primitives that operate without
ownership (much like Multivriter in [44]).

Transactional memory: A new memory object of ar-
bitrary size can be created using a malloc-like primitive
tr_alloc. It is then assigned a wvirtual address, a unique
opaque 64-bit pointer as an identifier. At the end of
the use, the object is released using tr_free. For con-
venience, a memory object of a fixed size can also be
created and accessed using a key-value store abstraction
tr_get, tr_set, tr_del. If a programmer wants to modify
a memory object created using tr_alloc, she has to call
tr_open_write primitive with the rVNF object pointer.
This call creates a copy of the value of the memory ob-
ject and returns a real pointer to that copy which the
programmer can further modify. tr_open_write can also
be used to access only a subset of an object, to reduce
overhead when modifying large data structures.

trans *tr_create();
void tr_commit (trans *t);
tr_addr tr_malloc(trans *t, size_t size);
void tr_free(trans *t, tr_addr addr);
void *tr_open_write (trans *t,

tr_addr addr, size_t size);
void *tr_open_read(trans *t,

tr_addr addr, size_t size);
int tr_get(trans *t, uint8_t x*key,

size_t len, uint8_t *val);

int tr_set(trans *t, uint8_t x*key,

size_t len, uint8_t *val, size_t vlen);

int tr_del(trans *t, uint8_t *key, size_t len) ;
Figure 4: rVNF Transactional API.

rVNF offers strict transactional semantics. Each trans-
action starts with a command tr_create that returns a
transaction handle. Each subsequent memory operation

is called with the transaction handle. A transaction is
committed using command tr_commit. When a commit
is issued, all modified memory objects are replicated to
their backup nodes. If backups are successful (i.e. no
failures), a transaction is committed.

Whenever a program attempts to modify a memory
object (using either tr_open_write or tr_set), a node exe-
cuting a transaction checks whether it is the owner. If
not, it issues an ownership request to the object’s owner.
The transaction is paused until the request is granted,
or it is rolled back if the request is rejected or timed out.
The ownership is also used to coordinate access across
multiple local threads.

The transactional API also supports read-only oper-
ations, tr_open_read and tr_get that do not require own-
ership. These two operations return the most recent
consistent value of the backup without needing to ac-
quire an ownership, similar to [44] (though unlike [44],
reads from backups in rVNF are never stale). A full list
of API calls is given in Figure 4.

Network access: rVNF also provides a shared socket
network abstraction to a programmer to receive and
send packets. One AN is responsible for opening and
binding a socket. All ANS use select or epoll model to
get notified about incoming packets. rVNF framework
routes a packet to one of the instances and triggers
a notification through select. rVNF natively supports
raw and UDP sockets; other network protocols can be
implemented on top of it, as we demonstrate with the
SCTP example.

rVNF socket can be reliable or unreliable. Unreliable
socket is suitable for UDP traffic. If an instance that
has received a packet fails before processing it, this
can be seen as a network error. In some cases, such as
providing a reliable SCTP abstraction, a socket should
not loose a packet once it has been acknowledged to the
other end of the connection. In this case, an incoming
packet is stored to a transactional memory when received,
and is atomically acknowledged when the transaction is
committed. Similarly, an outgoing packet is buffered in
a transactional memory and sent atomically only after a
transaction is committed. The rVNF socket API is very
similar to the POSIX socket API, except that send, recv
and select macros have an additional parameter that
points to an active transaction (which is NULL in case
of unreliable sockets).

4 rVNF TRANSACTION
PROTOCOL

rVNF implements transactions that are strictly serializ-
able [36] and highly-available through replication. In this

section we first overview the motivation for our novel
transactional protocol design and then we present the
design in detail. We finish by discussing fault handling
and verification.

4.1 Protocol Design Overview

General-purpose transactional memories shard objects
and execute requests across servers (or nodes) for scala-
bility and reliability. This poses two challenges. The first
challenge is handling concurrent transactions on the same
object. If two nodes try to access the same object at the
same time, each through its own independent transaction,
one of them has to abort. Detecting and handling these
conflicts, particularly in the presence of faults, requires
extra signalling across nodes. Most of the distributed
transactional systems (e.g. [9, 15, 42, 43]) implement
a variant of a Distributed Atomic Commit (DAC) pro-
tocol [39] that needs numerous RTTs to commit each
transaction. More importantly, a node cannot start the
next transaction on the same object until the commit
is finished, as it cannot be sure that it will not have
to abort. This introduces several RTTs of delay in the
critical path of commit, which can significantly reduce
the transactional throughput.

The second challenge is accessing the objects. Different
object placement schemes have been proposed, such as
random [5], using user-supplied hints [9], or dynamically
optimized [13]. However, in all cases, object placement is
best-effort and never guarantees that all objects accessed
by a single transaction reside on the same node. This is
particularly true for objects with high churn (e.g. flow
states). If one or more objects involved in a transaction
are stored remotely, the execution must stall until the
objects are fetched. A programmer may try to optimize
the placement at run-time, but that requires extra devel-
opment effort and an understanding of the underlying
transactional protocol.

rVNF takes a different approach. It introduces trans-
parent locality enforcement through object ownership.
Each object has a single owner, a node with an exclusive
right to write the object, and one or more readers that
serve as backup replicas. In order to execute a trans-
action, a coordinator (node executing the transaction)
has to become the owner of all objects that are involved
in a transaction. This is a potentially expensive phase
that requires coordination across several nodes. How-
ever, transactions in cellular VNFs involve objects that
typically access a single context (e.g. a single flow or
session). Thus when a coordinator becomes the owner for
a particular context, it should continue receiving packets
for that context, thus avoiding the need to acquire object

Owner
(via LB)

1. (a) Prepare H%
/

& Sharding — optional

(b) Execute

Coordinator

Reader(s)

3)qeI0qy

—— Follower(s)

Owner

l 2. Local Commit

Serialization
Point

3. Reliable Commit

w/o blocking the application | ¢ External

Visibility
Point

1a 1b, 2 3 Ownership + Write access to X
1b, 2 3 Write access to X
Program
order 1b, 2 Read access to X (all local)
1 b, 2 3 Write access to X
Time

Figure 6: rVNF’s pipelined execution of transactions for
context X, on the same coordinator as enforced by LB.

ownership for subsequent transactions. This is precisely
what LBs help to accomplish by routing all packets with
the same context to the same node. Thus, in the steady
state, a node is the owner of all objects accessed by
requests routed to it.

