arXiv:2104.07228v1 [cs.CL] 15 Apr 2021

Sentence-Permuted Paragraph Generation

Wenhao Yu', Chenguang Zhu*, Tong Zhao', Zhichun Guo', Meng Jiang!
1University of Notre Dame IMicrosoft Research
T{wyul, tzhao2, zguo5, mjiang2}@nd.edu
I chezhu@microsoft.com

Abstract

Generating paragraphs of diverse contents is
important in many applications. Existing gen-
eration models produce similar contents from
homogenized contexts due to the fixed left-to-
right sentence order. Our idea is permuting the
sentence orders to improve the content diver-
sity of multi-sentence paragraph. We propose
a novel framework PermGen whose objective
is to maximize the expected log-likelihood of
output paragraph distributions with respect to
all possible sentence orders. PermGen uses hi-
erarchical positional embedding and designs
new procedures for training, decoding, and
candidate ranking in the sentence-permuted
generation. Experiments on three paragraph
generation benchmarks demonstrate PermGen
generates more diverse outputs with a higher
quality than existing models.

1 Introduction

Paragraph generation is an important yet challeng-
ing task. It requires a model to generate informa-
tive and coherent long text that consists of mul-
tiple sentences from free-format sources such as
a topic statement or some keywords (Guo et al.,
2018). Typical paragraph generation tasks include
story generation (Fan et al., 2018), news genera-
tion (Leppénen et al., 2017), scientific paper gener-
ation (Koncel-Kedziorski et al., 2019), etc. Recent
advances in natural language generation models
such as Transformer (Vaswani et al., 2017) and
BART (Lewis et al., 2020) have demonstrated at-
tractive performance of generating text paragraphs.

An important desired property of model-
generated paragraphs is diversity — given the same
source, an intelligent model is expected to create
a variety of paragraphs in terms of content, seman-
tic style, and word variability (Li et al., 2016; Ip-
polito et al., 2019). For example, a story generation

& Our code and output files are available at https://
github.com/wyu97/permgen.

025 ~-@=[BART —&—[EPermGen p=0.01 0.25
. 0.20 —~ 0.24 0.237
1 1
— 015 0.23
= YR
£ 0.10 s 5 022
[4 Q
= / 5}
0O 0.05 < < 0.21

P g
0.00 &=----0 0.20

S1 S2 S3 S4 S5

Sentence index Paragraph

Figure 1: Left: Diversity of each generated story sen-
tence at different positions (1 to 5) in ROCStories’ test
set, measured by averaged 1-Self-BLEU (Zhu et al.,
2018). Our PermGen produces contents of higher di-
versity at all positions, while BART (dashed line) pro-
duces diverse outputs only at the end of story. With p-
value<0.01, PermGen has higher diversity than the the
grey line. Right: PermGen outperforms BART in the
accuracy of generated stories measured by BLEU-4.

model should narrate a plot with different story-
lines (Clark et al., 2018); a scientific paper genera-
tion model should suggest diverse contents to spark
new ideas (Wang et al., 2019). In order to create
diversity, controllable methods (Zhao et al., 2017;
Cho et al., 2019; Yu et al., 2020) used additional
inputs (e.g., aspects, styles). Sampling decoding
algorithms (Radford et al., 2019; Holtzman et al.,
2020) searched next tokens widely from a vocab-
ulary. However, existing models struggled to pro-
duce multi-sentence paragraphs of diverse contents,
because they relied on the homogeneity of con-
texts (e.g., similar story beginnings) caused by the
conventional autoregressive framework with fixed
left-to-right sentence order (i.e., S1—S2—S3).

As an example, Figure 1 evaluates the diversity
of each generated sentence at different positions of
the story in ROCStories (Mostafazadeh et al., 2016)
by different models. As shown, BART (dashed
line) tends to generate stories of very similar begin-
ning and middle parts and only produce diverse text
near the end of a story. This phenomenon stems
from the fact that the left-to-right generation leads

https://github.com/wyu97/permgen
https://github.com/wyu97/permgen

to homogeneity of context to the left, reducing the
diversity of the generated paragraph.

Our idea is permuting the sentence orders in
paragraph generation, while sticking with the left-
to-right scheme to generate tokens in each sentence.
It has two advantages. First, it provides an output
sentence with a variety of contexts (and possibil-
ities) from different orders. For example, creat-
ing the story ending first can probably produce
a completely different story from generating the
beginning first. Second, it retains the benefit of
autoregressive model that originates from the word-
by-word nature of human language production. So
the coherence within sentences can be maintained,
avoiding the harm of incomplete semantics from
token-level permutation (Shen et al., 2020).

In this work, we propose a sentence-permuted
paragraph generation framework called PermGen.
Instead of using the fixed forward order, PermGen
maximizes the expected log-likelihood of the dis-
tribution in output paragraph w.r.t. all possible
sentence orders. The optimization is based on
7-SGD (Murphy et al., 2019) which has guaran-
teed convergence property. Furthermore, PermGen
employs a novel hierarchical position encoding
scheme to represent the positions of tokens in per-
muted sentences. PermGen can be initialized with
any Transformer-based models and any decoding
algorithms such as beam search and nucleus sam-
pling (Holtzman et al., 2020).

We conduct experiments on three paragraph gen-
eration tasks: story generation, news generation,
and paper abstract generation. Results show that
PermGen can significantly improve the diversity of
generated texts and achieve higher accuracy. Par-
ticularly, as shown in Figure 1, PermGen model
can improve diversity for sentences at all positions
while also improving the accuracy. Besides, we
observe consistent improvements on both accuracy
and diversity when PermGen is coupled with vari-
ous pre-trained models and decoding algorithms.

2 Related Work

Paragraph Generation. The source can be ei-
ther structured or unstructured such as database
records (Puduppully et al., 2019), knowledge
graphs (Zhao et al., 2020), images (Ippolito et al.,
2019), and keywords (Yao et al., 2019). The ex-
pected outputs typically are stories (Guan et al.,
2019; Yao et al., 2019), essays (Yang et al., 2019),
news articles (Leppénen et al., 2017), or scientific

papers (Hua and Wang, 2019; Koncel-Kedziorski
et al., 2019). This task poses unique challenges as it
aims at generating coherent and diverse long-form
texts. Our framework can use various forms of in-
put such as a story title, keywords, and keyphrases,
which can be generalized to broad domains.

Diverse Text Generation. Generating diverse se-
quences is of crucial importance in many text gen-
eration applications that exhibit semantically one-
to-many relationships between source and the tar-
get sequences, such as machine translation (Shen
et al., 2019; Lachaux et al., 2020), summariza-
tion (Cho et al., 2019), question generation (Wang
et al., 2020), and paraphrase generation (Qian et al.,
2019). Methods of improving diversity in text
generation that have been widely explored from
different perspectives in recent years. Sampling-
based decoding is one of the effective solutions
to improve diversity (Fan et al., 2018; Holtzman
et al., 2020), e.g., nucleus sampling (Holtzman
et al., 2020) samples next tokens from the dynamic
nucleus of tokens containing the vast majority of
the probability mass, instead of aiming to decode
text by maximizing the likelihood. Another line of
work focuses on introducing random noise (Gupta
et al., 2018) or changing latent variable (Lachaux
et al., 2020) to produce uncertainty, e.g., Gupta et al.
(2018) employ a variational auto-encoder frame-
work to generate diverse paraphrases according to
the input noise. In addition, Shen et al. (2019)
adopt a deep mixture of experts (MoE) to diversify
machine translation, where a minimum-loss pre-
dictor is assigned to each source input; Shi et al.
(2018) employ inverse reinforcement learning for
unconditional diverse text generation.

Dynamic Order Generation. These methods
have two categories. First, non-autoregressive gen-
eration is an emerging topic and commonly used
in machine translation (Gu et al., 2018; Ren et al.,
2020). They generate all the tokens of a sequence in
parallel, resulting in faster generation speed. How-
ever, they perform poorly for long sentences due
to limited target-side conditional information (Guo
et al., 2019). Second, insertion-based generation is
a partially autoregressive model that maximizes the
entropy over all valid insertions of tokens (Stern
et al., 2019). POINTER (Zhang et al., 2020) inher-
its the advantages from the insertion operation to
generate text in a progressive coarse-to-fine manner.
Blank language model (BLM) (Shen et al., 2020)
provides a formulation for generative modeling that

accommodates insertions of various length.

