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Abstract—This paper introduces RESTler, the first stateful
REST API fuzzer. RESTler analyzes the API specification of
a cloud service and generates sequences of requests that au-
tomatically test the service through its API. RESTler generates
test sequences by (1) inferring producer-consumer dependencies
among request types declared in the specification (e.g., inferring
that “a request B should be executed after request A” because
B takes as an input a resource-id x produced by A) and by
(2) analyzing dynamic feedback from responses observed during
prior test executions in order to generate new tests (e.g., learning
that “a request C after a request sequence A;B is refused by the
service” and therefore avoiding this combination in the future).

We present experimental results showing that these two
techniques are necessary to thoroughly exercise a service under
test while pruning the large search space of possible request
sequences. We used RESTler to test GitLab, an open-source Git
service, as well as several Microsoft Azure and Office365 cloud
services. RESTler found 28 bugs in GitLab and several bugs in
each of the Azure and Office365 cloud services tested so far. These
bugs have been confirmed and fixed by the service owners.

I. INTRODUCTION

Over the last decade, we have seen an explosion in cloud
services for hosting software applications (Software-as-a-
Service), for building distributed services and data processing
(Platform-as-a-Service), and for providing general computing
infrastructure (Infrastructure-as-a-Service). Today, most cloud
services, such as those provided by Amazon Web Services
(AWS) [2] and Microsoft Azure [29], are programmatically ac-
cessed through REST APIs [11] by third-party applications [1]
and other services [31]. Meanwhile, Swagger (recently re-
named OpenAPI) [40] has arguably become the most popular
interface-description language for REST APIs. A Swagger
specification describes how to access a cloud service through
its REST API, including what requests the service can handle,
what responses may be received, and the response format.

Tools for automatically testing cloud services via their
REST APIs and checking whether those services are reliable
and secure are still in their infancy. The most sophisticated
testing tools currently available for REST APIs capture live
API traffic, and then parse, fuzz and replay the traffic with the
hope of finding bugs [4], [34], [7], [41], [3]. Many of these
tools were born as extensions of more established website
testing and scanning tools (see Section VIII). Since these
REST API testing tools are all recent and not yet widely used,
it is still largely unknown how effective they are in finding
bugs and how security-critical those bugs are.

In this paper, we introduce RESTler, the first automatic
stateful REST API fuzzing tool. Fuzzing [39] means automatic
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test generation and execution with the goal of finding security
vulnerabilities. Unlike other REST API testing tools, RESTler
performs a lightweight static analysis of an entire Swagger
specification, and then generates and executes tests that exer-
cise the corresponding cloud service in a stateful manner. By
stateful, we mean that RESTler attempts to explore service
states that are reachable only using sequences of multiple
requests. With RESTler, each test is defined as a sequence
of requests and responses. RESTler generates tests by:

1) inferring dependencies among request types declared in
the Swagger specification (e.g., inferring that a resource
included in the response of a request A is necessary as
input argument of another request B, and therefore that
A should be executed before B), and by

2) analyzing dynamic feedback from responses observed
during prior test executions in order to generate new tests
(e.g., learning that “a request C after a request sequence
A;B is refused by the service” and therefore avoiding
this combination in the future).

We present empirical evidence showing that these two
techniques are necessary to thoroughly test a service, while
pruning the large search space defined by all possible request
sequences. RESTler also implements several search strategies
(akin to those used in model-based testing [43]) and we
compare their effectiveness while fuzzing GitLab [13], an
open-source self-hosted Git service with a complex REST API.

During the course of our experiments, we found 28 new
bugs in GitLab (see Section VI). We also ran experiments
on four public cloud services in Microsoft Azure [29] and Of-
fice365 [30] and found several bugs in each service tested (see
Section VII). This paper makes the following contributions:

• We introduce RESTler, the first automatic, stateful
fuzzing tool for REST APIs, which analyzes a Swagger
specification, automatically infers dependencies among
request types, and dynamically generates tests guided by
feedback from service responses.

• We present detailed experimental evidence showing that
the techniques used in RESTler are necessary for effective
automated stateful REST API fuzzing.

• We present experimental results obtained with three dif-
ferent strategies for searching the large search space
defined by all possible request sequences, and discuss
their strengths and weaknesses.

• We present a detailed case study with GitLab, a large
popular open-source self-hosted Git service and discuss
several new bugs found so far.

• We discuss preliminary experiences using RESTler to test



Fig. 1: Swagger Specification of Blog Posts Service

several Microsoft public cloud services.
The remainder of the paper is organized as follows. Sec-

tion II describes how Swagger specifications are processed by
RESTler. Sections III and IV present the main test-generation
algorithm used in RESTler and implementation details. Sec-
tion V presents an evaluation of the test-generation techniques
and search strategies implemented in RESTler. Section VI
discusses new bugs found in GitLab. Section VII presents our
experiences fuzzing several public cloud services. Section VIII
discusses related work, and Section IX concludes the paper.

II. PROCESSING API SPECIFICATIONS

In this paper, we consider services accessible through REST
APIs described with a Swagger specification. A client program
can send messages, called requests, to a service and receive
messages back, called responses. Such messages are sent over
the HTTP protocol. A Swagger specification describes how to
access a service through its REST API (e.g., what requests
the service can handle and what responses may be expected).
Given a Swagger specification, open-source Swagger tools can
automatically generate a web UI that allows users to view the
documentation and interact with the API via a web browser.

A sample Swagger specification, in web-UI form, is shown
in Figure 1. This specification describes the API of a simple
blog posts hosting service. The API consists of five request
types, specifying the endpoint, method, and required parame-
ters. This service allows users to create, access, update, and
delete blog posts. In a web browser, clicking on any of these
five request types expands the description of the request type.

For instance, selecting the second (POST) request, reveals
text similar to the left of Figure 2. This text is in YAML
format and describes the exact syntax expected for that specific
request and its response. In this case, the definition part
of the specification indicates that an object named body of
type string is required and that an object named id of type
integer is optional (since it is not required). The path part
of the specification describes the HTTP-syntax for this POST
request as well as the format of the expected response.