Our transparent locality enforcement addresses the two
main issues of previous works. Firstly, all objects accessed
by a transaction are accessible locally the majority of
the time, which avoids stalls during the execution phase.
Secondly, only a single node (the owner) can execute
a transaction on an object at a time, so a transaction
cannot be aborted remotely.

rVNF further leverages these observations by breaking
the commit phase of a transaction into two sub-phases: (i)
local commit; and (ii) reliable commit. The local commit
does not require any communication with the replicas.
Because the coordinator has exclusive write access to
the objects included in the transaction, the local phase
does not need to perform any remote ordering or conflict
resolution. Thus, a subsequent transaction at the same
coordinator may access all locally committed objects
without any wait.

The reliable commit propagates the transactional up-
dates to the readers of all objects (called followers).
Because the transaction is already serialized by virtue
of exclusive ownership at the coordinator, only a single
round-trip is needed for the coordinator to perform re-
liable commit by informing all followers. At this point,
all changes are externally visible and any generated net-
work output is released to the network. As depicted in
Figure 6, a reliable commit can be overlapped with ex-
ecution and local commit of subsequent transactions,

hence lowering latency and maximizing concurrency.

4.2 Transactions in Detail

We next explain the transaction phases in detail. Each
AN has an instance of a transactional memory where it
stores objects for which it is an owner or a reader. For
each object, it stores its actual value (t_value) as well as
per-object metadata: a version (t_version) and a state
(t_state). There are three possible object states: Valid,
Invalid and Write. All objects are initially Valid. We
next review various phases of a transaction, as illustrated
in Figure 5, and the relevant protocol messages. The
protocol is inspired by Hermes [16]; however, Hermes
provides only single value semantics and does not sup-
port transactions. In contrast, rVNF protocol manages
multiple objects, their owners and readers.

Prepare and Execute: In the first phase of a trans-
action, an AN executes the application code. During
the execution, the application code can access an ob-
ject using the primitives from Figure 4. Some primitives
(tr_open_read and tr_get) require a Read-only access. If
the coordinator of a transaction is also a reader of the
object, these primitives can be executed immediately in
an optimistic, lock-free manner. Otherwise, the coordi-
nator has to request to become a reader, and receive
the value of the object, through the ownership protocol.
Other primitives require a Write access to an object.
rVNF first verifies that the coordinator is the owner of
the object. If not, it stalls the execution until it obtains
the ownership. Once it gets the ownership, it creates a
local copy of the object and offers it to the application
to modify.

Local commit: After the application calls tr_commit,
rVNF begins local commit. For each object that was
granted Write access, it first copies the locally modi-
fied copy into the transactional memory. Then, it incre-
ments the object’s t_version and sets t_state to Write.
At this point, the transaction is serialized (cannot be
aborted any more). Finally, the coordinator sends an
INV message to the followers. The INV message includes
the new value (t_value) and the version (t_version) of
each object updated in the transaction.

After this, the coordinator can start executing a new
transaction without delay. Transactions become visible to
the rest of the nodes at the end of reliable commit. How-
ever, if the coordinator owns all objects in a subsequent
transaction, it is guaranteed that it has a consistent view
of the state and can thus proceed before the end of the
reliable commit phase.

Reliable commit: Upon receiving an INV message,

a follower iterates over the updated objects in the mes-
sage. For any object that it stores locally with a smaller
t_version, it updates the t_value, t_version and tran-
sitions its t_state to Invalid. Subsequently, the follower
buffers the INV packet and responds to the coordinator
with an ACK message.

Once the coordinator receives ACKs from all followers,
it finishes its own reliable commit by transitioning all
of its modified objects to the Valid t_state. At this
point the transaction is visible externally. The coordina-
tor sends a VAL message to the followers and releases
any outgoing application response messages that were
generated during the transaction.

When a follower receives a VAL message, the follower
transitions all involved objects of the corresponding
buffered INV message into the Valid t_state, thus fin-
ishing its reliable commit phase. Lastly, the follower
discards the buffered INV message.

Ownership protocol: The messaging structure of the
ownership protocol is similar to the transactions. For
each object, the object’s owner and all LB nodes store
a sharding state and a vector indicating the object’s
readers and the owner. They also store the ID of the last
ownership request in a form {r_Seq, node_ID}, where
node_ID is the unique ID of the node that made the
last request and r_Seq is the sequence number of the
request for that particular object, which increases after
each request.

A transaction coordinator who wants to become a new
owner of an object issues an ownership request to one
of the LBs. This LB is called the ownership driver. The
driver sends an INV message to the other LBs and the
object’s current owner, which together are referred to as
arbiters, and increases r_Seq. The INV message includes
the new pair {r_Seq, node_ID}.