Different from the above methods, our PermGen
permutes the sentence orders for generating a para-
graph, and it follows the left-to-right manner when
producing each sentence.

3 Problem Definition

Given input X that can be a topic statement, some
keywords, or a paper’s title, the goal is to produce a
paragraph Y consisting of multiple sentences as a
story, a news article, or a paper’s abstract. Suppose
Y has T sentences, denoted by Y = [Y1,---,Y7],
where Y; is the t-th sentence. 1" can be easily ob-
tained from training data to create sentence indices.
During testing, models are expected to predict the
sentence indices under maximum 7" (i.e., 10).

3.1 Sentence-Level Transformer

Transformer (Vaswani et al., 2017) follows the
encoder-decoder architecture (Sutskever et al.,
2014) and uses stacked multi-head self-attention
and fully connected layers for both the encoder and
decoder. For simplicity, we represent the Trans-
former framework at the sentence level by using a
recurrent notation that generates a probability dis-
tribution for sentence prediction by attending to
both input X and previous decoded sentences Y.

p(Y;) = Transformer(X, Y¢). (D

where Y; and Y_; are the ¢-th sentence and sen-
tences before t-th sentence under the left-to-right
manner in target output. Transformer eschews re-
currence and instead relies on the self-attention
mechanism to draw global dependencies between
the input and output. During the decoding phase,
Transformer can predict each token based on both
the input and previously predicted tokens via atten-
tion masks to improve efficiency. The objective of
Transformer is to maximize the likelihood under
the forward autoregressive factorization:

T

p(Y1X;0) = [[p(VilYer, X30). ()
t=1

4 Proposed Method: PermGen

In a left-to-right generation scheme such as the
canonical Seq2Seq design, each generated token
is conditioned on left-side tokens only (Sutskever
et al., 2014). It ignores contextual dependencies
from the right side. It also leads to limited diver-
sity of generated text (as shown in Figure 1). To

solve this problem, our PermGen, a novel sentence-
permuted paragraph generation model, produces
sentences not confined to the left-to-right order. In-
stead, PermGen attempts different sentence orders
and selects the best-ranked output candidate.

As shown in Figure 2, PermGen uses the Trans-
former encoder but changes the sentence orders
during the decoding phase. It should be noted that
PermGen follows the left-to-right manner when
generating tokens in each sentence. Thus, we rep-
resent the Transformer decoder as:

Y, = Transformer(X, Y _,, 7), 3)
where Y, and Y _, are the ¢-th sentence and the
sentences before the t-th sentence under the per-
muted order 7 in the target output. Taking the first
permuted order in Figure 2 as an example, we have
m=1[2,1,3], m =2,7m3 =3, m<3 = [2,1].

We note that as PermGen is based on the encoder-
decoder Transformer architecture, which can be
initialized either randomly or from a pre-trained
Transformer model with the same structure. For
example, in the experiments, we evaluate PermGen
which is 1) trained from scratch, and ii) initialized
with BART (Lewis et al., 2020). Next, we will
introduce three modules of PermGen: (1) hierarchi-
cal positional embedding, (2) sentence-permuted
learning, and (3) sentence-based decoding.

4.1 Hierarchical Positional Embedding

In Transformer, positional embeddings are added
to every token’s embedding. Traditionally, the po-
sitional embedding encodes the absolute position
from 1 to the sequence length to model how a to-
ken at one position attends to tokens at other posi-
tions (Vaswani et al., 2017; Lewis et al., 2020).
We propose the hierarchical positional embed-
ding that consists of a global position and a local
position. Given a token, the global position is the
position (index) of the sentence that contains this
token; the local position is the position of the to-
ken in the sentence (see the two lines of position
numbers in Figure 2). Given a paragraph Y, its
embedding matrix is given below, where rows are
its tokens and columns are embedding dimensions:

Y= Ytoken + Yglobal,position + Ylocalfpositiom (4)

where Yoken 18 the token embedding, Y giobal_position
and Yiocal_position are the global positional embed-
dings and local positional embeddings.

Y: [His basketball was]

- (<E-2>](<B-1>] - (<E-1>](<B-3>] ...
t T f f

(<E-3>][<EOP>]
i

Decoder (Sentences permuted)

Encoder (Title

* | and Keywords)

Y,

e [

(Same encoder as Transformer)

Global position:! [

Local position: [

Permutations

,,,,,,,,,,,,,,,,,,,,,,,

= 3 sentences
|ZT| = 3! orders

Original story: Joe loved to play basketball . His basketball was torn and old . So he bought a new one in the store .

Figure 2: The architecture of PermGen. The example story has 3 sentences, leading to 3! = 6 permuted sentence
orders. PermGen minimizes the overall generation loss w.r.t. all possible sentence orders.

Compared to the absolute positional embedding,
the hierarchical positional embedding has two ad-
vantages. First, the embedding of two-level po-
sitions is more informative about the paragraph
structure than that of the absolute position. Second,
when we permute the sentence orders in paragraph
generation, the absolute positions of tokens might
not be available. For example, if the second sen-
tence is generated earlier than the first sentence,
the absolute positions of its tokens cannot be de-
termined because the length of the first sentence
is unknown. In comparison, hierarchical position
does not have this issue.

In addition, for the ¢-th sentence in Y, we add
two special tokens (i.e., <B-t> and <E-t>) to indi-
cate the beginning and end of the sentence. Thus,
the decoder can determine the sentence index based
on the predicted special tokens. We also append a
special token <EOP> to the paragraph to indicate
the end of the generation process.

4.2 Sentence-permuted Learning

This module learns by varying sentence orders in
paragraph generation and acts as the key compo-
nent in PermGen. For example, given a sentence
order m = [2,4,1,5, 3], PermGen first generates
the second sentence from the leftmost token to the
rightmost, then generates the fourth sentence, and
so on. The model stops when the third sentence
is finished. Formally, we denote Z as the set of
all possible sentence orders, i.e., the permutations
of sentence indices of length 7T'. It follows that
|Zr| = T. Given input X and target output para-
graph Y of T sentences, PermGen maximizes the
following likelihood:

p(Y[X;0) = Y p(Y|X,7;0)

TELT

T
- Z Hp(YWtIX7Y7T<t;9) (5)

TI’GZT t=1

However, computing the negative log-likelihood in
Eq. (5) is prohibitive because the back-propagation
computational graph branches out for every permu-
tation in the sum. Therefore, we apply the Jensen’s
inequality to lower-bound the log-likelihood:

T
logp(Y|X;0)=1log >, I p(Yr,|X,Yr_,;:0)
’7TEZT t=1
1 T
> log(‘ZTD + [Zr] Z Z logp(Yﬂ't|X7 Y7T<t;0)
7TEZT t=1

By maximizing the lower bound, we do not favor
any particular sentence order, but encourage the
model to generate Y equally well in all orders.
Note that maximizing this lower bound is equiv-
alent to minimizing the following expectation:

T
TO0) =B | = > 10gp(Yy X, Yo :6) . (6)
t=1

Although computing this expectation is still in-
tractable, we apply the m-SGD (Murphy et al.,
2019) stochastic optimization, which randomly

samples a permutation for gradient computation
each time.

Definition 1 (7-SGD): Let B = {(X1) Y1),

(XB) Y BNYY be a mini-batch i.i.d. sampled
uniformly from the training data D. At step t, con-
sider the stochastic gradient descent update

0y = 01 — Gl @)

where G = —% ZZBZI Vy Zthl log p(Y 9| X)
7’5 0) is the gradient, and random permuta-

tions {7T > | are sampled independently: w, ~

Final result:
reorder and delete
special tokens

o e e g

Sentence 1

(e e)) O

EoCma e

Sentence 2 Sentence 3

P—————
mﬁmnqqnqmﬁﬁ@nmﬁ@m@-w

Decoder (Sentences permuted)

I={21}

Sample <B-t> I={2}

1=1{21,3}

Encoder (Title
X: and Keywords)

Figure 3: The decoding process during inference as described in Section 4.3. Note that the first special token (e.g.,
<B-2>) is sampled from {<B-t>}7_;. For simplicity, positional embedding is omitted in the figure.

