
1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

ANALYZING THE NUANCES OF TRANSFORMERS’
POLYNOMIAL SIMPLIFICATION ABILITIES

Vishesh Agarwal
Microsoft Vancouver
725 Granville St, Vancouver, BC, Canada
{visagarwal}@microsoft.com

Somak Aditya & Navin Goyal
Microsoft Research India
9 Vigyan, Lavelle Road, KA, India
{t-soadit,navingo}@microsoft.com

ABSTRACT

Symbolic Mathematical tasks such as integration often require multiple well-
defined steps and understanding of sub-tasks to reach a solution. To understand
Transformers’ abilities in such tasks in a fine-grained manner, we deviate from
traditional end-to-end settings, and explore a step-wise polynomial simplification
task. Polynomials can be written in a simple normal form as a sum of monomials
which are ordered in a lexicographic order. For a polynomial which is not neces-
sarily in this normal form, a sequence of simplification steps is applied to reach
the fully simplified (i.e., in the normal form) polynomial. We propose a syn-
thetic Polynomial dataset generation algorithm that generates polynomials with
unique proof steps. Through varying coefficient configurations, input represen-
tation, proof granularity, and extensive hyper-parameter tuning, we observe that
Transformers consistently struggle with numeric multiplication. We explore two
ways to mitigate this: Curriculum Learning and a Symbolic Calculator approach
(where the numeric operations are offloaded to a calculator). Both approaches
provide significant gains over the vanilla Transformers-based baseline.

1 INTRODUCTION

Recently Lample & Charton (2019) showed that for the tasks of symbolic integration and solving
differential equations a large number of synthetic end-to-end examples can be generated using sym-
bolic systems. In these tasks, the authors show that Transformer networks can be trained to produce
the final solution from an input integral (or differential equation) in a single step. This points to
the exciting possibility of using deep neural nets to learn end-to-end theorem provers, and can be
beneficial for formal mathematics (Szegedy, 2020). However, the setup combines multiple reason-
ing steps in a single shot: e.g., symbolic integration is a composite task and it can be non-trivial to
produce intermediate steps even if the final answer is known. As the system in Lample & Charton
(2019) is simply trained to output the top solution(s), it is unclear what internal mechanisms enable
these models to solve these problems. An earlier work by Piotrowski et al. (2019) showed similar
results for certain symbolic manipulation tasks and their work shares the same limitation.

In this paper we ask if instead of only producing the end-result of symbolic manipulation or inte-
gration, can the model produce the full sequence of intermediate steps as a human-readable proof
as well. Inspired by Piotrowski et al. (2019), we explore a novel but simpler setting of polynomial
simplification. In this task, we begin with a polynomial which is a sum of products of factors, where
each factor is again a sum of monomials (including constants). For example,

P0 = (2 ∗ x2
2) ∗

factor︷ ︸︸ ︷
(3 ∗ x1

2︸ ︷︷ ︸
term

+4) +

product︷ ︸︸ ︷
(5 ∗ x2

1 + x1
1 ∗ x1

2) ∗ (3 ∗ x1
1) ∗ (2) . /* Initial */ (1)

By the simplified polynomial we mean a polynomial that is written as a sum of monomials arranged
in the lexicographic order. We transform a polynomial given in the above form into the simplified
form in unique steps as illustrated in the example below: First, each term in a factor is simpli-
fied. Once all factors are simplified (facstep); then within a product, all factors are multiplied

1

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

(mulstep). Lastly, simplified products are summed (sumstep).
P0 = (2 ∗ x2

2) ∗ (3 ∗ x1
2 + 4) + (5 ∗ x2

1 + x1
1 ∗ x1

2) ∗ (3 ∗ x1
1) ∗ (2), /* FACSTEP */ (2)

= (2 ∗ x2
2) ∗ (3 ∗ x2 + 4) + (5 ∗ x2

1 + x1
1 ∗ x1

2) ∗ (3 ∗ x1
1) ∗ (2), (P1), /* FACSTEP */ (3)

= (2 ∗ x2
2) ∗ (3 ∗ x2 + 4) + (5 ∗ x2

1 + x1 ∗ x2) ∗ (3 ∗ x1) ∗ (2), (P2), /* MULSTEP */ (4)

= (6 ∗ x3
2 + 8 ∗ x2

2) + (5 ∗ x2
1 + x1 ∗ x2) ∗ (3 ∗ x1) ∗ (2), (P3), /* MULSTEP */ (5)

= (6 ∗ x3
2 + 8 ∗ x2

2) + (30 ∗ x3
1 + 6 ∗ x2

1 ∗ x2), (P4), /* SUMSTEP */ (6)

= 30 ∗ x3
1 + 6 ∗ x3

2 + 6 ∗ x2
1 ∗ x2 + 8 ∗ x2

2. (P5), /* ENDPOINT */. (7)
In addition to the above setting (termed COARSE), we define a FINER setting, where a facstep
involves simplification of a single term, a mulstep involves multiplications of only two factors at
once, and each sumstep involves addition of only two products at once. Piotrowski et al. (2019)
explores the task of learning symbolic re-write of an entire expression. In contrast, in our setting,
for step-wise prediction, at each step the system needs to find the candidate sub-expression and a
relevant simplification type to perform the simplification. This setup resembles the traditional ATP
setup where a system needs to learn and execute symbolic steps to reach a final solution. But it is
much simpler, as for each step only one unique simplification is applicable. By the proof for the
simplification of the initial polynomial (P0) we mean the sequence of simplification steps (leading
to P1 to P5 in the example above). A model trained on step-wise prediction task, can be used to
generate a full proof: we start with an initial polynomial, and recursively feed the model output to
itself, till it generates the final simplified polynomial (in the normal form). We say that a proof is
correct when all steps are correct.

Summary of our contributions. (1) Definition of a step-wise polynomial simplification task and
the dataset generation algorithm, (2) identification of bottlenecks in Transformers’ math abilities
validated with extensive hyperparameter search, (3) a neuro-symbolic experiment (to further un-
derstand one of these bottlenecks) where the arithmetic calculations are outsourced to a calculator,
which results in significant gains across most configurations, and (4) curriculum learning for 1-
variable setting, where we observe significant gains (Table 18 appendix H).

2 POLYNOMIAL SIMPLIFICATION DATASET & TASK SETUP

We use the the Sympy library to generate the symbolic polynomials and simplification steps. To
have a fine-grained control over the generated polynomials and the proof steps, we consider starting
polynomials which are sums of products (e.g. P0 in Eqn. 1).1 We randomly sample starting point
polynomials. For both COARSE and FINER configurations, we build the proof steps as follows: (1)
first we do a sequence of facsteps where terms get collected within a factor (such as 2x + 3x to
5x, x1 and 1x become x); (2) then a sequence of mulsteps are performed where simplified factors
are multiplied out; and (3) lastly, in sumstep simplified products are added together. The sequence
of simplification steps till the endpoint constitute a full proof. The simplified endpoint polynomials
are in normal form, similar to P5 in Eqn. 7.

Dataset Configurations. We vary dataset configurations along the following dimensions: (1) The
number of variables in the polynomial is either 1 or 2; (2) coefficients size: the maximum coef-
ficients in the polynomials, products and factors resp., are varied from {60, 20, 5} (SMALL), to
{120, 40, 8} (MEDIUM) to {300, 100, 10} (LARGE) (DEFAULT is {120, 40, 8}); (3) the maximum
degree in polynomial and a factor has two configurations: {6, 3} (DEFAULT), and {12, 5} (MEDIUM
DEGREE); (4) the maximum number of terms in a simplified product and a factor has two config-
urations: {8, 3} (DEFAULT), and {20, 4} (MEDIUM TERMS). For the latter, we also set maximum
products in a sum and maximum factors in a product as 5 and 4 respectively. For variation along
a dimension, defaults for other dimension is used, e.g., default degree and terms for SMALL CO-
EFF. Lastly, we try a very large configuration (NO BACKTRACK) where maximum coefficients in
polynomial, product and factor are {10125, 3375, 5}, maximum degree in polynomial and factor are
{9, 3}; and maximum terms in a product is 27. This is a configuration, where no sampled factor,
or product is ever rejected for violating any higher-level constraint; thus capturing the effect of all

1Restriction over the form of the polynomial helps us generate unique proofs, which are easier to evaluate.
Detailed sampling algorithm in appendix A.

2

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

constraints at once. As input representations, we vary between the prefix and infix traversals of the
abstract syntax tree of the polynomial input as sequences.