The {r_Seq, node_ID} pair is used to resolve conflicts
if two ownership requests are issued concurrently. Upon
reception of an INV message, each arbiter checks its
local value of {r_Seq, node_ID} for the requested object.
If it is higher (in lexicographic ordering), the arbiter
sends a NACK response directly to the coordinator indi-
cating that a concurrent request has taken precedence.
Otherwise, the arbiter places the object into the Invalid
sharding state, updates its local request ID and responds
with an ACK. The ACK from the owner also contains
the latest value of the object and the metadata. At this
point, the coordinator is the new owner and can proceed
with its transaction. The coordinator also sends VAL
messages to the arbiters to set the sharding states of the
respective objects back to Valid.

4.3 Handling of Failures and
Verification

In order to explain how rVNF resolves failures, consider
a case when a coordinator fails in the middle of the
commit, after sending the INV messages. Some followers
might have received the INV messages, which leaves the
relevant objects in the Invalid state. After a failure of the
coordinator is detected (through a group membership,
Section 3.2), all followers send out any buffered INV
messages originating from the failed coordinator to all
other followers. Since each INV message contains the
full record of the transaction (namely, t_version and
t_value of each object), the other followers can update
their states from it. Moreover, it is safe to do so since
the INV message has already been globally serialized by
the original coordinator — the only owner of the context
at that time.

The recovery of the ownership and sharding protocol is
based on the same principles. Each INV message contains
all the information necessary to recover the request, and
they get replayed in the case of failure.

Due to a lack of space, we do not discuss or evaluate
the full recovery in this paper. We have formally specified
and model checked the transaction protocol® in TLAT
for safety and the absence of deadlocks. We consider
the following failures: crash-stop node failures, message
reorderings and duplicates. Under these failure scenar-
ios, we ensured that all sharers of an object in Valid
t_state agree on their data (transactions) and arbiters
in Valid sharding state agree on sharding vectors, which
correctly indicate the single object’s owner and readers
(ownership).

5 SYSTEM

In this section we discuss the rVNF implementation and
applications ported on top of it.

rVNF implementation: rVNF is implemented in C
over DPDK, and it consists of two parts. One part is
the r'VNF module that runs as a separate process. This
implements the main rVNF functionality, including load
balancing, transactions, reliable communication, etc. The
other part is the rVNF library that is linked to a VNF ap-
plication over shared memory without imposing any con-
straints on the VNFs architecture (it can be a separate
process, container, etc). This is illustrated in Figure 7.
In a typical deployment, and unless specified otherwise,
rVNF uses 2 cores. DPDK and Routing KVS (if used, on
an instance with LB) are pinned to one core. The rest of

3The model checked
http://bit.ly/rVNF-Zeus

specification is available in

10

[Socket APl |[Memory API |

l Messaging

Packet Forwarder

“ ; rVNF module
‘ H

Figure 7: rVNF system architecture. If routing KVS is present,
rVNF module acts as an LB. Otherwise, it connects to another
node to access a LB.

the rVNF library runs on another core. Our evaluation
shows that this mapping is enough to achieve the required
performance of rVNF module (as specified in Section 2).
We leave the remaining cores to the application.

Within a single rVNF instance, a packet forwarder
interconnects all other internal modules and transfers
packets and buffers from one to another. All active rVNF
instances exchange information using an internal mes-
saging protocol. A node without an LB (i.e. without a
routing store) does not perform load balancing func-
tionality. It connects to another node with an LB using
messaging.

Socket API and Memory API are implemented as de-
scribed in Section 3.3. We used modified snmalloc [20] as
a memory manager for the transactional memory. rVNF
supports multi-threading with several optimizations for
performance, including the use of sharding across threads
based on the readily available routing meta-data.

Currently, porting an application to rVNF requires
manual code modification on every pointer access. We
note that this can be automatized at a compiler level,
similar to [38].

Applications: There is no open source 5G cellular core
available at the moment. Instead, we modify a 4G core
since 4G cellular signaling is similar to the 5G one. In
particular, we evaluate MME and SPGW components of
a 4G core, whose functionalities loosely map to AMF and
SMF in 5G. We use OpenEPCv8 [27] 4G implementation.
Because it has been reported slow [28], we optimize it
by removing all existing replication mechanisms and
accesses to the slow external data store (mySQL). We
then port it to rVNF by virtualizing all state accesses
using the r'VNF API. Unlike [28], we focus on the cellular
control plane which requires more complex transactions.

We also evaluate how well can connection-oriented
protocols be virtualized using rVNF, as discussed in Sec-
tion 2.1. One connection-oriented protocol we evaluate is
SCTP. We modify a user-mode implementation of SCTP
protocol [34] to save all its state in rVNF. We start a

http://bit.ly/rVNF-Zeus

transaction for every received or sent packet and commit
it when the packet processing is finished. We also start
a transaction whenever a timer triggers. Usrsctp has a
main hash table that stores all open sockets. We store
this table in the rVNF transaction key value store so
different rVNF application instances can serve different

SCTP sockets without having to contend for ownership.

The memory layout for all per-socket state is maintained
without modifications. Usrsctp uses BSD macros for
basic data structures (e.g., lists, hash tables), and we
modify the macros to support our memory management
functions (Figure 4). Usrsctp is designed to use three
worker threads (TX, RX and timer), and we keep the
same design.

We also virtualize GTP-C protocol that connects
MME and SGW [2]. It runs over UDP and implements
its own simple retransmission protocol. It keeps timer
for each packet at a transmitter until it is acknowledged,
and retransmits it if a timer times out. It also keeps a
timer for each packet at a receiver to prevent duplicate
delivery of a retransmitted packet. We virtualize both
sets of timers with rVNF.