Uniform(Zg)). Besides, the learning rate is 1 €
(0,1) s.t. limgsoom = 0, and > 70, n? < oc.

We note that m-SGD is a Robbins-Monro
stochastic approximation of gradient descent (Rob-
bins and Monro, 1951). When it’s applied to per-
mutation sampling, the optimization almost surely
converges to the optimal 6, as implied by the fol-
lowing proposition.

Proposition 1 (7-SGD Convergence): The opti-
mization of m-SGD converges to the optimal 0 for
J(0) in Eq. (6) with probability one.

Proof: We refer to Prop.2.2 in Murphy et al. (2019).

4.3 Sentence-based Decoding

In decoding, PermGen adopts the following steps:

* Step 1: Initialize a set of indices of sentences
that have been generated: I = {};

e Step 2: If I = {}, sample a token from {<B-¢>
|t € {1,...,T}}'; otherwise, predict a token
from {<B-t>|t e {1,...,T}\I} U {<EOP>}.
If the token is <EOP>, end; otherwise, append
<B-t> to the generated text;

o Step 3: Generate tokens from V U {<E-t>}
for the ¢-th sentence in an autoregressive way,
where V is the set of normal text tokens. Stop
when <E-t> is generated;

e Step 4: I < I U {t}, then go back to Step 2.

As stated in step 2, when <EOP> is generated,

the whole generation ends. Then, the sentences
in the generated paragraph can be reordered ac-
cording to sentence indices I and special tokens.
Note that in step 3, since PermGen adopts autore-
gressive generation, it can employ any decoding
strategy such as beam search or sampling algorithm
(e.g. truncated sampling (Fan et al., 2018), nucleus
sampling (Holtzman et al., 2020)). For example,
truncated sampling samples the next word from the

"When trying to generate multiple candidates, we use the
sampling without replacement strategy. For example, if we
need to generate 3 candidates each with 5 sentences, their
beginning tokens can be B-1, B-3 and B-4, respectively.

top k probable choices, instead of aiming to decode
text by maximizing the likelihood.

Rank with log-probability. We compute the log-
likelihood of each candidate as the same as in beam
search (Vijayakumar et al., 2016) and sampling
methods (Holtzman et al., 2020):

L

Sprob(Y) = i;logp(yzlyb L y-1) ()
where L is the total number of tokens in Y and y;
is the [-th token in generated paragraph Y.
Complexity reduction. Since the number of pos-
sible sentence orders grows as n! for a n-sentence
paragraph, exact inference is an extremely time
consuming process. To reduce the complexity dur-
ing inference, we employ an approximate inference
by taking advantage of the special token prediction
mentioned in step 2. The special token prediction
happens when a end-of-sentence (i.e., <E-t>) is
generated. Instead of traversing each remaining
possible sentence index, the model only chooses
the most likely sentence index through special to-
ken predictions. It should be noted that we reuse
the classifier in decoder by simply masking tokens
not in {<B—t>}tT:1, without training any new clas-
sifiers. Therefore, the decoding time is roughly
linear in the number of candidates to be generated.
See empirical analysis in Section 5.5.4.

S Experiments

We conduct experiments on three text generation
tasks: story generation, news generation, and pa-
per abstract generation. For all tasks, we compare
PermGen with multiple baseline models on diver-
sity and accuracy of their generated texts. We also
perform human evaluation on story generation.

5.1 Tasks and Benchmarks

Task 1: Story generation In this task, models
learn to generate story paragraphs from the ti-
tle and multiple keywords. We use ROCStories

Table 1: Statistics of three datasets. “in/out” stands for
input/output and “sents” stands for sentences.

Dataset | ROCStories | AGENDA | DailyMail
Train 98,162 38,720 49,102
Dev. 9,817 1,000 2,000

Test 9,803 1,000 2,000
Title in input vV v/ X
Avg.in.words 9.65 16.09 791
Avg.out.words 50.16 76.12 95.62
Avg.out.sents 4.92 3.08 3.88

dataset (Mostafazadeh et al., 2016) and follow the
same data preparation as in Yao et al. (2019). ROC-
Stories has 98,162 / 9,817 / 9,803 paragraphs for
training / development / test sets. The stories in the
corpus capture causal and temporal commonsense
relations between daily events.

Task 2: Paper abstract generation In this task,
models need to generate paper abstracts from paper
title and a list of keywords. We use the AGENDA
dataset (Koncel-Kedziorski et al., 2019) that con-
sists of 40,720 paper titles and abstracts in the Se-
mantic Scholar Corpus taken from the proceedings
of 12 Al conferences. Each abstract is paired with
several keywords. We follow the settings in Koncel-
Kedziorski et al. (2019) to directly generate paper
abstracts from the keywords. We follow the same
data partition, which has 38,720/ 1,000 / 1,000 for
training / development / test sets, respectively.

Task 3: News generation In this task, models
are trained to generate news articles from a list
of keyphrases. We use DailyMail dataset (See
et al., 2017), a corpus of online news articles. We
randomly sample 53,102 news articles and extract
keyphrases from each sentence using RAKE (Rose
et al., 2010). It contains 49,102 / 2,000 / 2,000
news articles for training / development / test sets.

5.2 Baseline Methods

We compare with three pre-trained Transformer-
based models: BART (Lewis et al., 2020), TS (Raf-
fel et al., 2020) and BERTGen (Rothe et al., 2020).
These models have demonstrated state-of-the-art
performance in various tasks. We also compare
with GPT-2 (Radford et al., 2019) and two recent
non-autoregressive generation models: BLM (Shen
et al., 2020) and POINTER (Zhang et al., 2020).

BLM (Shenetal., 2020) Blank Language Model
(BLM) generates sequences by dynamically creat-

ing and filling in blanks. The blanks control which
part of the sequence to fill out, making it ideal for
word-to-sequence expansion tasks.

POINTER (Zhang et al., 2020) POINTER oper-
ates by progressively inserting new tokens between
existing tokens in a parallel manner. This pro-
cedure is recursively applied until a sequence is
completed. This coarse-to-fine hierarchy makes
the generation process intuitive and interpretable.

For each task, we evaluate PermGen with three
diversity promoting methods for decoding includ-
ing Beam search, Truncated sampling (Fan et al.,
2018), and Nucleus sampling (Holtzman et al.,
2020). For each method, we select the top-3 candi-
date paragraphs for comparison.

Truncated Sampling (Fan et al., 2018) It ran-
domly samples words from top-k candidates of the
distribution at the decoding step.

Nucleus Sampling (Holtzman et al., 2020) It
avoids text degeneration by truncating the unreli-
able tail of the probability distribution, sampling
from the dynamic nucleus of tokens containing the
vast majority of the probability mass.

Implementation details is in Appendix 5.3.

5.3 Implementation Details

We use pre-trained parameters from BART-
base (Lewis et al., 2020) to initialized our model,
which takes a maximum 512 input token sequence
and consists of a 6-layer transformer encoders
and another 6-layer transformer decoders (Vaswani
et al., 2017) with 12 attention heads and 768 word
dimensions. For model fine tuning, we use Adam
with learning rate of 3e-5, L2 weight decay of 0.01,
learning rate warm up over the first 10,000 steps,
and linear decay of learning rate. Our models are
trained with a 4-card 32GB memory Tesla V100
GPU, and implemented on PyTorch with the Hug-
gingface’s Transformer (Wolf et al., 2020).

5.4 Evaluation Metrics
We use metrics introduced in previous work (Ott

et al., 2018; Vijayakumar et al., 2018; Zhu et al.,
2018) to evaluate accuracy and diversity.

5.4.1 Accuracy metrics

Top-1 metric ({}). This measures the Top-1 ac-
curacy among the generated hypotheses. The
accuracy is measured using corpus-level met-
rics, including BLEU (Papineni et al., 2002),

Table 2: Diversity (“Dist-2”: Distinct-2(1}), “Self-B-4": Self-BLEU-4({})) and accuracy (“B-4”: BLEU-4(1})) for
PermGen and baseline methods. Diversity evaluation is calculated by top-k generated candidates from beam search.
More evaluation results (e.g., METEOR, CIDEr, Entropy) are in Table 7 in Appendix.

