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ABSTRACT
We present PANAMA, a novel in-network aggregation framework for distributed machine learning (ML) training
on shared clusters serving a variety of jobs. PANAMA comprises two key components: (i) a custom in-network
hardware accelerator that can support floating-point gradient aggregation at line rate without compromising accu-
racy; and (ii) a lightweight load-balancing and congestion control protocol that exploits the unique communication
patterns of ML data-parallel jobs to enable fair sharing of network resources across different jobs while ensuring
high throughput for long-running jobs and low latency for short jobs and other latency-sensitive traffic. We
evaluate the feasibility of PANAMA using an FPGA-based prototype with 10 Gbps transceivers and large-scale
simulations. Our simulation results demonstrate that PANAMA decreases the average training time of large jobs
by up to a factor of 1.34. More importantly, by drastically decreasing the load placed on the network by large
data-parallel jobs, PANAMA provides significant benefits to non-aggregation flows too, especially latency-sensitive
short flows, reducing their 99%-tile completion time by up to 4.5×.

1 INTRODUCTION

The ever-growing demand for accurate machine learning
(ML) models has resulted in a steady increase in dataset and
model sizes of deep neural networks (DNN). As a result,
training modern DNN models goes well beyond the capa-
bilities of a single device, and thousands of accelerators are
required for training large models today (Huang et al., 2018;
Lepikhin et al., 2020; Moritz et al., 2018; Sun et al., 2019).

Several academic institutions and companies have recently
advocated the use of in-network aggregation (Costa et al.,
2012; Mai et al., 2014) to improve the performance of dis-
tributed data-parallel ML training workloads (Bloch, 2019;
Klenk et al., 2020; Li et al., 2019; Sapio et al., 2021). By
aggregating gradients inside network switches rather than
at end-hosts, the communication bottleneck of data-parallel
training could be mitigated to reduce the training time.

Existing proposals, however, focus on relatively simplis-
tic scenarios that limit in-network aggregation to a single
switch (Lao et al., 2021; Sapio et al., 2021), a low switch
radix (Li et al., 2019), or a single ML job. In practice,
though, as the popularity and variety of neural network mod-
els grow, to reduce costs and resource wastage, both first-
party and third-party training workloads are increasingly
transitioning to shared clusters (Abadi et al., 2016; Ama-
zon, 2021; Azure, 2021; Google, 2021; Jeon et al., 2019),
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spanning hundreds of racks and executing a multitude of dif-
ferent ML jobs. Those jobs include traditional ML jobs such
as K-means clustering, as well as more recent incarnations
such as reinforcement learning and deep learning. From a
network perspective, this leads to a widely heterogeneous
set of flows, ranging from a few KBs to tens of GBs in
size (Abadi et al., 2016; Azure, 2021; Google, 2021; Jeon
et al., 2019), of which only a fraction might require aggrega-
tion (§2). Without a proper mechanism to efficiently share
network resources at large scale, the practical viability of in-
network aggregation under more realistic settings becomes
questionable as confirmed by anecdotal evidence in early de-
ployments: e.g., when testing their in-network aggregation
at larger scale, NVIDIA observed lower throughput than
expected due to congestion (Klenk et al., 2020).

In this paper, we address this shortcoming by presenting
PANAMA (ProgrAmmable Network Architecture for ML
Applications), an in-network aggregation framework tai-
lored for shared environments with a heterogeneous set of
workloads. PANAMA consists of two main components. The
first is a new aggregation hardware accelerator, designed
from the ground up to support multiple active training jobs
concurrently (§5). While existing programmable switches
based on the Reconfigurable Match Table (RMT) architec-
ture (Bosshart et al., 2013), e.g., the Tofino switch (Intel,
2018), can be used for in-network aggregation (Lao et al.,
2021; Sapio et al., 2021), the lack of floating point support
and the inflexibility of their pipeline architecture (Gebara
et al., 2020) forces compromises in accuracy and perfor-
mance. In contrast, we opt for a bump-in-the-wire approach
in which our in-network accelerator is decoupled from the
switch. This design is inspired by recent cloud deployments
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of programmable network interface cards (NICs) (Firestone
et al., 2018) and provides maximum flexibility without sac-
rificing the training accuracy or requiring any changes to
the switch logic. Our design can operate at line rate (10–
100 Gbps) and makes efficient use of logic area.

The second component in PANAMA is a load-balancing
mechanism in conjunction with a lightweight congestion
control protocol that allows efficient and fair sharing of
network bandwidth across different jobs (§4). PANAMA
distributes the aggregation traffic across multiple aggrega-
tion trees to reduce network hot spots and enhance network
performance. Existing data center congestion control proto-
cols (Alizadeh et al., 2010; Kumar et al., 2020; Mittal et al.,
2015; Zhu et al., 2015) are not suitable for in-network oper-
ations as they assume point-to-point connections between
servers rather than a tree-based configuration. In contrast,
our novel congestion control protocol takes advantage of
the unique features (and opportunities) of in-network aggre-
gation to improve performance while ensuring the limited
buffer space on accelerators is shared fairly by ML jobs
without being overflown. Moreover, our congestion control
algorithm is compatible with existing ECN-based protocols
used in data centers (Alizadeh et al., 2010; Zhu et al., 2015),
thus enabling fair sharing of network resources with other,
non-in-network aggregation traffic.

Our work sheds new light on the benefits of in-network
aggregation that have gone unnoticed in prior work. The re-
search community has expressed skepticism about the prac-
tical value of in-network aggregation; notably, its impact on
the overall training time is limited, as gradient aggregation
constitutes a small fraction of the entire training task (§2).
We argue that, perhaps counter-intuitively, the real motiva-
tion for in-network aggregation is not so much to improve
the performance of the training jobs themselves, as it is to
reduce the volume of traffic generated by data-parallel gradi-
ent exchange. Aggregating traffic within the network drasti-
cally decreases the network usage (a single data-parallel job
can generate more than 1 PB of data during its execution),
thus freeing up network resources for other flows, including
non-data-parallel ML jobs and latency-sensitive flows.

We demonstrate the feasibility of our hardware accelerator
using an FPGA-based prototype (§6) and provide an exten-
sive simulation analysis to evaluate the benefits of PANAMA
load-balancing and congestion control at scale (§7). Our
results show that PANAMA reduces the 99%-tile completion
time of latency-sensitive transfers by up to 4.5× (resp. 2×
for the mean) while simultaneously reducing the average
training time of ML training jobs by up to 1.34×.