6 EVALUATION

We run all our experiments on a dedicated cluster with 6
servers. Each server has a dual socket Intel Xeon Skylake
8168 with 24 cores per socket, running at 2.7GHz, 192
GB of DDR4 memory and Mellanox CX-3 card. They
are connected to a Dell S6100-ON ToR, switch over 40
Gbps links. We also run our experiments on a cluster of
Standard_D8s_v3 VMs (with 8 CPU cores) in Azure, as
an example of a more constrained setup. Azure VMs with
fewer cores such as this one have less network bandwidth
(see [7] for details). Also, DPDK on Azure does not allow

jumbo frames and Azure does not support core pinning.

The application suite is described in Section 5. Due to a
lack of space, we do not describe or evaluate full failure
recovery in this paper.

6.1 Cellular Core

We start by evaluating performance of a cellular core.

We focus our evaluation on service requests that set up a
user data plane session. It is the most common operation
in a cellular network that comprises the bulk of the
signalling workload [22]. Also, these are very similar to
session management operations in 5G [3].

SGW: We first evaluate the service requests on a service
gateway (SGW). We create a custom load generator that
issues Create Session and Delete Session requests on
an SGW in such way that SGW is always loaded. We
measure and report the number of requests per second

11

SGW can process.

We consider three cases. The first case is an SGW
without any external storage. The second one is an SGW
that stores its state to a single instance (not replicated)
of an external Redis server. This is a straight-forward im-
plementation of a UDSF using a popular open-source in-
memory database. It is reported to be significantly faster
than any other replicated open source data store [30].
The third case is an SGW that stores state in rVNF,
replicated across two or three servers.

The results are depicted in Figure 8a. On our rack, an
SGW without external storage can process around 3450
requests/sec/core (1750 create and 1750 delete requests).
An SGW with rVNF achieves 20% less while replicating
the state after each request to two other servers. An
SGW with an external Redis store and without data
replication can process around 590 requests/sec/core —
4.8% less than SGW and rVNF. On Azure, SGW with
rVNF has approximately the same performance as SGW
without replication, and it is 14.7 x more than the
external Redis store. It is possible that performance
with Redis can be improved by rearchitecting SGW to
issue asynchronous requests to the data store. This is
not required with rVNF, which collocates storage and
processing and affords an intuitive programming model.
In Figure 8a, we also show scaling of SGW with rVNF,
with the total load balanced across 1, 2 and 3 replicated
SGW instances.

MME: We next evaluate the service requests on a mo-
bility gateway (MME). We conduct similar experiments
as for SGW, creating an artificial load from multiple
simulated eNodeBs. We measure that a single MME
without replication can process 5600 requests/sec/core.
An MME on top of rVNF processes 35% less, but still
6.7 x more then the external Redis store.

6.2 Connection-Oriented Protocols

We next study how rVNF can be used to virtualize two
protocols commonly used in cellular networks: SCTP
and GTP-C.

SCTP: We evaluate SCTP performance using iperf3.
‘We run usrsctp and iperf3 server as an application on top
of rVNF. We run an unmodified iperf3 client on a Linux
server and create a test traffic of SCTP 100 flows. In two
sets of experiments, we use different iperf3 packet sizes,
100B and 1440B. All packets are received by one rVNF
LB and balanced across a varying number of application
instances. All SCTP state is replicated across all active
rVNF instances.

The achieved aggregate SCTP throughput is shown

remote Redis - unreliable
no datastore - unreliable
rVNF - 2 replicas | 1 balance
rVNF - 3 replicas | 2 balance
rVNF - 3 replicas | 3 balance

Requests / sec
o
: II
a
=
-

Azure

(a) Performance of service requests (per
core) for different SGW configurations.

no datastore - unrel.
rVNF - 2 rep. | 1 bal.
rVNF - 3 rep. | 2 bal.
rVNF - 3 rep. | 3 bal.

— 1200

SCTP throughput [Mbps
B (=} o] S
o o o o
o o o o
L]

N
=}
S}

s
__

o | il
100B

14008 8KB

(b) SCTP performance when varying the
traffic size [Rack].

Figure 8: Throughput of reliable rVNF compared with unreliable local and remote data stores. rep: replicas; bal: balancing

nodes.
7 600 v —
3 23 X. % 900 —m— 2 replicas
s E g —¥— 3 replicas
= = — . | Zs8o0]
£ 400 26 g
g_ —#— Aggregate 5 © 7001
o =¥+ Server A © T c
=1 .o 24 <]
2 @ Server B < —=— Rack - 100B 5 600
2 200 : o k9]
£ : = —¥— Rack - 1400B ®
o ;. 2 2 —e— Azure - 1008 £ 5001
H —— e - o
@ ofeee O e ereriforreiperasy § : ' ' Azure' 14008.‘*7—“ = 400
0 2 4 6 8 00 02 04 06 08 1.0 1.2 500 1000 1500 2000 2500 3000
Time [s] Routing store writes [Mrps] Transaction size [B]

Figure 9: SCTP failover performance.
The failure of the primary instance hap-
pens at 3s. [Rack]

writes.

in Figure 8b. To the best of our knowledge, no other
data store is able to virtualize SCTP. On our rack, a
replicated SCTP attains 60% of the throughput achieved
without replication, both with big and small packets. On
Azure, a replicated version achieves 80% and 40% of
the throughput of the non-replicated one, with big and
small packets respectively. We postulate that this is
because the replication latency is higher in Azure than
in our local rack. In both cases the performance does
not change significantly with more replicas, indicating
that replication throughput is not a bottleneck.