From such a specification, RESTler automatically constructs
the test-generation grammar shown on the right of Figure 2.
This grammar is encoded in executable python code. It
consists of code to generate an HTTP request, of type POST
in this case, and code to process the expected response
of this request. Each function restler_static simply
appends the string it takes as argument without modifying

basePath: ’/api’
swagger: ’2.0’
definitions:

”Blog Post”:
properties:

body:
type: string

id:
type: integer

required:
−body
type: object

paths:
”/blog/posts/”

post:
parameters:
−in: body

name: payload
required: true

schema:
ref: ”/definitions/Blog Post”

from restler import requests
from restler import dependencies

def parse posts(data):
post id = data[”id”]
dependencies.set var(post id)

request = requests.Request(
restler static(”POST”),
restler static(”/api/blog/posts/”),
restler static(”HTTP/1.1”),
restler static(”{”),
restler static(”body:”),
restler fuzzable(”string”),
restler static(”}”),
’post send’: {

’parser’: parse posts,
’dependencies’: [

post id.writer(),
]

}
)

Fig. 2: Swagger Specification and Automatically Derived RESTler
Grammar. Shows a snippet of Swagger specification in YAML (left)
and the corresponding grammar generated by RESTler (right).

it. In contrast, the function restler_fuzzable takes as
argument a value type (like string in this example) and
replaces it by one value of that type taken from a (small)
dictionary of values for that type. How dictionaries are defined
and how values are selected is discussed in the next section.

The response is expected to return a new dynamic object (a
dynamically created resource id) named id of type integer.
Using the schema shown on the left, RESTler automatically
generates the function parse_posts shown on the right.

By similarly analyzing the other request types described in
this Swagger specification, RESTler will infer automatically
that ids returned by such POST requests are necessary
to generate well-formed requests of the last three request
types shown in Figure 1, which each requires an id. These
producer-consumer dependencies are extracted by RESTler
when processing the Swagger specification and are later used
for test generation, as described next.

III. TEST GENERATION ALGORITHM

The main algorithm for test generation used by RESTler is
shown in Figure 3 in python-like notation. It starts (line 3) by
processing a Swagger specification as discussed in the previous
section. The result of this processing is a set of request types,
denoted reqSet in Figure 3, and of their dependencies (more
on this later).

The algorithm computes a set of request sequences, as in-
ferred from Swagger, denoted seqSet and initially containing
an empty sequence ε (line 5). A request sequence is valid if
every response in the sequence has a valid return code, defined
here as any code in the 200 range. At each iteration of its main
loop (line 8), starting with n = 1, the algorithm computes all
valid request sequences seqSet of length n before moving to
n+1 and so on until a user-specified maxLength is reached.
Computing seqSet is done in two steps.

First, the set of valid request sequences of length n − 1 is
extended (line 9) to create a set of new sequences of length n



1 Inputs: swagger spec, maxLength
2 # Set of requests parsed from the Swagger API spec
3 reqSet = PROCESS(swagger spec)
4 # Set of request sequences (initially an empty sequence ε)
5 seqSet = {ε}
6 # Main loop: iterate up to a given maximum sequence length
7 n = 1
8 while (n =< maxLength):
9 seqSet = EXTEND(seqSet, reqSet)

10 seqSet = RENDER(seqSet)
11 n = n + 1
12 # Extend all sequences in seqSet by appending
13 # new requests whose dependencies are satisfied
14 def EXTEND(seqSet, reqSet):
15 newSeqSet = {}
16 for seq in seqSet:
17 for req in reqSet:
18 if DEPENDENCIES(seq, req):
19 newSeqSet = newSeqSet + concat(seq, req)
20 return newSeqSet
21 # Concretize all newly appended requests using dictionary values,
22 # execute each new request sequence and keep the valid ones
23 def RENDER(seqSet):
24 newSeqSet = {}
25 for seq in seqSet:
26 req = last request in(seq)
27 ~V = tuple of fuzzable types in(req)
28 for ~v in ~V :
29 newReq = concretize(req, ~v)
30 newSeq = concat(seq, newReq)
31 response = EXECUTE(newSeq)
32 if response has a valid code:
33 newSeqSet = newSeqSet + newSeq
34 else:
35 log error
36 return newSeqSet
37 # Check that all objects referenced in a request are produced
38 # by some response in a prior request sequence
39 def DEPENDENCIES(seq, req):
40 if CONSUMES(req) ⊆ PRODUCES(seq):
41 return True
42 else:
43 return False
44 # Objects required in a request
45 def CONSUMES(req):
46 return object types required in(req)
47 # Objects produced in the responses of a sequence of requests
48 def PRODUCES(seq):
49 dynamicObjects = {}
50 for req in seq:
51 newObjs = objects produced in response of(req)
52 dynamicObjects = dynamicObjects + newObjs
53 return dynamicObjects

Fig. 3: Main Algorithm used in RESTler.

by appending each request with satisfied dependencies at the
end of each sequence, as described in the EXTEND function
(line 14). The function DEPENDENCIES (line 39) checks if
all dependencies of the specified request are satisfied. This is
true when every dynamic object that is a required parameter
of the request, denoted by CONSUMES(req), is produced by
some response to the request sequence preceding it, denoted
by PRODUCES(seq). If all the dependencies are satisfied,
the new sequence of length n is retained (line 19); otherwise
it is discarded.

Second, each newly-extended request sequence whose de-
pendencies are satisfied is rendered (line 10) one by one as
described in the RENDER function (line 23). For every newly-
appended request (line 26), the list of all fuzzable primitive

types in the request is computed (line 27) (those are identified
by restler_fuzzable in the code shown on the right of
Figure 2). Then, each fuzzable primitive type in the request is
concretized, which substitutes one concrete value of that type
taken out of a finite, user-configurable dictionary of values.
For instance, for fuzzable type integer, RESTler might use
a small dictionary with the values 0, 1, and -10, while for
fuzzable type string, a dictionary could be defined with
the values “sampleString”, the empty string, and a very long
fixed string. The function RENDER generates all possible such
combinations (line 28). Each combination thus corresponds
to a fully-defined request newReq (line 29) which is HTTP-
syntactically correct. The function RENDER then executes this
new request sequence (line 31), and checks its response: if the
response has a valid status code, the new request sequence is
valid and retained (line 33); otherwise, it is discarded and the
received error code is logged for analysis and debugging.