Tasks and Metrics. We identify two tasks : (1) step-wise prediction: where an input polynomial
is provided and the task is to perform the next proof step, and (2) endpoint prediction: where given a
polynomial, the task is to predict the fully simplified polynomial in one shot. For a fair comparison
with the endpoint prediction task, we evaluate the stepwise models on their full proof accuracy. We
report the percentage of correct proofs (full proof acc) and percentage of correct steps (stepwise acc)
using the model’s top prediction (beam size 1) for every proof step . For the step-wise prediction task
the full proof accuracy is the percentage of proofs where all individual proof steps are accurate.2 We
also report the following: (1) error percentages grouped by each different types of steps (facstep,
mulstep, and sumstep), (2) calibration scores of the systems based on a threshold. To compute
the accuracy for an example (in both the tasks), we use the simplifymethod of Sympy library and
check symbolically whether the difference between the predicted expression and the ground-truth
expression is equal to zero. We also calibrate the model over how confident it is of its predictions,
by taking the natural log ratio of probabilities of top 2 outputs with beam 5. Whenever the ratio is
greater than a threshold (usually 5), we mark that output as being sure. Correspondingly, we report
the sure rate (percentage of outputs marked sure), precision, recall and F-1 score for calibration.

2.1 EXPERIMENTAL RESULTS

Our Model. We train a seq2seq network to predict the next proof step provided a polynomial as a
sequence. We train a Transformer network (Vaswani et al., 2017) architecture using Adam optimizer
(Kingma & Ba, 2014). To compare across configurations, we use a default hyperparameter setting
(denoted by TRANSFORMERS-S): 4 attention heads, 4 enc/dec layers, embedding size 256, learning
rate 10−4, batch size 32. For larger coefficient configurations, we do an exhaustive hyperparameter
search varying Transformers size (S and L)3, embedding size (256, 512), learning rate (1e-4, 5e-
4, 1e-5), dropout (0, 0.5), batch-size (32, 64, 128), input representation (prefix/infix) and proof
granularity (coarse/fine). During training, we synthetically generate each batch of equations. To
avoid collisions between train and test sets, we first use a fixed seed to generate the test and the
validation sets of polynomial simplification full proofs and collect the simplified end-points. While
sampling training batches, we make sure that the simplified versions of the input polynomial in
the training batches, do not collide with any endpoints in the the test and validation set.4 During
inference, we use beam-search with different beam widths (beam 1 and 5) to decode the expressions.
For our results, beam width 1 is used for proof accuracy. Calibration results are produced using beam
5 decoding. During decoding, if any malformed (prefix or infix) expressions are generated, we report
the percentage of such expressions.5

For the Transformers-S setting, we report the results for one and two variables for all configurations
in Tables 1 and 6 (appendix D). In Table 1, we observe that COARSE proof-steps with Prefix rep-
resentation provides the best full proof accuracy for four out of six configurations (especially for
larger coefficient sizes). From the calibration results, we see that the winning combinations often
provide the highest calibration F-1 score (more prominent for 2 variables), indicating lesser ambi-
guity in the decision made. As coefficient sizes grow from SMALL COEFF to NO BACKTRACK,
for 1 variable, the endpoint accuracy is only slightly higher (1 to 2%) than the full proof accuracy.
For MEDIUM TERMS and MEDIUM DEGREE, the Endpoint accuracy shows a 3.6% and 13% im-
provement respectively. For 2 variables, endpoint task accuracy is much larger in most cases. From
step-wise error analysis (Appendix Tables 8 & 9), shows that for 1 variable, more than 80% of the
model errors occur in the multiplication step. In most cases, both factor simplification and addition
cause close to 5% of the model errors each.

2This is done using teacher forcing. We have attempted recursive proof generation as well, where the output
from the decoder is fed to the encoder in the next step. With recursive generation, if in any step the model went
wrong, it did not recover after that. Hence, proof accuracy with teacher-forcing is a lower bound on that.

3S = 4 enc/dec layers, 4 H; L = 6 enc/dec layers, 8H. Learning rates were at first: 1e-2, 5e-3, 5e-4. But,
lr > 5 ∗ 10−4 resulted in near zero validation scores. lr 10−5 convergence took a long time.

4Authors in Piotrowski et al. (2019) show that the probability of such collisions in the generated integration
dataset by Lample & Charton (2019) to be quite high, and urge to report the test accuracy by accounting for
such collisions explicitly.

5Similar to Lample & Charton (2019), we find that the percentage of malformed outputs was very low (<
0.5%). So we did not explicitly correct for it.

3

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Polynomial
Config

Proof/Input
Format

Endpoint #Train Full Proof (Beam-1) Step-wise (Beam-5) Calibration (Beam-5)

#EE Endpoint
Acc

Full Proof
Accuracy

Stepwise
Accuracy

Top-1
Acc

Beam-5
Acc

Sure
Rate P R F1

Small Coeff Fine/Infix 5M 96 4.8M 98.9 99.79 94.46 95 92.38 100 97.8 0.99
Med Coeff Coarse/Prefix 6.1M 95.87 5.3M 93.6 98.58 86.6 88.47 82.83 99.88 95.54 0.98
Large Coeff Coarse/Prefix 6.5M 85.87 3.5M 83.5 96.25 80.6 83.3 75 99.91 92.97 0.96
No BT Coarse/Prefix 6.6M 78.87 5.6M 79.7 95.38 81.93 85.57 72.2 100 88.12 0.94
Med Deg Coarse/Infix 9.2M 96.4 4.9M 92.8 98.26 87.18 88.96 81.12 100 93.05 0.96
Med Terms Coarse/Prefix 7M 89.8 4.3M 76.3 95.78 87.8 91.17 81.3 100 92.6 0.96

Table 1: TRANSFORMERS-S results for 1 variable. Only highest proof accuracy combinations are
shown for each coefficient configuration. Full results in Appendix.

Polynomial
Config

Proof/Input
Format #Train Full Proof (Beam-1) Step-wise (Beam-5) Calibration (Beam-5)

Full Proof
Accuracy

Stepwise
Accuracy

Top-1
Acc

Beam-5
Acc

Sure
Rate P R F1

Large
Coeff

h/infix 3.6M 84.6 96.79 96.5 98.02 91.62 99.93 94.88 0.97
cal/infix 3.2M 95.7 99.16 97.98 98.72 95.58 99.94 97.49 0.99

No
Backtrack

h/infix 3.2M 82.6 96.85 95.98 97.86 88.42 99.98 92.1 0.96
cal/infix 3.8M 87.2 97.94 97.26 98.56 94.18 99.94 96.77 0.98

Medium
Degree

h/infix 3.3M 90.8 97.81 96.66 98.14 90.34 99.93 93.4 0.97
cal/infix 2.8M 90.5 98.08 97.92 98.94 92.86 99.96 94.79 0.97

Medium
Terms

h/infix 3.5M 79.5 96.49 96.16 97.92 91.19 100 94.82 0.97
cal/infix 3.7M 89.5 98.45 97.88 99.08 94.88 99.92 96.85 0.98

Table 2: 1 variable, hyperparmeter-tuning and symbolic calculator experiments. h/* rows denote the
performance of models with best validation scores over all explored hyperparameter configurations
(including input representation variations). cal/* provides the same for the calculator setting for
the best models after hyperparameter search. Full table in Appendix.

Symbolic Calculator. As 80% of the errors occurred in multiplication step, we separately tested
the Transformer’s ability to do arithmetic, by creating datasets involving multiplication and addition
of 4-digit and 9-digit numbers. While the models quickly achieved an accuracy of 99% for addition;
for multiplication, they could not go beyond even 1% after seeing 2M examples. Hence, we devise
a setting where polynomial simplification steps only involve symbolic addition and multiplication,
without any arithmetic manipulation. For example, for given expressions (3 ∗ x1) ∗ (4 ∗ x1), the
model is trained to output [3∗4]∗x2

1, where “[·]” signifies that a calculator needs to simplify the inner
expression. In Tab. 2, we report results for both the standard and the calculator setting. Each row
denotes the test-set results for the model with best validation score6, for a fixed dataset configuration
and input representation. As shown, in many configurations there is a significant increase in proof
accuracy (11% in Large Coeff and Medium Terms) for both prefix and infix representation.

