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ABSTRACT

Finding data race bugs in multi-threaded programs has proven
challenging. A promising direction is to use dynamic detectors that
monitor the program’s execution for data races. However, despite
extensive work on dynamic data race detection, most proposed
systems for commodity hardware incur prohibitive overheads due
to expensive compiler instrumentation of memory accesses; hence,
they are not efficient enough to be used in all development and
testing settings.

Kard is a lightweight system that dynamically detects data races
caused by inconsistent lock usage—when a program concurrently
accesses the same memory object using different locks or only
some of the concurrent accesses are synchronized using a common
lock. Unlike existing detectors, Kard does not monitor memory
accesses using expensive compiler instrumentation. Instead, Kard
leverages commodity per-thread memory protection, Intel Memory
Protection Keys (MPK). Using MPK, Kard ensures that a shared
object is only accessible to a single thread in its critical section, and
captures all violating accesses from other concurrent threads. Kard
overcomes various limitations of MPK by introducing key-enforced
race detection, employing consolidated unique page allocation,
carefully managing protection keys, and automatically pruning out
non-racy or redundant violations. Our evaluation shows that Kard
detects all data races caused by inconsistent lock usage and has a
low geometric mean execution time overhead: 7.0% on PARSEC and
SPLASH-2x benchmarks and 5.3% on a set of real-world applications
(NGINX, memcached, pigz, and Aget).
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1 INTRODUCTION

Dynamic data race detectors find real-world data races with low
false positives [58], but generally incur prohibitive performance
overheads. For example, the state-of-the-art dynamic data race
detector, Google’s ThreadSanitizer (TSan) [52], employs compiler-
based memory access instrumentation that slows down program
execution by almost 7×. Due to its prohibitive overhead, TSan is
not applicable to all development or testing settings [34].

Unfortunately, existing approaches to improve the performance
of data race detection have seen limited adoption due to their deploy-
ment and effectiveness limitations. Some schemes require system
software modifications [42, 64], hardware modifications [38, 65]
or extensive developer effort [21, 64], which hinder deployability.
Others employ sampling [13, 20, 53, 63] that results in probabilistic
guarantees and needs to be calibrated with a low sampling rate,
hence low effectiveness, to ensure adequate performance.

This paper proposes Kard, a low-overhead yet practical dynamic
data race detector that does not require hardware or system soft-
ware changes, developer effort, and sampling. Kard detects data
races due to inconsistent lock usage [28] that occurs when a pro-
gram concurrently accesses the same memory object using different
locks or only some of the concurrent accesses are synchronized
using a common lock. Our analysis of fixed real-world data races
detected by TSan shows that inconsistent lock usage constitutes
approximately 69% of all reported data races (§3.1). Furthermore,
under the standard testing scenario of 4 threads [36], Kard incurs
a performance overhead of only 5.3% across a range of real-world
applications. Hence, Kard is an effective data race detection tool
that is applicable in many testing and development settings.

We introduce a novel data race detection algorithm based on
the concept of key-enforced access (§4). Kard uses this algorithm to
detect data races caused by inconsistent lock usage. In particular,
key-enforced access protects each shared object accessed in a lock-
protected code region (i.e., a critical section) using a key. While
a thread holds a shared object’s key within a critical section, all
conflicting concurrent access (with a different lock or without a
lock) to the object is flagged as a data race.
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Kard implements the algorithm efficiently by leveraging Intel’s
Memory Protection Keys (MPK) [14], a hardware feature avail-
able on commodity CPUs [1, 39]. MPK allows software to change
each thread’s page access permissions by modifying a thread-local
register (PKRU) with a non-privileged instruction (WRPKRU). Impor-
tantly, updating PKRU does not flush the Translation Lookaside
Buffer (TLB); hence, updating memory protection using MPK is
very efficient, as noted by other studies [26, 43, 57].

Nevertheless, Kard must overcome three important challenges
including those presented by the hardware limitations of MPK. First,
Kard must accurately track each shared object accessed in a criti-
cal section. Second, Kard must protect individual shared objects
instead of memory pages, the minimum unit of MPK protection,
potentially containing multiple shared objects. Third, Kard must
concurrently monitor many threads and objects, even though MPK
only provides a limited number of protection keys.

To overcome these challenges, Kard implements (a) an auto-
mated scheme that identifies shared objects accessed in critical
sections by trapping access on them using memory protection
(§5.3), (b) a consolidated unique page allocation scheme that as-
signs unique virtual pages to each memory object and ensures a
low memory footprint using virtual page consolidation techniques
(§5.3), and (c) an effective key assignment scheme that reuses keys
within critical sections to ensure that Kard seldom runs out of
protection keys (§5.4).

Furthermore, Kard dynamically analyzes all MPK-driven access
violations (General Protection Fault (#GP)) raised by the program
to prune out redundant or spurious faults. In particular, Kard uses
a new technique to prune spurious faults, protection interleaving,
that can detect byte-level access made by each thread and test the
validity of raised warnings (§5.5).

We implement Kard using an LLVM compiler pass to trap heap
allocation and synchronization calls, and a C++-based runtime li-
brary that creates unique paged heap objects and assigns protection
to executing threads (§6).

We evaluate Kard using the PARSEC and SPLASH-2x bench-
marks [8] as well as four real-world applications: NGINX [41],
memcached [17], pigz [5], and Aget [19]. Our evaluation shows
that Kard’s geometric mean of performance overhead (under 4
threads) is 7.0% while running the benchmarks and 5.3% while run-
ning the real-world applications (§7.2). Moreover, Kard detects
all real-world data races involving inconsistent lock usages and
incurred one false positive (§7.3). Kard is also readily scalable: 10
out of 15 benchmarks were slowed by less than 30% even under 32
threads (§7.4). While Kard incurs a high memory overhead (more
than 200%) in a few benchmark applications, its memory overhead
is mostly modest, with a geometric mean of 68.0% and 85.6%, under
benchmark and real-world applications, respectively (§7.5).

2 BACKGROUND

2.1 Data Race Terminology

For the sake of clarity, this section concisely describes the data race
terminology used in this paper.

Data race. A program has a data race [20] when two or more
threads perform a data access to the same memory location, in such

Table 1: Inconsistent lock usage (ILU) between concurrent accesses

to the same object by two different threads 𝑡1 and 𝑡2 (✓: in scope, ✗:

out of scope).

Concurrent access to the same object ILU

𝑡1 𝑡2

With lock 𝑙𝑎 With lock 𝑙𝑏 ✓

With lock 𝑙𝑎 No lock ✓

No lock With lock 𝑙𝑏 ✓

No lock No lock ✗

a way that they can be executed simultaneously on a multi-core
machine, and at least one of the accesses is a write.

Lock. A lock is a programming abstraction that allows a thread to
synchronize the execution of its code with other concurrent threads.
At a lock acquisition site, a thread stalls its execution if the lock is
exclusively held by another thread.

Critical section. A critical section is a code region between lock
andtgo unlock functions. Even if the program can acquire different
sets of locks on a given code region, we still consider it a single
critical section.

Sharable object. A sharable object is any heap or global object in
a program, accessible to any executing program thread.

Shared object. A shared object is any sharable object accessed
within a critical section.

2.2 Intel Memory Protection Keys (MPK)

Intel MPK is a CPU extension for per-thread memory protection
that assigns either no access, read-only, or read-write permissions
to a group of memory pages [14]. MPK currently supports up to 16
different protection keys (𝑘0 to 𝑘15), which are assigned to memory
pages through pkey_mprotect() system calls. However, since the
first key (𝑘0) is reserved for backward compatibility, the effective
number of available keys is 15.

With MPK, each thread can configure its access to memory pages
protected by a certain protection key via a thread-local register,
PKRU. In particular, MPK provides two non-privileged instructions,
RDPKRU and WRPKRU, to allow the thread to retrieve and update its
PKRU, respectively. These instructions are fast: RDPKRU takes less
than 1 cycle and WRPKRU takes around 20 cycles [43]. The main
reason behind their efficiency is that they do not change page table
entries or require a TLB flush unlike mprotect().

3 MOTIVATION AND GOAL

This section explains the significance of inconsistent lock usage in
real-world data races, explains the limitation of existing detection
schemes, and defines our goal.