Next, we evaluate the ability of the virtualized SCTP
to sustain faults. We study the following scenario. A
client using iperf3 establishes a multi-homed SCTP con-
nection to two rVNF servers (server A and B). Server A
gets chosen by the protocol as a primary receiver and all
data traffic goes to it. After each data packet reception,
server A replicates all of its state to server B. Initially,
we observe SCTP throughput of 577 Mbps (see Figure 9).
We induce a network fault between the client and server
A at 3 seconds into the experiment. After an SCTP
timeout (set to 100ms), the client switches the traffic to
the IP address of server B. When the fault happens, per-
formance initially drops as SCTP waits for the timeout
before changing the destination. Subsequently, through-
put is quickly restored through server B. Because the

Figure 10: LB micro benchmark: Aggre-
gate packet forwarding rate over 3 LBs as
a function of a number of routing KVS

12

Figure 11: Transaction micro bench-
mark: Maximum rate for two- and three-
way replication and different transaction
sizes. [Rack]

entire state of the flow is replicated, the same connection
is resumed and the client does not observe any issues.

GTP-C: We study the performance of SGW on top
of r'VNF when GTP-C state is virtualized. We run the
same experiments described in Section 6.1, this time
virtualizing GTP-C state. We observe no drop in perfor-
mance on our rack compared to the experiment without
virtualizing GTP-C state. The performance on the Azure
setup drops by 10%.

6.3 Micro Benchmarks

We next present a series of micro benchmarks to further
understand performance of various components of rVNEF.

Load balancer and data forwarding performance:
In rVNF, each incoming packet hitting the LB has to
query a routing table before being forwarded to its des-
tination. If the routing table is being concurrently mod-
ified (e.g., due to new flows being inserted or due to
a scale-in), reads to the routing table may stall while
the respective entries are being replicated. Thus, for-
warding performance can be affected if the routing table
is faced with a large number of writes. To understand
forwarding performance under such an adversarial sce-
nario, we set up the following benchmark. One server
node acts as a generator of UDP data traffic sending

it to three instances of rVNF. Another node generates
a stream of write requests to the routing store, writing
one randomly-selected key out of 1M keys. We vary the
number of routing requests from 0 to 1.2M requests/sec,
and we measure how many packets the load balancer
can forward in parallel with routing store updates.

The result is shown in Figure 10. We see that on
our rack, each LB instance can forward up to 2.8Mpps
of small packets and 26 Gbps of large packets. The for-
warding throughput drops by at most 10-15% when the
additional write load to the routing store is introduced.
The LB instances can respond to up to 1.15M write
requests/sec while forwarding traffic. The same experi-
ments on Azure clusters show about 30% lower packet
throughput in number of packets per second.

Transactions: We evaluate a synthetic workload to
microbenchmark rVNF’s transactional performance. We
use 2 and 3 rVNF instances to replicate and execute
transactions in parallel. Each transaction writes to a
number of objects, where each object is 150B in size
(comparable to the size of a typical small state). We vary
the transaction size by varying the number of objects
that are accessed. Each transaction is replicated on all
other nodes partaking in the test. Test application runs
on one thread and transaction replication (as a part of
rVNF module) on another thread.

We present the aggregate rate of all transactions in the
system in Figure 11. The aggregate transaction through-
put is almost the same for 2 and 3 nodes. On our rack,
rVNF can serve a little less than a million of small
(150B) transactions per second and 0.4 Mtps for large
transactions (3KB) across 2 and 3 nodes.

Benefits of dynamic routing: One of the features
of rVNF is dynamic routing (MULTI). In case of ses-
sion management, this allows SMF to proactively add a
route to the session being created, as explained in Sec-
tion 2.2. We now quantify benefits of dynamic routing.
We repeat the experiments from Section 6.1 but with
dynamic routing disabled. We observe that in the ab-
sence of dynamic routing, system throughput, in terms
of requests/sec, drops by 30% while the total number of
ownership requests increases by 37%. Thus, we conclude
that dynamic routing is essential for high performance
as it allows to exploit locality across requests.

7 RELATED WORK

Reliable VNF's. In Section 2, we have introduced a
major body of work in making VNFs reliable or scalable.
We have systematically compared rVNF with them. In
addition, [37] distributes the VNF state as KV store

13

in processing nodes, similar to what rVNF does. RE-
INFORCE provides an efficient replay-based failure re-
covery method for chained NFs [19]. [18] proposes an
efficient and proven scheme to automatically find the
state that needs to be shared. Although partially achiev-
ing some requirements for cellular VNF, they fail to
address all goals as rVNF does.

Virtualizing cellular core. [29] consolidates state from
control and data plans and reduces the performance over-
head for EPC. MMLite from [23] further borrows the
ideas from [14] and completely decouples processing and
state. The aforementioned solutions provide good per-
formance and scalability for EPC, while rVNF achieves
these properties in addition to satisfying the critical
reliability requirement of cellular core.

Stateless Connection. [4] aligns with rVNF’s efforts
to make socket reliable by storing TCP state in persistent
datastore, while Yoda [11] is a layer-7 load balancing that
deploys stateless TCP in load balancers for high avail-
ability. However, cellular VNF's use SCTP which poses
new challenges. Techniques such as S1Flex [41] partially
tackle reliable SCTP but require extensive configuration,
hence cannot be applied in dynamically changing net-
works. rVNF, on the other hand, delivers a fully reliable
socket connection for cellular VNFs.

Distributed Transactions. There are many distributed
key-value store systems [5, 16], but they do not support
transactions. Several systems try to optimize DAC [9,
13, 15], but fundamentally keep 3 RTTs on the fast
path after each transaction. Hermes [16] allows for local
reads and fast reliable updates to individual keys from
all replicas but it does not support multi-key reliable
transactions.