Curriculum Learning. For this task, the sub-tasks (addition, multiplication) and their dependen-
cies are well-defined. To exploit such dependencies, we explore different curriculum strategies
based on the Mastering-Rate-based (MR) curriculum learning algorithm by Willems et al. (2020).
In this work, authors define the task dependencies as a graph, and a sub-task is only sampled from
(or learnt) when its parent tasks are mastered. From our experiments (detailed in Appendix), we
observe that in 1-variable setting, as coefficient size grows from SMALL, MEDIUM, LARGE to NO
BACKTRACK - the improvements in full proof accuracy steadily increase from 1% to 10.84%.

Conclusion and Results Summary. We define the polynomial simplification task and present
the synthetic dataset generation procedure. A default Transformers settings show that for smaller
configurations, Transformers learn to generate whole proofs with very high accuracy. For large con-
figurations, even with exhaustive hyper-parameter tuning, even a larger Transformer model suffers.
We identify that arithmetic multiplication is a consistent bottleneck for Transformers. Through a
neuro-symbolic model, where numeric operations are outsourced to a calculator, we observe high
gains on full proof accuracy. Lastly, we observe carefully designed curricula can also boost full proof
accuracy up to 10% for large coefficient sizes. These results indicate some potential ingredients that
could be useful for designing very high accuracy models.

6Full table and best hyperparameter settings per row in Appendix Table 10.

4

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

REFERENCES

Alex Graves, Marc G Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In International Conference on Machine Learning, pp.
1311–1320, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In International
Conference on Learning Representations, 2019.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum learn-
ing. IEEE transactions on neural networks and learning systems, 2019.

Bartosz Piotrowski, Josef Urban, Chad E. Brown, and Cezary Kaliszyk. Can neural networks learn
symbolic rewriting?, 2019.

Christian Szegedy. A promising path towards autoformalization and general artificial intelligence.
In Christoph Benzmüller and Bruce Miller (eds.), Intelligent Computer Mathematics, pp. 3–20,
Cham, 2020. Springer International Publishing. ISBN 978-3-030-53518-6.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Lucas Willems, Salem Lahlou, and Yoshua Bengio. Mastering rate based curriculum learning, 2020.

A POLYNOMIAL SIMPLIFICATION DATASET CREATION AND THE SAMPLING
ALGORITHM

We proceed similarly to Lample & Charton (2019) to generate the symbolic polynomials and sim-
plified steps synthetically using the Sympy library of Python. To have a fine-grained control over
the generated polynomials and well-defined proof steps, we consider polynomials which are sums of
products7. We also note that symbolic generation using the Sympy library lets us ensure correctness
of each generated expressions and validity of each steps.

A.1 NOTATIONS

We start with the set of variables xP = {x1, . . . , xnvar}. We represent the starting point polynomial
P0 in xP as the sum of products of factors:

P0 = P1 + P2 + . . . + Pnprod,

Pi =

nfaci∏
j=1

fij ,
(8)

where each factor (fij) has the form f =
∑

k(ak ∗
∏

l x
dkl

kl), where xkl ∈ xP (dropping i, j for
clarity). Here coefficients ak ∈ N+, and powers of the variables dkl ∈ N. nprod is the number of
products and nfaci denotes the number of factors in Pi.
We denote the set of factors as fP = {fij |∃i, Pi =

∏nfaci
j=1 fij}. The simplified endpoint polynomial

is of the form P̂ =
∑q

m=1 t̂m, where t̂m = âm ∗
∏

n xn
dmn , where xn ∈ xP . We use the symbol

P̂i to denote the simplified form of Pi. The functions terms(), vars(), coeffs() returns a list of terms,
variables, coefficients in the input expression. Our sampling algorithm guarantees that the generated
polynomial and its simplified endpoint abides by constraints on number of terms, products, factors
and variables; limit on degree and coefficient sizes. An example is nprod ∈ {2, . . . ,maxPP}. We
provide the full list of constraints and notations in Table 3.

7The generation algorithm in Lample & Charton (2019) may generate nested sums and products. For such
polynomials, an unique proof sequence is hard to define which makes whole proof s harder to evaluate. Our
restriction over the form of the polynomial helps us generate unique proofs, which are easier to evaluate.

5

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Term
Constraints

#Products
#Factors in Pi

#Terms in fij
#Terms in P̂i

nprod ∈ {2, . . . ,maxPP}
nfaci ∈ {2, . . . ,maxfP},∀i ∈ {1, . . . ,nprod}
|terms(fi)| ∈ {1, . . . ,maxTf},∀fij ∈ fP
|terms(P̂i)| ≤ maxTP∀Pi ∈ P0

Degree
Constraints

#Degree in P̂
#Degree in fij

∑
dmn ≤ DP , ∀m ˆtm ∈ terms(P̂),∀n xn ∈ vars(ˆtm)∑
dkl ≤ Df ,∀k terms(fij),∀fij ∈ fP

Variable
Constraints

#Variables in P0

#Variables in Pi

#Variables in fi

|xP | ≤ VP
|vars(Pi)| ≤ VP,∀Pi ∈ P0

|vars(fij)| ≤ Vf ,∀fj ∈ fP

Coefficient
Constraints

Coeff in P̂
Coeff in P̂i

Coeff in fi

âj ≤ CP ,∀âj ∈ coeffs(P̂)

âij ≤ CP,∀a coeffs(P̂i),∀Pi ∈ P0

ak ≤ Cf ,∀a coeffs(fij),∀fij ∈ fP

Table 3: List of notations, and corresponding constraints that a generated polynomial satisfies.

A.2 BUILDING A POLYNOMIAL PROOF

Here, we briefly describe the starting polynomial generation process; detailed algorithm is in the
appendix. Any randomly sampled polynomial (represented as a sum of products) can be included
as a starting point in the dataset as long as the polynomial respects certain configuration parameters
(in Appendix Table 3). This is unlike Lample & Charton (2019), where many randomly generated
integrals (or differential equations) might not have a solution. Hence, we randomly sample the con-
straint parameters in a top-down manner; and then construct terms, factors and products in a bottom-
up manner using the parameters. We first sample the following 1) a set of participating variables (
xP), 2) maximum degree for any monomial in the simplified polynomial (mdeg), and 3) the num-
ber of products in the starting polynomial (nprod). We then call the algorithm buildProduct
(Algorithm 1 in appendix) to create nprod individual products.

Algorithm 1: BuildProduct (Sampling Products)
Input: xP , mdeg
Constraints: nvars prod, max coeff prod, max fac prod, max terms prod
Output: A list of factors Fseq

1 Sample nvar ∈ {num vars fac, . . . ,nvars prod}
2 nvar = min(|xP |, nvar)
3 Sample nvar variables from xP as xPi

// Variable set for this product
4 Sample nfac ∈ {2, . . . ,max fac prod} // #Factors for this product
/* Get maximum degree, terms and coefficient available */

5 rdegree = mdeg, rterms = max terms prod, rcoeff = max coeff prod
6 cprod = 1 // Keeping track of product built till now
7 Fseq = []
8 for j ← 1 to nfac 1 do
9 fj = buildFactor(xPi

, rdegree, rterms, rcoeff)
/* Update degree, terms and coefficient for next factor */

10 cprod = cprod ∗ fj
11 rdegree = rdegree− degree(fj)
12 rterms = max terms prod/|terms(cprod)|
13 rcoeff = max coeff prod/max(coeffs(cprod))
14 Append fj in Fseq

15 if rdegree == 0 then
16 break
17 end
18 end
19 Shuffle Fseq

6

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Building a Product In buildProduct (Algorithm 1), first we sample nfaci, the maximum
number of factors in the product (Pi). We then build factors sequentially. For each new factor,
we sample a subset of variables in a factor. We pass on product-level constraints such as maxi-
mum degree in a product, maximum terms in a product, and maximum coefficient for a product as
rdegree, rterms and rcoeff respectively; and call the sub-routine buildFactor (Algorithm 2 to
create a factor. After a factor is sampled, the constraints rdegree, rterms and rcoeff are updated.
buildFactor is used to create at most nfaci factors, that all abide by the above constraints and
stops if the limit of maximum degree in the product is reached. The terms in a factor are arranged in
a lexicographical order. Since, this sequential generation of factors may induce a certain pattern of
decreasing degrees and coefficients, we shuffle the factors to create the final product.

Simplification Steps and Full Proof For both COARSE and FINER configurations, we build the
proof steps in the following way: 1) first we do a sequence of facsteps where terms get collected
within a factor (such as 2x + 3x to 5x, x1 and 1x becomes x); 2) then a sequence of mulsteps
are performed where simplified factors are multiplied out; and 3) lastly, in sumstep simplified
products are added together. As mentioned before, the sequence of simplification steps till the
endpoint constitute a full proof.