2 THE CASE FOR IN-NETWORK
AGGREGATION

One of the most common distributed training approaches
is data-parallel training in which the neural network is
replicated across N workers (or replicas), with each worker
processing a small subset of the training data (mini-batch) to
compute its local model gradients. At every iteration, work-
ers must synchronize their models by exchanging and ag-
gregating their gradients to ensure convergence (Narayanan
et al., 2019). This step is called allreduce and it can be
implemented using a parameter server (Li et al., 2014) or
Ring-AllReduce (Sergeev & Balso, 2018; Uber Eng., 2017).

The allreduce step places significant pressure on the network
fabric, as the entire set of model gradients are exchanged
many times throughout the training process. For example,
for a training job with 1,000 workers and a 1 GB DNN
model size requiring 1,000 iterations required to achieve
target accuracy, the total traffic generated would be around
2 PB, as gradient exchange involves sending gradients, as
well as receiving their aggregated values. Recent proposals
advocate the use of in-network aggregation to improve the
performance of ML training workloads (Bloch, 2019; Klenk
et al., 2020; Lao et al., 2021; Li et al., 2019; Sapio et al.,
2021). The intuition is that reducing the amount of data
transferred over the network during the allreduce step will
shorten the communication time and lead to faster training.

However, analytical results show the overall training time
improvement resulting from in-network aggregation is lim-
ited to 1.01-1.8× (Table 2 in (Sapio et al., 2021)). There
are two reasons for this. First, compute time occupies a
significant chunk of the overall training time. Therefore,
only a fraction of the overall training time is spent on com-
munication, and this bounds the maximum achievable gain.
Second, even if the communication time comprised the
entirety of the training time, the maximum theoretical im-
provement in-network aggregation could achieve compared
to the state-of-the-art Ring-AllReduce strategy is a factor
of two reduction in communication time for large message
sizes (Klenk et al., 2020).

To validate this observation, we train five popular image
classifications models, using three generations of NVIDIA
GPUs: Pascal (P100), Volta (V100), and the recently intro-
duced Ampere (A100). We choose these DNN models as
they cover a wide range of sizes and computation require-
ments. We train the models using TensorFlow framework
and ImageNet dataset with batch sizes specified in the Ten-
sorFlow benchmark suite (TensorFlow, 2021).

To avoid any measurement bias caused by inefficiencies
in distributed training frameworks or network stacks, we
measure the computation time per iteration by training the
model on a single-GPU node, and estimate the communica-
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Figure 1: The expected speed-up for a single in-network
aggregation job is limited by the ratio of communication
time over total training time.

tion time by dividing the size of the gradients exchanged
in a single iteration by the link bandwidth. For consistency
in different GPU generations, we assume link bandwidths
of 10 Gbps, 40 Gbps, and 100 Gbps for P100, V100, and
A100, respectively.

Fig. 1a reports the ratio of communication time to total train-
ing time (communication + computation) across different
DNNs, GPU generations, and network bandwidths. The
figure shows the fraction of training time spent on commu-
nication ranges between 0.11 and 0.70, and as the network
becomes faster, this fraction is reduced. This suggests the
benefits of in-network aggregation for data-parallel jobs are
also diminishing with time. Fig. 1b illustrates this take-
away by showing the expected training time speedup of in-
network aggregation for A100 GPUs with 100 Gbps links
ranges between 1.06 and 1.28 (resp. 1.15 and 1.53 for P100
with 10 Gbps links). In fact, in this analysis, we assume
an optimal case for in-network aggregation in which there
is no overlap between gradient computation and commu-
nication. This is very conservative, as modern distributed
ML frameworks exploit overlap to minimize the impact of
communication on the training time; hence, we expect the
benefits of reducing communication to be less pronounced.

In this paper, instead, we argue that in-network aggregation
has a real opportunity to enhance the performance of non-
data-parallel jobs in shared clusters by reducing the overall
data-parallel traffic injected into the network, thus freeing up
network bandwidth for the other traffic. Shared ML clusters
comprise a heterogeneous set of flows with transfer sizes
that range from a few KBs to hundreds of GBs, as shown in
Fig. 2. The left part of the figure (blue bars) shows transfer
sizes for data-parallel flows containing model gradients. We
refer to these transfers as aggregation flows to indicate they
are good candidates for in-network aggregation. The right
side of the figure (green bars) shows flows that are poor can-
didates for in-network aggregation, non-aggregation flows.
These include flows that don’t require any aggregation, e.g.,
(a) dataset transfers and (b) flows generated by pipeline
parallelism (Huang et al., 2018; Narayanan et al., 2019) or
model parallelism (Shoeybi et al., 2020), as well as short
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Figure 2: Data transfer sizes in a shared ML cluster.

flows that require aggregation but for which in-network
aggregation has no pronounced benefits, e.g., (c) flows gen-
erated by reinforcement learning training (RL) (Li et al.,
2019; Moritz et al., 2018) and (d) more traditional ML jobs,
such as k-means clustering (Rossi & Durut, 2011).

We show that while non-aggregation flows are not suitable
candidates for in-network aggregation, they benefit indi-
rectly from in-network aggregation. Existing in-network
aggregation solutions, however, are not designed to operate
in shared environments. As we show in §7, today’s propos-
als do not have appropriate load-balancing and congestion
control mechanisms to cope with multi-tenant environments
where the data center is shared between aggregation and
non-aggregation flows. In contrast, with its combination of
native hardware support for multiple ML jobs and a con-
gestion control protocol tailored for in-network aggregation,
PANAMA closely approximates the ideal performance for
non-aggregation flows even in the presence of a large num-
ber of aggregation jobs, while at the same time, reducing
the training time of the aggregation jobs themselves.

3 PANAMA OVERVIEW

In this section we provide a high-level description of
PANAMA and we detail its key components in §4 and §5.
We assume a traditional data center multi-tier folded Clos
topology (Al-Fares et al., 2008; Singh et al., 2015) similar to
the one depicted in Fig. 3. Each switch in a PANAMA cluster
(PSwitch) comprises a traditional switch, e.g., a Broadcom
Tomahawk (Broadcom, 2020), connected with our bump-in-
the-wire aggregation accelerator.