3.1 Inconsistent Lock Usage

Inconsistent lock usage (ILU) refers to scenarios where a program’s
threads concurrently access the samememory object using different
locks or only some of the accesses are synchronized using a common
lock [28]. Table 1 illustrates ILU’s scope. Specifically, two threads

648



Kard: Lightweight Data Race Detection with Per-Thread Memory Protection ASPLOS ’21, April 19–23, 2021, Virtual, USA

concurrently access the same shared object while holding different
locks, 𝑙𝑎 or 𝑙𝑏 , or only one of them acquires either 𝑙𝑎 or 𝑙𝑏 .

ILU is inspired by the traditional lockset algorithm [49], but
considers concurrency to ignore many scenarios where lockset
reports false data race warnings. In particular, lockset assumes
that if an access to a shared object is using a set of locks that is
inconsistent (i.e., no common lock) with a previous access to the
object, it can result in a data race. However, lockset is agnostic to
whether the two accesses can concurrently occur or not. Hence, in
practice, lockset falsely reports many instances that do not result
in a data race.

In contrast to lockset’s scope, ILU is aware of concurrently exe-
cuting threads; thus, it is more precise in relation to instances that
might result in a data race. However, ILU is schedule-sensitive, i.e.,
the threads must be scheduled in a way that results in inconsis-
tent lock usage, unlike lockset. We believe that such a trade-off is
essential because a schedule-sensitive scope mitigates instances
of chasing false bugs in development and testing settings, which
are especially undesirable [34, 48]. Furthermore, as long as the tool
employing such a scope is lightweight, it can be utilized under
many test cases to detect data races in diverse code regions, unlike
the expensive schedule-insensitive lockset.

Data races due to ILU scenarios are very common in real-world
applications: our analysis shows that the majority of data races,
reported by TSan [52], in real-world applications are associatedwith
ILU. We analyzed real-world data races found by TSan that were
eventually fixed [58], to filter out potential benign or intentional
data races. We randomly chose 100 fixed bug reports for which we
could find attached TSan logfiles (stacktraces of execution), and
manually investigated them. We confirmed that 69% of them were
involved ILU; that is, at least one of the conflicting threads in each
report was holding a lock.

Note that TSan might be biased in its reported data races. This
potential bias reflects a general limitation of real-world application
bug studies caused by the difficultly to analyze the entire population
of both identified and unidentified bugs [22, 24]. We chose TSan
because it is the state-of-the-art in dynamic data race detection and
continuously finds critical bugs in real-world applications. Further-
more, TSan maintains a robust and verifiable bug database. In this
regard, our analysis on TSan’s reported bugs empirically shows
that many real-world data race bugs can be classified under ILU.

3.2 Limitations of Existing Approaches

Existing systems [9, 13, 18, 20, 37, 38, 42, 52, 62, 64, 65] detect
data races due to ILU or more, but have various performance, de-
ployment, usability, or scope limitations. Table 2 illustrates the
characteristics of existing approaches.

Expensive memory instrumentation. Systems like TSan [52]
and TxRace [62] employ compiler instrumentation of all or partial
memory accesses, allowing them to report a large class of data races,
but with prohibitive performance costs (i.e., 7× for TSan and 5×
for TxRace under 4 threads). A recent study [34] shows that such
overheads hinder their adoption in many development or testing
scenarios.

Table 2: Comparison between Kard and existing approaches. Re-

quirements include expensive memory instrumentation (MI), sys-

tem (software or hardware) change (SC), and developer effort (DE)

( : required, : not required). Scope includes inconsistent lock us-

age (ILU) and inconsistent lock usage and others (ILU+).

System Requirements Scope Overhead

MI SC DE

Compiler MI

Eraser [49] ILU Very high
Inspector XE [12] ILU+ Very high
TSan [52] ILU+ Very high
Valor [9] ILU+ High
Custom Hardware

HARD [65] ILU Low
Conflict Exception [38] ILU+ Low
Probabilistic Sampling

DataCollider [20] Sampled (ILU+) Low/moderate
Pacer [13] Sampled (ILU+) Moderate/high
Memory Protection

Aikido [42] ILU+ Very high
PUSh [64] ILU Low

Kard (our work) ILU Low

System changes. Other schemes improve the performance of
race detection by proposing system changes in the form of (a)
hardware modifications [38, 65] or (b) software modifications to the
OS [64] or hypervisor [42]. These suffer from deployment problems
because custom hardware is nontrivial to manufacture and system
software changes are less feasible in many environments (e.g., VM
or container instances).

Developer efforts. Another approach to improve data race detec-
tion performance is selectively monitoring shared objects manually
annotated by developers. However, given the challenges of man-
ual annotation, adoption of such schemes is less likely to occur
in practice. For example, PUSh [64], a scheme involving such de-
veloper effort, required 35 hours for annotation on a benchmark
application (i.e., streamcluster [8]).

Probabilistic protection scope. Sampling techniques improve
the performance of data race detectors by monitoring a small subset
of instructions [13] or objects [20] at a time. However, low sampling
rates for good performance yield low probabilistic effectiveness.

3.3 Goal

Motivated by the significance of data races due to ILU (§3.1) and
the limitations of existing work (§3.2), we intend to design a novel
data race detector, specifically for ILU data races, that satisfies the
following goals.

• Lightweight: No individual memory access instrumenta-
tion
• Deployable:Neither hardware nor system software changes
• Automated: No manual annotation
• Systematic: No sampling
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𝑡1 𝑡2

1: lock(𝑙𝑎)
2: 𝑤𝑘𝑜 ← get(𝑜 , ‘w’) 

𝑠𝑎

lock(𝑙𝑏 )
3: ∅ ← get(𝑜 , ‘r’) 

𝑠𝑏

4: write(𝑜)
5: read(𝑜)
6: release(𝑤𝑘𝑜 ) ë access violation

7: unlock(𝑙𝑎) release(∅)
8: unlock(𝑙𝑏 )

(a) Exclusive write. 𝑡2 cannot obtain a read-only key

𝑟𝑘𝑜 to read from 𝑜 while 𝑡1 is holding a read-write key

𝑤𝑘𝑜 .

𝑡1 𝑡2
1: lock(𝑙𝑎)
2: 𝑟𝑘𝑜 ← get(𝑜 , ‘r’) 

𝑠𝑎

lock(𝑙𝑏 )
3: 𝑟𝑘𝑜 ← get(𝑜 , ‘r’) 

𝑠𝑏

4: read(𝑜)
5: read(𝑜)
6: release(𝑟𝑘𝑜 )
7: unlock(𝑙𝑎) release(𝑟𝑘𝑜 )
8: unlock(𝑙𝑏 )
(b) Shared read. 𝑡2 can obtain 𝑟𝑘𝑜 to read from 𝑜 while

𝑡1 is holding 𝑟𝑘𝑜 .

Figure 1: Example of key-enforced access during inconsistent lock

usage between two threads 𝑡1 and 𝑡2 on a memory object 𝑜 .

4 KEY-ENFORCED RACE DETECTION

This section introduces an algorithm based on the concept of key-
enforced access to detect data races due to ILU. With key-enforced
access, each shared object accessed in critical sections is protected
by a key. A thread that enters a critical section can acquire a key to
access a shared object and, later, the thread releases the acquired
key when it exits the critical section.

Key-enforced access further distinguishes read-only keys from
read-write keys to fulfill the concept of shared read and exclusive
write. In particular, a thread can acquire a read-only key for an
object 𝑜 , 𝑟𝑘𝑜 , only if no other thread is holding a read-write key for
𝑜 ,𝑤𝑘𝑜 . In contrast, a thread can acquire𝑤𝑘𝑜 only if no other thread
is holding 𝑤𝑘𝑜 or 𝑟𝑘𝑜 . Any read from 𝑜 without 𝑟𝑘𝑜 or 𝑤𝑘𝑜 and
any write to 𝑜 without𝑤𝑘𝑜 imply unordered memory access—the
access can conflict with some other threads’ concurrent access on
𝑜 , resulting in a data race.

Example. Figure 1 depicts how key-enforced access works for
exclusive write and shared read. Two threads, 𝑡1 and 𝑡2, access a
shared object,𝑜 , within their critical sections, 𝑠𝑎 and 𝑠𝑏 , by obtaining
two independent locks, 𝑙𝑎 and 𝑙𝑏 , respectively (i.e., under ILU).

Figure 1a depicts an instance of exclusive write. In this example,
𝑡1 executes first and acquires a read-write key for 𝑜 , 𝑤𝑘𝑜 (line
2). Then, 𝑡2 requests the read-only key, 𝑟𝑘𝑜 , but fails to acquire it
because 𝑡1 holds𝑤𝑘𝑜 (line 3). Hence, when 𝑡2 attempts to read from
𝑜 , it results in an access violation (lines 5–6).