The polynomial sampling algorithms buildProduct and buildFactor are provided in Algo-
rithms 1 and 2 respectively.

Algorithm 2: BuildFactor (Sampling A Factor)
Input: xPi

, rdegree, rterms, rcoeff
Constraints: num vars fac, max coeff fac, max terms fac,

max degree fac
Output: A factor fj , Number of terms ntermsj

1 Sample nvar ∈ {1, . . . ,num vars fac}
2 cvars = Sample nvar variables from xPi

// Variable set for this factor
3 Sample nterms ∈ {1, . . . ,min(max terms fac, rterms)}

// # Terms for this factor
4 Sample {dk}nterms

k=1 , s.t. dk ∈ {0, . . . ,min(max degree fac, rdegree)}
// Term degrees: degree 0 allows for constant terms

5 Sample {ck}nterms
k=1 , s.t. ck ∈ {1, . . . ,min(max coeff fac, rcoeff)}

// Term coefficients
6 for k ← 1 to nterms 1 do
7 selects d[k] variables from cvars with replacement

// E.g. if d[k] = 4, cvars = [x1, x2]. May sample [x1, x2, x1, x1]
8 Convert the selected d[k] variables to a term // tk = ck ∗ x3

1 ∗ x2,
9 end

10 fj =
∑nterms

k=1 tk
11 return fj ;

B RESULT TABLE: FAQS

Q: How do you generate a proof?
We feed each input step to the model, and get the next step using greedy decoding.

Q: When is a proof marked correct?
When all the intermediate steps generated and the final simplified polynomial match the
ground truth. These results are recorded in the full proof major column.

Q: When is the step-wise major column then?
We also tried using beam-5 for decoding. The results for that are summarised, per step, in
the step-wise major column.

Q: Why are ”full proof > stepwise accuracy” and ”step-wise > top-1 accuracy” different?
As explained earlier, full proof results are with greedy decoding, and step wise are with
beam-5. Since the top output for beam-5 can be different from greedy decoding, we have

7

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

these two different metrics. As one can see, greedy decoding usually does better than beam
search.

Q: How are ”step-wise > top-1 accuracy” and ”step-wise > beam-5 accuracy” different?
Both of those metrics are for beam-5 decoding. Top-1 accuracy measures how many times
the top outputs in the beam matches the ground truth, whereas beam-5 accuracy measures
how many times ANY output in the beam matches ground truth.

Q: What is calibration?
Calibration is used to quantify how confident a model of its predictions. If the top prediction
of a model also has a very low probability, we can say that the model is not able to come
up with a good answer. We use the log ratio of model probability of top 2 outputs with
beam-5 decoding to measure how sure model is of its top prediction. We call this ratio the
confidence score of the model.

Q: Why use the log ratio of top 2?
Note that in our configuration, only one output is correct for each input. In our experiments
we found that when the model found the correct output, it gave a very high score to it, and
low scores for rest of the beam predictions. Whereas, when it gave incorrect answers, the
top few beam outputs had similar (and low) scores. So, we use the log ratio measure for
confidence.

Q: How do you know when the confidence score is enough to mark an output as sure?
We used AUC-ROC and AUPRC to calibrate a threshold for the model calibration scores.
An output with score above the threshold is marked ”sure” and below that is marked ”un-
sure”.

Q: What are the subcolumns under the calibration major column?
Sure rate is the %age of outputs marked as correct. Precision measures how many sure
outputs are correct. Recall measures how many of the correct outputs were marked as sure.
The F-1 score is calculated using that precision and recall.

Q: Finally, what are #EE and #Train?
To compare the sample efficiency with the baseline models, we note the number of exam-
ples the models see before convergence. Note that for the ENDPOINT model, an example
consists of an initial polynomial and final simplified version pair. Whereas for the stepwise
models, one example consists of one proof step (NOT the whole proof).

C PROBLEM SPACE SIZE ESTIMATION

For smaller configurations, it is probable that eventually all simplified polynomials would be in-
cluded in the training data. To account for this, we estimate the problem space size for each configu-
ration and report the size of training data for comparison. We randomly generate two sets of starting
polynomials say S1 and S2, and check for collisions among them. Assuming the actual size is X
and uniform distribution over all starting polynomials, the expected number of collisions would be
R = S1∗S2

X . Using the above method, we estimate the number of un-simplified polynomials and
the number of unique endpoints, and report in Table 4. We observe that compared to the number
of training examples it took for the models to converge in both End-point and Step-wise prediction
tasks, the space of possible equations is often 25 (or more) times higher.

Sampled polynomials are not uniformly distributed as we assign an equal probability while sampling
polynomials of lower and higher degrees, say 3 and 6; whereas there are more polynomials of degree
6 than degree 3. For non-uniform distributions, we expect more collisions as higher probability
equations are more likely to occur in both S1 and S2. Moreover, since many equations may map to
the same endpoint, such collisions for endpoints are even more likely. Thus, our empirical estimate
of the population size provides a lower bound on the true value.

D INPUT REPRESENTATION (ADDITIONAL RESULTS)

For TRANSFORMERS-S setting, we present the complete results for 1 variable in Table 5. For 2
variables, the COARSE configuration results are in Table 6 and FINE configuration in Table 7. The

8

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Config NVAR = 1 NVAR = 2
Equation

Size Estimate
Endpoint

Size Estimate
Equation

Size Estimate
Endpoint

Size Estimate
SMALL COEFF 104M 8.24M 184M 27.4M

MEDIUM COEFF 179M 16.3M 325M 42.4M
LARGE COEFF 289M 32M 507M 68.8M

NO BACKTRACK 324M 54.9M 538M 104M
MEDIUM DEG 459M 67.4M 902M 144M

MEDIUM TERMS 866M 31.5M 1.73B 801M

Table 4: Size Estimates for the problem space, after generating sets of size 5M.

errors made by the models for 1 Variable and 2 Variable settings are presented in Tables 8 and 9
respectively.

Polynomial
Config

Proof/Input
Format

Endpoint #Train Full Proof (Beam-1) Step-wise (Beam-5) Calibration (Beam-5)

#EE Endpoint
Acc

Full Proof
Accuracy

Stepwise
Accuracy

Top-1
Acc

Beam-5
Acc

Sure
Rate P R F1

Small
Coeff

Coarse/Infix 5M 96 3.6M 95 98.83 88.13 89.67 83.2 100 94.4 0.97
Fine/Infix 5M 96 4.8M 98.9 99.79 94.46 95 92.38 100 97.8 0.99
Coarse/Prefix 5.2M 97.8 3.2M 95.3 98.97 87.83 89.37 83.03 100 94.54 0.97
Fine/Prefix 5.2M 97.8 4.4M 96.9 99.4 95.1 95.83 93.13 99.96 97.9 0.99

Medium
Coeff

Coarse/Infix 4.1M 91.2 4.3M 92.8 98.24 88.97 91.67 84.3 100 94.75 0.97
Fine/Infix 4.1M 91.2 2.9M 90.3 97.99 86.1 87.68 81.14 100 94.24 0.97
Coarse/Prefix 6.1M 95.87 5.3M 93.6 98.58 86.6 88.47 82.83 99.88 95.54 0.98
Fine/Prefix 6.1M 95.87 4.5M 91.7 98.37 95.1 96.43 91.27 100 95.97 0.98

Large
Coeff

Coarse/Infix 4.8M 83.73 3.4M 82.1 95.97 92.34 94.22 87.2 99.98 94.41 0.97
Fine/Infix 4.8M 83.73 3.4M 82.5 96.44 92.32 94.26 87.5 99.98 94.76 0.97
Coarse/Prefix 6.5M 85.87 3.5M 83.5 96.25 80.6 83.3 75 99.91 92.97 0.96
Fine/Prefix 6.5M 85.87 3.2M 82 96.32 79.13 80.63 75.57 99.96 95.45 0.98

No
Backtrack

Coarse/Infix 5.9M 80.1 3.8M 75.6 94.62 72.74 77.28 61.8 99.9 84.88 0.92
Fine/Infix 5.9M 80.1 4M 74.5 94.76 88.34 90.9 79.44 99.92 89.86 0.95
Coarse/Prefix 6.6M 78.87 5.6M 79.7 95.38 81.93 85.57 72.2 100 88.12 0.94
Fine/Prefix 6.6M 78.87 4.2M 74.7 95.23 79 82.03 72.23 100 91.43 0.96