More precisely, the function EXECUTE executes each re-
quest in a sequence one by one, each time checking that the
response is valid, extracting and memoizing dynamic objects
(if any), and providing those in subsequent requests in the
sequence if needed, as determined by the dependency analysis;
the response returned by function EXECUTE in line 31 refers
to the response received for the last, newly-appended request
in the sequence. Note that if a request sequence produces
more than one dynamic object of a given type, the function
EXECUTE will memoize all of those objects, but will provide
them later when needed by subsequent requests in the exact
order in which they are produced; in other words, the function
EXECUTE will not try different ordering of such objects. If a
dynamic object is passed as argument to a subsequent request
and is “destroyed” after that request, i.e., it becomes unusable
later on, RESTler will detect this by receiving an invalid status
code (outside the 200 range) when attempting to reuse that
unusable object, and will then discard that request sequence.

By default, the function RENDER of Figure 3 generates all
possible combinations of dictionary values for every request
with several fuzzable types (see line 28). For large dictionaries,
this may result in astronomical numbers of combinations. In
that case, a more scalable option is to randomly sample each
dictionary for one (or a few) values, or to use combinatorial-
testing algorithms [10] for covering, say, every dictionary
value, or every pair of values, but not every k-tuple. In the
experiments reported later, we used small dictionaries and the
default RENDER function shown in Figure 3.

The function EXTEND of Figure 3 generates all request se-
quences of length n+1 whose dependencies are satisfied. Since
n is incremented at each iteration of the main loop of line 8,
the overall algorithm performs a breadth-first search (BFS)
in the search space defined by all possible request sequences.
In Section V, we report experiments performed also with two
additional search strategies: BFS-Fast and RandomWalk.
BFS-Fast. In function EXTEND, instead of appending every
request to every sequence, every request is appended to at most
one sequence. This results in in a smaller set newSeqSet
which covers (i.e., includes at least once) every request but



does not generate all valid request sequences. Like BFS,
BFS-Fast still exercises every executable request type at each
iteration of the main loop in line 8: it still provides full
grammar coverage but with fewer request sequences, which
allows it to go deeper faster than BFS.
RandomWalk. In function EXTEND, the two loops of line 17
and line 18 are eliminated; instead, the function now returns a
single new request sequence whose dependencies are satisfied,
and generated by randomly selecting one request sequence
seq in seqSet and one request in reqSet. (The function
randomly chooses such a pair until all the dependencies of that
pair are satisfied.) This search strategy will therefore explore
the search space of possible request sequences deeper more
quickly than BFS or BFS-Fast. When RandomWalk can no
longer extend the current request sequence, it restarts from
scratch from an empty request sequence. (Since it does not
memoize past request sequences between restarts, it might
regenerate the same request sequence again in the future.)

IV. IMPLEMENTATION

We have implemented RESTler in 3,151 lines of modular
python code split into: the parser and compiler module, the
core fuzzing runtime module, and the garbage collector (GC)
module. The parser and compiler module is used to parse a
Swagger specification and to generate the RESTler grammar
describing how to fuzz a target service. (In the absence of
a Swagger specification, the user could directly provide the
RESTler grammar.) The core fuzzing runtime module imple-
ments the algorithm of Figure 3 and its variants. It renders API
requests, processes service-side responses to retrieve values
of the dynamic objects created, and analyzes service-side
feedback to decide which requests should be reused in future
generations while composing new request sequences. Finally,
the GC runs as a separate thread that tracks the creation of
the dynamic objects over time and periodically deletes aging
objects that exceed some user-defined limit (see Section VII).

A. Using RESTler
RESTler is a command-line tool that takes as input a

Swagger specification, service access parameters (e.g. IP,
port, authentication), the mutations dictionary, and the search
strategy to use during fuzzing. After compiling the Swagger
specification, RESTler displays the number of endpoints dis-
covered and the list of resolved and unresolved dependencies,
if any. In case of unresolved dependencies, the user may pro-
vide additional annotations or resource-specific mutations (see
Section VII) and re-run this step to resolve them. Alternatively,
the user may choose to start fuzzing right away and RESTler
will treat unresolved dependencies in consumer parameters
as restler_fuzzable string primitives. During fuzzing,
RESTler reports each bug, currently defined as a 500 HTTP
status code (500 “Internal Server Error”) received after exe-
cuting a request sequence, as soon as it is found.

B. Current Limitations
Currently, RESTler does not support requests for API end-

points with server-side redirects (e.g., 301 “Moved Perma-

nently”, 303 “See Other”, and 307 “Temporary Redirect”).
Furthermore, RESTler currently can only find bugs defined
as unexpected HTTP status codes. Such a simple test oracle
cannot detect vulnerabilities that are not visible though HTTP
status codes (e.g., “Information Exposure” and others). Despite
these limitations, RESTler has already found confirmed bugs
in a production-scale open-source application and in several
Microsoft Azure and Office365 services, as will be discussed
in Sections VI and VII.

V. EVALUATION

We present experimental results obtained with RESTler that
answer the following questions:
Q1: Are both inferring dependencies among request types

and analyzing dynamic feedback necessary for effective
automated REST API fuzzing? (Section V-B)

Q2: Are tests generated by RESTler exercising deeper
service-side logic as sequence length increases? (Sec-
tion V-C)

Q3: How do the three search strategies implemented in
RESTler compare across various APIs? (Section V-D)

We answer the first question (Q1) using a simple blog posts
service with a REST API. We answer (Q2), and (Q3) using
GitLab, an open-source, production-scale 1 web service for
self-hosted Git. We conclude the evaluation by discussing
in Section V-E how to bucketize (i.e., group together) the
numerous bugs that can be reported by RESTler in order to
facilitate their analysis.