Algorithm 1: Key-enforced race detection algorithm.

𝑡𝑡𝑡 : thread
𝑠𝑠𝑠: critical section
𝑜𝑜𝑜: sharable object
𝑟𝑘𝑜𝑟𝑘𝑜𝑟𝑘𝑜 : read-only key for 𝑜
𝑤𝑘𝑜𝑤𝑘𝑜𝑤𝑘𝑜 : read-write key for 𝑜
𝐾 (𝑡 )𝐾 (𝑡 )𝐾 (𝑡 ) : set of keys held by t
𝐾𝑅 (𝑠)𝐾𝑅 (𝑠)𝐾𝑅 (𝑠) : set of keys for s with read-only permissions
𝐾𝑊 (𝑠)𝐾𝑊 (𝑠)𝐾𝑊 (𝑠) : set of keys for s with read-write permissions
𝐾𝑅𝐾𝑅𝐾𝑅 : set of keys held with read-only permissions
𝐾𝐹𝐾𝐹𝐾𝐹 : set of keys no thread holds

1 while 𝑡 is running do

2 if 𝑡 enters 𝑠 then
3 𝑝𝑢𝑠ℎ (𝐾 (𝑡 ))
4 𝐾 (𝑡 ) ← 𝐾 (𝑡 ) ∪ (𝐾𝑅 (𝑠) ∩ (𝐾𝐹 ∪𝐾𝑅 )) ∪ (𝐾𝑊 (𝑠) ∩𝐾𝐹 )
5 𝐾𝑅 ← 𝐾𝑅 ∪ (𝐾𝑅 (𝑠) ∩𝐾𝐹 )
6 𝐾𝐹 ← 𝐾𝐹 − (𝐾 (𝑡 ) ∩𝐾𝑊 (𝑠))
7 if 𝑡 exits 𝑠 then
8 𝐾𝐹 ← 𝐾𝐹 ∪ (𝐾 (𝑡 ) ∩𝐾𝑊 (𝑠))
9 𝐾 (𝑡 ) ← 𝑝𝑜𝑝 ()

10 if 𝑡 reads from 𝑜 and (𝑟𝑘𝑜 𝑜𝑟 𝑤𝑘𝑜 ) ∉ 𝐾 (𝑡 ) then
11 if 𝑤𝑘𝑜 ∉ 𝐾𝐹 then

12 log potential race
13 else if 𝑡 is executing 𝑠 then
14 𝐾 (𝑡 ) ← 𝐾 (𝑡 ) ∪ {𝑟𝑘𝑜 }
15 𝐾𝑅 ← 𝐾𝑅 ∪ {𝑟𝑘𝑜 }
16 𝐾𝐹 ← 𝐾𝐹 − {𝑟𝑘𝑜 }
17 if 𝑤𝑘𝑜 ∉ 𝐾𝑊 (𝑠) then
18 𝐾𝑅 (𝑠) ← 𝐾𝑅 (𝑠) ∪ {𝑟𝑘𝑜 }

19 if 𝑡 writes to 𝑜 and 𝑤𝑘𝑜 ∉ 𝐾 (𝑡 ) then
20 if (𝑤𝑘𝑜 ∉ 𝐾𝐹 ) 𝑜𝑟 (𝑟𝑘𝑜 ∉ (𝐾𝐹 ∪𝐾𝑅 )) then
21 log potential race
22 else if 𝑡 is executing 𝑠 then
23 𝐾 (𝑡 ) ← 𝐾 (𝑡 ) ∪ {𝑤𝑘𝑜 }
24 𝐾𝐹 ← 𝐾𝐹 − {𝑟𝑘𝑜 , 𝑤𝑘𝑜 }
25 𝐾𝑊 (𝑠) ← 𝐾𝑊 (𝑠) ∪ {𝑤𝑘𝑜 }
26 𝐾𝑅 (𝑠) ← 𝐾𝑅 (𝑠) − {𝑟𝑘𝑜 }

Figure 1b depicts an instance of shared read. Here, 𝑡1 executes
first but acquires 𝑟𝑘𝑜 (line 2). Therefore, 𝑡2 can successfully acquire
𝑟𝑘𝑜 as well (line 3) and no violation is reported.

Algorithm. We design an algorithm for key-enforced access (al-
gorithm 1). This algorithm maintains five types of key sets for each
thread, each critical section, or the entire execution: (a) 𝐾 (𝑡) is a
set of keys that a thread 𝑡 is currently holding; (b) 𝐾𝑅 (𝑠) is a set
of keys that a critical section 𝑠 needs with read-only permissions;
(c) 𝐾𝑊 (𝑠) is a set of keys that a critical section 𝑠 needs with read-
write permissions; (d) 𝐾𝐹 is a set of keys that no thread is currently
holding, i.e., a set of free keys; (e) 𝐾𝑅 is a set of keys that some
threads have acquired with read-only permissions. In the beginning,
𝐾𝐹 is initialized with a set of all keys, while the remaining sets are
∅. Our algorithm updates 𝐾 (𝑡) whenever a thread 𝑡 acquires or
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releases a key 𝑘 , and updates 𝐾𝑅 (𝑠) and 𝐾𝑊 (𝑠) according to the
keys acquired while executing 𝑠 .

If a thread 𝑡 enters a critical section 𝑠 , our algorithm first backs
up its current 𝐾 (𝑡) (lines 2–3). Then, 𝑡 is given a subset of 𝐾𝑅 (𝑠)
that no thread holds with read-write permission and a subset of
𝐾𝑊 (𝑠) that no other threads currently hold (line 4). Furthermore, it
updates 𝐾𝐹 to reflect that 𝑡 exclusively acquired some keys, while
updating 𝐾𝑅 to show that the thread acquired some keys with read-
only permissions (lines 5–6). Then, when 𝑡 exits 𝑠 , our algorithm
releases the keys that 𝑡 acquired either at the start of or during the
execution of 𝑠 (lines 7–9).

If 𝑡 attempts to read from 𝑜 without 𝑟𝑘𝑜 or 𝑤𝑘𝑜 (line 10), our
algorithm checks whether another thread holds 𝑤𝑘𝑜 (line 11). If
some thread 𝑡∗ holds𝑤𝑘𝑜 , it implies that 𝑡∗ can write to 𝑜 any time
before or after 𝑡 reads 𝑜 . Therefore, this is a potential data race (line
12). If no thread holds 𝑤𝑘𝑜 and 𝑡 is executing a critical section 𝑠 ,
it claims 𝑟𝑘𝑜 to prevent a concurrent write from another thread
(lines 13–14). Furthermore, to track that 𝑟𝑘𝑜 is held by some thread,
the algorithm adds the key to 𝐾𝑅 and removes it from 𝐾𝐹 (lines
15–16). Also, if𝑤𝑘𝑜 is not in the scope of the critical section 𝑠 , the
algorithm includes 𝑟𝑘𝑜 into 𝐾𝑅 (𝑠) (lines 17–18).

On the other hand, if 𝑡 attempts to write to 𝑜 without𝑤𝑘𝑜 (line
19), our algorithm checks whether any other thread 𝑡∗ holds𝑤𝑘𝑜
or 𝑟𝑘𝑜 (line 20). If this holds, our algorithm treats the access as a
potential data race (line 21). If the key is free and 𝑡 is executing a
critical section 𝑠 , the thread claims 𝑤𝑘𝑜 by adding it to 𝐾 (𝑡) and
𝐾𝑊 (𝑠) while removing it from 𝐾𝑅 (𝑠), 𝐾𝑅 , and 𝐾𝐹 (lines 22–26).

5 KARD DESIGN

5.1 Overview

We design Kard, a practical dynamic data race detector that realizes
our key-enforced race detection algorithm (§4) with a commod-
ity per-thread memory protection mechanism, MPK (§2.2). Kard
leverages MPK’s per-thread read-only and read-write permissions
on memory pages to protect sharable objects, accessed in critical
sections, and to fulfill the requirements of key-enforced access.

Initially, Kard defines memory protection domains to classify
sharable objects (i.e., heap and global variables) according towhether
they are accessed in critical sections and whether those accesses
were read or write (§5.2). To enable these domains, Kard imple-
ments (a) a consolidated unique page memory allocator to assign
each sharable object unique virtual pages, allowing independent
protection of each object using MPK and (b) an on-demand sharable
object tracking scheme to accurately place objects in their respec-
tive domains (§5.3).