Medium
Degree

Coarse/Infix 9.2M 96.4 4.9M 92.8 98.26 87.18 88.96 81.12 100 93.05 0.96
Fine/Infix 9.2M 96.4 3.3M 83.4 96.12 88.26 90.44 83.04 99.95 94.04 0.97
Coarse/Prefix 7M 94.33 4.3M 87.7 96.82 77.33 82.13 69.33 100 89.66 0.95
Fine/Prefix 7M 94.33 5.9M 90.6 97.92 82.2 83.7 77.27 99.96 93.96 0.97

Medium
Terms

Coarse/Infix 4.6M 81.9 2.3M 72.7 93.99 79.44 82.22 68.22 99.97 85.85 0.92
Fine/Infix 4.6M 81.9 2.8M 75.1 95.42 86.2 88.48 76.72 99.92 88.93 0.94
Coarse/Prefix 7M 89.8 4.3M 76.3 95.78 87.8 91.17 81.3 100 92.6 0.96
Fine/Prefix 7M 89.8 3.2M 74.8 95.55 87.67 90.4 76.9 100 87.72 0.93

Table 5: Results for 1 variable in the COARSE and FINE configuration for both Infix and Prefix
representation.

Polynomial
Config

Input
Format

Endpoint #Train Full Proof (Beam-1) Step-wise (Beam-5) Calibration (Beam-5)

#EE Endpoint
Acc

Full Proof
Accuracy

Stepwise
Accuracy

Top-1
Acc

Beam-5
Acc

Sure
Rate P R F1

Small
Coeff

Infix 4.3M 94.7 3.7M 87.9 97.01 88.9 91 81.07 100 91.19 0.95
Prefix 4.5M 93.93 5.3M 91.2 98.08 83.83 86.7 77.57 100 92.52 0.96

Medium
Coeff

Infix 7M 95.3 5.3M 88.5 97.35 90.98 93.7 84.64 99.98 93.01 0.96
Prefix 5.2M 92.77 4.8M 84.5 96.03 89.57 92.93 81.27 99.96 90.7 0.95

Large
Coeff

Infix 9M 91.8 3.8M 80.4 95.18 90.44 93.14 82.74 99.93 91.42 0.95
Prefix 6.1M 86.6 5.4M 83.7 96.23 92.23 94.57 86.03 100 93.28 0.97

No
Backtrack

Infix 8.6M 83.8 5M 72.7 93.13 75.48 78.74 64.4 100 85.32 0.92
Prefix 7.1M 79.2 4.3M 63.2 89.87 72.07 76.43 59.4 99.94 82.38 0.9

Medium
Degree

Infix 4.9M 87.9 5.1M 80.5 95.13 90.3 92.53 80.63 100 89.29 0.94
Prefix 5.2M 83.73 6.1M 83.4 96.41 92.07 94.43 83.13 99.96 90.26 0.95

Medium
Terms

Infix 8.5M 90 3.8M 64 92.03 80.5 83.66 66.62 100 82.76 0.91
Prefix 6.6M 87.07 6.3M 67.8 93.58 89.7 91.57 80.33 99.96 89.52 0.94

Table 6: Results for 2 variables for the COARSE configuration for both Infix and prefix representa-
tions.

9

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Polynomial
Config

Proof/Input
Format

Endpoint #Train Full Proof (Beam-1) Step-wise (Beam-5) Calibration (Beam-5)

#EE Endpoint
Acc

Full Proof
Accuracy

Stepwise
Accuracy

Top-1
Acc

Beam-5
Acc

Sure
Rate P R F1

SMALL
COEFF

Infix/Fine 4.3M 94.7 4.6M 88.1 97.19 90.7 92.2 83.47 100 92.02 0.96
Prefix/Fine 4.5M 93.93 5.4M 90.3 97.83 94.63 96.2 87.9 99.96 92.85 0.96

MEDIUM
COEFF

Infix/Fine 7M 95.3 4.4M 82.2 96.25 94.28 95.76 86.24 100 91.47 0.96
Prefix/Fine 5.2M 92.77 2.9M 72.4 93.6 91.53 94.33 81.97 100 89.55 0.94

LARGE
COEFF

Infix/Fine 9M 91.8 3.2M 73 93.85 77.94 82.2 63 99.9 80.75 0.89
Prefix/Fine 6.1M 86.6 4.7M 78.6 95.6 91.93 93.47 83.87 100 91.23 0.95

NO
BACKTRACK

Infix/Fine 8.6M 83.8 5.8M 72.5 94.64 81.54 84.82 72.34 100 88.72 0.94
Prefix/Fine 7.1M 79.2 4.1M 60.7 90.48 81.73 85.67 70.2 99.91 85.81 0.92

MEDIUM
DEG

Infix/Fine 4.9M 87.9 3.6M 73.5 94.21 89.78 92.46 77.22 100 86.01 0.92
Prefix/Fine 5.2M 83.73 4.6M 73.6 94.57 86.5 89.4 76.93 100 88.94 0.94

MEDIUM
TERMS

Infix/Fine 8.5M 90 4.8M 64 92.98 79.04 81.86 66.92 99.88 84.56 0.92
Prefix/Fine 6.6M 87.07 4.5M 62.9 92.74 86.4 89.07 73.67 100 85.26 0.92

Table 7: Results for FINE configuration for 2 Variables for Infix and Prefix representation (No cur-
riculum, No annotation).

Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

SMALL
COEFF

Coarse/Infix 95 98.83 8 9.43 88 84.91 4 5.66
Fine/Infix 98.9 99.79 0 0 100 100 0 0

Coarse/Prefix 95.3 98.97 4.26 4.08 72.34 71.43 23.4 24.49
Fine/Prefix 96.9 99.4 9.68 9.68 77.42 77.42 12.9 12.9

MEDIUM
COEFF

Coarse/Infix 92.8 98.24 1.39 1.25 95.83 92.5 2.78 6.25
Fine/Infix 90.3 97.99 11.34 11.32 85.57 84.91 3.09 3.77

Coarse/Prefix 93.6 98.58 3.12 2.94 95.31 95.59 1.56 1.47
Fine/Prefix 91.7 98.37 2.41 2.33 96.39 96.51 1.2 1.16

LARGE
COEFF

Coarse/Infix 82.1 95.97 3.35 3.02 93.85 91.46 2.79 5.53
Fine/Infix 82.5 96.44 2.86 2.56 93.71 90.77 3.43 6.67

Coarse/Prefix 83.5 96.25 4.24 3.78 93.94 92.97 1.82 3.24
Fine/Prefix 82 96.32 3.33 2.97 90.56 86.63 6.11 10.4

NO
BACKTRACK

Coarse/Infix 75.6 94.62 2.87 3.13 93.44 86.83 3.69 10.03
Fine/Infix 74.5 94.76 3.14 3.56 93.33 78.63 3.53 17.81

Coarse/Prefix 79.7 95.38 7.39 6.57 89.16 83.94 3.45 9.49
Fine/Prefix 74.7 95.23 2.37 2.41 96.44 89.16 1.19 8.43

MEDIUM
DEG

Coarse/Infix 92.8 98.26 5.56 6.02 86.11 79.52 8.33 14.46
Fine/Infix 83.4 96.12 6.63 5.56 89.76 83.33 3.61 11.11

Coarse/Prefix 87.7 96.82 4.07 3.57 93.5 90.71 2.44 5.71
Fine/Prefix 90.6 97.92 8.51 7.55 89.36 87.74 2.13 4.72

MEDIUM
TERMS

Coarse/Infix 72.7 93.99 25.64 24.18 73.26 69.72 1.1 6.1
Fine/Infix 75.1 95.42 21.29 20.51 75.1 69.94 3.61 9.55

Coarse/Prefix 76.3 95.78 7.59 8.71 88.61 84.67 3.8 6.62
Fine/Prefix 74.8 95.55 14.68 16.76 79.76 74.28 5.56 8.96

Table 8: Errors for 1 variable in the COARSE and FINE configuration for both Infix and Prefix input
representation. (No curriculum, No annotation).