A. Experimental Setup

Blog Posts Service. We answer (Q1) using a simple blog posts
service, written in 189 lines of python code using the Flask
web framework [12]. Its functionality is exposed over a REST
API with a Swagger specification shown in Figure 1. The API
contains five request types: (i) GET on /posts: returns all
blog posts currently registered; (ii) POST on /posts: creates
a new blog post (body: the text of the blog post); (iii) DELETE
/posts/id: deletes a blog post; (iv) GET posts/id:
returns the body and the checksum of an individual blog post;
and (v) PUT /posts/id: updates the contents of a blog post
(body: the new text of the blog post and the checksum of the
older version of the blog post’s text).

To model an imaginary subtle bug, at every update of a blog
post (PUT request with body text and checksum) the service
checks if the checksum provided in the request matches the
recorded checksum for the current blog post, and if it does, an
uncaught exception is raised. Thus, this bug will be triggered
and detected only if dependencies on dynamic objects shared
across requests are taken into account during test generation.
GitLab. We answer (Q2) and (Q3) using GitLab, an open-
source web service for self-hosted Git. GitLab’s back-end
is written in over 376K lines of ruby code using ruby-on-
rails [35] and its functionality is exposed through a REST

1GitLab [13] is used by more than 100,000 organizations, has millions of
users, and has currently a 2/3 market share of the self-hosted Git market [20].



API [14]. For our deployment, we apply the following config-
uration settings: we use Nginx to proxypass the Unicorn web
server and configure 15 Unicorn workers limited to up to 2GB
of physical memory; we use postgreSQL for persistent storage
configured with a pool of 10 workers; we use GitLab’s default
configuration for sidekiq queues and redis workers. According
to GitLab’s deployment recommendations, such configuration
should scale up to 4,000 concurrent users [15].
Fuzzing Dictionaries. For the experiments in this section, we
use the following dictionaries for fuzzable primitives types:
string has possible values “sampleString” and “” (empty
string); integer has possible values “0” and “1”; boolean has
possible values “true” and “false”.

All experiments were run on Ubuntu 16.04 Microsoft Azure
VMs configured with eight Intel(R) Xeon(R) E5-2673 v3 @
2.40GHz CPU cores and 56GB of physical memory.

B. Techniques for Effective REST API Fuzzing

In this section, we report results with our blog posts
service to determine whether both (1) inferring dependencies
among request types and (2) analyzing dynamic feedback are
necessary for effective automated REST API fuzzing (Q1).
We choose a simple service in order to clearly measure and
interpret the testing capabilities of the two core techniques
being evaluated. Those capabilities are evaluated by measuring
service code coverage and client-visible HTTP status codes.

Specifically, we compare results obtained when exhaustively
generating all possible request sequences of length up to three,
with three different test-generation algorithms:

1) RESTler ignores dependencies among request types
and treats dynamic objects – such as post id and
checksum – as fuzzable primitive type string ob-
jects, while still analyzing dynamic feedback.

2) RESTler ignores service-side dynamic feedback and
does not eliminate invalid sequences during the search,
but still infers dependencies among request types and
generates request sequences satisfying those.

3) RESTler uses the algorithm of Figure 3 using both de-
pendencies among request types and dynamic feedback.

Figure 4 shows the number of tests, i.e., request sequences, up
to maximum length 3, generated by each of these three algo-
rithms, from left to right. The top plots show the cumulative
code coverage measured in lines of code over time, as well as
when the sequence length increases. The bottom plots show
the cumulative number of HTTP status codes received.
Code Coverage. First, we observe that without considering
dependencies among request types (Figure 4, top left), code
coverage is limited to up to 130 lines and there is no increase
over time, despite increasing the length of request sequences.
This illustrates the limitations of using a naive approach to
test a service where values of dynamic objects like id and
checksum cannot be randomly guessed or picked among
values in a small predefined dictionary. In contrast, by infer-
ing dependencies among requests and by processing service
responses RESTler achieves an increase in code coverage up
to 150 lines of code (Figure 4, top center and right).

Second, we see that without considering dynamic feedback
to prune invalid request sequences in the search space (Fig-
ure 4, top center) the number of tests generated grows quickly,
even for a simple API. Specifically, without considering dy-
namic feedback (Figure 4, top center), RESTler produces more
than 4, 600 tests that take 1, 750 seconds and cover about 150
lines of code. In contrast, by considering dynamic feedback
(Figure 4, top right), the state space is significantly reduced
and RESTler achieves the same code coverage with less than
800 test cases and only 179 seconds.
HTTP Status Codes. We make two observations. First,
focusing on 40X status codes, we notice a high number of
40X responses when ignoring dynamic feedback (Figure 4,
bottom center). This indicates that without considering service-
side dynamic feedback, the number of possible invalid request
sequences grows quickly. In contrast, considering dynamic
feedback dramatically decreases the percentage of 40X status
codes from 60% to 26% without using dependencies among
request types (Figure 4 bottom left) and to 20% with using
dependencies among request types (Figure 4, bottom right).
Moreover, when using dependencies among request types
(Figure 4, bottom right), we observe the highest percentage
of 20X status codes (approximately 80%), indicating that
RESTler then exercises a larger part of the service logic –
also confirmed by coverage data (Figure 4, top right).

Second, when ignoring dependencies among request types,
we see that no 500 status codes are detected (Figure 4, bottom
left), while RESTler finds a handful of 500 status codes
when using dependencies among request types (see (Figure 4,
bottom left and bottom right). These 500 responses are
triggered by the unhandled exception we planted in our blog
posts service after a PUT blog update request with a checksum
matching the previous blog post’s body (see Section V-A).
When ignoring dependencies among request types, RESTler
misses this bug (Figure 4, bottom left). In contrast, when
analyzing dependencies across request types and using the
checksum returned by a previous GET /posts/id request
in a subsequent PUT /posts/id update request with the
same id, RESTler does trigger the bug. Furthermore, when
additionally using dynamic feedback, the search space is
pruned while preserving this bug, which is then found with
the least number of tests (Figure 4, bottom right).