During program execution, Kard identifies new shared objects
and enforces the protection domains for threads during critical
section execution by carefully assigning protection keys to threads
within distinct critical sections (§5.4).

Lastly, on access violations of protection domains, Kard per-
forms automatic analysis to filter out redundant or non-racy viola-
tions, including initialization event detection, protection interleav-
ing, and faulting address-based pruning (§5.5).

5.2 Memory Protection Domains

Kard classifies a program’s sharable objects into three domains:
Read-only, Read-write, andNot-accessed. The domains are enforced
with different protection keys to ensure different access semantics
on each domain during execution.
Read-only domain. Each shared object that has been only read
within critical sections belongs to the Read-only domain protected
using 𝑘𝑟𝑜 (𝑘14). In Kard, all threads (whether in critical or non-
critical sections) have 𝑘𝑟𝑜 with a read-only permission, so they can
always read these objects. However, write access on it is prohibited
for domain migration or data race detection (§5.5).
Read-write domain. Each shared object that has been written
at lease once within critical sections belongs to the Read-write
domain, and is protected using one of 13 protection keys (𝑘1 to
𝑘13). These protection keys are only provided to a thread that is
executing a critical section, with either read-only or read-write
permissions. To allow shared reads, multiple threads can obtain
the same Read-write domain key with read-only permission. How-
ever, to ensure exclusive write, only a single thread can obtain a
Read-write domain key with read-write permission at a time.
Not-accessed domain. Each newly created sharable object be-
longs to the Not-accessed domain, and if it is accessed within a
critical section, it is migrated to either Read-only or Read-write
domain. Kard protects new sharable objects using 𝑘𝑛𝑎 (𝑘15), and
retracts 𝑘𝑛𝑎 from threads during their critical section execution.
This allows Kard to determine if a thread accessed a newly created
sharable object within its critical section via an access violation.

Finally, all memory regions must have a protection key when
MPK is enabled. Therefore, Kard protects memory objects that
are not sharable (e.g., thread-local variables) or should always be
accessible to all threads (e.g., mutex variables) using the default key,
𝑘𝑑𝑒𝑓 (𝑘0 in current Intel CPUs).

5.3 Sharable Object Tracking

Kard tracks sharable objects to identify which ones are shared (i.e.,
read or written in critical sections) and changes their protection
domains using MPK. However, this presents two challenges. First,
MPK works at the granularity of pages (typically 4 KiB) but na-
tive allocators might create many objects in a single page. Second,
accurately determining whether an object is shared and identify-
ing the access type (i.e., read or write), without comprehensive
memory access instrumentation, is non-trivial. To overcome these
challenges, Kard implements consolidated unique page allocation
and an automated shared object identification scheme.

Consolidated unique page allocation. Existing heap allocators
store multiple objects in the same page to reduce memory con-
sumption, which is incompatible with Kard’s protection. Since
objects stored in the same page can belong to different protection
domains, such compact allocation would result in extraneous access
violations. This hampers both accuracy and performance of Kard.

To ensure per-object protection of heap objects, Kard replaces a
program’s heap allocation routines (e.g., malloc() and new()) with
its custom memory allocation routines that assign unique virtual
pages to each object. In addition, Kard maintains the metadata (i.e.,
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physical page
⋮

virtual pages
0xf0000

32 B ⋮

0xf2020
0xfbfe0

Figure 2: Consolidated unique page allocation. 128 unique virtual

pages of 32B objects mapped into a single physical page.

base address and size) of each allocated object to locate the corre-
sponding object given any (faulting) address. However, assigning
unique pages to each object can waste a considerable amount of
physical memory, especially if a program has many small objects.

Kard conserves physical memory by consolidating different,
small objects into a single physical page via shared mapping. Specif-
ically, Kard first creates an in-memory file using memfd_create().
Then, whenever the program tries to allocate some memory, Kard
invokes mmap() (with the MAP_SHARED flag) to create a new virtual
page mapped into the in-memory file. If multiple allocations are
mapped into the same physical page of the in-memory file (e.g., Fig-
ure 2), Kard shifts each allocation’s page-internal base addresses
and returns these shifted addresses to ensure that different alloca-
tions do not overlap within the physical page (like minipage or page
aliasing techniques [16, 25, 29, 44, 45]). In addition, Kard increases
or decreases the in-memory file’s size by invoking ftruncate()
according to a program’s memory requirements.

Like heap objects, Kard assigns each global object to unique vir-
tual pages to ensure per-object protection. To accurately maintain
metadata for global objects, Kard aggregates each global object’s
information (e.g., address and size) during compilation, and pro-
vides this information to its run-time library by inserting function
calls at the beginning of the program (refer to §6).

Automated shared object identification. Kard progressively
identifies shared objects, from the list of all sharable objects, when-
ever critical sections execute. In particular, Kard traps every criti-
cal section execution with compiler instrumentation and prevents
threads executing critical sections from accessing sharable objects
not previously identified as shared. Hence, if the thread accesses
such an object, a #GP will occur.

Kard traps critical section entries and exits by replacing syn-
chronization calls, e.g., lock() and unlock(), with corresponding
wrapper functions. Also, Kard provides the virtual address of a
synchronization call site to the wrapper function to differentiate
between critical sections during execution.

Figure 3a illustrates shared object identification during critical
section execution. When a thread 𝑡1 enters a critical section, Kard
revokes the access of 𝑡1 to 𝑘𝑛𝑎 ( 1 ). Thus, a protection fault (#GP)
related to 𝑘𝑛𝑎 implies that 𝑡1 accessed a sharable object 𝑜𝑎 in the
Not-accessed domain ( 2 ). Using the faulting address and access
type (i.e., read or write) from the #GP, Kard migrates the object 𝑜𝑎
to either the Read-only (i.e., 𝑘𝑟𝑜 ) or Read-write (i.e., one of 𝑘1 to
𝑘13) domain according to the access type ( 3 ). Then, Kard updates
an internal data structure, the section-object map ( 4 ), that tracks

lock(la)
retract(kna)
∅🡐acquire(sa)

write(oa)

release()
acquire(kna)
unlock(la)

Key  Sect/holder 
 k1         sa/t1
 k2         none 

Key-section map

Section-object map
Sect.    Obj. 
  sa    {oa:wk1}
  sb    {ob:wk2}  oa:kna

oa:k1

t1

❶ ❷

❸
❹

give wk1
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❺
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(a) Object tracking. Identify the first access on an ob-

ject 𝑜𝑎 by a thread 𝑡1 executing a critical section 𝑠𝑎
and migrate 𝑜𝑎 to a corresponding domain.

lock(la)
retract(kna)
acquire(sa)
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release()
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  sb    {ob:wk2}  
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(b) Domain enforcement. Attempt to acquire the

keys of objects belonging to 𝑠𝑎 when 𝑡1 enters it.

lock(la)
retract(kna)
acquire(sa)
  {wk1}

read(ob)
        ⋮

Key-section map

t1

❶

violate
checkob:k2

❷
❸

Key  Sect/holder 
 k1         sa/t1
 k2         sb/t2 

lock(lb)
retract(kna)
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  {wk2}

write(ob)
        ⋮
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(c) Race detection. Analyze a violated memory access on

𝑜𝑏 based on the current key holding threads.

Figure 3: Different Kard stages to (a) progressively identify shared

objects, (b) acquire the keys of objects within critical sections, and

(c) detect potential data races on objects. All these stages occur con-

tinuously during the same program execution.

the shared objects accessed in each critical section and is used for
domain enforcement. Lastly, 𝑡1 acquires the key protecting 𝑜𝑎 , if it
did not hold the key before ( 5 ) (refer to §5.4).

Similarly, if a critical section raises a #GP because it attempts
to write to an object belonging to the Read-only domain, Kard
migrates the object to the Read-write domain.

5.4 Domain Enforcement

While progressively identifying shared objects (§5.3), in the same
execution, Kard enforces protection domains during critical sec-
tion executions to detect data races using key-enforced access (§4).
Each identified shared object (§5.3) is assigned a protection key,
and a thread either proactively (at a critical section entry) or reac-
tively (during critical section execution) acquires the key. When a
thread exits a critical section, it releases the keys acquired within
the critical section.
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Effective key assignment. Kard uses several rules to smartly as-
sign keys to identified shared objects. Ideally, each shared object (in
the Read-write domain) should be assigned a unique key to enforce
different access semantics for each critical section. However, due
to MPK’s hardware limitation, Kard has a limited number of keys
for objects migrated to the Read-write domain (i.e., 13).