10

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

SMALL
COEFF

Coarse/Infix 87.9 97.01 5.79 4.9 88.43 79.72 5.79 15.38
Fine/Infix 88.1 97.19 8.4 7.98 75.63 68.1 15.97 23.93

Coarse/Prefix 91.2 98.08 1.14 1.03 88.64 84.54 10.23 14.43
Fine/Prefix 90.3 97.83 8.25 6.35 80.41 73.02 11.34 20.63

MEDIUM
COEFF

Coarse/Infix 88.5 97.35 4.35 3.73 83.48 76.87 12.17 19.4
Fine/Infix 82.2 96.25 2.25 1.83 76.4 68.81 21.35 29.36

Coarse/Prefix 84.5 96.03 3.87 3.68 88.39 81.58 7.74 14.74
Fine/Prefix 72.4 93.6 12.68 9.95 76.09 67.74 11.23 22.31

LARGE
COEFF

Coarse/Infix 80.4 95.18 6.12 4.84 82.65 75.81 11.22 19.35
Fine/Infix 73 93.85 11.85 8.74 70.74 62.3 17.41 28.96

Coarse/Prefix 83.7 96.23 4.29 3.61 87.12 82.99 8.59 13.4
Fine/Prefix 78.6 95.6 5.14 4.2 81.31 74.43 13.55 21.37

NO
BACKTRACK

Coarse/Infix 72.7 93.13 4.4 3.15 87.55 75.79 8.06 21.07
Fine/Infix 72.5 94.64 3.27 2.54 85.09 73.79 11.64 23.66

Coarse/Prefix 63.2 89.87 3.26 2.24 91.3 78.73 5.43 19.03
Fine/Prefix 60.7 90.48 2.29 1.58 89.31 72.64 8.4 25.79

MEDIUM
DEG

Coarse/Infix 80.5 95.13 6.67 5.44 81.54 71.97 11.79 22.59
Fine/Infix 73.5 94.21 7.17 6.55 68.3 57.83 24.53 35.61

Coarse/Prefix 83.4 96.41 4.82 4.19 81.33 75.39 13.86 20.42
Fine/Prefix 73.6 94.57 7.58 6.38 75.38 67.48 17.05 26.14

MEDIUM
TERMS

Coarse/Infix 64 92.03 25 19.05 72.5 66.5 2.5 14.45
Fine/Infix 64 92.98 13.61 8.62 79.44 69.59 6.94 21.79

Coarse/Prefix 67.8 93.58 10.25 7.69 87.89 80.98 1.86 11.32
Fine/Prefix 62.9 92.74 9.16 5.97 85.71 74.37 5.12 19.65

Table 9: Errors for 2 variables in the COARSE and FINE configuration for both Infix and Prefix input
representation. (No curriculum, No annotation).

E SYMBOLIC PROOF AND HYPERPARAMETER TUNING (ADDITIONAL
RESULTS)

We present the step-wise error analysis of the best models from hyper-parameter tuning experiment
in Table 10. For comparison, we also include the errors made by the best models in the symbolic
calculator setting for corresponding configurations.

Hyperparameter Tuning Observations • For learning rates (lr), we first started with the
range 0.01, 0.005, 0.0005 and experimented with few configurations, SMALL COEFF and MEDIUM
TERMS. lr greater than 0.0005 resulted in zero validation scores. Later, in our experiments, we
settled with the range 0.0001, 0.0005, 0.00001. Similarly, lr 10−5 took a long time to converge and
validation score started oscillating. Dropout choices did not show any particular advantage over the
other. For most cases, configuration with batch size 64 showed dominant results.
• Apart from a limited number of settings, COARSE proof granularity resulted in the best model.
This is expected as FINE proof creates long proofs.
• Contrary to the observation made in the TRANSFORMERS-S configuration, infix representation
consistently improved over prefix. This is observed for the symbolic calculator setting as well.

F ANNOTATED PROOF

In each step, simplification is performed over a sub-expression of the polynomial. To check explic-
itly, if the system can locate the sub-expression and find the type of simplification step, we devise
the annotated proof setting. For each simplification step, we add an intermediate step, in which the
model annotates the part of polynomial to operate on. For example, the starting input sequence is
“MARK $ (5 ∗ x2

1 + x1 ∗ x2) ∗ (3 ∗ x1) ∗ (2)”; and the corresponding expected output sequence is
“MUL $ #(5 ∗ x2

1 + x1 ∗ x2) ∗ (3 ∗ x1)# ∗ (2)”. Each sequence has two parts: 1) the step index to
perform (MARK, MUL, FAC, SUM), and 2) the polynomial expression. For MARK step, a marker
token (#) is used to annotate the candidate sub-expression to be simplified next.

We experiment only with INFIX representation. The results for 1 variable and 2 variables are in
Table 11 and 12. The errors per step type are shown in Tables 13 and 14. Compared to non-
annotated setting, while the step-wise accuracy is similar, the proof accuracy suffers often by 7-10%.

11

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Model
Info

Full Proof
Acc

Stepwise
Acc

First
FacSimp

Total
FacSimp

First
MulSimp

Total
MulSimp

First
SumSimp

Total
SumSimp

Large
Coeff

h/prefix
Emb: 512,
d/o: 0.5, bs: 64
Tr-L, Coarse

78.8 95.0 8.96 9.4 90.09 88.03 0.94 2.56

h/infix
Emb: 256,
d/o: 0, bs: 32
Tr-L, Fine

84.6 96.79 5.19 5.68 94.81 92.05 0.00 2.27

cal/prefix
Emb: 512,
d/o: 0.5, bs: 64
Tr-L, Coarse

94.6 98.98 18.52 18.97 79.63 79.31 1.85 1.72

cal/infix
Emb: 512,
d/o: 0.5, bs: 64
Tr-L, Coarse

95.7 99.16 4.65 6.25 83.72 79.17 11.63 14.58

No
Backtrack

h/prefix
Emb: 256,
d/o: 0, bs: 64
Tr-L, Coarse

74.1 93.69 1.93 1.52 96.91 87.54 1.16 10.94

h/infix
Emb: 512,
d/o: 0, bs: 64
Tr-L, Fine

82.6 96.85 5.17 6.85 91.95 84.47 2.87 8.68

cal/prefix
Emb: 512,
d/o: 0.5, bs: 32
Tr-L, Fine

83.5 97.25 11.52 13.24 86.67 81.74 1.82 5.02

cal/infix**
Emb: 512,
d/o: 0.5, bs: 64
Tr-S, Fine

87.2 97.94 7.81 10.98 86.72 80.49 5.47 8.54

Medium
Degree

h/prefix
Emb: 256,
d/o: 0.5, bs: 32
Tr-S, Coarse

82 95.49 11.11 10.05 85.56 84.42 3.33 5.53

h/infix
Emb: 512,
d/o: 0, bs: 64
Tr-L, Fine

90.8 97.81 2.17 1.79 90.22 83.93 7.61 14.29

cal/prefix
Emb: 512,
d/o: 0.5, bs: 64
Tr-L, Coarse

90.5 97.89 10.53 9.65 83.16 78.95 6.32 11.40

cal/infix
Emb: 512,
d/o: 0.5, bs: 64
Tr-L, Coarse

90.5 98.08 5.26 4.81 91.58 87.5 3.16 7.69

Medium
Terms

h/prefix
Emb: 512,
d/o: 0, bs: 128
Tr-L, Fine

76.5 95.59 20.0 22.45 71.49 66.47 8.51 11.08

h/infix
Emb: 512,
d/o: 0, bs: 32
Tr-S, Fine

79.5 96.49 18.54 17.58 80.49 77.29 0.98 5.13

cal/prefix
Emb: 512,
d/o: 0.5, bs: 32
Tr-L, Coarse

88.3 98.35 9.4 10.85 88.03 86.82 2.56 2.33

cal/infix
Emb: 256,
d/o: 0.5, bs: 128
Tr-L, Fine

89.5 98.45 20.0 25.00 74.29 66.91 5.71 8.09

Table 10: Error analysis for 1 variable, hyperparmeter-tuning and symbolic calculator experiments.
h/prefix and h/infix rows denote the error analysis of models with best validation scores after the
hyper-parameter search for prefix and infix input representation respectively. Similarly for cal/prefix
and cal/infix provides the error analysis for the calculator setting for prefix and infix for the best
models after hyperparameter search. For each row, we also show the best model and hyper-
parameter configuration. For all configurations, learning rate 10−4 produced the best validation
scores. **Some runs for the cal/infix NO BACKTRACK has not finished. We will update the final
numbers during publication.