1 Worker placement. When a new ML training job is
submitted, the data center scheduler determines the optimal
distributed training strategy (Jia et al., 2019; Narayanan
et al., 2019; Sergeev & Balso, 2018) and instantiates the
job on a set of worker nodes running directly on servers in
the cluster or virtual machines (VMs) within them. These
workers can be co-located in the same rack or distributed
across multiple racks: PANAMA makes no assumptions on
the placement of workers. The choice of flows that should
use in-network aggregation (aggregation flows) is based
on the operator’s preference and can be configured in the
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PANAMA Controller

1. DC scheduler determines training strategy and worker placement:
SJ = {S1,S2 ,S3 ,S4 ,S5, S7, S9 }

2. Select and initialize PSwitches in multicast aggregation trees:
AggTreeJ= {AggTree1, AggTree2,AggTree3,AggTree4}

3. Notify workers of IP multicast addresses for in-network aggregation:
MulticastIPJ = {10.10.10.1, 10.10.10.2, 10.10.10.3,10.10.10.4}

AggTree1 AggTree2 AggTree3 AggTree4

Launch job J on SJ

MulticastIP: 10.10.10.1

S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16S1

Aggregation 
Accelerator

Legacy 
Switch

PANAMA Switch
(PSwitch)MulticastIP: 10.10.10.4

Figure 3: High-level workflow of PANAMA.

controller logic. In our experiments, we mark allreduce data-
parallel flows with a size larger than 40 MB as aggregation
traffic. We select this flow size threshold empirically as
negligible benefits were observed with shorter flows.

2 PSwitch selection and initialization. When the
PANAMA controller selects in-network aggregation for a
job, it initializes all the PSwitches belonging to the span-
ning trees connecting the workers. These trees could include
a single Top-of-the-Rack (ToR) switch if all workers are in
the same rack or multiple tiers of switching if workers are
distributed across racks (see Fig. 3). PANAMA exploits the
multi-path connectivity of modern data centers by distribut-
ing a job’s aggregation traffic across multiple trees, resulting
in higher network efficiency and lower congestion (§4.1).

The PANAMA controller generates a unique IP multicast
address for each aggregation tree and installs forwarding
entries within PSwitches along the tree: in the upstream
direction, PSwitches are configured to forward aggregation
packets towards aggregation tree roots, while in the down-
stream direction, aggregation packets are routed back to the
worker nodes using native IP multicast support (if available)
or by adding individual entries in forwarding tables. The
PANAMA controller also initializes our in-network aggrega-
tion accelerators on path with the state of the job and the
information needed to perform the aggregation (§5).

3 Worker setup. Finally, the PANAMA controller con-
figures the selected workers to use in-network aggregation
and notifies them of the IP multicast address of the selected
aggregation trees. PANAMA does not require any specific
hardware support on the servers. Our PANAMA commu-
nication library can replace communication libraries, e.g.,
NCCL and MPI (NVIDIA, 2021; The Open MPI Project,
2021), used by mainstream ML frameworks. Our library
encapsulates the gradients into a packet format supported
by our accelerator (see Fig. 4).

ETH IP JID VIDTID FIN RSRVD g1 gN…………

CWND_CAP

L2/L3 Routing PANAMA Protocol
PANAMA HEADER PANAMA PAYLOAD

IPv4 DSCP= 56 ECN

Figure 4: PANAMA aggregation packet format.

4 NETWORK DESIGN

In this section, we describe how PANAMA addresses the chal-
lenge of running in-network aggregation in a shared envi-
ronment comprising both aggregation and non-aggregation
flows (see Fig. 2). This requires resolving two issues. The
first is how to load-balance aggregation traffic in a multi-tier
data center to efficiently use network resources and mini-
mize congestion with non-aggregation traffic. PANAMA ad-
dresses this by exploiting multiple aggregation trees (§4.1).
The second is how to fairly share the network bandwidth
between aggregation and non-aggregation flows without
overflowing the hardware accelerators’ buffers. To this end,
we propose an ECN-based congestion control algorithm
with a congestion window cap for aggregation packets and
PAUSE frames for the entire fabric to ensure deterministic
lossless operation, even in the presence of congestion (§4.2).

4.1 Routing and Load Balancing

Today’s data center networks often rely on the equal-cost
multi-path (ECMP) protocol to balance the load in the net-
work and ensure all packets belonging to a given TCP flow
are routed through the same network path, thus avoiding
out-of-order arrivals at the receiver (Hopps, 2000). Since
the majority of data center flows are short (Alizadeh et al.,
2010; 2013; Greenberg et al., 2009), ECMP is usually suf-
ficient to ensure traffic is reasonably spread across the net-
work. However, aggregation flows are typically very large,
and bounding such flows to a single path (aggregation tree)
as dictated by ECMP could create a significant network
imbalance. This would be particularly harmful to latency-
sensitive short flows competing for bandwidth; they would
suffer increased queuing delays. To avoid this, PANAMA uti-
lizes multiple aggregation trees per training job to spread the
traffic across multiple paths and avoid congestion hotspots.

As described previously, the PANAMA controller provides
the workers with the set of IP multicast addresses repre-
senting the selected aggregation trees for a job. Work-
ers distribute the gradient packets to different trees in a
round robin fashion. For instance, in the topology in Fig. 3,
with four aggregation trees AggTreei, i = 1, . . . , 4 and
eight aggregation packets with IDs pj , j = 1, . . . , 8, as-
suming workers start by sending a single packet to each
of the trees, our protocol balances the aggregation load as
follows: {p1, p5} → AggTree1; {p2, p6} → AggTree2;
{p3, p7} → AggTree3; {p4, p8} → AggTree4, where→
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indicates the aggregation tree to which each set of packets
is destined; e.g., p1 and p5 are sent to AggTree1. Note that
the packet numbers also reflect the sending order; p5 is only
sent after the preceding packets have been sent to other trees
due to the round-robin ordering. This mechanism balances
the load across trees, and as the order is deterministic, no
coordination among workers is required. Non-aggregation
traffic is not impacted by this and it is forwarded using the
operator-defined load-balancing protocol.

4.2 Congestion Control

In this section, we describe the PANAMA congestion control
protocol. We first outline the requirements of a congestion
control protocol for aggregation traffic and then explain how
our proposed protocol satisfies these requirements.