Kard follows three rules to effectively use protection keys. First,
if a faulting thread holds one or more protection keys, Kard assigns
one of the held protection keys to the object (using pkey_mprotect()).
Second, if the faulting thread does not hold any protection key (e.g.,
the first write access on a sharable object in a critical section), Kard
looks for an unassigned protection key, protects the object with the
key, and allows the thread to acquire the key.

Third, if all protection keys are assigned, Kard either (a) recycles
an assigned key that no thread is currently holding or (b) shares a
key between threads if all keys are currently held. Note that recy-
cling is preferable since Kard can move the objects that have been
protected by the recycled key to the Read-only domain. This allows
Kard to trap potential data races (through writes) on the recycled
objects. Thus, recycling neither harms Kard’s accuracy nor pre-
ciseness, but only slows down the program due to repeated domain
migration. In contrast, sharing can result in false negatives (refer
to §7.3). Nevertheless, our evaluation shows that both recycling
and sharing is rare (§7.3); hence, in practice, their impact is minor.
Proactive key acquisition. With Kard, a thread will proactively
acquire keys, belonging to already identified objects, when it en-
ters a critical section. In particular, protection keys are acquired at
critical section entries using a user-level instruction, WRPKRU. Note
that key acquisition can be racy; thus, Kard employs internal syn-
chronization (i.e., atomic operations), like general lock functions,
to prevent such problems.

Figure 3b illustrates how a thread acquires keys at a critical
section entry. When a thread enters a critical section, Kard looks
up the section-object map to find the shared objects accessible in
the critical section and associated keys ( 1 ). Then, Kard checks
the key-section map, a data structure that maintains which sections
(and threads) currently hold what keys, to determine which keys
are available ( 2 ). The thread can acquire an available key with (a)
read-write permission if no other thread holds the key or (b) read-
only permission if no other thread holds the key with read-write
permission. In the figure, a thread 𝑡1 acquires 𝑘1 with read-write
permission, but fails to acquire 𝑘2 because another thread 𝑡2 is
holding it ( 3 ). Lastly, Kard pushes the thread’s current keys in a
thread-local stack to restore when it exits the critical section.
Reactive key acquisition. At some object identifications (§5.3), a
thread must reactively acquire a key assigned to a newly identified
shared object, if the thread did not acquire that key at critical section
entry. This reactive key assignment is performed by Kard’s fault
handler (explained in §5.5). The fault handler, however, cannot use
WRPKRU for this key assignment because the program thread is not
currently running. Instead, the fault handler modifies the thread’s
stored process context for the PKRU register [43, 57] to allow the
thread to possess the key when it is scheduled again.

Key release. When a thread exits a critical section, the thread re-
leases protection keys acquired reactively or proactively (Figure 3b-
4 ). More specifically, if a thread exits to a non-critical section, it

releases all of its protection keys (𝑘1 to 𝑘13, except 𝑘𝑟𝑜 ) and acquires
𝑘𝑛𝑎 . On the other hand, if the thread exits a nested critical section
(i.e., it is still within a parent critical section), it reverts back to its
old keys from the thread-local stack. Lastly, Kard timestamps (us-
ing RDTSCP) each time a thread releases protection keys to consider
a fault handling delay during data race analysis (refer to §5.5).

5.5 Race Detection and Filtration

Kard redirects all protection faults (#GPs) to its custom fault handler
to detect potential data races while handling missing or spurious
violations due to fault handling delay and initialization events. Fur-
thermore, Kard employs a protection-interleaving scheme to effec-
tively filter out false positives. Lastly, Kard automatically prunes
redundant violations.
Protection fault (#GP) redirection. Kard registers a custom fault
handler to trap all MPK-based #GPs and obtain information related
to the faulting address, including protection key, access type, and
process context (e.g., instruction pointer).

The system raises a #GP for attempted access on (a) sharable
object belonging to the Not-accessed domain (protected by 𝑘𝑛𝑎), (b)
shared object protected with a key that the thread did not acquire, or
(c) shared object protected with a key that the thread acquired with
read-only permissions. Considering (a), Kard assigns a protection
key to the object (refer to §5.4). The remaining scenarios, (b) and (c),
could be data races but require further analysis to checkwhether the
faulted key is held by another thread with read-write permissions.

Figure 3c illustrates a potential data race scenario. In this ex-
ample, we assume that 𝑡2 executes first and acquires a protection
key,𝑤𝑘2, to write in an object 𝑜𝑏 . Then, when 𝑡1 executes, it fails
to acquire a key 𝑟𝑘2 because 𝑡2 is holding 𝑤𝑘2, according to the
key-section map ( 1 ). Hence, when 𝑡1 tries to read 𝑜𝑏 , it raises a
fault ( 2 ). Kard checks whether the key protecting 𝑜𝑏 is currently
held by any thread ( 3 ), and confirms there is a data race between
𝑡1 and 𝑡2.

Note that Kard uses timestamps to assess whether a protection
key was held when the #GP occurred because the key might be
released by the time the handler is invoked. Kard checks whether
the time difference between key release and fault handler invocation
is below the average fault handling delay (e.g., 24,000 cycles on our
machine whose specifications are described in §7.1).

Protection interleaving. With Kard, a thread proactively ac-
quires keys at critical section entries and a single key protects the
entire object to minimize runtime overhead and efficiently use a
limited number of protection keys, respectively. This, however, po-
tentially introduces false positives due to (a) conditional branches
in critical sections and (b) concurrent access to different offsets in
an object (detailed analysis in §7.3).

Kard mitigates false positives using a protection-interleaving
scheme that alternates protection keys assigned to faulted objects
to further test the accuracy of a raised protection fault. Figure 4
illustrates protection interleaving between two threads 𝑡1 and 𝑡2.
In particular, 𝑡2 raises a #GP for an object 𝑜 that is protected by
a key 𝑘1, held by 𝑡1 (line 6). Kard forcefully protects 𝑜 with one
of the keys held by 𝑡2 (or protects 𝑜 with a free key and assigns
the key to 𝑡2), 𝑘2, and allows 𝑡2 to proceed (line 7). Later, if 𝑡1
accesses 𝑜 , it will raise another #GP (line 8). Thus, Kard observes
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𝑡1 𝑡2 ℎ𝑎𝑛𝑑𝑙𝑒𝑟

1: protect(𝑜 , 𝑘1)
2: lock(𝑙𝑎)
3: {𝑤𝑘1} ← acquire(𝑠𝑎) 

𝑠𝑎

lock(𝑙𝑏 )
4: ∅ ← acquire(𝑠𝑏 ) 

𝑠𝑏

5: write(𝑜)
6: read(𝑜)

ë access violation
7: protect(𝑜 , 𝑘2)
8: write(𝑜) assign(𝑡2, 𝑟𝑘2)
9: ë access violation read(𝑜)
10: release() release()
11: unlock(𝑙𝑎) unlock(𝑙𝑏 )

Figure 4: Protection interleaving to observe access violations to the

same object 𝑜 from different threads. The handler changes a protec-

tion key assigned to 𝑜 (from 𝑘1 to 𝑘2) trigger access violations.

multiple #GPs on the same object from different critical sections to
test whether the threads are concurrently accessing the memory
object at the same offset. If Kard finds out that the object is accessed
at different offsets, it removes the data race record from its internal
log. Lastly, Kard terminates protection interleaving to proceed the
program’s execution by temporarily not protecting the object until
all conflicting threads exit their critical sections.

The effectiveness of protection interleaving depends on the criti-
cal section size and memory access order. Specifically, small critical
sections can terminate before protection is interleaved and #GPs
might not re-occur depending on memory access order. These limi-
tations can be mitigated with delay injection and multiple runs.

Automated pruning. Kard automatically prunes redundant and
non-racy violations using its metadata (e.g., section-object map). It
prunes (a) redundant faults of the same object at the same offset
from different threads and (b) spurious faults due to access at differ-
ent offsets of the same object (captured by protection interleaving).

Potential data race record. Based on the filtered #GP and meta-
data, Kard constructs potential data race information including: (a)
both sections that raise the fault and holds the key, (b) the faulted
object, (c) the faulting thread’s access type, (d) thread identifiers
and process contexts, and (e) timestamp.

6 IMPLEMENTATION

We implemented Kard using the LLVM 7 compiler suite [32]. Our
implementation consists of backend LLVM function and module
passes, as well as a runtime library. The runtime library has three
main components: (a) a custom allocator along with wrapper func-
tions for standard heap allocation, (b) wrapper functions for POSIX,
Pigz [5], and NGINX [41] synchronization functions, and (c) a fault
handler. Our backend code consists of 966 Lines of Code (LoC) and
the runtime library consists of 1,888 LoC written in C/C++, counted
using sloccount [2].