A reason for such decrease in accuracy is that length of the annotated proofs are twice as long as
non-annotated. However, we note that the errors in MARK step are the lowest compared to other
types of steps. This indicates that the models are able to learn the candidate sub-expression for
simplification, and predict the next operation correctly.

G OUT-OF-DISTRIBUTION EVALUATION

We present the results for Out-of-Distribution evaluation here. Table 15 contains results for best 2
variable models (Prefix/Coarse) tested on 1 Variable setting.
Table 16 contains results for best 1 variable models (Prefix/Coarse) tested on SMALL, MEDIUM and
LARGE coefficient setting. As expected, the SMALL and MEDIUM models perform much worse
when tested on higher coefficients.
We also evaluated the best 1 variable models (Prefix/Coarse) on MEDIUM DEGREE and TERMS set-

12

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Polynomial
Config

Proof/Input
Format

Endpoint #Train Full Proof (Beam-1) Step-wise (Beam-5) Calibration (Beam-5)

#EE Endpoint
Acc

Full Proof
Accuracy

Stepwise
Accuracy

Top-1
Acc

Beam-5
Acc

Sure
Rate P R F1

SMALL
COEFF

Fine 5M 96 2.4M 88.5 98.82 86.77 87.7 83.97 99.96 96.73 0.98
Coarse 3.7M 91.9 99.16 90.07 90.73 88.13 100 97.85 0.99

MEDIUM
COEFF

Fine 4.1M 91.2 2.8M 78.6 97.66 92.67 93.63 88.23 100 95.22 0.98
Coarse 3.5M 84.2 98.29 94.83 95.53 92.4 99.96 97.4 0.99

LARGE
COEFF

Fine 4.8M 83.73 3.6M 75.5 97.37 96.8 97.8 92.4 99.93 95.39 0.98
Coarse 4.6M 80.3 97.86 80.37 81.6 77.83 100 96.85 0.98

NO BACK
TRACK

Fine 5.9M 80.1 4.1M 68 96.78 90.43 92.33 84.5 99.96 93.4 0.97
Coarse 3.6M 59.7 95 92.5 94.33 86.47 99.81 93.3 0.96

MEDIUM
DEG

Fine 9.2M 96.4 3.7M 76 97.37 83.67 85.23 79.1 100 94.54 0.97
Coarse 3.4M 78.7 97.38 93.2 94.37 88.2 100 94.64 0.97

MEDIUM
TERMS

Fine 4.6M 81.9 3.6M 70.4 97.48 91.5 92.2 86.87 100 94.94 0.97
Coarse 3.3M 66.2 96.34 88.9 90.27 83.17 99.84 93.4 0.97

Table 11: Results for FINE and COARSE configurations for 1 Variable for annotated proofs

Polynomial
Config

Proof/Input
Format

Endpoint #Train Full Proof (Beam-1) Step-wise (Beam-5) Calibration (Beam-5)

#EE Endpoint
Acc

Full Proof
Accuracy

Stepwise
Accuracy

Top-1
Acc

Beam-5
Acc

Sure
Rate P R F1

SMALL COEFF Fine 4.3M 94.7 3.6M 82.3 97.93 86.47 87.5 81.83 100 94.64 0.97
Coarse 5.1M 85 98.31 93.5 94.03 90.27 100 96.54 0.98

MEDIUM COEFF Fine 7M 95.3 5.4M 78.8 97.78 93.8 94.5 90.2 99.93 96.09 0.98
Coarse 5M 80.1 97.69 89.37 90.27 86.77 99.96 97.05 0.98

LARGE COEFF Fine 9M 91.8 4.1M 70.1 96.59 84.8 86.63 77.77 99.83 91.55 0.96
Coarse 4M 73.2 96.66 92.77 93.8 87.23 100 94.04 0.97

NO BACKTRACK Fine 8.6M 83.8 3.5M 46.5 92.93 84.9 87.67 74.5 99.96 87.71 0.93
Coarse 6.7M 65.5 95.7 67.8 69.37 63.3 99.79 93.17 0.96

MEDIUM DEG Fine 4.9M 87.9 3.9M 59.6 95.28 94.13 95.7 86.4 100 91.78 0.96
Coarse 4.1M 65.1 95.61 85.43 87.43 78.2 99.96 91.49 0.96

MEDIUM TERMS Fine 8.5M 90 4.8M 56.9 95.7 92.4 93.83 85.77 99.88 92.71 0.96
Coarse 4.2M 52.8 94.57 84 85.93 75.93 99.82 90.24 0.95

Table 12: Results for FINE and COARSE configurations for 2 Variables for annotated proofs (No
curriculum).

Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

First
MarkStep

Total
MarkStep

SMALL COEFF Fine 88.5 98.82 3.48 2.99 89.57 83.58 6.09 11.19 0.87 2.24
Coarse 91.9 99.16 1.23 1.19 98.77 96.43 0 1.19 0 1.19

MEDIUM COEFF Fine 78.6 97.66 18.69 15.19 74.77 74.44 3.27 6.67 3.27 3.7
Coarse 84.2 98.29 4.43 4.65 84.81 84.88 6.33 5.81 4.43 4.65

LARGE COEFF Fine 75.5 97.37 11.43 9.21 72.65 66.35 10.61 19.68 5.31 4.76
Coarse 80.3 97.86 5.58 5.86 90.86 87.39 1.02 4.5 2.54 2.25

NO BACKTRACK Fine 68 96.78 7.19 6.46 86.56 78.54 5.62 12.71 0.62 2.29
Coarse 59.7 95 6.2 5.25 88.09 76.88 3.72 15.41 1.99 2.45

MEDIUM DEG Fine 76 97.37 11.67 10.85 82.5 80.34 3.75 6.78 2.08 2.03
Coarse 78.7 97.38 6.1 5.84 86.38 81.32 4.69 9.73 2.82 3.11

MEDIUM TERMS Fine 70.4 97.48 16.89 16.27 75 69.14 3.72 8.85 4.39 5.74
Coarse 66.2 96.34 25.44 25.28 68.05 63.48 2.37 5.81 4.14 5.43

Table 13: Errors for FINE and COARSE configurations for 1 Variable for annotated proofs (No cur-
riculum).

Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

First
MarkStep

Total
MarkStep

SMALL COEFF Fine 82.3 97.93 4.52 3.07 86.44 68.97 7.34 24.14 1.69 3.83
Coarse 85 98.31 2 1.68 88.67 78.21 8 18.44 1.33 1.68

MEDIUM COEFF Fine 78.8 97.78 8.96 6.79 80.19 68.21 9.43 22.5 1.42 2.5
Coarse 80.1 97.69 9.05 7.79 87.94 80.33 3.02 10.66 0 1.23

LARGE COEFF Fine 70.1 96.59 13.38 10 69.9 59.32 13.38 25.45 3.34 5.23
Coarse 73.2 96.66 10.45 7.84 79.85 70.87 7.84 18.49 1.87 2.8

NO BACKTRACK Fine 46.5 92.93 9.16 5.15 74.21 57.9 14.58 33.69 2.06 3.25
Coarse 65.5 95.7 3.19 2.61 90.14 77.31 5.22 18.27 1.45 1.81

MEDIUM DEG Fine 59.6 95.28 7.43 5.48 72.03 57.1 15.35 32.9 5.2 4.52
Coarse 65.1 95.61 6.88 5.26 78.51 67.79 11.46 24.63 3.15 2.32

MEDIUM TERMS Fine 56.9 95.7 21.58 13.3 67.29 57.72 8.58 23.96 2.55 5.02
Coarse 52.8 94.57 23.94 15.6 68.22 62.77 3.6 16.67 4.24 4.96

Table 14: Errors for FINE and COARSE configurations for 2 Variable for annotated proofs (No cur-
riculum).

13

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

tings, to check generalization with respect to # terms and degree of polynomial. Table 17 contains
results for the same. The MEDIUM COEFF model is not able to generalize to more terms or polyno-
mials of higher degree.

Config Train/Test= 2 Var/1 Var Train/Test= 1 Var/1 Var Train/Test= 2 Var/2 Var
Full

Proof Acc.
Greedy

Stepwise Acc.
Full

Proof Acc.
Greedy

Stepwise Acc.
Full

Proof Acc.
Greedy

Stepwise Acc.
SMALL
COEFF 95.34 99.12 95.3 98.97 91.2 98.08

MEDIUM
COEFF 87.4 97.11 93.6 98.58 84.5 96.03

LARGE
COEFF 89.4 97.13 83.5 96.25 83.7 96.23

NO BACK
TRACK 84.2 98.29 79.7 95.38 63.2 89.87

MEDIUM
DEG 87.7 97.83 87.7 96.82 83.4 96.41

MEDIUM
TERMS 78.5 96.16 76.3 95.78 67.8 93.58

Table 15: Results for OOD Testing. NVAR = 2 COARSE/PREFIX models tested on corresponding
NVAR = 1 setting (No curriculum, No annotation).