4.2.1 Requirements

R1 Support for multipoint communication. Traditional
congestion protocols assume unicast, point-to-point com-
munication between (source,destination) pairs. In contrast,
in-network aggregation involves many-to-many communi-
cation between different entities. Therefore, typical rate-
limiting mechanisms, e.g., based on packet loss or conges-
tion notifications, are not directly applicable. One naive
solution would be to implement congestion control in the
PSwitches, replacing the tree-like multipoint flow with a
sequence of hop-by-hop flows. This, however, would make
inefficient use of precious chip area.

R2 Small buffers. Since our hardware accelerator needs
to operate at line rate across hundreds of ports, we cannot
rely on external memory, e.g., DRAM, and we are restricted
to on-chip buffering. On-chip memories consume signifi-
cant chip area making it critical to limit the size of on-chip
memory and use the limited memory efficiently by sharing it
fairly across multiple jobs. A key difference from traditional
networks is that buffers are not only needed because of con-
gestion but also because of the need to store aggregation
packets until aggregation packets from all workers arrive
at the switch. This introduces dependencies among flows.
As the result can only be computed after receiving all pack-
ets, the sending rate of workers must match; otherwise, the
packets originating from faster transmitters must be buffered
until the packets from the slowest transmitter are received,
thus wasting resources that could be used for other ML jobs.
This property differentiates in-network aggregation from
the apparently similar co-flows abstraction (Chowdhury &
Stoica, 2012) where individual flows can use different rates.

R3 Compatibility with legacy protocols. A key require-
ment for our protocol is the ability to co-exist with main-
stream congestion control protocols. In particular, the proto-
col should be TCP-friendly, as TCP is the de-facto standard

Parameters: N: number of job aggregation trees, ssthresh: initial slow start
threshold, g: weighting factor for fraction of ECN marked result packets, α: mov-
ing average of ECN marked fraction of packets.

Initialization . Independent aggregation tree congestion control
for i = 1 : N do
ssthreshi ← 64
αi ← 1
cwndi ← 2

end for

Input: Aggregation Result Packet (pkt) . Implicit acknowledgment
i← pkt.treeid
rcvd agg packetsi ← rcvd agg packetsi + 1
ecn counti ← ecn counti + pkt.ecn . ECN marking

if rcvd agg packetsi == cwndi then
αi ← αi(1− g) + g × ecn counti

cwndi
rcvd agg packetsi = 0
if ecn counti == 0 then ø Window size increase

if cwndi < ssthreshi then
cwndi ← 2× cwndi

else
cwndi ← cwndi + 1

end if
else ø Window size decrease
cwndi ← cwndi × (1− αi

2 )
ssthreshi ← cwndi

end if
end if
if cwndi > pkt.cwnd cap then
cwndi ← pkt.cwnd cap . Congestion window capping

end if

Figure 5: PANAMA congestion control algorithm.

congestion control protocol in data centers. Using weighted
fair queues (WFQs) at switches to separate aggregation and
non-aggregation flows might appear as a simple solution,
but this is not the case; it fails to provide fair sharing across
aggregation flows belonging to different jobs, and it also
involves the complex task of dynamically selecting the opti-
mal weights assigned to each of the two traffic classes.

R4 Lossless operation. Unlike traditional TCP point-to-
point flows, if an aggregation packet is lost in PANAMA,
several packets need to be retransmitted, and this could
drastically reduce the overall throughput. Therefore, it is
critical to ensure buffers are never overflown, even under
high network loads.

4.2.2 Design

We now discuss the key features of PANAMA’s congestion
control protocol and explain how they meet the aforemen-
tioned requirements. We provide the protocol’s pseudo-code
in Fig. 5. The protocol is part of the PANAMA communi-
cation library at the end-hosts; its use does not require any
changes to the training framework.

Implicit acknowledgments. Existing data center conges-
tion control mechanisms use signals from network switches
(such as packet loss or ECN marks) and end-hosts (such
as RTT) to detect the onset of congestion and adjust the
sending rate of packets at the sender (Alizadeh et al., 2010;
Dong et al., 2015; Ha et al., 2008; Handley et al., 2017; Mit-
tal et al., 2015; Zhu et al., 2015). This mechanism cannot
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be replicated for in-network aggregation, however, because
new packets are constructed inside the network at each
switch by aggregating several incoming packets into one.
This disrupts the one-to-one mapping between packets and
their corresponding acknowledgements. Our design, instead,
takes advantage of the unique properties of the in-network
aggregation operation. As the number of aggregation re-
sults is equal to the number of locally computed gradients,
each worker expects a result packet for each aggregation
packet sent. Therefore, workers can treat aggregation result
packets as implicit acknowledgement signals to increase the
window size as shown in Fig. 5. This overcomes the need
to maintain a per-flow congestion state at PSwitches (R1 ).
Further, our congestion control operates independently on
each aggregation tree. This avoids the need to re-order
packets across multiple paths and, when combined with our
load-balancing protocol (4.1), it can provide the benefits of
multi-path congestion control protocols (Peng et al., 2013)
without the additional complexity.

ECN marking. Our congestion control protocol is inspired
by DCTCP (Alizadeh et al., 2010) and relies on ECN marks
in the IP header to react to the observed network congestion.
In PANAMA, we extend this mechanism to enable aggrega-
tion job rate synchronization across workers. A distinctive
feature of in-network aggregation is that as packets move
upwards in an aggregation tree, PSwitches must aggregate
the gradients in multiple packets and produce an aggrega-
tion result packet. This can result in the loss of information
on the state of network congestion. In PANAMA, however,
aggregation accelerators within PSwitches retain ECN field
information of aggregation packets: each hardware acceler-
ator performs a bitwise OR operation on the ECN field of
packets received to mirror the ECN bit into the IP header
of generated aggregation packet (see Fig. 4). As a result,
the aggregation packet will carry the ECN bit back to all
the workers. Unlike traditional ECN-based congestion con-
trol schemes, there is no need to echo the ECN back to
the senders because results packets are used as implicit ac-
knowledgments. Workers inspect the result packets and if
the ECN bit is set, they adjust the sending rate as detailed in
Fig. 5. This mechanism ensures the congestion window for
each aggregation tree grows and shrinks in a synchronized
fashion across workers in the aggregation tree (R2 ). Fur-
ther, since the congestion control mechanism matches that
of DCTCP, we can guarantee compatibility with existing
legacy protocols as we show in our evaluation in §7 (R3 ).