8 CONCLUSION

In this paper we present rVNF, a replicated in-memory
transactional data store for cellular VNFs. rVNF lever-
ages unique access patterns of cellular and network-
ing VNF's to improve data store performance and offer
transactional guarantees. It introduces a novel concept
of transparent locally-enforcing transactions, in which
rVNF transactional protocol seamlessly and atomically
moves object ownership across nodes. This allows for
local processing and improved performance, and more
flexible API. rVNF replication adds 30%-40% overhead
to unreplicated system. rVNF outperforms a commonly
used in-memory data store Redis by several times. We
believe that its design principles can further improve the
state of art in the service-based cellular architectures.

REFERENCES

(1]

2

3

4

5

6

[7

8

[9

(10]

(11]

(12]

(13]

3GPP. 2019. 3GPP TS # 23.501 System architecture for the
5G System (5GS). https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationld=
3144. (2019). (V16.3.0 Updated on 12/22/2019).

3GPP. 2019. 3GPP TS # 29.274 Tunnelling Pro-
tocol for Control plane (GTPv2-C) (release 15).
https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationld=1692. (2019).
3GPP. 2019. 3GPP TS # 29.502 5G Session Management
Services (5GS). https://www.etsi.org/deliver/etsi-ts/129500-
129599/129502/15.00.00-60/ts-129502v150000p.pdf. (2019).
Marcelo Abranches and Eric Keller. 2019. Stateless TCP. In
Proceedings of the 15th International Conference on emerging
Networking EXperiments and Technologies. 70-71.

Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin.
2019. Fast Key-Value Stores: An Idea Whose Time Has Come
and Gone. In Proceedings of the Workshop on Hot Topics
in Operating Systems (HotOS). Association for Computing
Machinery, New York, NY, USA, 113-119. https://doi.org/
10.1145/3317550.3321434

Peter A. Alsberg and John D. Day. 1976. A Principle for
Resilient Sharing of Distributed Resources. In Proceedings of
the 2nd International Conference on Software Engineering
(ICSE ’76). IEEE Computer Society Press, Washington, DC,
USA, 562-570.

Azure. [n. d.]. General purpose virtual machine sizes.
https://docs.microsoft.com/en-us/azure/virtual-machines/
linux/sizes-general#dsv3-series-1. ([n. d.]). (Accessed on
14/01/2020).

Arijit Banerjee, Rajesh Mahindra, Karthik Sundaresan, Sneha
Kasera, Kobus Van der Merwe, and Sampath Rangarajan.
2015. Scaling the LTE Control-Plane for Future Mobile Access.
In Proceedings of the 11th ACM Conference on Emerging
Networking Ezperiments and Technologies (CoNEXT ’15).
Association for Computing Machinery, New York, NY, USA,
Article Article 19, 13 pages. https://doi.org/10.1145/2716281.
2836104

Aleksandar Dragojevi¢, Dushyanth Narayanan, Orion Hodson,
and Miguel Castro. 2014. FaRM: Fast Remote Memory. In
Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (NSDI’14). USENIX
Association, USA, 401-414.

FierceWireless. 2019. Industry Voices-Containers in 5G and
edge still under construction. https://www.fiercewireless.com/
5g/containers-5g-and-edge-still-under-construction. (2019).
Rohan Gandhi, Y Charlie Hu, and Ming Zhang. 2016. Yoda:
A highly available layer-7 load balancer. In Proceedings of the
Eleventh Furopean Conference on Computer Systems. 1-16.
Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan
Prakash, Robert Grandl, Junaid Khalid, Sourav Das, and
Aditya Akella. 2014. OpenNF: Enabling Innovation in Net-
work Function Control. In Proceedings of the 2014 ACM
Conference on SIGCOMM (SIGCOMM ’14). Association
for Computing Machinery, New York, NY, USA, 163—174.
https://doi.org/10.1145,/2619239.2626313

Le Long Hoang, Enrique Fynn, Mojtaba Eslahi-Kelorazi,
Robert Soulé, and Fernando Pedone. 2019. DynaStar: Op-
timized Dynamic Partitioning for Scalable State Machine
Replication. In 39th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS 2019, Dallas, TX, USA,

14

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

July 7-10, 2019. 1453-1465. https://doi.org/10.1109/ICDCS.
2019.00145

Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le.
2017. Stateless Network Functions: Breaking the Tight Cou-
pling of State and Processing. In Proceedings of the 14th
USENIX Conference on Networked Systems Design and Im-
plementation (NSDI’17). USENIX Association, USA, 97-112.
Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016.
FaSST: Fast, Scalable and Simple Distributed Transactions
with Two-Sided (RDMA) Datagram RPCs. In Proceedings of
the 12th USENIX Conference on Operating Systems Design
and Implementation (OSDI’16). USENIX Association, USA,
185-201.

Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash Kate-
bzadeh, Arpit Joshi, Aleksandar Dragojevic, Boris Grot, and
Vijay Nagarajan. 2020. Hermes: A Fast, Fault-Tolerant
and Linearizable Replication Protocol. In Proceedings of
the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’20). Association for Computing Machinery, New
York, NY, USA, 201-217. https://doi.org/10.1145/3373376.
3378496

Junaid Khalid and Aditya Akella. 2019. Correctness and Per-
formance for Stateful Chained Network Functions. In Proceed-
ings of the 16th USENIX Conference on Networked Systems
Design and Implementation (NSDI’19). USENIX Association,
USA, 501-515.