For simple management, Kard’s custom allocator uses standard
C++ data structure libraries to manage allocated memory objects
and returns a multiple of 32 B to each memory allocation request.
Currently, Kard invokes mmap() for each memory allocation, so

it can suffer from high performance overhead if an application
frequently allocates memory objects. However, such applications
are rare (refer to §7.2). In the future, to reduce the overhead of fre-
quent mmap() calls, Kard can recycle de-allocated virtual pages [64].
Moreover, Kard does not consolidate page-aligned global variables,
thereby increasing the overall memory consumption of the system.
We confirm that this does not affect the runtime performance of
our tests, and Kard’s reported memory overhead is over-estimated
rather than under-estimated.

Kard does not currently cover non-locking synchronization
primitives including ad-hoc ones. Generally, ad-hoc synchroniza-
tion primitives are considered harmful [59]. If such synchronization
must be employed, Kard’s backend can be updated either using an-
notations or static analysis [59] to trap their execution and enforce
memory protection.

7 EVALUATION

This section evaluates Kard in terms of performance overhead,
effectiveness, scalability, and memory consumption.

7.1 Experimental Setup

We conducted all experiments on a Dell Precision 7820 Worksta-
tion featuring two Intel Xeon Silver 4110 processors where each
processor consists of 16 logical cores at 2.1 GHz (32 logical cores in
total), and 32GiB of memory. The workstation runs Ubuntu 18.04.2
LTS whose kernel version was 4.15.

7.2 Performance

This section illustrates Kard’s performance overhead while ex-
ecuting a diverse set of benchmark and real-world applications.
In general, there are three major factors affecting Kard’s perfor-
mance: (a) the number of protected sharable objects, (b) the number
of critical section entries, and (c) data TLB (dTLB) miss rate. First,
the number of pkey_mprotect() system call invocations linearly
depends on the number of sharable objects (invoked at object al-
location and migration). Second, Kard traverses and updates the
section-object and key-section maps to change the protection keys
assigned to threads whenever they enter critical sections. Lastly,
since Kard’s memory allocator assigns each sharable object unique
virtual page(s), it consumes more virtual address space, hence, pro-
grams can suffer additional dTLB misses.

Settings and notation. We compare Kard’s performance against
(a) applications without data race detection (referred to as Baseline),
(b) applications using Kard’s memory allocator but no race detec-
tion (referred to as Alloc), and (c) applications with TSan (referred
to as TSan). Alloc illustrates the impact of Kard’s memory allocator
on its overall performance. For Baseline and TSan, the applications
were built using unmodified clang-7. We used the same compiler
flags (except for race detection flags) for all four cases.

We ran most of the experiments using 4 threads. Despite being
a modest configuration for production, 4 threads are suitable for
testing, which is Kard’s main focus. During testing, the developer
controls the number of program threads and generally tries to
simplify the testing scenario to optimize resource usage and simplify
failure diagnosis. Note that a well-known data race study [36] shows
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Table 3: The execution statistics and performance overhead of Kard on PARSEC, SPLASH-2x, and real-world applications with 4 threads. For

execution time, peak memory, and dTLB miss rate, each of Alloc, Kard, and TSan show the added overhead (in %) over Baseline execution.

Bench type Sharable objects Shared objects Critical sections Execution time Peak memory (RSS) dTLB miss rate

Heap Global RO RW Total Active Entry Baseline (s) Alloc Kard TSan Baseline (B) Kard Baseline Alloc Kard

PARSEC

streamcluster 1,818 20 0 1 6 3 115,760 4.96 0.1% 0.3% 2264.7% 12,592 6.1% 0.00013 5.1% 9.2%
x264 15 420 0 0 2 2 33,521 1.749 0.4% 3.0% 485.3% 29,732 2.0% 0.00020 0.6% 2.6%
vips 102 3,933 377 213 5 2 37 2.145 0.6% 1.3% 889.8% 24,360 3.3% 0.00042 0.7% 3.8%
bodytrack 8,717 125 7 48 8 1 56,196 3.268 4.1% 10.4% 655.6% 20,224 123.2% 0.00003 21.9% 55.2%
fluidanimate 135,438 25 24 5 8 4 4,402,000 3.251 19.6% 61.9% 1222.3% 374,760 142.6% 0.00018 32.3% 72.0%
SPLASH-2x

ocean_cp 370 30 2 2 24 2 6,664 3.803 -8.3% -5.9% 911.4% 913,048 0.3% 0.00030 0.2% 0.4%
ocean_ncp 16 38 0 4 23 2 6,504 5.631 0.0% 0.0% 1036.2% 922,128 0.3% 0.01149 0.0% 0.0%
raytrace 6 60 1 2 8 3 986,046 4.355 1.3% 3.7% 1368.6% 7,712 28.5% 0.00002 0.3% 0.5%
water_nsquared 128,007 87 96,000 2 17 4 96,148 10.022 9.1% 18.0% 698.0% 12,260 4145.9% 0.00001 587.3% 890.2%
water_spatial 37,148 99 1 1 2 2 675 3.259 2.9% 5.6% 546.1% 25,324 516.9% 0.00004 147.1% 172.6%
radix 17 13 2 1 13 4 103 5.173 -1.4% -1.0% 187.4% 1,051,536 0.2% 0.00407 0.1% 0.1%
lu_ncb 12 11 2 1 6 2 1,040 3.917 -5.7% -5.2% 292.9% 34,952 5.9% 0.00049 -3.7% -3.4%
lu_cb 26 10 0 3 6 2 2,080 3.517 -7.8% -4.7% 259.0% 35,092 6.1% 0.00003 1.4% 2.3%
barnes 44 54 11 13 5 5 1,784,848 5.126 2.9% 34.1% 1582.9% 68,000 3.3% 0.00011 3.0% 37.1%
fft 11 26 14 1 8 2 32 2.874 0.7% 1.0% 265.1% 789,588 0.3% 0.00092 -0.2% -0.2%
GEOMEAN 1.0% 7.0% 690.9% 68.0% 25.3% 37.2%

NGINX 500,007 461 0 100,002 26 3 200,008 15.144 13.3% 15.1% 258.9% 5,812 202.1% 0.00145 51.9% 65.2%
memcached 6,985 107 24 62 121 13 161,992 2.009 0.0% 0.1% 45.7% 5,892 31.8% 0.00110 9.6% 18.2%
pigz 861 53 7 10 10 5 45,782 0.254 2.9% 5.1% 229.9% 5,368 52.5% 0.00028 31.4% 71.2%
Aget 24 10 0 1 2 1 56,196 0.944 0.6% 1.4% 464.3% 2,468 95.3% 0.00294 3.7% 12.3%
GEOMEAN 4.1% 5.3% 189.5% 85.6% 22.7% 39.2%

that even 2 threads can manifest more than 95% of data race bugs;
hence, 4 threads are appropriate for most data race testing scenarios.

Benchmarking suites: PARSEC and SPLASH-2x. We evalu-
ated Kard with the PARSEC/SPLASH-2x benchmark version 3.0-
beta-20150206 [8]. We ran all benchmarking applications that use
locks and do not require code-rewriting to build using clang-7. We
decided to omit benchmarks that do not use locks because they have
no overhead under Kard and that require code rewriting because
it can affect the benchmark’s intended behavior.

Results. Table 3 shows that Kard incurs a low performance over-
head with a geometric mean, compared to Baseline, of only 7.0%.
Most of the benchmark applications incurred a very low overhead
except a few that frequently enter critical sections or have many
protected sharable objects. Especially, the two benchmarking tests,
fluidanimate and barnes, that entered critical sections around 4.4mil-
lion and 1.8million timeswithin 3.3 s, respectively, incurred a higher
overhead than the average. We conjecture that such behavior is
more congenial to benchmark tests, and we did not observe this in
our real-world applications (e.g., NGINX entered critical sections
only around 200,000 times within 15.2 s in our evaluation). Besides,
despite fewer critical section entries, water_nsquared has many pro-
tected shared objects; hence, it suffered from a high dTLB pressure
and showed a high performance overhead.

Interestingly, applications with few sharable objects (e.g., lu_cb
and ocean_cp) ran slightly faster with Kard, compared to Baseline.
The reason is that Kard’s memory allocator trades off simplicity
for memory consumption (§7.5) and, therefore, we observe the
same trend with Alloc. Importantly, even if we compare Kard’s
performance on each benchmarking application against the best

performance of either Baseline or Alloc, the overall geometric mean
of Kard’s performance overhead only rises to 8.7% from 7.0%.