Overall, these experiments illustrate the complementarity
between utilizing dependencies among request types and using
dynamic feedback, and show that both are needed for effective
REST API fuzzing.

C. Deeper Service Exploration

In this section, we use GitLab to determine whether tests
generated by RESTler exercise deeper service-side logic as
sequence length increases (Q2). We perform individual experi-
ments on six groups of GitLab APIs related to usual operations
with commits, branches, issues and notes, repositories and
repository files, groups and group membership, and projects.

Table I shows the total number of requests in each of the six
target API groups and presents experimental results obtained
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Fig. 4: Blog Posts Service Code Coverage and HTTP Status Codes Over Time. Shows the increase in code coverage over time (top)
and the cumulative number of HTTP status codes received over time (bottom), for the simple blog posts service. Left: RESTler ignores
dependencies among request types. Center: RESTler ignores dynamic feedback. Right: RESTler utilizes both dependencies among request
types and dynamic feedback. When leveraging both techniques, RESTler achieves the best code coverage and finds the planted 500 “Internal
Server Error” bug with the least number of tests.

API Total
Requests

Seq.
Len.

Coverage
Increase

Tests seqSet
Size

Dynamic
Objects

Commits 11 1 598 1 1 1
2 1108 7 5 10
3 1196 250 46 521
4 1760 2220 1341 6577
5 1760 3667 20679 12518

Branches 7 1 598 1 1 1
2 1089 8 6 11
3 1172 58 44 107
4 1182 576 387 1279
5 1185 3644 5528 9336

Issues 22 1 816 37 37 37
2 1163 2444 1839 4245
3 1163 4156 15658 8870

Repos 10 1 598 1 1 1
2 1117 97 65 206
3 1181 5153 2194 15472

Groups 50 1 887 39 39 38
2 1177 3508 3360 5204
3 1177 4817 79518 8946

Projects 48 1 934 42 41 38
2 1192 1870 1781 3343
3 1203 3226 18173 7374

TABLE I: Testing Common GitLab APIs with RESTler. Shows
the increase in sequence length, code coverage, tests executed,
seqSet size, and the number of dynamic objects being created using
BFS, until a 5-hours timeout is reached. Longer request sequences
gradually increase service-side code coverage.

with the test-generation algorithm of Figure 3 using BFS. For
each experiment we run RESTler with a 5-hours timeout and
limit the number of fuzzable primitive-type combinations to

maximum 1, 000 combinations per request. Between experi-
ments, we reboot the entire GitLab service to restart from the
same initial state. For each API group, as time goes by, Table I
shows the increase (going down) in the sequence length, code
coverage, tests executed, seqSet size, and the number of
dynamic objects created, until the 5-hours timeout is reached.
Code Coverage. We collect code coverage data by configur-
ing Ruby’s Class: TracePoint hook to trace GitLab’s
service/lib folder. Table I shows the cumulative code
coverage achieved after executing all the request sequences
generated by RESTler for each sequence length, or until the
5-hours timeout expires. The results are incremental on top of
16,836 lines of code executed during service boot.

From Table I, we can see that longer sequence lengths
consistently lead to increased service-side code coverage. This
is the desired behaviour, especially for small sequence lengths,
as some of the service functionality can only be exercised
after at least a few requests are executed. As an example,
consider the GitLab functionality of “selecting a commit”. Ac-
cording to GitLab’s specification, selecting a commit requires
two dynamic objects, a project-id and a commit-id, and the
following dependency of requests is implicit: (1) a user needs
to create a project, (2) use the respective project-id to post a
new commit, and then (3) select the commit using its commit-
id and the respective project-id. Clearly, this operation can only
be performed by sequences of three requests or more. For the
Commit APIs, note the gradual increase in coverage from 598
to 1, 108 to 1, 196 lines of code for sequence lengths of one,



API Total
Requests

Time
(hrs)

BFS BFS-Fast RandomWalk

Len. Coverage seqSet Len. Coverage seqSet Len. (restarts) Coverage seqSet
Commits 11 (*11) 1 4 1202 7 1697 13 (16) 1285

3 5 1760 9 1731 13 (35) 1295
5 5 1760 20679 12 1731 33 13 (56) 1303 1

Branches 7 (*2) 1 5 1182 21 1154 15 (24) 1182
3 5 1185 37 1178 19 (92) 1187
5 5 1185 5528 47 1178 11 22 (158) 1208 1

Issues 22 (*82) 1 2 1150 2 1086 10 (1) 770
3 3 1163 4 1551 10 (1) 770
5 3 1163 15658 5 1570 26 16 (2) 847 1

Repos 10 (*24) 1 3 1127 5 1141 10 (29) 1195
3 3 1127 7 1141 13 (88) 1231
5 3 1181 2194 8 1161 64 13 (142) 1231 1

Groups 50 (*2) 1 2 961 6 1275 19 (41) 1167
3 3 1177 11 1275 19 (120) 1250
5 3 1177 79518 14 1275 130 22 (186) 1283 1

Projects 48 (*4) 1 2 1006 5 1318 4 (3) 889
3 2 1053 11 1319 22 (31) 1024
5 3 1203 18173 15 1319 171 22 (45) 1273 1

TABLE II: Comparison of BFS, BFS-Fast and RandomWalk over Time. Shows the maximum sequence length, the increase in lines of
code covered (excluding service-boot coverage), and the seqSet size with each search strategy after 1, 3, and 5 hours. The second column
shows the total number of requests in each API along with the average feasible request renderings (*). Although BFS covers slightly more
lines of code, BFS-Fast and RandomWalk reach deeper request sequences and maintain a much smaller seqSet size.

two, and three, respectively. Most notably, for the Branches
API, service-side code coverage keeps gradually increasing
for sequences of length up to five, and reaches 1, 185 lines
when the 5-hours limit expires.
Tests, Sequence Sets, and Dynamic Objects. In addition to
code coverage, Table I also shows the increase in the number
of tests executed, the size of seqSet after the RENDER
function returns (line 10 of Figure 3), and the number of
dynamic objects created by RESTler. All those numbers are
quickly growing since the search space also grows quickly due
to the exhaustive nature of the BFS search strategy.