Pre. ROCStories AGENDA DailyMail
Methods Train Diversity ‘ Accuracy Diversity ‘ Accuracy Diversity ‘ Accuracy
|| Dist-2(11) Self-B-4(})| B-4(1) |Dist-2(1) Self-B-4({})| B-4(f)) |Dist-2(1}) Self-B-4({})| B-4()
POINTER v 0.0743 0.9405 0.0492 | 0.1898 0.9267 0.0379 | 0.1228 0.9619 0.0243
BLM v 0.0560 0.9573 0.1477 | 0.1465 0.9396 0.1679 | 0.0831 0.9889 0.1164
GPT-2 Vv 0.0915 0.9194 0.0726 | 0.1665 0.9331 0.1247 | 0.1577 0.9287 0.1072
BERTGen Vv 0.0672 0.9456 0.1576 0.1463 0.9356 0.1462 | 0.1167 0.9774 0.1728
TS5 Vv 0.0684 0.9403 0.1895 | 0.1323 0.9421 0.1688 | 0.1086 0.9779 0.1529
Transformer X 0.0806 0.9341 0.1809 | 0.1489 0.9265 0.1540 | 0.1109 0.9678 0.1496
BART vV 0.0839 0.9330 0.2445 | 0.1697 0.9278 0.1922 | 0.1306 0.9720 0.1935
PermGen X 0.0992 0.8548 0.1848 | 0.2203 0.5679 0.1678 | 0.1934 0.7757 0.1592
Vv 0.1059 0.7993 0.2482 | 0.2492 0.5940 0.2059 | 0.2065 0.6627 0.1991
METEOR (Banerjee and Lavie, 2005), and former) or pre-trained (BART) Transformers. For

CIDEr (Vedantam et al., 2015).

Oracle metric (/). This measures the highest ac-
curacy comparing the best hypothesis among the
top- K with the target (Ott et al., 2018; Vijayakumar
et al., 2018). Concretely, we generate hypotheses
{v®, ...y from each source X and keep the
hypothesis Vet that achieves the best sentence-
level metric with the target Y. Then we calculate a
corpus-level metric with the greedily-selected hy-

potheses {Y(")’be“}i]\i1 and references {V()} NV .

5.4.2 Diversity metrics

Corpus diversity (1}). Distinct-k (Li et al., 2016)
measures the total number of unique k-grams nor-
malized by the total number of generated k-gram
tokens to avoid favoring long sentences. Entropy-
k (Zhang et al., 2018) reflects how evenly the em-
pirical k-gram distribution is for a given sentence
when word frequency is taken into account (i.e. low
weights for high-frequency words).

Pairwise diversity ({}). Referred as “self-” (e.g.,
self-BLEU) (Zhu et al., 2018), it measures the
within-distribution similarity. This metric com-
putes the average of sentence-level metrics be-
tween all pairwise combinations of hypotheses
{y(... y)} generated from each source se-
quence X. Lower pairwise metric indicates high
diversity between generated hypotheses.

5.5 Experimental results
5.5.1 PermGen v.s. Transformers

As shown in Table 2, PermGen can improve both
the diversity and the accuracy of generated text
when initialized with either non-pretrained (Trans-

example, compared with BART which has the best
performance among baselines, PermGen reduced
Self-BLEU-4 by 43.2% and improved BLEU-4 by
+1.5% on AGENDA. And we observe similar im-
provement on all other paragraph generation tasks.

POINTER achieves the lowest performance in
paragraph generation tasks. This is because its
insertion operation ignores dependency between
generated words so it cannot well capture the inter-
sentence coherence during long-text generation.

It should be noted that since BART performed
the best among all baseline methods, we apply Per-
mGen on BART in the following evaluations.

5.5.2 PermGen v.s. Decoding Methods

We investigate the quality of text generated by Per-
mGen (built on BART) when coupled with beam
search, truncated sampling and nucleus sampling.
Figure 4 shows that on average, PermGen can sig-
nificantly boost diversity by 5.81% in Self-BLEU-3
and 6.83% in Self-BLEU-4, respectively, and im-
prove accuracy by +1.2% and +1.5% in terms of
Top1-BLEU-4 and Oracle-BLEU-4.

As the diversity of generated text depends on the
number of produced candidates, we compare the di-
versity of generation between BART and PermGen
with various number of output candidates, K. Fig-
ure 5 shows that as K increases, PermGen can con-
sistently generate more diverse content, measured
by the ratio of distinct 2-grams, Distinct-2 (dashed
line). Meanwhile, measured by Entropy-4 (solid
line), the proportion of novel words in generated
candidates from PermGen is rising as K increases,
while BART shows a flat or even falling trend.

0.50

0.50

A OO PermGen A QOO BART OO AGENDA QQ DailyMail A A\ ROCStories
Pairwise diversity Corpus diversity Accuracy
0.30 0.25
} Y
025 o g 8 8 8 0.24 ﬁ A A
| 0.23
A A | 8 o e o
A 0.22
A A A A
A A 021
g 8 e b'e 8 €] A Al 92| 0 <> Q o) 0 I} o
8 8 A A 010 09 o 8 00 <> o 60
b=3 k=10 k=50 p=0.75 p=0.95 b=3 k=10 k=50 p=0.75 p=0.95 018 b=3 k=10 k=50 p=0.75 p=0.95
Beam Truncated Nucleus Beam Truncated Nucleus Beam Truncated Nucleus
(a) Self-BLEU-3({}) (b) Distinct-2(1) (¢) Topl-BLEU-4({})
13.20 2 2 0.30
A 4 : 4 ‘
1280 | o A 064 © A oa 08| |03 A ﬁ ﬁ 2 2
12.00 O 026 A
A A 0.24
A ?\ A 2 1140 8 8 022 (¢ 0 <& ©0 <
08 e 8 e] 1080 [® 8 8 N S RY 56 <8
s 8 3 g)¢ 020 |60
10.20 0.18
b=3 k=10 k=50 p=0.75 p=0.95 b=3 k=10 k=50 p=0.75 p=0.95 b=3 k=10 k=50 p=0.75 p=0.95
Beam Truncated Nucleus Beam Truncated Nucleus Beam Truncated Nucleus
(d) Self-BLEU-4({}) (e) Entropy-4(1)) (f) Oracle-BLEU-4(1})

Figure 4: PermGen demonstrates superior performance on both diversity and accuracy compared with different
diversity-promoting methods. The specific values involved in the figure are shown in Table 10 in Appendix.

Dist-2
0.12

0.09

0.06

0.03

0.00

- PermGen Distinct-2

-& BART Distinct-2

Ent-4
13.20

13.00

12.80

12.60

3 4 5 6 7 8 9
Number of sampled sequences

(a) ROCStories

12.40

Dist-2
0.40

0.30

0.20

0.10

0.00

Ent-4

11.80

11.50

11.20

10.90

10.60
5 6 7 8 9 10
Number of sampled sequences

(b) AGENDA

-@-PermGen Entropy-4

Dist-2
0.32

0.24

0.16

0.08

0.00

-0-BART Entropy-4

Number of sampled sequences

(c) DailyMail

Ent-4
13.00

12.80

12.60

12.40

12.20

Figure 5: PermGen generates more diverse paragraphs over different number of sampled candidates. The diversity
measured at each point is the mean value of Dist-2 and Ent-4 when k& = 10, £k = 50, p = .75, and p = .95.

4.0

-e-BART (BS)
--PermGen

w
)

Decoding time (s)
NN W
o (6] o

-
[$)]

-
o

1 2 3 4 5 6 7 8 9
Number of generated paragraphs

Figure 6: Time Efficiency. PermGen enjoys faster de-
coding efficiency than BART (with beam search) when
generating multiple output paragraphs.

10

5.5.3 Human Evaluations

We sample 100 inputs from ROCStories test set
and each evaluated method generates top-3 stories.

Every story is assigned to five annotators with NLP
background. For diversity, the annotators are given
two sets of top-3 stories from two methods each
time and instructed to pick the set that is more
diverse. The choices are “win,” “lose,” or “tie.”
Then, the annotators give an accuracy score from 1
to 5 to measure semantic similarity between the top-
1 generated story and ground truth story. Finally,
the annotators need to give a fluency and coherency
score from 1 to 5 for each generated story.

Table 4-5 demonstrate that PermGen outper-
forms beam search in both accuracy and fluency,
while significantly improving generation diversity
compared with other diversity-promoting methods.