Junaid Khalid, Aaron Gember-Jacobson, Roney Michael,
Anubhavnidhi Abhashkumar, and Aditya Akella. 2016. Paving
the Way for {NFV}: Simplifying Middlebox Modifications Us-
ing StateAlyzr. In 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16). 239-253.
Sameer G Kulkarni, Guyue Liu, KK Ramakrishnan, Mayutan
Arumaithurai, Timothy Wood, and Xiaoming Fu. 2018. Rein-
force: Achieving efficient failure resiliency for network function
virtualization based services. In Proceedings of the 14th Inter-
national Conference on Emerging Networking EXperiments
and Technologies. 41-53.

Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia
Drossopoulou, Juliana Franco, Matthew J. Parkinson, Alex
Shamis, Christoph M. Wintersteiger, and David Chisnall.
2019. Snmalloc: A Message Passing Allocator. In Pro-
ceedings of the 2019 ACM SIGPLAN International Sym-
posium on Memory Management (ISMM 2019). Association
for Computing Machinery, New York, NY, USA, 122-135.
https://doi.org/10.1145/3315573.3329980

LightReading. 2019. From NFV to Cloud Native -
4 Key Themes. https://www.lightreading.com/nfv/
from-nfv-to-cloud-native---4-key-themes- /a/d-id /755162.
(2019).

A. Mohammadkhan, K. K. Ramakrishnan, A. S. Rajan, and C.
Maciocco. 2016. Considerations for re-designing the cellular
infrastructure exploiting software-based networks. In 2016
IEEE 2/4th International Conference on Network Protocols
(ICNP). 1-6. https://doi.org/10.1109/ICNP.2016.7784474
Vasudevan Nagendra, Arani Bhattacharya, Anshul Gandhi,
and Samir R Das. 2019. MMLite: A Scalable and Resource
Efficient Control Plane for Next Generation Cellular Packet
Core. In Proceedings of the 2019 ACM Symposium on SDN
Research. 69-83.

Metaswitch Networks. 2019. Project Clearwater. https://
github.com/Metaswitch/clearwater-website-archive. (2019).

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1692
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1692
https://www.etsi.org/deliver/etsi_ts/129500_129599/129502/15.00.00_60/ts_129502v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/129500_129599/129502/15.00.00_60/ts_129502v150000p.pdf
https://doi.org/10.1145/3317550.3321434
https://doi.org/10.1145/3317550.3321434
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-general#dsv3-series-1
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-general#dsv3-series-1
https://doi.org/10.1145/2716281.2836104
https://doi.org/10.1145/2716281.2836104
https://www.fiercewireless.com/5g/containers-5g-and-edge-still-under-construction
https://www.fiercewireless.com/5g/containers-5g-and-edge-still-under-construction
https://doi.org/10.1145/2619239.2626313
https://doi.org/10.1109/ICDCS.2019.00145
https://doi.org/10.1109/ICDCS.2019.00145
https://doi.org/10.1145/3373376.3378496
https://doi.org/10.1145/3373376.3378496
https://doi.org/10.1145/3315573.3329980
https://www.lightreading.com/nfv/from-nfv-to-cloud-native---4-key-themes-/a/d-id/755162
https://www.lightreading.com/nfv/from-nfv-to-cloud-native---4-key-themes-/a/d-id/755162
https://doi.org/10.1109/ICNP.2016.7784474
https://github.com/Metaswitch/clearwater-website-archive
https://github.com/Metaswitch/clearwater-website-archive

25]

(26]

27]

(28]

(29]

(30]

(31]

(32]

33]

(Accessed on 14/01/2020).

Binh Nguyen, Tian Zhang, Bozidar Radunovic, Ryan
Stutsman, Thomas Karagiannis, Jakub Kocur, and Jacobus
Van der Merwe. 2018. ECHO: A Reliable Distributed Cellular
Core Network for Hyper-scale Public Clouds. In Proceedings
of the 24th Annual International Conference on Mobile Com-
puting and Networking (MobiCom ’18). ACM, New York, NY,
USA, 163-178. https://doi.org/10.1145/3241539.3241564
Binh Nguyen, Tian Zhang, Bozidar Radunovic, Ryan
Stutsman, Thomas Karagiannis, Jakub Kocur, and Jacobus
Van der Merwe. 2018. ECHO: A Reliable Distributed Cellular
Core Network for Hyper-scale Public Clouds. In Proceedings
of the 24th Annual International Conference on Mobile Com-
puting and Networking (MobiCom ’18). ACM, New York, NY,
USA, 163-178. https://doi.org/10.1145/3241539.3241564
PhantomNet. [n. d.]. OpenEPC Tutorial. https://wiki.emulab.
net/wiki/phantomnet/oepc-protected /openepc-tutorial. ([n.
d.]). (Accessed on 14/01/2020).

Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar,
Sylvia Ratnasamy, and Scott Shenker. 2017. A High Perfor-
mance Packet Core for Next Generation Cellular Networks.
In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’17). Associa-
tion for Computing Machinery, New York, NY, USA, 348-361.
https://doi.org/10.1145/3098822.3098848

Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar,
Sylvia Ratnasamy, and Scott Shenker. 2017. A high perfor-
mance packet core for next generation cellular networks. In
Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. 348-361.

Tilmann Rabl, Sergio Gémez-Villamor, Mohammad Sadoghi,
Victor Muntés-Mulero, Hans-Arno Jacobsen, and Serge
Mankovskii. 2012. Solving Big Data Challenges for Enter-
prise Application Performance Management. Proc. VLDB
Endow. 5, 12 (Aug. 2012), 1724-1735. https://doi.org/10.
14778 /2367502.2367512

Shriram Rajagopalan, Dan Williams, and Hani Jamjoom.
2013. Pico replication: a high availability framework for
middleboxes.. In SoCC, Guy M. Lohman (Ed.). ACM,
1:1-1:15. http://dblp.uni-trier.de/db/conf/cloud/socc2013.
html#RajagopalanWJ13

Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and
Andrew Warfield. 2013. Split/Merge: System Support for
Elastic Execution in Virtual Middleboxes. In Proceedings of
the 10th USENIX Conference on Networked Systems Design
and Implementation (nsdi’13). USENIX Association, USA,
227-240.