Congestion window capping. To avoid packet loss due to
accelerator buffer overflow, PANAMA’s congestion protocol
caps the congestion window size of the training worker to
match the minimum available buffer space in the accelera-
tors of each aggregation tree. This ensures incoming packets
are always accommodated and not dropped because of lack

of available buffer space (R4 ). To maintain an up-to-date
view of the available buffer space, the hardware acceler-
ators update each aggregation packet using a field called
cwnd cap. We reserve 16 bits for cwnd cap in the packet
to capture the minimum available memory to store packets
at the accelerators as the aggregation packet makes its way
up to the root of the aggregation tree. Each accelerator cal-
culates its available memory based on the number of active
training jobs (packet memory/num jobs) and overwrites
cwnd cap if its available buffer space is smaller than the
cwnd cap of the received aggregation packets; otherwise
it retains the minimum cwnd cap value. The final value is
then sent to all the workers, along with the gradient aggrega-
tion result. As described above, the arrival of an aggregation
packet is treated as an acknowledgement signal enabling
the workers to send the next set of allowed in-flight packets.
The value in cwnd cap is used as a cap on the maximum
number of in-flight packets for each worker, similar to the
way TCP negotiates window size (packets are assumed to
have a fixed size when created by the workers). We rely on
standard Ethernet flow control, using PAUSE frames, to en-
sure the in-network accelerators never overflow the switch
buffers, thus resulting in an end-to-end lossless architecture.
Packet loss is still possible in cases of packet corruption or
failures (Zhuo et al., 2017), but a simple timeout mechanism
can be used to handle this. Due to the lossless property
of our protocol, the timeout value does not need to be set
aggressively, thus preventing spurious re-transmissions.

5 AGGREGATION ACCELERATOR DESIGN

Next, we describe the architecture of our hardware acceler-
ator used to support floating point line-rate aggregation in
the PSwitch (see Fig. 6a).

1 Packet header parser. A parser module at each input
port inspects the EtherType and DSCP fields (Fig. 4) of
incoming packets to separate aggregation packets from the
rest of the traffic. IPv4 packets with a DSCP field value
equal to 56 are recognized as aggregation packets. These
packets are sent to dedicated aggregation buffers, while
other packets are forwarded directly to the switching chip.
This ensures non-aggregation packets do not suffer from
head-of-line blocking due to aggregation packets and only
experience minimal delays when traversing the accelerator.

2 Control logic. Accelerators maintain the following states
for jobs: Ports bitmap and Expected VID. The Ports bitmap
register is set by the PANAMA controller when a job’s aggre-
gation tree is configured; it identifies the accelerator input
ports included in the aggregation. The Expected VID regis-
ter is used for correct aggregation and corruption-induced
loss detection and is initialized to 0. Accelerators rely on
the Job ID (JID) and Tree ID (TID) fields shown in Fig. 4
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Figure 6: Details of PANAMA hardware design.

to identify the Ports bitmap and Expected VID that must
be used when performing an aggregation task. In practice,
a Ports bitmap must be maintained for each job, and an
Expected VID must be maintained for each aggregation tree
within a job. We illustrate the accelerator’s aggregation con-
trol logic using the example in Fig. 6a for a single job and a
single aggregation tree. Therefore, one Ports bitmap regis-
ter and one Expected VID register are maintained. Since the
Ports bitmap register is set to 1111, the controller must wait
until at least one packet is available at each of the four input
ports. When this requirement is met, the packets’ headers
are copied into header registers, and their VID fields are
compared against the value of 0 in the Expected VID regis-
ter. The VID field on packets acts as a gradient identifier,
because workers encapsulate the same set of gradients in
packets with the same VIDs. It also acts as a packet se-
quence number because workers assign incremental VIDs
to packets sent in an aggregation tree. Since aggregation
trees guarantee in-order delivery, the accelerator uses the
Expected VID register to keep track of the expected packets.
Therefore, this comparison ensures correct gradient aggre-
gation and allows losses caused by packet corruption to be
detected. When all the VID fields match the current value of
the Expected VID register, as shown in Fig. 6a, the gradients
are streamed through the adder trees within the aggrega-
tion datapath, and the Expected VID register is incremented.
Otherwise, gradients with missing values are dropped and
aggregation proceeds with the next Expected VID. Workers
notify accelerators that they have sent all their aggregation
packets by setting the FIN bit in the packet header, and this
resets the state in the accelerator.

3 Floating point (FP) support. A key challenge in mak-
ing in-network aggregation practical is supporting float-
ing point aggregation at today’s data rates (10 Gbps and
40 Gbps) and future ones (100 Gbps). Our design achieves
this goal by tuning the width of the bus that transfers data
from each input port to each output port to match the desired

port rate assuming a certain clock rate (see Fig. 11 in Ap-
pendix A). The aggregation packet payload is streamed from
each dedicated buffer participating in a job to multiple adder
trees. The number of parallel adder trees is proportional
to the number of gradients that can be carried in the data
bus. As depicted in Fig. 6a, this allows a SIMD architecture
in which the gradients are partitioned across the two adder
trees. The adder trees operate in parallel and their results
are concatenated and sent to the output ports.

6 FPGA-BASED PROTOTYPE

We evaluate the feasibility of our aggregation accelerator
by implementing it on a NetFPGA-SUME board (Zilber-
man et al., 2014) equipped with a Xilinx Virtex-7 FPGA
and four 10- Gbps transceivers. We incorporate the Xilinx’s
LogiCORE IP core (Xilinx, 2014) into our design to support
floating point addition (fully compatible with the IEEE-754
single-precision standard). The LogiCORE IP core limits
our maximum clock rate to 220 MHz. We therefore instan-
tiate two replicas of the adder tree to meet the required line
rate (10 Gbps), and opted for a clock rate of 200 MHz.
Table 1 summarizes the accelerator’s cut-through latency
observed by non-aggregation packets and aggregation pack-
ets. As shown, the latency introduced by the accelerator
is minimal, even to aggregation packets. We also mea-
sure the resource utilization targeting the recent VU19P
FPGA board (Xilinx, 2021) (see Table 2 in Appendix A).
Results show our design has a small resource footprint, us-
ing only 1% and 0.26% of available Lookup-Tables (LUTs)
of Flip-Flops (FFs) respectively. This is important because it
demonstrates our design can easily fit onto a small chip, e.g.,
opening up the possibility of co-packaging it with the main
switching die using a chiplet design. Further, it shows there
is room to increase parallelism by instantiating more adder
trees to sustain higher data rates. Our preliminary analysis
suggests that our design could scale to more than 100 ports
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Packet Size (Bytes) Packet Latency (ns)
Non-

Aggregation Aggregation

512 340 370
1024 665 695
1500 957.5 987.5

Table 1: Prototype cut-through latency.
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Figure 7: Prototype aggregation throughput.

with 100 Gbps per port using an FPGA and 400 Gbps per
port through an ASIC implementation (see Appendix A).