Table 3: Case study. PermGen produces more diverse stories than beam search and nucleus sampling. We shade
parts of the generated text which are distinct from other candidates. We provide more case studies in Appendix.

e Inputs: (Title) Mounting popularity ; (Keywords) started, company, friends, hard, year, slogging, reward, traction, excited

e Beam search-1: I started a new company with some friends . It was hard at first . After a year of slogging , I got a reward . The
reward was a lot of traction . Now we are all excited to start working together .
e Beam search-2: I started a new company with some friends . It was hard at first . After a year of slogging , I got a reward . The

reward was a lot of traction . Now we are all excited .

o Beam search-3: I started a new company with some friends . It was hard at first . After a year of slogging , I got a reward . The

reward was a lot of traction . We are excited to keep doing this .

e Nucleus sampling-1: I started a new company with some friends . It was hard at first . After a year of slogging , the reward
was a lot of traction . Now we are doing really well . I am excited to start working with my friends .

o Nucleus sampling-2: I started a new company with some friends . It was hard at first . After a year of slogging , I got a lot of
reward . The reward was a lot of traction . Now we are all excited to start working together .

e Nucleus sampling-3: I started a new company with my friends . It was hard at first . After a year of slogging , we got a lot of
reward . We got traction and are doing really well . We are excited to keep doing this .

e PermGen-1 (reordered from [2, 1, 3, 5, 4]*): I started a new company with some friends . I tried really hard for almost a year
. It took a lot of slogging , but as a reward I got traction . Now we are all doing it together . I 'm excited to be doing it again .

e PermGen-2 (reordered from [3, 1, 2, 5, 4]): I started a new company with some friends . It ’s been hard . I ’ve been slogging
through it as a reward for getting traction . My friends are really excited . I 'm excited to see what it ’s all about .

e PermGen-3 (reordered from [5, 1, 2, 3, 4]): I started a new company with some of my friends . It was hard at first . After a
year of slogging , I got a lot of reward . I have many traction on social media . I am excited to start working with my friends .

* “Reordered from [2, 1, 3, 5, 4]” means that PermGen first generates the 2°¢ sentence, and then generates the 1% sentence, and so
on. Finally, we reorder the generated story according to the ascending order of sentence index as shown in Figure 3.

Table 4: Human Evaluations on ROCStories: PermGen
(ours) v.s. three baseline methods based on diversity.

H Win Lose Tie
PermGen 64.00% 14.00% 22.00%
v.s. Beam (£12.71%) (£7.70%) (£10.73%)
PermGen 54.80% 8.80% 36.40%
v.s. Truncated || (+4.10%) (£5.31%) (£5.43%)
PermGen 56.00 % 11.60% 32.40%
v.s. Nucleus (£8.67%) (£4.27%) (£5.57%)

Table 5: Human Evaluations of PermGen and BART
on ROCStories. Decoding algorithm is beam search.
Minimum score is 1.0, and maximum score is 5.0.

‘ ‘ Accuracy Fluency Coherency
BART 3.34 393 3.85
PermGen 3.42 3.97 3.88

5.5.4 Time Efficiency

We vary the number of generated paragraphs to
examine the decoding time of BART (with beam
search) and PermGen. We calculate the average
decoding time of a batch whose size is set as 16.
The two models are run on a 32GB memory Tesla
V100 GPU. As shown in Figure 6, PermGen enjoys
faster decoding efficiency than BART when gener-
ating multiple paragraphs. This is because when
generating multiple paragraphs, beam search has

to spend time on ranking the generated candidates
at each decoding step. However, in PermGen, the
generation processes for different sentence orders
are independent.

5.5.5 Case Study

Table 3 demonstrates generated stories from differ-
ent diversity-promoting methods, including beam
search, nucleus sampling and our PermGen. Over-
all, we observe that PermGen can generate more
diverse stories than the other two methods. We
notice that stories generated by beam search often
differ only by punctuation and minor morphologi-
cal variations, and typically only the last sentence
(or last several words) is different from others. Nu-
cleus sampling achieves better diversity than beam
search, but the stories are still following similar
storylines. In comparison, PermGen can generate
semantically richer and more diverse contents.

6 Conclusions

In this paper, we proposed a novel sentence-
permuted paragraph generation model, PermGen.
PermGen maximizes the expected log likelihood of
output paragraph w.r.t. all possible sentence orders.
Experiments on three paragraph generation tasks
demonstrated that PermGen outperformed origi-
nal Transformer by generating more accurate and
diverse text. The result is consistent on various
Transformer models and decoding methods.

References

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the ACL workshop on Intrinsic and Extrinsic Eval-
uation Measures for Machine Translation.

Jaemin Cho, Minjoon Seo, and Hannaneh Hajishirzi.
2019. Mixture content selection for diverse se-
quence generation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Elizabeth Clark, Anne Spencer Ross, Chenhao Tan,
Yangfeng Ji, and Noah A Smith. 2018. Creative writ-
ing with a machine in the loop: Case studies on slo-
gans and stories. In 23rd International Conference
on Intelligent User Interfaces.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. International Confer-
ence for Learning Representation (ICLR).

Jian Guan, Yansen Wang, and Minlie Huang. 2019.
Story ending generation with incremental encoding
and commonsense knowledge. In Proceedings of
the AAAI Conference on Artificial Intelligence.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong
Yu, and Jun Wang. 2018. Long text generation via
adversarial training with leaked information. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI).

Junliang Guo, Xu Tan, Di He, Tao Qin, Linli Xu, and
Tie-Yan Liu. 2019. Non-autoregressive neural ma-
chine translation with enhanced decoder input. In
Proceedings of the AAAI Conference on Artificial In-
telligence (AAAI).

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2018. A deep generative framework for
paraphrase generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. International Conference for Learning
Representation (ICLR).

Xinyu Hua and Lu Wang. 2019. Sentence-level content
planning and style specification for neural text gen-
eration. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
(EMNLP-1JCNLP).

Daphne Ippolito, Reno Kriz, Joao Sedoc, Maria
Kustikova, and Chris Callison-Burch. 2019. Com-
parison of diverse decoding methods from condi-
tional language models. In Proceedings of the 57th

Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text generation from knowledge graphs with graph
transformers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL-HLT).

Marie-Anne Lachaux, Armand Joulin, and Guillaume
Lample. 2020. Target conditioning for one-to-many
generation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: Findings, pages 2853—-2862.

Leo Leppidnen, Myriam Munezero, Mark Granroth-
Wilding, and Hannu Toivonen. 2017. Data-driven
news generation for automated journalism. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation (COLING).

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2020.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting objec-
tive function for neural conversation models. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL-HLT).

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding
of commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL).

Ryan L Murphy, Balasubramaniam Srinivasan,
Vinayak Rao, and Bruno Ribeiro. 2019. Janossy
pooling: Learning deep permutation-invariant
functions for variable-size inputs. International
Conference for Learning Representation (ICLR).

Myle Ott, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncer-
tainty in neural machine translation. In Interna-
tional Conference on Machine Learning (ICML).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics (ACL).

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI).

Lihua Qian, Lin Qiu, Weinan Zhang, Xin Jiang, and
Yong Yu. 2019. Exploring diverse expressions
for paraphrase generation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3164-3173.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Ope-
nAl

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research.

Yi Ren, Jinglin Liu, Xu Tan, Sheng Zhao, Zhou
Zhao, and Tie-Yan Liu. 2020. A study of non-
autoregressive model for sequence generation. Pro-
ceedings of the 58th annual meeting of the Associa-
tion for Computational Linguistics (ACL).

Herbert Robbins and Sutton Monro. 1951. A stochastic
approximation method. Mathematical Statistics.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text mining: applications
and theory.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Transactions of the Asso-
ciation for Computational Linguistics (TACL).

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Tianxiao Shen, Myle Ott, Michael Auli, and
Marc’ Aurelio Ranzato. 2019. Mixture models for
diverse machine translation: Tricks of the trade.

In International Conference on Machine Learning
(ICML).

Tianxiao Shen, Victor Quach, Regina Barzilay, and
Tommi Jaakkola. 2020. Blank language models.
Proceedings of the 2020 conference on empirical
methods in natural language processing (EMNLP).