EANTC Independent Test Report. 2018.
Clearwater IMS Core: Performance, Scalabil-
ity, Reliability and Functionality. http://www.
eantc.de/fileadmin/eantc/downloads/News/2018/

Metaswitch’s

15

34]

(35]

(36]

(37)

(38]

(39]

[40]
[41]

42]

[43]

[44]

EANTC-Clearwater-IMS_Marketing-Report_v6.pdf. (2018).
(Accessed on 15/01/2020).

I. Riingeler and M. Tiixen. 2015. Socket API for the SCTP
User-land Implementation (usrsctp). https://github.com/
sctplab/usrsctp. (2015). (Accessed on 14/01/2020).
sdxCentral. 2020. AT&T Misses Network Virtualiza-
tion Goal. https://www.sdxcentral.com/articles/news/
att-misses-network-virtualization-goal /2020/01/. (2020).
Ravi Sethi. 1982. Useless Actions Make a Difference: Strict
Serializability of Database Updates. J. ACM 29, 2 (April

1982), 394-403. https://doi.org/10.1145/322307.322314
Xiaozhe Shao, Lixin Gao, and Hao Zhang. 2017. Cogs: En-

abling distributed network functions with global states. In
2017 IEEE Conference on Network Softwarization (NetSoft).
IEEE, 1-9.

Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit
Panda, Arvind Krishnamurthy, Christian Maciocco, Maziar
Manesh, Joao Martins, Sylvia Ratnasamy, Luigi Rizzo, and
et al. 2015. Rollback-Recovery for Middleboxes. In Pro-
ceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication (SIGCOMM ’15). Associa-
tion for Computing Machinery, New York, NY, USA, 227-240.
https://doi.org/10.1145/2785956.2787501

Dale Skeen. 1981. Nomnblocking Commit Protocols. In Pro-
ceedings of the 1981 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD ’81). Association
for Computing Machinery, New York, NY, USA, 133-142.
https://doi.org/10.1145/582318.582339

Source. 2018. Private communication. (2018).

K. Suzuki, K. Kunitomo, T. Morita, and T. Uchiyama. 2011.
Technology Supporting Core Network (EPC) Accommodating
LTE. NTT DOCOMO Technical Journal 13, 1 (June 2011).

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng,
Kun Ren, Philip Shao, and Daniel J. Abadi. 2012. Calvin: Fast
Distributed Transactions for Partitioned Database Systems.
In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’12). Associ-
ation for Computing Machinery, New York, NY, USA, 1-12.
https://doi.org/10.1145/2213836.2213838

Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo
Chen. 2015. Fast In-Memory Transaction Processing Using
RDMA and HTM. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP ’15). Association for
Computing Machinery, New York, NY, USA, 87-104. https:
//doi.org/10.1145/2815400.2815419

Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia
Ratnasamy, and Scott Shenker. 2018. Elastic Scaling of State-
ful Network Functions. In Proceedings of the 15th USENIX
Conference on Networked Systems Design and Implementa-
tion (NSDI’18). USENIX Association, USA, 299-312.

https://doi.org/10.1145/3241539.3241564
https://doi.org/10.1145/3241539.3241564
https://wiki.emulab.net/wiki/phantomnet/oepc-protected/openepc-tutorial
https://wiki.emulab.net/wiki/phantomnet/oepc-protected/openepc-tutorial
https://doi.org/10.1145/3098822.3098848
https://doi.org/10.14778/2367502.2367512
https://doi.org/10.14778/2367502.2367512
http://dblp.uni-trier.de/db/conf/cloud/socc2013.html#RajagopalanWJ13
http://dblp.uni-trier.de/db/conf/cloud/socc2013.html#RajagopalanWJ13
http://www.eantc.de/fileadmin/eantc/downloads/News/2018/EANTC-Clearwater-IMS_Marketing-Report_v6.pdf
http://www.eantc.de/fileadmin/eantc/downloads/News/2018/EANTC-Clearwater-IMS_Marketing-Report_v6.pdf
http://www.eantc.de/fileadmin/eantc/downloads/News/2018/EANTC-Clearwater-IMS_Marketing-Report_v6.pdf
https://github.com/sctplab/usrsctp
https://github.com/sctplab/usrsctp
https://www.sdxcentral.com/articles/news/att-misses-network-virtualization-goal/2020/01/
https://www.sdxcentral.com/articles/news/att-misses-network-virtualization-goal/2020/01/
https://doi.org/10.1145/322307.322314
https://doi.org/10.1145/2785956.2787501
https://doi.org/10.1145/582318.582339
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.1145/2815400.2815419

	1 Introduction
	2 Motivation
	2.1 Overview and Challenges
	2.2 9999 3emDesign Requirements
	2.3 Overview of Existing Works

	3 rVNF Design
	3.1 Design Overview
	3.2 Load Balancer (LB)
	3.3 Elastic Application Nodes (AN)

	4 rVNF Transaction Protocol
	4.1 Protocol Design Overview
	4.2 Transactions in Detail
	4.3 Handling of Failures and Verification

	5 System
	6 Evaluation
	6.1 Cellular Core
	6.2 Connection-Oriented Protocols
	6.3 Micro Benchmarks

	7 Related Work
	8 Conclusion
	References