Prototype evaluation setup. We build a PANAMA testbed
with four Dell R740 dual-core PowerEdge servers, 10 Gbps
optical transceivers, and an Arista switch 7050S. We connect
our FPGA board between the servers and the switch using a
bump-in-the-wire configuration as illustrated in Fig. 6b.

Functional correctness. We assess the correctness of
our architecture by using the libtins library (libtins, 2021)
to craft PANAMA packets, as shown in Fig. 4. Randomly-
generated floating point numbers emulating gradients gener-
ated by ML jobs are encapsulated in PANAMA packets and
sent to the PSwitch for aggregation. In all experiments, we
observe correct aggregation values in all received packets.

Throughput performance. We first measure the maxi-
mum throughput that can be achieved by two servers when
they are directly interconnected through the switch without
any intermediate FPGA (NoFPGA). We use four parallel
iperf instances to ensure the experiments are not CPU-
bound. We then connect the bump-in-the-wire FPGA to the
switch emulating our PSwitch architecture (§3) and run two
additional experiments using the same workload to measure
the throughput of FPGA-noagg and FPGA-agg paths. For
compatibility with iperf, we modify our control logic such
that a single input traverses the aggregation path; we ini-
tialize the value in the Port bitmap register to 0001, and
we connect the packet-generating server to the first port
of the accelerator. We use UDP packets instead of TCP
packets, because in the aggregation process of the latter,
the packet payload would be modified by the aggregation,
and, hence, the TCP checksum would fail. Fig. 7 shows
the FPGA-noagg throughput closely matches the NoFPGA,
indicating that the overhead introduced by the FPGA is
negligible for non-aggregation packets. However, in the
case of FPGA-agg, the throughput exhibits a slightly higher
variability (oscillating from 8.86 Gbps to 10.48 Gbps). This

is a consequence of using UDP rather than TCP, as UDP
results in traffic spikes. Nonetheless, the average throughput
is consistent with the previous experiments, confirming our
prototype’s ability to support aggregation at 10 Gbps.

7 LARGE-SCALE SIMULATIONS

In this section, we evaluate the performance of PANAMA at
scale using a customized version of the OMNeT++ packet-
level network simulator (Ltd., 2021). The main takeaways
of our simulation analysis are: (i) PANAMA reduces the 99-
%tile flow completion time (FCT) of short flows (<40 MB)
up to a factor of 4.5, improves the throughput of long flows
up to a factor of 1.33, and speeds up the training time of
aggregation traffic by a factor of 1.34 compared to state-
of-the-art Ring-AllReduce. (ii) PANAMA’s higher perfor-
mance is a product of its ability to reduce the volume of data
transferred over the network because of in-network aggre-
gation, as well as its ability to control the packet send rate
of workers during congestion periods. We show PANAMA
outperforms a baseline without our congestion control pro-
tocol by a factor of 3.5, reducing the 99-%tile FCT of short
flows. (iii) PANAMA’s multi-tree aggregation technique
can balance the aggregation traffic’s load on network paths.
(iv) PANAMA’s congestion control algorithm provides a fair
bandwidth allocation across all flows.

Methodology and setup. In our experiments, we assume
a non-blocking folded Clos network topology (Al-Fares
et al., 2008) comprising 1,024 servers interconnected with
10 Gbps links. We set the ECN marking threshold to 85
packets and limit the buffering capacity of aggregation
accelerators to 64 MB in accordance with the maximum
buffering capacity of state-of-the-art FPGAs (Intel, 2016;
Xilinx, 2021). We assume our workload consists of a mix
of aggregation traffic and non-aggregation flows of varying
sizes taken from Websearch and Datamining traffic distribu-
tions (Alizadeh et al., 2013; Greenberg et al., 2009). Flow
inter-arrival times are drawn using an exponential distribu-
tion (Poisson process), and we vary the mean inter-arrival
time to model different network loads. For aggregation traf-
fic, the number of workers assigned to each job is chosen
randomly, and ranges from 16 to 96, while the DNN models
are chosen out of six prominent image classification mod-
els (VGG16, AlexNet,Resnet152, Resnet50, Inceptionv3,
and GoogleNet) using a weighted random distribution To
model the computation time, we use the values measured
with P100 GPUs in our experiments in §2.

Scheduling jobs. Our job scheduler places the workers
belonging to the same job as close as possible to ensure
the best baseline performance. The source and destination
of non-aggregation flows are chosen uniformly (Alizadeh
et al., 2013). We use DCTCP (Alizadeh et al., 2010) as the
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Figure 8: Performance of PANAMA in a shared data center setting compared to other training schemes.

default transport layer protocol for non-aggregation flows
and PANAMA congestion control for aggregation flows.

Configurations. We consider five network configura-
tions: (1) Ideal: an ideal setting where aggregation flows,
short flows, and long flows are completely separated and
served in their respective dedicated clusters without any
sharing of resources between them. (2) Ring-AllReduce:
the state-of-the-art technique for distributed training used in
Horovod (Sergeev & Balso, 2018). (3) SwitchML∗: an aug-
mented version of a recent Tofino-based in-network aggrega-
tion proposal (Sapio et al., 2021). Our augmentation enables
SwitchML to support multi-tenancy, job sharing, and load-
balancing. As in its original implementation, however, it
does not a congestion control mechanism. (4) PANAMA:
our proposal. (5) PANAMA-0.88 and PANAMA-0.94: two
partially synchronized versions of PANAMA. The numbers
0.88 and 0.94 represent the fraction of aggregation workers
that PANAMA synchronizes at each iteration. These two
configurations are useful to assess the impact of ignoring
the slowest links and proceeding with the aggregation as
soon as 88% (resp. 94%) of the packets from the worker
nodes have been received.