Zhan Shi, Xinchi Chen, Xipeng Qiu, and Xuanjing
Huang. 2018. Toward diverse text generation with
inverse reinforcement learning. In Proceedings of
the 27th International Joint Conference on Artificial
Intelligence, pages 4361-4367.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In Inter-
national Conference on Machine Learning (ICML).

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems (NeurlPS).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems (NeurlPS).

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of conference
on computer vision and pattern recognition (CVPR).

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasaath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2018. Diverse beam
search for improved description of complex scenes.
In AAAI Conference on Artificial Intelligence.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. arXiv preprint arXiv:1610.02424.

Qingyun Wang, Lifu Huang, Zhiying Jiang, Kevin
Knight, Heng Ji, Mohit Bansal, and Yi Luan. 2019.
Paperrobot: Incremental draft generation of scien-
tific ideas. In 57th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Zhen Wang, Siwei Rao, Jie Zhang, Zhen Qin,
Guangjian Tian, and Jun Wang. 2020. Diversify
question generation with continuous content selec-
tors and question type modeling. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: Findings (EMNLP).

Thomas Wolf et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP).

Pengcheng Yang, Lei Li, Fuli Luo, Tianyu Liu, and
Xu Sun. 2019. Enhancing topic-to-essay generation
with external commonsense knowledge. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics (ACL).

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Proceedings of the AAAI Conference on Artificial In-
telligence (AAAI).

Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu,
Qingyun Wang, Heng Ji, and Meng Jiang. 2020.
A survey of knowledge-enhanced text generation.
arXiv preprint arXiv:2010.04389.

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan,
Xiujun Li, Chris Brockett, and Bill Dolan. 2018.
Generating informative and diverse conversational
responses via adversarial information maximization.

Advances in Neural Information Processing Systems
(NeurlPS).

Yizhe Zhang, Guoyin Wang, Chunyuan Li, Zhe Gan,
Chris Brockett, and Bill Dolan. 2020. Pointer: Con-
strained text generation via insertion-based genera-
tive pre-training. Proceedings of the 2020 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP).

Liang Zhao, Jingjing Xu, Junyang Lin, Yichang Zhang,
Hongxia Yang, and Xu Sun. 2020. Graph-based

multi-hop reasoning for long text generation. arXiv
preprint arXiv:2009.13282.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi.

2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,

Weinan Zhang, Jun Wang, and Yong Yu. 2018. Texy-
gen: A benchmarking platform for text generation
models. In The 41st International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval (SIGIR).

Table 6: Ablation study. Hi-BART represents BART with hierarchical positional embeddings.

Method ‘ Accuracy ‘ Diversity
‘ BLEU-3{t BLEU-49 METEOR{ CIDEr{ ‘ Dist-2{ Entropy-41t Self-BLEU-4|}
AGENDA
BART 0.2539 0.1922 0.2418 0.7982 0.1697 10.5333 0.9476
Hi-BART 0.2357 0.1780 0.2334 0.6316 0.1673 10.4012 0.9503
PermGen 0.2719 0.2059 0.2500 0.8175 0.2492 11.1911 0.6173
DailyMail
BART 0.2534 0.1935 0.2390 0.7252 0.1306 11.8704 0.9778
Hi-BART 0.2481 0.1899 0.2360 0.5528 0.1289 11.7001 0.9765
PermGen 0.2586 0.1991 0.2390 0.7549 0.2065 12.4793 0.6701
ROCStories
BART 0.3143 0.2445 0.2744 1.6165 0.0839 12.4204 0.9330
Hi-BART 0.3059 0.2349 0.2709 1.6571 0.0812 12.2998 0.9356
PermGen 0.3196 0.2482 0.2769 1.7385 0.1059 12.8034 0.7247
Table 7: Extension of Table 2. Accuracy results for PermGen and baseline methods.
Method Pre-train ‘ BLEU-1{f BLEU-2{t BLEU-3ft BLEU-49 METEOR{t CIDEr{
AGENDA
BLM v 0.4632 0.3248 0.2338 0.1679 0.2282 0.4940
GPT-2 Vv 0.4009 0.2608 0.1795 0.1247 0.2117 0.6508
BERTGen vV 0.4435 0.2936 0.2046 0.1462 0.2202 0.6288
T5 v/ 0.4724 0.3235 0.2314 0.1688 0.2237 0.6203
Transformer X 0.4481 0.3084 0.2175 0.1540 0.2265 0.6307
BART v 0.4765 0.3409 0.2539 0.1922 0.2418 0.7982
PermGen v/ 0.4537 0.3183 0.2308 0.1678 0.2294 0.6192
vV 0.5043 0.3627 0.2719 0.2059 0.2500 0.8175
DailyMail
BLM v/ 0.3902 0.2540 0.1718 0.1164 0.2013 0.3627
GPT-2 v/ 0.3518 0.2188 0.1510 0.1072 0.1911 0.5433
BERTGen v 0.4350 0.3088 0.2299 0.1728 0.2301 0.4316
T5 v 0.4208 0.2895 0.2089 0.1529 0.2188 0.3813
Transformer X 0.4379 0.2958 0.2098 0.1496 0.2221 0.5869
BART v/ 0.4727 0.3368 0.2534 0.1935 0.2379 0.7252
PermGen X 0.4484 0.3024 0.2178 0.1592 0.2225 0.7059
v 0.4764 0.3407 0.2586 0.1991 0.2390 0.7549
ROCStories
BLM v 0.4653 0.3075 0.2098 0.1477 0.2275 0.7060
GPT-2 vV 0.3157 0.1824 0.1133 0.0726 0.1592 0.4458
BERTGen v 0.4753 0.3155 0.2184 0.1576 0.2393 0.8628
T5 v/ 0.5347 0.3655 0.2584 0.1895 0.2480 1.3108
Transformer X 0.5180 0.3526 0.2482 0.1809 0.2457 1.1342
BART v 0.5688 0.4159 0.3143 0.2445 0.2744 1.6165
X 0.5238 0.3566 0.2522 0.1848 0.2465 1.1775
PermGen
v 0.5830 0.4238 0.3196 0.2482 0.2769 1.7385

Table 8: Extension of Table 2. Diversity results for PermGen and baseline methods.

Method Per-train ‘ Dist-2fy Dist-3f Ent-119 Ent-2{t Ent-3f Ent-4ft Self-BLEU-4|,
AGENDA
BLM v 0.1465 0.2593 6.2633 93736 10.5771 10.8762 0.9396
GPT-2 v 0.1665 0.2709 6.3327 9.0065 10.0387 10.4467 0.9331
BERTGen v 0.1463 0.2457 6.1160 9.1015 10.2476 10.6362 0.9356
TS v 0.1323 0.2178 59393 8.6682 9.8081 10.2888 0.9421
Transformer X 0.1489 0.2546 59858 8.6806 9.8452 10.3447 0.9265
BART v 0.1697 0.2815 6.2168 9.0698 10.1473 10.5333 0.9476
PermGen X 0.2203 0.4564 6.1674 9.0272 103163 10.8839 0.5979
¢ ¢ v 0.2492 0.4852 6.3804 9.4862 10.7269 11.1911 0.6173
DailyMail
BLM v 0.0831 0.1379 6.4465 9.0287 10.3353 10.9684 0.9889
GPT-2 vV 0.1577 0.2511 7.4221 10.5923 11.6718 11.9437 0.9287
BERTGen vV 0.1167 0.1980 6.8704 10.3130 11.5898 11.8999 0.9744
T5 v 0.1086 0.1763 6.7553 9.7788 11.0747 11.5242 0.9779
Transformer X 0.1109 0.1942 6.9249 10.0132 11.3008 11.7343 0.9678
BART v 0.1306 0.2163 7.1025 10.3602 11.5483 11.8704 0.9778
PermGen X 0.1934 0.3790 7.1776 10.6234 11.9798 12.3989 0.7757
v 0.2065 0.4140 7.2142 10.6632 12.0205 12.4793 0.6701
ROCStories
BLM v 0.0560 0.1402 5.5457 8.8401 10.8404 11.8790 0.9573
GPT-2 v 0.0915 0.1902 6.4372 9.8739 11.4976 12.0918 0.9194
BERTGen v 0.0672 0.1626 5.8283 9.3407 11.3309 12.2154 0.9456
TS v/ 0.0684 0.1631 5.8398 9.3663 11.3523 12.2285 0.9403
Transformer X 0.0806 0.1971 57978 9.3205 11.4086 12.4069 0.9341
BART v 0.0839 0.2103 5.8986 9.4791 115186 12.4204 0.9330
X 0.0992 02786 5.7773 9.2959 11.4553 12.6124 0.8548
PermGen
v 0.1059 0.2953 59669 9.6523 11.7972 12.8034 0.7247

Table 9: Extension of Figure 4. Diversity results of PermGen and other sampling methods.