Lastly, Kard executed approximately two orders of magnitude
faster than TSan, under 4 threads, because Kard does not employ
expensive compiler instrumentation of memory accesses. Never-
theless, TSan covers more diverse data race types than Kard (refer
to Table 2).

Real-world applications. We evaluated Kard with four real-
world applications: web server (NGINX 1.17.1 [41]), key-value
store (memcached 1.5.16 [17]), compression software (pigz 2.2.4 [5]),
and download manager (Aget 0.4.1 [19]). The geometric mean of
Kard’s overhead, under 4 threads, was 5.3% for these applications,
compared to Baseline.

Web server—NGINX. Web servers employ multi-threading to
serve multiple clients simultaneously with low latency. We used
ApacheBench (ab) [56] to send 100,000 requests through 100 con-
current clients to an NGINX web server. We ran four different tests
to retrieve files of sizes of 128 kB, 256 kB, 512 kB, and 1MB, from the
NGINX web server. We chose the file sizes after consulting existing
web server traffic reports [6]. The average latency overhead across
the tests was 15.1%. In particular, we observed that the overhead
was higher when the file size is smaller. For example, the ab tests
for 128 kB file showed an overhead of 58.7% while the overhead for
the 1MB file was 8.8%. Thus, the additional I/O overhead of larger
files amortized Kard’s runtime overhead.

Key-value store—memcached. Concurrency is a large enabler
of modern key-value stores. We evaluated Kard against mem-
cached [17], a popular key-value store, using a benchmarking tool,
twemperf [47]. We configured twemperf to send 20,000 set requests
of 1 B size through 2,000 concurrent connections. The overhead
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Table 4: Potential false negative and positive scenarios for Kard,

and how Kard mitigates them.

Potential issue Mitigation

False negative

Sharing protection keys Share keys amongst disjoint sections
False positive

Different offset in an object Employ protection interleaving
Non-access in critical section Employ protection interleaving

was negligible. In particular, memcached accessed very few shared
objects in its critical sections and had a modest number of critical
section entries; therefore, the overhead remained low, despite a few
key sharing and recycling events (refer to §7.3).

Other applications—Aget and pigz.Aget [19] accelerates file down-
load using multiple threads. We used Aget to download a Linux
kernel image (105MB size). To account for network delays, we
downloaded the file 100 times. Kard’s slowdown was only 1.4%.

Another application, pigz [5], compresses or decompresses files
using multiple threads. Our test comprised of decompressing the
Linux kernel image (105MB) 100 times using 4 concurrent threads.
Kard’s average overhead was 5.1%.

7.3 Effectiveness

This section analyzes Kard’s effectiveness and presents results
related to real-world data races reported by Kard.

Theoretical analysis. Table 4 provides an overview of the poten-
tial issues that Kard might face and various mitigation strategies
adopted by Kard, in response.

False negatives. Kard can fail to capture data races involving
ILU only under key sharing, since multiple threads can concur-
rently access objects protected by a shared key. Kard mitigates
this problem by sharing keys amongst threads that are executing
critical sections that do not access the same objects (by consulting
the section-object map). However, Kard’s mitigation will not be
effective if all executing critical sections can access the same object.
Nevertheless, our evaluation suggests that key sharing is extremely
rare (explained below) due to Kard’s effective key assignment. Fur-
thermore, we envision improved memory protection hardware that
provides a large number of keys. For example, researchers have
proposed new hardware-software co-designs to efficiently support
many protection keys [50, 60] that would effectively address Kard’s
false negatives.

False positives. Kard can report false positives because of the
two reasons: (a) accessing different offsets in the same object or
(b) protecting non-accessed objects.

First, Kard protects an entire object with a single key due to
hardware restrictions (i.e., page-level protection and limited number
of keys). Thus, it observes access violations even when two threads
access different offsets of the same object. Second, Kard protects
objects at critical section entries to avoid expensive memory access
instrumentation. Therefore, it can over-protect a memory object if
the thread executing a critical section does not access the object (e.g.,
due to conditional branches). Kard’s analysis with protection in-
terleaving (§5.5) can mitigate these false positives by accurately

Table 5: Number of memcached threads versus the unique and con-

current critical sections (CS), recycling events, and sharing events.

Number of threads 4 8 16 32

Total executed CS 161,992 162,254 163,314 164,517
Uniquely executed CS 45 45 45 45
Maximum concurrent CS 13 14 16 16
Key recycling events 724 764 771 808
Key sharing events 11 22 30 116

identifying the actual bytes of objects accessed by different threads
in their respective critical sections.

Key sharing case study. To confirm whether false negatives due
to key sharing can be a problem in practice, we ran all our bench-
mark and real-world applications with up to 32 threads (the maxi-
mum number of hardware threads our system supports §7.1). We
found that only 1 out of 19 applications, memcached, required key
sharing, but its sharing events were extremely rare: less than 0.07%
of total executed critical sections.

In particular, memcached has 121 critical sections, based on our
source code analysis, and executes many of them concurrently;
hence, Kard had to employ key sharing. Table 5 shows the total
number of critical sections executed, how many of the executed
critical sections were unique or concurrent at one time, and corre-
sponding sharing and recycling events, while increasing the number
of threads.

Despite executing 13–16 concurrent critical sections, memcached
required key sharing very few times, 11–116 (only 0.007%–0.07% of
the total executed critical sections). While increasing the number
of threads increases the active critical sections and produces more
key sharing events, the difference is minimal. This shows that even
for complex real-world applications with many critical sections
and executing many threads, such as memcached, few critical sec-
tions execute concurrently; therefore, the limited number of keys
provided by MPK should be sufficient in most cases.

We also observed a few key recycling events, 724–808 times (only
0.44%–0.49% of total executed critical sections). Note that recycling
does not impair Kard’s accuracy or preciseness (refer to §5.4).

We assume that a developer will use configurations that mini-
mize key sharing events (i.e., a small number of threads) to avoid
potential false negatives (Table 4). Even when configurations with
high key sharing events (e.g., memcached with 32 threads) are em-
ployed, Kard can still probabilistically report a data race if it is
triggered multiple times with different key sharing instances due
to thread scheduling. Nevertheless, new hardware proposals or
software fallback can avoid key sharing (refer to §8).

Real-world data races reported. Kard reported all real-world
data race bugs that were also reported by TSan involving ILU with
only 1 false positive (Table 6). Both Kard and TSan are schedule-
sensitive; therefore, they might not produce the same number of
data races on each run. However, we did not observe a variance for
these applications.

Aget. Kard reported a single data race warning from Aget, simi-
lar to TSan. In particular, Aget writes to a single global variable (to
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Table 6: Real-world data races reported by Kard and TSan.

Application Kard TSan

ILU Non-ILU

Aget 1 1 0
memcached 3 3 0
NGINX 1 1 0
pigz 1 0 0

count the bytes downloaded by individual threads) within its critical
section. Kard raised a warning because the variable is read outside
of the critical section while another thread is updating it within a
critical section. This data race has been previously reported [61].

memcached.Kard reported 3 data races involving ILU frommem-
cached, which are also reported by TSan. The reported warnings
belonged to two statistics collection heap variables and one global
variable to track time. In particular, the heap variables were updated
by a worker thread within its critical section and read by the main
thread (outside its critical section). As for the global variable, its
timing contents are updated by the main thread using a callback
mechanism and read by another thread, within a critical section.
We believe that this data race might be intentional since the main
thread only updates the timing information.

NGINX. Both Kard and TSan reported a data race that originates
from a racy heap access in a critical section during NGINX’s initial-
ization. This was the only data race warning reported by either of
the tools, while executing NGINX.

pigz. Kard reported 1 false positive due to concurrent access at
different offsets in a heap variable from pigz. Despite protection
interleaving, Kard failed to prune this warning out because the
corresponding critical section is too small such that Kard did not
observe accesses from other threads. Therefore, it included the
data race in the final report. Nevertheless, protection interleaving
filtered out pigz’s other access violations within relatively large
critical sections.