PANAMA reduces the impact of aggregation traffic on
short flows (<40 MB). We start with a baseline network:
20% load consisting of non-aggregation traffic. We intro-
duce aggregation traffic into the network by slowly increas-
ing the frequency of DNN training job arrivals up to 80%
load. Fig. 8a shows that as the aggregation load grows, the
99%-tile FCT for short flows using the conventional Ring-
AllReduce approach significantly increases. In contrast,
PANAMA mitigates the impact of congestion and follows
the Ideal line closely, even at high loads. At the highest
load (80%), PANAMA reduces the FCT by a factor of 4.5
compared to Ring-AllReduce. PANAMA’s gains come from
in-network aggregation combined with congestion control
and load-balancing. SwitchML∗ is able to reduce the FCT,
as it performs in-network aggregation and is further coupled
with load-balancing. However, it cannot match PANAMA
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Figure 9: Impact of load balancing.

because its lack of congestion control gives an unfair advan-
tage to aggregation flows at the expense of short flows’ FCT.
Similarly, PANAMA-0.88 and 0.94 partial aggregations are
close to SwitchML∗, as they do not slow the workers down
enough to match the congested link.

In-network schemes improve throughput of long flows.
Next, we investigate the impact on long flows of increas-
ing aggregation load. The results in Fig. 8b indicate that
PANAMA is able to improve the throughput of long flows
up to a factor of 1.33 compared to Ring-AllReduce. How-
ever, the improvement matches that of the other in-network
schemes because long flows and aggregation flows are large
(>40 MB) and can therefore fully utilize the additional band-
width available.

In-network schemes improve ML job completion time.
PANAMA improves the training time of ML jobs by a factor
of 1.34x over the baseline Ring-AllReduce approach and
is only slightly outperformed by SwitchML∗ by a factor of
1.05, as shown in Fig. 8c. SwitchML∗ and other PANAMA-
variants outperform PANAMA as they ignore congestion
within the network at the expense of short flows. However,
the training time measured for these approaches does not
consider potential accuracy loss (or increase in the number
of iterations) incurred due to lack of support for floating
point operations in SwitchML∗, or the impact of ignoring
some gradients in PANAMA-0.88 and PANAMA-0.94.
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Figure 10: PANAMA achieves a fair bandwidth allocation
between aggregation and non-aggregation flows.

Impact of load-balancing. To determine the importance
of load-balancing in-network traffic, we create the topol-
ogy illustrated in Fig. 3 and run one aggregation training
job with eight workers. We increase the network load by
increasing the number of nodes generating long flows. Un-
like previous experiments where we consider training job
completion time, in this experiment we only consider the
time taken to aggregate gradients computed within an iter-
ation (aggregation latency). Fig. 9 shows the aggregation
latency for six scenarios: PANAMA, PANAMA with only
one aggregation tree (i.e., four scenarios labeled PANAMA-
Agg1,..., PANAMA-Agg4), and Ring-AllReduce. As shown,
PANAMA outperforms all other scenarios since it uses all
four aggregation trees. Interestingly, the performance of in-
network aggregation with a single aggregation tree can be
worse than that of Ring-AllReduce. Unlike end-host paths
that can be diversified via routing techniques such as ECMP
or packet spraying, paths from each worker to a PSwitch are
unique; if the load is not properly balanced, the aggregation
time will be severely affected.

Fairness. To demonstrate that PANAMA’s congestion
control mechanism achieves a fair rate allocation across
flows, we set up an experiment in which a bottleneck link is
shared between an aggregation flow and a latency-sensitive
non-aggregation flow. We begin with the non-aggregation
flow; after 0.25 seconds, we start the aggregation flow.
Fig. 10a shows PANAMA shares the link bandwidth equally
between both flows. In contrast, Fig. 10b shows that with-
out PANAMA’s congestion control protocol, the latency-
sensitive non-aggregation flow is starved.

8 RELATED WORK

Our work is closely related to SwitchML (Sapio et al., 2021)
and ATP (Lao et al., 2021). Both approaches use commer-
cially available programmable switches (Intel, 2018) to per-
form gradient aggregation. Although using programmable
switches simplifies deployment, it presents two significant
limitations. First, today’s programmable switches only sup-
port fixed-point arithmetic. As a result, SwitchML and
ATP require careful model-specific conversion of floating
point gradients to fixed-point representation, which can af-

fect the training time needed to reach a target accuracy.
Second, Tofino switches do not maintain state across differ-
ent pipelines and have a limited number of stages in each
pipeline (Gebara et al., 2020). Hence, SwitchML and ATP
are limited in terms of the number of ports that can be used
for a single job and also in terms of the maximum packet
size. PANAMA’s accelerator design, in contrast, is flexi-
ble and can support floating-point operations at line rates
and can scale to hundreds of ports. Li et al. propose in-
network aggregation to accelerate reinforcement learning
jobs using a design that implements the required aggregation
logic and switching functionality within a single FPGA (Li
et al., 2019). Unlike ours, their proposal assumes small
model sizes (RL models) that can be stored on-chip, but this
prevents their design from being applicable to today’s large-
scale DNN models with billions of parameters. Further, it
requires a fabric speed up that grows proportionally with
the aggregate line rate. Mellanox proposes an in-network
aggregation solution called Sharp (Bloch, 2019) using a
custom hardware specialized for collective reduction op-
erations (allreduce) inside the switch. But because there
is no publicly available design, it is hard to speculate how
this has been achieved and if/how it can scale to high data
rates. Moreover, Sharp is geared towards HPC and requires
exclusive network access, making it a poor fit for today’s
shared ML clusters in cloud data centers. Similarly, Klenk
et al. propose a hardware unit that can be incorporated
within switches to accelerate allreduce operations (among
other collective primitives) (Klenk et al., 2020). However,
their solution relies on shared memory primitives, and this
introduces additional complexity to ensure jobs have no
aliasing pointers. More generally, unlike all prior work, we
focus on the impact of using in-network aggregation on the
entire data center traffic by considering a realistic shared
environment as opposed to a dedicated cluster.