Sampling Setting ~ Method ‘ Dist-2{ Dist-3t Ent-19f Ent-2{ Ent-3{ Ent-41) Self-BLEU-3/4|
AGENDA
Beam Original | 0.1697 02815 6.2168 9.0698 10.1473 10.5333 09531 0.9476
search PermGen | 02492 04852 63864 9.4862 107269 11.1911 0.6675 0.6173
(ojo Original | 02410 04489 62751 92836 10.5489 11.0561 0.6680 0.6139
Truncated PermGen | 02599 05114 63993 95307 10.8008 112772 0.6217 0.5630
sampling yoso Original | 02491 04923 62773 93190 10.6157 111347 0.6239 05626
- PermGen | 02632 05205 6.4038 9.5549 10.8411 113239 0.6010 0.5397
_ s Original | 02434 04716 62771 92946 10.5610 11.0647 0.6619 ~ 0.6080
Nucleus P~ PermGen | 02583 05076 63911 9.5135 10.7804 11.2588 0.6255 0.5682
sampling _gs Original | 02522 04962 62889 93377 10.6308 11.1448 06190 0.5579
p= PermGen | 02636 05221 63996 9.5507 10.8385 11.3204 0.6006 0.5393
DailyMail
Beam Original | 0.1306 02163 7.1025 10.3602 11.5483 11.8704 09798 0.9778
search PermGen | 02065 04140 72142 10.6632 12.0205 124793 0.7146 0.6701
(_jo Original | 02087 04278 7.1406 105733 120173 125324 07055 0.6561
Truncated PermGen | 02166 04421 72171 10.6979 12.0915 125711 0.6704 0.6175
sampling (oo Original | 02194 04553 7.485 106153 120872 126152 0.6612 0.6046
. PermGen | 02228 04573 7.2222 10.7221 12,1282 126154 0.6472 0.5909
_ s Original | 02100 04315 7.1439 105835 120270 125400 07004 0.6508
Nucleus P~ PermGen | 02166 04409 72188 10.6994 12.0894 125671 0.6719 0.6198
sampling -~ — o5 Original | 02213 04600 7.523 106254 121002 126307 06544 05972
p= PermGen | 02222 04566 72197 107195 12.1300 12.6168 0.6465 0.5902
ROCStories
Beam Original | 0.0839 02103 5.8986 9.4791 11.5186 124204 0.9420 0.9330
search PermGen | 0.1059 02953 59669 9.6523 117972 12.8034 0.7669 0.7247
\ojo Original | 01053 02834 59041 95370 116702 126739 07955 07591
Truncated PermGen | 0.1099 03088 59716 9.6702 11.8335 128547 0.7359 0.6878
sampling (oso Original | 01093 02970 59094 95552 117055 127234 07633 0.7213
- PermGen | 0.1114 03141 59761 9.6801 11.8497 12.8732 0.7235 0.6734
_ s Original | 0.1032 02746 59047 9.5309 116501 12.6400 08147 0.7829
Nucleus P~ PermGen | 0.1092 03069 59730 9.6685 11.8292 12.8459 0.7421 0.6953
sampling o5 Original | 01088 02955 59108 95545 117011 127160 07669 0.7260
p= PermGen | 0.1111 03132 59747 9.6778 11.8463 12.8702 0.7252 0.6753

Table 10: Extension of Figure 4. Top-1 accuracy results of PermGen and other sampling methods.

Sampling ~ Setting ~ Method || BLEU-14 BLEU-2{ BLEU-3ff BLEU-4{ METEOR{ CIDErf
AGENDA
Beam Original 0.4765 0.3409 0.2539 0.1922 0.2418 0.7982
search PermGen || 0.5043 0.3627 0.2719 0.2059 0.2500 0.8175
\ojo Original 0.4718 0.3374 0.2513 0.1901 0.2408 0.7191
Truncated PermGen | 0.5035 0.3620 0.2716 0.2058 0.2495 0.8317
sampling yoso Original 0.4777 0.3403 0.2529 0.1910 0.2415 0.7874
- PermGen | 05062 0.3626 0.2709 0.2047 0.2496 0.8465
_ s Original 0.4720 0.3361 0.2496 0.1878 0.2399 0.7174
Nucleus p= PermGen | 05021 0.3611 0.2705 0.2047 0.2487 0.8254
sampling _gs Original 0.4764 0.3391 0.2519 0.1902 0.2407 0.7818
p= PermGen | 0.5071 0.3639 0.2721 0.2053 0.2502 0.8114
DailyMail
Beam Original 0.4727 0.3368 0.2534 0.1935 0.2379 0.7252
search PermGen | 0.4764 0.3407 0.2586 0.1991 0.2390 0.7549
\ojo Original 0.4728 0.3357 0.2522 0.1923 0.2385 0.7206
Truncated PermGen | 0.4772 0.3404 0.2578 0.1978 0.2374 0.8080
sampling \oso Original 0.4742 0.3362 0.2519 0.1916 0.2379 0.7311
B PermGen | 0.4785 0.3409 0.2580 0.1982 0.2380 0.8389
_,s Original 0.4726 0.3360 0.2525 0.1926 0.2383 0.7070
Nucleus p= PermGen || 0.4784 0.3416 0.2592 0.1993 0.2385 0.8048
sampling _gs Original 0.4740 0.3367 0.2528 0.1926 0.2384 0.7204
p= PermGen | 0.4785 0.3412 0.2584 0.1983 0.2383 0.8118
ROCStories
Beam Original 0.5688 0.4159 0.3143 0.2445 0.2744 1.6165
search PermGen | 0.5830 0.4238 0.3196 0.2482 0.2769 1.7385
\ojo Original 0.5680 0.4139 03117 0.2418 0.2734 1.6213
Truncated PermGen | 0.5829 0.4226 0.3179 0.2463 0.2761 17322
sampling \oso Original 0.5681 0.4135 0.3112 0.2410 0.2729 1.6168
- PermGen | 0.5834 0.4231 0.3181 0.2464 0.2764 1.7379
_ s Original 0.5681 0.4144 0.3123 0.2423 0.2735 1.6152
Nucleus p= PermGen | 0.5823 0.4225 0.3180 0.2466 0.2761 1.7330
sampling _gs Original 0.5678 0.4135 03115 0.2415 0.2730 1.6207
p= PermGen | 0.5833 0.4231 0.3183 0.2466 0.2762 1.7363

Table 11: Extension of Figure 4. Oracle (top-K) accuracy results of PermGen and other sampling methods.