7.4 Scalability

Kard maintains its performance efficiency for most of the bench-
marking applications even with up to 32 threads. Figure 5 shows
the scalability of Kard while executing PARSEC and SPLASH-2x
applications. The geometric mean of Kard’s performance overhead
with 8, 16, and 32 threads, is 24.4%, 63.1%, and 107.2%, respectively.
We observed that Kard scaled well for most benchmarks, except
the three applications, fluidanimate, water_nsquared, and barnes,
due to their large numbers of critical section entries and sharable
objects. However, excluding such worst-case applications, the geo-
metric mean of Kard’s overhead was only 5.8%, 12.4%, and 19.0%,
for 8, 16, and 32 threads, respectively.

7.5 Memory Consumption

Kard incurs memory overhead due to (a) unique page memory
allocation and (b) internal metadata like the section-object and key-
section maps. First, despite page consolidation, Kard can waste
memory if the allocated object size is not a factor of the fixed vir-
tual page consolidation size (currently set to 32 B). Also, Kard does
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Figure 5: The scalability of Kard while executing PARSEC and

SPLASH-2x with 8, 16, and 32 threads.

not currently consolidate the unique virtual pages of global ob-
jects (refer to §6); hence, it pays an additional memory cost that
can be reduced in future implementations. Second, Kard consumes
memory to maintain internal metadata, depending on the number
of critical sections, sharable objects, and protection keys. Suchmem-
ory consumption can be reduced by implementing optimized data
structures for Kard instead of using standard C++ data structure
libraries.

Despite the limitations of Kard’s implementation, considering
the evaluated applications, Kard’s memory overhead is modest: a
geometric mean of 68.0% for the benchmarking applications and
85.6% across our real-world applications, according to the Resi-
dent Set Size (RSS) [51] (Table 3). In particular, 10 out of 15 bench-
marking applications have a memory overhead less than 10%. We
observe that water_nsquared has the highest memory overhead.
Upon closer inspection, we found that it allocates 128,000 of 24 B
heap objects, making the unique page allocator waste memory (i.e.,
8 B per-object since Kard allocates objects in multiples of 32 B).
In contrast, although NGINX allocates many objects, its memory
overhead is smaller than that of water_nsquared because the size
of its objects is usually 32 B or 4 KiB. Thus, Kard can decrease the
memory overhead by profiling the most common allocation size of
a target program and using that size for allocation.

8 DISCUSSION

This section describes a potential problem that could occur with
progressive shared object identification. Then, it presents ways to
preserve Kard’s accuracy even in key sharing scenarios using soft-
ware and advanced hardware memory protection implementations.
Lastly, the section discusses possible Kard extensions that would
allow Kard to detect non-ILU data races and data races on program
binaries without requiring source code instrumentation.

Progressive identification. Progressive shared object identifica-
tion and domain enforcement (refer to §5.3) can potentially open a
tiny time window that allows a thread outside of its critical section
to access a shared object being identified within a different thread’s
critical section. Kard will not report such data races due to a lack
of domain protection for the newly-identified shared object. How-
ever, we believe that such scenarios are extremely rare because the
time window is so small and we did not observe them during the
evaluation (refer to §7.3). Furthermore, Kard will report the data
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race missed during identification if it occurs again during the same
program execution. We leave such investigation to future work.

Software fallback and advanced hardware. Kard can over-
come the limitations of MPK’s current implementation using soft-
ware per-thread memory protection mechanisms, such as those
employed by iThreads [7], or advanced hardware implementations
of per-thread memory protection. Since MPK provides only 16
protection keys, Kard must share protection keys in rare occa-
sions (refer to §7.3). However, Kard’s race detection algorithm is
agnostic to the underlying memory protection mechanism, so it can
revert to a software memory protection scheme [3, 10, 46] when it
exhausts hardware protection keys. Nevertheless, software memory
protection requires systems software changes and incurs significant
performance costs (up to 100% [46]). In the future, Kard can be
implemented on advanced hardware [50, 60] that allows up to 1000
protection keys to completely negate protection key limit issues.

Non-ILU extension. Kard can extend its race detection algo-
rithm (refer to algorithm 1) to track data races that occur outside
ILU’s scope, by updating the algorithm to acquire protection keys
for shared variables outside critical sections. However, on current
MPK hardware, such an extension would not be effective because
the limited protection keyswould result inmany instances of protec-
tion key sharing (which can result in false negatives). Nevertheless,
software fallback and advanced hardware can circumvent protec-
tion key limitations (as explained before) to make such extension
feasible in the future.

Program binary extension. Kard can act directly on unmodified
program binaries by intercepting standard library calls for heap
memory allocation and thread management, and using a custom
loader to handle global variables. For example, Kard can intercept
library calls via LD_PRELOAD to use its memory allocator and update
per-thread protection domains while differentiating synchroniza-
tion call sites using return addresses. Furthermore, for position
independent binaries (compiled with -fPIC), Kard can change the
locations of global variables to store them in unique virtual pages.
We leave such implementation to future work.

9 RELATEDWORK

This section provides an overview of data race detection schemes
that are related to Kard. It initially describes schemes that im-
plement dynamic data race detectors using software or hardware
memory protection or use other commodity hardware features like
transactional memory and processor monitoring units. The section
concludes by providing a comparison between dynamic data race
detectors like Kard and static data race detection techniques.

Memory protection for data race detection. Several prior stud-
ies use software memory protection to detect data races. Mul-
tiRace [45] uses minipages along with pointer swizzling to ensure
per-thread view on a memory page, but requires expensive indirect
memory access. ISOLATOR [46] and Abadi et al. [3] use a copy-on-
write trick to ensure thread isolation. Whenever a thread writes a
value into a shared read-only page, it will obtain a new private page
copied from the original one. However, if the diverged pages have
conflicting values, it is difficult to merge them to create a single view.
Other schemes implement per-thread address spaces [10, 27, 35, 42]

using kernel modifications. Such schemes invoke system calls and
flush TLB entries to change per-thread permissions. Thus, they
incur substantial performance overhead unlike Kard.

Virtual machine monitors have also been used to enable software
memory protection for data race detection. In particular, SKI [23]
uses a modified QEMU to analyze memory accesses at the virtual
machine-level while ensuring schedule diversity. This allows SKI
to detect kernel data races and other kernel concurrency bugs with-
out modifying the tested system. Unlike SKI, Kard uses efficient
hardware protection mechanisms and selectively analyzes memory
accesses to ensure very low impact on application performance.

Like Kard, PUSh [64] uses MPK’s efficient hardware memory
protection to detect data races. However, Kard has three main
technical contributions over PUSh. First, Kard proposes a key-
based race detection algorithm that reports ILU data races using
protection keys. Unlike PUSh’s design, which assumes complete
knowledge of object sharing patterns through manual annotations,
Kard’s algorithm is built for progressive identification of shar-
ing patterns, which allows automated data race detection. Second,
Kard implements efficient shared object identification, which is
more than an order of magnitude faster than prior implemented
identification strategies like Eraser’s [49]. In contrast, PUSh re-
lies on extensive manual effort, such as 35 hours to annotate and
modify the streamcluster application, highly undesirable in testing
settings [34]. Lastly, Kard implements protection interleaving to
mitigate false positives and precisely identify the actual byte offsets
accessed by conflicting threads. In contrast, to detect sub-object
data races, PUSh page-aligns each structure member and array
element, resulting in potential compatibility issues with external
libraries [40] and substantial memory overhead.

Other hardware approaches. TxRace [62] uses Transactional
Synchronization Extensions (TSX) to reduce the overhead of TSan.
However, TSX suffers from false positives because any interrupt
or cache line eviction can affect its behavior and its monitoring
capacity depends on the cache size [33, 54]. REPT [15] uses In-
tel Processor Trace and crash dump to realize reverse debugging.
However, REPT cannot detect transient data race bugs that do not
produce a crash.

Static data race analysis. Static detectors [11, 31] can detect
some data races during program compilation with no performance
overhead. A major limitation of such approaches is that they can
potentially report many false positives that developers want to
avoid [34]. In particular, static techniques rely on imprecise pointer
analysis [30, 55] that fails to accurately resolve function pointers [4]
and cannot match data accesses to dynamically-allocated objects
(e.g., heap-based). In contrast, dynamic detectors, including Kard,
do not suffer from such problems, so they report fewer false positive
data races than static analysis techniques.

10 CONCLUSION

Kard is a dynamic data race detector with a very low performance
overhead of 7.0% with PARSEC and SPLASH-2x, and 5.3% with
real-world applications, under the common testing scenario of 4
threads. Kard uses per-thread memory protection from Intel MPK
to detect all data races involving inconsistent lock usages with a
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key-enforced race detection algorithm. Kard overcomes various
hardware limitations of MPK to have a low false positive rate and
a modest memory overhead.
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