9 CONCLUSION

Recent proposals have advocated the use of in-network ag-
gregation to improve distributed ML training time. However,
the practical viability of these approaches is limited by the
lack of efficient aggregation hardware, and routing and con-
gestion control protocols, making them unsuitable for shared
data center environments. In this paper, we take a first step
towards filling this gap by presenting PANAMA, a novel
in-network aggregation framework designed to operate in
shared clusters. PANAMA leverages the unique properties
of in-network aggregation to achieve fast hardware accel-
eration without sacrificing accuracy, and efficient and fair
usage of network resources. Contrary to common wisdom,
we demonstrate the benefits of in-network aggregation ex-
tend to non-aggregation traffic and are not solely limited to
data-parallel ML jobs.
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A HARDWARE ACCELERATOR
SCALABILITY ANALYSIS

Here we provide a more detailed analysis of the scalability
of the PANAMA hardware accelerator and illustrate how it
can scale to higher data rates and to a large number of ports.

Increasing port rates. All the modules in our design are
pipelined and inter-connected via a streaming bus interface
with a specific bus width (W ). Therefore, the maximum data
rate (R) per port that can be supported by our accelerator
can be easily computed as the product of the bus width and
the clock rate used (f ):

R = W × f (1)

In our FPGA-based prototype targeting a 28-nm Virtex-7
FPGA, we had to set the clock rate to 200 MHz to meet tim-
ing. Therefore, supporting 100 Gbps would require increas-
ing the bus width to 512 bits (we use W=64 bits in our proto-
type because we use 10-Gbps ports). In our design, the lim-
iting bottleneck for the clock rate is the floating-point adder
unit. Scaling to higher port rates thus requires moving to an
ASIC implementation. Prior work has shown that a 180-nm
implementation of a floating-point ALU can support a clock
rate of up to 1 GHz using six pipeline stages (Omkar R.
& M., 2014). This would allow to scale port rates up to
512 Gbps assuming W=512 bits (see Fig. 11).

Increasing the number of ports. Scaling to higher port
count requires a larger degree of parallelism, and this re-
sults in larger logic resource utilization. To understand the
scaling implications, we first consider the breakdown of the
FPGA look-up tables (LUTs) and flip-flops (FFs) for our
4-port 10 Gbps accelerator prototype targeting the VU19P
FPGA (Xilinx, 2021) (see Table 2). Increasing the number
of ports primarily impacts the number of header parsers and
floating-point adders. The number of parsers grows propor-
tionally with the number of ports, as in our design, we assign
a different parser to each port. The number of adders is a
function of the total accelerator bandwidth, i.e., the prod-
uct of the port rate (R) and the total number of ports (N ).
Higher port rates require more parallel adder trees while
higher port counts require deeper trees with more adders.
Assuming 32-bit floating-point values, the total number of
adders Na can be expressed as follows:

Na =
R

f
× N − 1

32
= W × N − 1

32
(2)

Using this formula and the values in Table 2, we can esti-
mate the LUT and FF resource utilization for our reference
FPGA as we scale the number of ports (we assume 100 Gbps
per port). The chart in Fig. 12 shows that even for a high
number of ports (128) the LUT utilization is still below 35%
(resp. below 5% for FF utilization). While these results are
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Figure 11: Port bandwidth scaling. Increasing the bus width
allows supporting higher port bandwidth.

Component Instances
Logic Utilization

per Instance
LUTs FFs

Header Parser 4 188 118
Buffering
Control 4 127 118

Aggregation
Datapath Adder 6 352 72

Aggregation
Datapath

Control Logic
1 1089 963

Total Utilization
(% VU19P FPGA Resources)

(Xilinx, 2021)

4461
(1.03%)

2339
(0.26%)

Table 2: Prototype FPGA Logic Utilization

only indicative because they only focus on the core logic
components, excluding other elements of the design (e.g.,
IO), they are very promising and suggest it could be pos-
sible to use FPGAs to implement our accelerators, even at
100 Gbps with a relatively high number of ports.

As we mentioned, scaling the port rates beyond 100 Gbps
requires an ASIC implementation. To estimate the chip
area needed for the core logic, we consider the area size
reported in literature for a single floating-point ALU unit im-
plemented using 180-nm technology node (Omkar R. & M.,
2014). We extrapolate this value (0.936860 mm2) to today’s
7 nm technology using published conversion tables (Still-
maker & Baas, 2017). In this preliminary analysis, we only
focus on adders and ignore the contribution of parsers be-
cause the former dominates: as we assume W=512 bits,
we have approximately 512

32 = 16 times more adders than
parsers (see Eq. (2)). As shown in Fig. 13, the core logic oc-
cupies only a modest area (5.94 mm2 at 128 ports). Clearly
this analysis is very preliminary and much more work is
needed to provide an accurate estimate of the chip area but
these early estimates are encouraging.

Impact on latency. We conclude our analysis by focusing
on the scaling impact on the cut-through latency (L), i.e.,
the time taken for a packet to traverse the accelerators. This
is a function of the packet size in bits (S), the bus width
(W ), the clock rate (f ), the latency of the individual adders
(La), and the number of ports (N ):

L =

(
S

W
− 1

)
× 1

f
+ La × log2 N (3)
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Figure 12: Logic utilization scaling on the FPGA with number of ports
(100 Gbps per port).

0

2

4

6

8

4 16 32 64 100 128

C
h

ip
 A

re
a

 (
m

m
2
)

Number of Input Ports
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ber of ports at a port bandwidth of
400 Gbps.
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(a) FPGA (64 ports)
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(b) ASIC (64 ports)
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(c) FPGA (1,500-byte packets)
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(d) ASIC (1,500-byte packets)

Figure 14: Cut-through latency for different packet sizes assuming 64 ports (a and b) and for increasing number of ports
with 1,500-byte packets (c and d).

To estimate the FPGA latency, we use the value La=10 ns
as measured in our prototype while for ASIC estimates,
we use La=6 ns as reported in literature (Omkar R. & M.,
2014). Fig. 14 plots the cut-through latency for both an
FPGA and an ASIC implementation for different port rates
as a function of the packet size assuming 64 ports (Fig. 14a
and Fig. 14b), and as we scale the number of ports with
1,500-byte packets (Fig. 14c and Fig. 14d). In all cases, for
rates of 100 Gbps or higher, the latency is equal to or lower
than 133 ns, which is comparable to the cut-through latency
of Ethernet packet switches(Broadcom, 2020).