Nevertheless, we emphasize that without the two key tech-
niques evaluated in Section V-B this growth would be much
worse. For instance, for the Commit API, the SeqSet size
is 20, 679 and there are 12, 518 dynamic objects created by
RESTler for sequences of length up to five. By comparison,
since the Commits API has 11 request types with an average of
4 rendering combinations, the number of all possible rendered
request sequences of up to length four is already more than 164
millions, and a naive brute-force enumeration of those would
already be untractable. Still, even with the two core techniques
used in RESTler, the search space explodes quickly, and we
evaluate other search strategies next.

D. Search Strategies

We now present results of experiments comparing the
BFS, BFS-Fast, and RandomWalk search strategies defined
in Section III (Q3). For each search strategy, Table II shows
the maximum sequence length, the increase in lines of code
covered (excluding service-boot coverage) after 1, 3, and 5
hours, and the size of the seqSet when the 5-hours timeout is

reached. For the RandomWalk search strategy the total number
of restarts is also shown in parenthesis.

First, we compare BFS with BFS-fast. We observe that after
five hours, BFS achieves better coverage than BFS-Fast in
Commits, Branches, and Repos. These groups of APIs have
relatively fewer requests and BFS delivers better coverage by
exercising all feasible request sequences. However, BFS does
not scale well in APIs with relatively more requests, such as
Issues, Groups, and Projects. As shown in Table II after 5
hours for Issues, Groups, and Projects, BFS is still exploring
sequences of length 3 while BFS-Fast is exploring sequences
of length 5, 14, and 15, respectively. BFS-Fast scales better
in APIs with many request because, unlike BFS, it does not
explore all feasible request sequences but instead appends each
request to at most one sequence in each generation. BFS-Fast
maintains a smaller seqSet, and explores deeper sequences
and grows coverage faster in Issues, Groups, and Projects.

We now compare BFS with RandomWalk. By construction,
RandomWalk does not guarantee full grammar coverage since
it appends each request to one random sequence in each
generation. As shown in Table II, RandomWalk maintains a
small seqSet at any time, by construction. Furthermore, after
5 hours RandomWalk explores considerably deeper request
sequences compared to BFS and, in most cases, compared to
BFS-Fast. RandomWalk also delivers the best coverage after
5 hours in Branches, Repos, and Groups.

On the other hand, in Issues, we observe that after 5
hours RandomWalk explores sequences of length 16 and the
coverage increase is 847 lines. In the same time-frame, BFS
explores sequences of length 3 but the coverage increase
is 1, 163 and BFS-Fast explores sequences length 5 with a



API BFS BFS-
Fast

Random-
Walk

Intersection Union

Commits 5 1 5 1 5
Branches 7 7 7 5 8
Issues 0 1 1 0 1
Repos 2 3 3 2 3
Groups 0 0 2 0 2
Projects 2 1 3 1 3

Total 16 13 21 9 22

TABLE III: Bug Buckets found by BFS, BFS-Fast, and Ran-
domWalk after Five Hours. Shows the sets of bugs found by each
search strategy in each API. In total: RESTler found 22 new bugs.

coverage increase of 1, 570. Compared to all other APIs shown
in Table II, Issues have 82 feasible request renderings on
average. This is relatively large and in such a case, with many
feasible request renderings, the breadth of the search achieved
by RandomWalk is small (e.g., after 5 hours there are only 2
restarts). Consequently, the search remains focused on a very
restricted subspace which reflects poorly on coverage.

In practice, both controlling the size of seqSet, when
facing broader search spaces due to large APIs with many
requests or when reaching greater depths, and maintaining
some breadth when extending request sequences seem key
to delivering better code coverage. Nevertheless, the ultimate
goal is to find bugs, and maximizing code coverage is just a
heuristic to try to reach that goal.

E. Bug Bucketization

Before discussing real bugs found with RESTler, we intro-
duce a bucketization scheme to cluster similar 500 “Internal
Server Errors”. When fuzzing, different instances of a same
bug are often found repeatedly. Since all the bugs found
have to be inspected by the user, it is therefore important
in practice to facilitate this analysis by identifying likely-
redundant instances of a same unique bug.

In our context, we define a bug as a 500 HTTP status code
being received after executing a request sequence. Thus, every
bug found is associated with the request sequence that was
executed to find it. Given this property, we use the following
bucketization procedure for the bugs found by RESTler:

Whenever a new bug is found, we compute all non-
empty suffixes of its non-rendered request sequence2

(starting with the smallest one) and check whether
some suffix is a previously-recorded sequence lead-
ing to a bug found earlier. If there is a match, the
new bug is added to the bucket of that previous bug.
Otherwise, a new bucket is created with the new bug
and its request sequence.

When using BFS or BFS-Fast, this bucketization scheme will
identify bugs by the shortest sequence necessary to find it.

Table III shows the sets of bug buckets found by each
search strategy, after five hours, in each GitLab API group.
To demonstrate the overlap between the bugs reported by each

2A request sequence of length n has n suffixes of length 1, 2, . . . , n.

method, the last two columns show the intersection and the
union of the bug buckets. In the context of these experiments,
RESTler found 22 new unique bugs, after running each search
strategy for 5 hours on each API group.

RandomWalk stands out in Table III by finding the most
bugs: 21 compared to 16 and 13 for BFS and BFS-Fast
respectively. It is particularly intriguing that RandomWalk
finds as many bugs as BFS and BFS-Fast combined in Com-
mits and in Issues APIs because in these APIs RandomWalk
delivers relatively little coverage. After 5 hours, in commits,
RandomWalk finds as many bugs as BFS and more than
BFS-Fast. At the same time, RandomWalk delivers less code
coverage than each of BFS and BFS-Fast in Commits (see
Table II). Similarly, RandomWalk finds 1 bug in Issues, while
BFS finds none and BFS-Fast also finds one. Yet, again,
RandomWalk achieves less code coverage than each of BFS
and BFS-Fast in Issues. The differences between BFS and
BFS-Fast are less striking. BFS finds more bugs in Commits,
while BFS-Fast finds more bugs in Issues and Repos.