Train
Config

Test Config
SMALL
COEFF

MEDIUM
COEFF

LARGE
COEFF

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.
SMALL
COEFF 95.3 98.97 33.4 69.05 31 68.02

MEDIUM
COEFF 96.6 99.29 93.6 98.58 33.6 68.96

LARGE
COEFF 95.8 99.1 94.4 98.64 83.5 96.25

Table 16: OOD Testing: Prefix/Coarse 1 Variable Models tested on various coefficient limit config-
urations (SMALL, MEDIUM and COARSE). (No curriculum, No annotation).

Train
Config

Test Config
MEDIUM
COEFF

MEDIUM
DEG

MEDIUM
TERMS

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.
MEDIUM
COEFF 93.6 98.58 20.8 47.77 26.1 54.65

MEDIUM
DEG 94.8 98.93 87.7 96.82 25.5 54.39

MEDIUM
TERMS 92.7 96.87 18.6 46.97 76.3 95.78

Table 17: OOD Testing: Prefix/Coarse 1 Variable Models tested on various #term and degree con-
figurations (MEDIUM DEGREE and MEDIUM TERMS). (No curriculum, No annotation).

H CURRICULUM LEARNING

Learning the simplification steps should entail learning the sub-tasks, such as addition and mul-
tiplication (of numeric coefficients and symbolic variables); where multiplying variables precludes

14

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

learning to add exponents of similar variables. As these sub-tasks are well-defined and dependencies
among them are clear, we explore different types of curriculums based on the Mastering-Rate-based
(MR) curriculum learning algorithm proposed in Willems et al. (2020). Authors in Willems et al.
(2020) define curriculum learning by 1) a curriculum i.e. a set of tasks C = {c1, . . . , cn}, where
a task is set of examples of similar type with a sampling distribution, and 2) a program which for
each training step defines the tasks to train the learner given its learning state and the curriculum.
Formally, the program d : N → DC , is a sequence of distributions over C. The authors estimate the
program function through an attention function which defines attention over the tasks at a time-step,
and an attention-to-distribution converter which converts the attention to a distribution over C. Au-
thors observe that other algorithms (Matiisen et al., 2019; Graves et al., 2017) are special cases of
the above setting with different choices for program.

To learn on tasks that are learnable but not learnt yet, authors define an ordered curriculum OC
which is a directed graph over tasks in C. An edge from A to B indicates that learning task A before
B is preferable. For supervised learners, the learnability for each task depends on mastering rate
(Mc(t)) computed from the normalized mean accuracy for that task at time-step t. At each time-
step, the MR algorithm computes attention over a task (ac(t)) from mastering rates of its ancestors
and successors. During training to sample batches, a hyperparameter Nb for the curriculum deter-
mines the number of batches to be considered at a step, before re-computing the attention over tasks.
Using the program d, we first sample Nb ∗ b examples from tasks in C. The model is then trained on
randomly sampled Nb minibatches are sampled updating the mastering rates.

For polynomial simplification for 1 variable, we define the following tasks ADD, MUL2, MUL3,
SCOEFF and MIXED. For ADD, only one factor per product is allowed, so there is no multiplication.
For MUL2 and MUL3 only 1 product is allowed with maximum two factors and three factors re-
spectively. SCOEFF points to the SMALL COEFF configuration and MIXED is the final variable size
configuration of the target variable configuration. We define the following curriculums:

• C: {(ADD, MUL3), (MUL3, MIXED), (ADD, MIXED)}.
• C2: {(ADD, MUL2), (MUL2, MUL3), (MUL3, MIXED), (ADD, MIXED)}.
• C4: {(ADD, MUL2), (MUL2, MUL3), (MUL3, SCOEFF), (ADD, SCOEFF) (SCOEFF,

MIXED)}.

For all our experiments, we use the MR algorithm with gAmax Linreg A2D converter functions de-
scribed in Willems et al. (2020). Model parameters and the training configurations remains the same
as before8. We show the results in Table 18 for COARSE configuration. As coefficient size grows
from SMALL, MEDIUM, LARGE to NO BACKTRACK - the improvements in full proof accuracy
steadily increase from 1% to 10.84%. For NO BACKTRACK, the improvement in top-1 accuracy is
by 20% from a no curriculum setting. However, we observe for MEDIUM TERMS, there is a drop in
accuracy for all curriculums and input representations. It is possible that, more carefully designed
curriculums may improve the results. There is no conceivable pattern observed for infix or prefix
representations. However, compared to learning without curriculum, the improvement observed for
infix representation is larger than prefix.

8We use Nb as 10. For other default parameters in CL, please check github.com/lcswillems/
automatic-curriculum.

15

github.com/lcswillems/automatic-curriculum
github.com/lcswillems/automatic-curriculum

1st Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

Full Proof (Beam-1) Step-wise (Beam-5) Calibration (Beam-5)
Curri
culum #Train Full Proof

Accuracy
Stepwise
Accuracy

Top-1
Acc

Beam-5
Acc

Sure
Rate P R F1

C 2.8M 94.38 98.76 94.84 96.68 89.36 100 94.22 0.97Infix C2 2M 95.98 99.0 91.64 93.24 86.16 99.9 93.98 0.97
C 2.02M 94.26 98.65 77.76 80.46 70.62 99.94 90.77 0.95

Small
Coeff Prefix C2 2.29M 94.6 98.56 93.44 95.28 88.02 99.89 94.09 0.97

C2 3.9M 95.44 99.02 94.86 96.44 91.18 100 96.12 0.98Infix C4 2M 93.86 98.59 88.22 90.24 84.68 99.91 95.90 0.98
C2 3.7M 94.78 98.82 91.98 93.66 88.08 99.93 95.69 0.98

Medium
Coeff Prefix C4 4.4M 94.8 98.87 85.3 87.82 80.62 99.98 94.49 0.97

C2 6.9M 91.26 97.92 96.4 98.06 90.24 99.89 93.51 0.97Infix C4 7.6M 91.62 98.16 91.54 93.3 87.38 99.84 95.3 0.98
C2 6.5M 92.2 98.31 85.38 87.78 81.42 99.95 95.32 0.98

Large
Coeff Prefix C4 6.97M 92.46 98.42 91.3 93.34 87.54 100.0 95.88 0.98

C2 4.8M 86.44 97.27 93.68 95.46 88.72 99.98 94.68 0.97Infix C4 5.1M 85.96 97.21 94.64 96.1 89.5 100 94.57 0.97
C2 7M 86.16 97.30 82.24 84.44 77.46 99.95 94.14 0.97

No
Backtrack Prefix C4 5.5M 86.48 97.45 92.6 94.3 87.78 99.95 94.75 0.97

C2 3.5M 87.12 97.01 84.16 87.44 78.46 99.95 93.18 0.96Infix C4 3.4M 94.12 98.65 90.62 81.984 86.66 99.93 95.56 0.98
C2 5.35M 94.28 98.71 80.8 82.84 75.76 100 93.51 0.97

Medium
Degree Prefix C4 3.5M 92.38 98.30 83.7 85.48 78.94 99.92 94.24 0.97

C2 4.4M 59.54 75.76 65.6 69.56 60.84 95.36 88.45 0.92Infix C4 3.8M 56.94 76.72 69.84 73.44 60.76 97.5 84.82 0.91
C2 2.8M 41.84 51.24 40.62 45.36 36.9 92.57 84.10 0.88

Medium
Terms Prefix C4 3.37M 49.02 65.41 58.56 64.64 45.44 96.83 75.14 0.85

Table 18: Curriculum Learning results for 1 variable for the COARSE configuration for both Infix
and prefix representations.

16

	Introduction
	Polynomial Simplification Dataset & Task Setup
	Experimental Results

	Polynomial Simplification Dataset Creation and The Sampling Algorithm
	Notations
	Building a Polynomial Proof

	Result Table: FAQs
	Problem Space Size Estimation
	Input Representation (Additional Results)
	Symbolic Proof and Hyperparameter Tuning (Additional Results)
	Annotated Proof
	Out-of-Distribution Evaluation
	Curriculum Learning