Sampling ~ Setting ~ Method || BLEU-14 BLEU-2{ BLEU-3ff BLEU-4{ METEOR{ CIDErf
AGENDA
Beam Original 0.4941 03529 0.2624 0.1983 0.2469 1.0208
search PermGen || 05052 0.3723 0.2858 0.2217 0.2556 1.0371
\ojo Original 0.4983 03627 0.2746 02110 0.2516 1.0291
Truncated PermGen || 0.5068 0.3723 0.2852 0.2209 0.2561 1.0247
sampling (oo Original 0.5017 0.3642 0.2758 0.2123 0.2522 1.0451
- PermGen | 05061 0.3720 0.2851 0.2211 0.2548 1.0285
_ s Original 0.4960 0.3604 0.2726 0.2091 0.2510 0.9920
Nucleus p= PermGen | 0.5006 0.3688 0.2830 0.2195 0.2540 1.0549
sampling _gs Original 0.4984 0.3624 0.2744 0.2114 0.2510 1.0441
p= PermGen || 0.5095 0.3741 0.2863 0.2215 0.2556 1.0121
DailyMail
Beam Original 0.4817 0.3428 0.2578 0.1968 0.2408 0.9001
search PermGen | 0.4847 0.3567 0.2777 0.2193 0.2448 0.8544
\ojo Original 0.4888 0.3545 0.2716 02115 0.2448 0.9212
Truncated PermGen | 0.4853 0.3568 0.2779 0.2196 0.2447 0.8678
sampling \oso Original 0.4891 0.3550 0.2723 0.2122 0.2444 0.9197
- PermGen || 0.4878 0.3580 0.2784 0.2197 0.2454 0.8902
_,s Original 0.4888 0.3540 0.2710 0.2106 0.2444 0.9192
Nucleus p= PermGen || 0.4857 03573 0.2784 0.2199 0.2451 0.8240
sampling _gs Original 0.4896 0.3554 0.2727 0.2127 0.2446 0.9152
p= PermGen | 0.4871 0.3580 0.2783 0.2194 0.2455 0.8809
ROCStories
Beam Original 0.5801 0.4282 0.3264 0.2556 0.2789 1.7947
search PermGen | 0.5991 0.4505 03513 0.2810 0.2875 2.0115
\ojo Original 0.5834 0.4377 0.3390 0.2692 0.2824 1.8148
Truncated PermGen || 0.5988 0.4501 03508 0.2803 0.2871 2.0160
sampling \oso Original 0.5849 0.4394 0.3410 0.2712 0.2830 1.8393
- PermGen | 0.5989 0.4503 0.3510 0.2805 0.2872 2.0137
_ s Original 0.5829 0.4362 0.3369 0.2667 0.2818 1.8135
Nucleus p= PermGen | 0.5989 0.4500 0.3508 0.2803 0.2872 2.0107
sampling _gs Original 0.5852 0.4392 0.3405 0.2706 0.2831 1.8293
p= PermGen || 0.5989 0.4505 0.3515 0.2812 0.2870 2.0232

Table 12: Generation Cases on AGENDA dataset from PermGen and other diversity promoting methods.

o Inputs: (Title) Hierarchical Semantic Classification: Word Sense Disambiguation with World Knowledge. (Keyphrases)
learning architecture; lexical semantic classification problems; task-specific training data; background data; hierarchical
learning architecture; word sense disambiguation task

e Beam search-1: This paper presents a learning architecture for lexical semantic classification problems that does
not require task-specific training data or background data . The learning architecture is built on top of a hierarchical
learning architecture that is able to integrate both tasks-specific and background data in a principled way . We evaluate the
hierarchical learning on a word sense disambiguation task and show that the hierarchical learns architecture outperforms a
state-of-the-art approach .

o Beam search-2: This paper presents a learning architecture for lexical semantic classification problems that does
not require task-specific training data or background data . The learning architecture is built on top of a hierarchical
learning architecture that is able to integrate both tasks-specific and background data in a principled way . We evaluate the
hierarchical learning on a word sense disambiguation task and show that the hierarchical learns architecture is competitive
with state-of-the-art methods .

e Beam search-3: This paper presents a learning architecture for lexical semantic classification problems that does
not require task-specific training data or background data . The learning architecture is built on top of a hierarchical
learning architecture that is able to integrate both tasks-specific and background data in a principled way . We evaluate the
hierarchical learning on a word sense disambiguation task and show that the hierarchical learns architecture outperforms
the state-of-the-art .

e Nucleus sampling-1: We present a learning architecture for lexical semantic classification problems that does not
require any task-specific training data or background data . The learning architecture can be trained on a variety of tasks
without any knowledge of the nature of the tasks or the sources of the training data . We show that this can be achieved by
combining task-sparse and sparse training data , and show that the resulting hierarchical learning architecture outperforms
state-of-the-art methods on a word sense disambiguation task .

e Nucleus sampling-2: We present a learning architecture for lexical semantic classification problems that does not
require any task-specific training data or background data . The learning architecture is designed to learn from both the
tasks-specific and background data simultaneously . We apply this hierarchical learning architecture to a word sense
disambiguation task and show that hierarchical learning architectures outperforms state-of-the-art methods on both tasks .
o Nucleus sampling-3: We present a learning architecture for lexical semantic classification problems that does not
require task-specific training data or background data . Our learning architecture is able to take advantage of both tasks
by exploiting the relationship between task-sensor and background data in a principled way . We apply our hierarchical
learning architecture to a word sense disambiguation task , and show that hierarchical learning architectures outperforms
state-of-the-art methods .

o PermGen order-1 [1, 2, 3]: We present a learning architecture for lexical semantic classification problems that does not
require task-specific training data or background data . Our learning architecture learns to partition the data in different
domains into different subsets , such that the distribution of a given word is consistent across different domains . We show
that our hierarchical learning architecture outperforms the state-of-the-art methods on a word sense disambiguation task ,
and present the results of a large-scale empirical evaluation .

e PermGen order-2 [2, 1, 3]: This paper presents a new learning architecture for lexical semantic classification problems
that does not rely on task specific training data . We propose a learning architecture that leverages both task-specific and
background data . We apply this hierarchical learning architecture to a word sense disambiguation task , and show that
hierarchical learning architecture outperforms state-of-the-art methods .

o PermGen order-3 [3, 1, 2]: We describe a learning architecture for lexical semantic classification problems that does not
require task-specific training data or background data . Our learning architecture is built on top of a hierarchy of networks
that learn to classify words based on their senses , and a network that ties together the tasks-specific and background data
to form a hierarchy . We apply this hierarchical learning architecture to a word sense disambiguation task , and show that
hierarchical learning architecture outperforms state-of-the-art methods .

Table 13: Generation Cases on DailyMail dataset from PermGen and other diversity promoting methods.

o Inputs: white british londoners; left; census figures show; white flight; equivalent; white britons; white britons; minority

e Beam search-1: More than 700,000 white British Londoners have left the country in the last decade . Census figures
show that a “ white flight ” has taken place in the capital since the 1990s . This is equivalent to more than one in four white
Britons having left the UK . White Britons are now a minority of the population in London , according to new figures .

e Beam search-2: More than 700,000 white British Londoners have left the country in the last decade . Census figures
show that a “ white flight ” has taken place in the capital since the 1990s . This is equivalent to more than one in four
white Britons having left the UK . White Britons are now a minority of the population in London .

e Beam search-3: More than 700,000 white British Londoners have left the country in the last decade . Census figures
show that a “ white flight ” has taken place in the capital since the 1990s . This is equivalent to more than one in four white
Britons having left the UK . White Britons are now a minority of the population in London , according to a new study .

o Nucleus sampling-1: More than 700,000 white British Londoners have left the country since 2001 , according to new
figures . Census figures show that the *“ white flight ” of incomers has overtaken those from elsewhere in the country . It is
equivalent to more than one in four white Britons having left the UK . White Britons are now a minority of the population
in England and Wales .

o Nucleus sampling-2: More than 100,000 white British Londoners have left the country , according to new figures .
Census figures show that a “ white flight ” of incomers has taken place in the capital . This is equivalent to more than half
of all white Britons being in the UK . White Britons are now a minority of the population in London , new figures have
revealed .

e Nucleus Sampling-3: More than 50,000 white British Londoners have left the country . Census figures show that a
white flight * of incomers has taken place in the capital . This is equivalent to more than one in four white Britons having
left the UK . White Britons are now a minority of the population in London , according to new figures .

3

o PermGen order-1 [1, 2, 3, 4]: The equivalent of more than 10,000 white British Londoners have left the country , it has
been revealed . Census figures show that a “ white flight ”” of people moving to the capital has overtaken London for the
first time . The equivalent of more than 10,000 white Britons has left the country for the first time in more than a decade .
White Britons have become a minority in the capital since 1994 , but are now only a minority .

e PermGen order-2 [3, 2, 4, 1]: More than 50,000 white British Londoners have left the country for the first time , new
figures have revealed . Census figures show that a ““ white flight ”* of people from outside Europe has overtaken the city ’s
residents for the first time . The equivalent of around 40 per cent of all white Britons now live in the UK . White Britons
now make up a minority of the population in London.

e PermGen order-3 [4, 2, 1, 3]: More than 50,000 white British Londoners have left the country in the last three years .
Census figures show that the number of *“ white flight ” migrants has risen by more than 50 per cent in just three years .
This is equivalent to more than one in four white Britons in the UK . The number of white Britons in the minority has risen
by more than 50 per cent in just three years .