Overall, within the 5-hours time-frame of our experiments,
RandomWalk finds more bugs than BFS or BFS-Fast despite
the fact that it does not always deliver the best coverage. It
is unclear how this generalizes to longer fuzzing sessions or
to other APIs. Yet, it becomes apparent that coverage increase
should not always dictate the selection of a search strategy
because different search strategies may be complementary
within a large search space. Next, we discuss details of the
bugs founds with RESTler in GitLab and the total number of
bugs found when running longer fuzzing experiments.

VI. NEW BUGS FOUND IN GITLAB

During all our fuzzing experiments with RESTler on our
local GitLab deployment, we found a total of 28 new unique
bugs. All bugs were easily reproducible, disclosed to GitLab
developers, confirmed and fixed. Due to space limitation, we
describe only 2 of these bugs, to give the reader a flavor of
what those bugs look like and how they were found. (See [16],
[17], [18], [19] for other examples of bugs found.)
Example 1: Bug in Commits API. One of the bugs found by
RESTler in the Commits API is triggered when a user tries to
cherry-pick a commit to a branch with an empty name. Due
to incomplete input validation, an invalid branch name can be
passed between two different layers of abstraction as follows:
The ruby code that checks if a target branch exists, invokes a
native C function whose return value is expected to be either
NULL or an existing entry. However, if an unmatched entry
type (e.g., an empty string) is passed to the native function, an
exception is raised. This exception is unhandled by the higher-
level ruby code, and therefore it causes a 500 “Internal Server
Error”. The bug can be reproduced by (1) creating a project,
(2) creating a new branch (in addition to master branch which
is created by default), (3) posting a valid commit with action
“create” in the branch created in (2), and (4) cherry-picking
the commit to a branch whose name is set to the empty string.
Example 2: Bug in Branches API. Another bug, found
by RESTler in the Branches API, is triggered when a user



tries to edit a branch of a recently deleted project. The bug
is due to invalid serialization of operations which results in
an database entry update using an invalid foreign key of a
deleted project. Since the project-id (foreign key) is not present
in the respective “projects” table, a PG::ForeignKeyViolation
exception causes a 500 “Internal Server Error”. The bug can
be reproduced by (1) creating a project, (2) creating a branch,
(3) deleting the project created in (1), and (4) quickly editing
the branch of the deleted project.

From the above bug descriptions, we see a two-fold pattern.
First, RESTler produces a sequence that exercises the target
service deep enough so that it reaches a particular valid “state”.
Second, while the service is in such a state, RESTler produces
an additional request with an unexpected fuzzed value (e.g., an
empty string) or an unexpected action (e.g., edit a branch of a
recently deleted project). Most bugs found by RESTler require
a combination of these two features in order to be found.

VII. EXPERIENCES WITH PUBLIC CLOUD SERVICES

In this section, we describe our preliminary experiences run-
ning RESTler on three Azure [29] services and one Microsoft
Office365 [30] service. The services we fuzzed primarily
perform resource management and real-time data aggregation.
Swagger specifications for these services are publicly available
and published by Microsoft on GitHub.

While still in an early stage of development, RESTler found
new bugs in all of these services. These bugs range from
mis-handled invalid inputs (e.g., using a wrong ID or enum
value), executing operations in invalid states (e.g., updating
a resource that no longer exists), and inconsistent parameter
validations (e.g., using a valid request body with incorrect
metadata). Although we cannot disclose detailed descriptions
of these bugs, we emphasize that all bugs found by RESTler
so far have been confirmed and fixed by Microsoft service
developers. Indeed, “500 Internal Server Errors” are server
state corruptions that may severely damage service health and
security: it is safer to fix these rather than risk a live incident
with unknown consequences.

During this effort, we faced a number of challenges unique
to public cloud services, including resource quota limitations,
short-lived access tokens, and complex API dependencies
beyond the canonical REST API structure with application-
specific resource values and naming schemes. We describe the
extensions made to RESTler to address these challenges.
Resource Quotas. Production services that run in public
clouds are deployed with default resource quotas. Once quotas
are reached, RESTler’s core algorithm will continue to try
request sequences containing requests that can no longer
succeed due to exceeded quotas (since these requests were
valid in prior tests and generated lots of new resources), which
impedes progress. This challenge is unique to public cloud
deployments, contrary to self-contained deployments where
one can easily control and reconfigure resource quotas. To
address this problem, we implemented a garbage collector
(GC) in RESTler. The GC runs as a separate thread that
monitors the creation of dynamic resources over time and

periodically deletes dynamic objects that are no longer used in
order to avoid exceeding resource quotas. This allows RESTler
to continuously test new sequences for hours or days without
hitting resource-quota-related errors.
Short-lived Access Tokens. Unlike in self-contained deploy-
ments where an admin can pre-populate static or long-lived
authentication tokens, public cloud services use short-lived, re-
freshable authentication tokens. Usually, a public endpoint, ac-
cessible with some type of static credentials (e.g., a username-
password pair or a master token) and service-specific logic,
generates fresh, short-lived access tokens. The latter are added
in the header of HTTPS requests. Since different services
may require custom logic to access their public authentication
endpoints, RESTler provides an authentication hook which
periodically executes a user-provided piece of code (e.g., a
script) and propagates fresh values in the pool of refreshable
authentication tokens.
Application-specific Naming Schemes. As discussed in Sec-
tion II, RESTler performs a light-weight static analysis of a
Swagger specification to infer dependencies among requests
of the target REST API. However, part of a target API
may not be fully REST compliant, or the specification may
be incomplete, and consequently the inferred dependencies
will also be incomplete. To address this challenge, RESTler
supports annotations, which can be added directly to the
specification (as Swagger extensions), in order to explicitly
declare dependencies, as well as resource-specific mutations,
which can be used for the creation of resources that require
some custom format (e.g., an IP address). These two features
have proven useful in practice because Azure services use
PUT requests to create resources whose user-provided names
are passed as URL parameters and, after successful creation,
are also returned in the response. For this scenario, one can
use resource-name-specific mutations to indicate that a PUT
request should create a resource named in a custom format,
and then use that name to identify the corresponding dynamic
object in subsequent requests.

VIII. RELATED WORK

HTTP Fuzzers. Since REST API requests and responses
are transmitted over the HTTP protocol, HTTP-fuzzers can
be used to fuzz REST APIs. Fuzzers like Burp [8], Sul-
ley [38], BooFuzz [7], or the commercial AppSpider [4] and
Qualys’s WAS [34], can capture/replay HTTP traffic, parse
HTTP requests/responses and their contents (like embedded
JSON data), and then fuzz those using either pre-defined
heuristics [4], [34] or user-defined rules [38], [7]. Tools to
capture, parse, fuzz, and replay HTTP traffic have recently
been extended to leverage Swagger specifications in order to
parse HTTP requests and guide their fuzzing [4], [34], [41],
[3]. Compared to those tools, the main originality of RESTler
is the lightweight static analysis of Swagger specifications in
order to infer dependencies among request types, which in
turn allows RESTler to automatically generate sequences of
requests that exercise the business logic exposed by the API
in a stateful manner and without pre-recorded HTTP traffic.



Feedback-directed Test Generation. The dynamic feedback
RESTler uses to prune invalid requests from the search space
(line 32 in Figure 3) is similar to the feedback used in
Randoop [32]. However, the Randoop search strategy (in
particular, search pruning and ordering) is different from
the three search strategies considered in our work, and the
Randoop optimizations related to object equality and filtering
are not relevant in our context. RESTler’s dependency analysis
is also related to the analysis of type dependencies performed
by the Randoop algorithm [32] for typed object-oriented
programs. However, unlike in the Randoop work, dynamic
objects in Swagger specifications are implicitly declared and
untyped (e.g., authentication tokens or service-specific re-
sources). When a Swagger specification is not complete or
RESTler cannot infer object types correctly, RESTler supports
annotations (see Section VII) that the user can use to fix and
control RESTler’s behavior. In the future, it would be interest-
ing to allow richer user annotations in order to easily specify
complex service-specific types as well as their properties, in
the spirit of code contracts [28], [5].
Model-based Testing. Our BFS-Fast search strategy is in-
spired by test generation algorithms used in model-based
testing [42], whose goal is to generate a minimum number of
tests covering, say, every state and transition of a finite-state
machine model (e.g., see [43]) in order to generate a test suite
to check conformance of a (blackbox) implementation with
respect to that model. BFS-Fast is also related to algorithms
for generating tests from an input grammar while covering all
its production rules [26]. Indeed, in our context, BFS-Fast pro-
vides, by construction, a full grammar coverage up to the given
current sequence length. The number of request sequences
it generates is not necessarily minimal, but that number was
always small, hence manageable, in our experiments so far.
Grammar-based Fuzzing. General-purpose grammar-based
fuzzers like Peach [33] and SPIKE [37], among others [39], are
not Swagger-specific but can also be used to fuzz REST APIs.
With these tools, however, the user has to manually construct
an API-specific input grammar, often encoded directly by code
specifying what and how to fuzz, similar to the code shown
on the right of Figure 2. By contrast, RESTler automatically
generates an input grammar from a Swagger specification, and
its fuzzing rules are determined separately and automatically
by the algorithm of Figure 3.

Automatically learning input grammars from input sam-
ples is another complementary research area [25], [6], [24],
[36]. RESTler currently relies on a Swagger specification to
represent a service’s input space and it learns automatically
how to prune invalid request sequences by analyzing service
responses. Still, a Swagger specification could be further
refined given representative unit tests or live traffic in order
to focus the search towards specific areas of the input space.
For REST services without a Swagger specification, it would
be worth investigating how to automatically infer it by using
machine learning on runtime traffic logs or static analysis on
the code implementing the API.
Whitebox Fuzzing. Grammar-based fuzzing can also be com-

bined [27], [21] with whitebox fuzzing [23], which uses
dynamic symbolic execution [22], [9], constraint generation
and solving in order to generate new tests exercising new
code paths. In contrast, RESTler is currently purely blackbox:
the inner workings of the service under test are invisible to
RESTler which only sees REST API requests and responses.
Since cloud services are usually complex distributed systems
whose components are written in different languages, general
symbolic-execution-based approaches seem problematic, but
it would be worth exploring this option further. For instance,
in the short term, RESTler could be extended to take into
account alerts (e.g., assertion violations) reported in back-end
logs in order to increase chances of finding interesting bugs
and correlating them to specific request sequences.
Penetration Testing. In practice, the main technique used
today to ensure the security of cloud services is the so-called
“penetration testing”, or pen testing, which means security
experts review the architecture, design and code of cloud
services from a security perspective. Since pen testing is
labor intensive, it is expensive and limited in scope and
depth. Fuzzing tools like RESTler can partly automate the
discovery of specific classes of security vulnerabilities, and
are complementary to pen testing.

IX. CONCLUSION

RESTler is the first automatic tool for stateful fuzzing
of cloud services through their REST APIs. While still in
early stages of development, RESTler was able to find 28
bugs in GitLab and several bugs in each of the four Azure
and Office365 cloud services tested so far. Although still
preliminary, our results are encouraging. How general are these
results? To find out, we need to fuzz more services through
their REST APIs and check more properties to detect different
kinds of bugs and security vulnerabilities. Indeed, unlike buffer
overflows in binary-format parsers, use-after-free bugs in web
browsers, or cross-site-scripting attacks in web-pages, it is still
unclear what security vulnerabilities might hide behind REST
APIs. While past human-intensive pen testing efforts targeting
cloud services provide evidence that such vulnerabilities do
exist, this evidence is still too anecdotal. New automated
tools, like RESTler, are needed for more systematic answers.
How many bugs can be found by fuzzing REST APIs? How
security-critical will they be? This paper provides a clear path
forward to answer these questions.
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