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Abstract

We present gP4Pc, a new method for computing the ab-

solute pose of a generalized camera with unknown internal

scale from four corresponding 3D point-and-ray pairs. Un-

like most pose-and-scale methods, gP4Pc is based on con-

straints arising from the congruence of shapes defined by

two sets of four points related by an unknown similarity

transformation. By choosing a novel parametrization for

the problem, we derive a system of four quadratic equa-

tions in four scalar variables. The variables represent the

distances of 3D points along the rays from the camera cen-

ters. After solving this system via Gröbner basis-based

automatic polynomial solvers, we compute the similarity

transformation using an efficient 3D point-point alignment

method. We also propose a specialized variant of our solver

for the case of coplanar points, which is computationally

very efficient and about 3× faster than the fastest exist-

ing solver. Our experiments on real and synthetic datasets,

demonstrate that gP4Pc is among the fastest methods in

terms of total running time when used within a RANSAC

framework, while achieving competitive numerical stability,

accuracy, and robustness to noise.

1. Introduction

Absolute camera pose estimation from correspondences

between 3D points and 2D image coordinates (or viewing

rays) is a fundamental task in computer vision. It has nu-

merous applications in structure from motion (SfM) [37,

32], SLAM [26], image-based localization [23, 31] for aug-

mented reality, and robotics systems. While single camera

pose estimation is a well studied topic [9, 21], recently, the

topic of multi-camera pose estimation has been receiving

considerable attention [4, 14, 22, 15, 41, 28, 35].

The multi-camera pose estimation task involves localiz-

ing multiple images w.r.t. an existing reconstruction in a sin-

gle step and is closely related to the task of aligning two

reconstructions with different scales. The underlying prob-

lem is referred to as the generalized pose-and-scale prob-

lem, where the goal is to find a similarity transformation
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Figure 1. gP4Pc is a new pose-and-scale minimal solver that uses

point congruence constraints. Given four 3D point-ray correspon-

dences, the points, denoted by A, B, C and D are related to the

unknown points A′, B′, C′ and D′ on the rays by an unknown

similarity transformation T . gP4Pc first solves the points A′, B′,

C′ and D′ such that those points are congruent (or similar) to the

original points and then computes T from the point-point pairs.

between a set of 3D points and a set of 3D lines or rays,

such that the transformed 3D points lie on the correspond-

ing 3D lines. In the minimal case of this problem, four

point-to-ray correspondences are required. In this paper,

we present gP4Pc, a novel minimal solver for the gener-

alized pose-and-scale problem. Unlike existing pose-and-

scale solvers (e.g., [7, 35, 36, 41]) that minimize a least-

squares cost function, gP4Pc exploits the congruence rela-

tions of the 3D points (see Figure 1); the suffix ‘c’ in gP4Pc

refers to the idea of point congruence.

Constraints satisfied by congruent point sets have been

used for point-based scan registration [1, 25] but their use

in minimal problems in computer vision is not very com-

mon. Bujnak et al. [2, 3] and Zheng et al. [43] used them for

estimating single camera pose with unknown focal length.

Camposeco et al. [4] used such constraints for generalized

camera pose estimation but only for the specialized case

where one point-point and two point-ray matches are given.

We show that these congruence properties also lead to

efficient generalized pose-and-scale solvers in the general

setting. Specifically, by choosing a novel parametrization,

we derive a system of four quadratic equations in four vari-
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ables that we solve efficiently via Gröbner-based polyno-

mial solvers. These four variables represent the distances

from the pinholes or the camera projection centers to the

3D points along their associated viewing rays. Given the

distances, we obtain the transformed 3D points in the gen-

eralized camera’s coordinate frame and then compute the

3D similarity transformation from the four point pairs using

Umeyama’s method [40]. In contrast, most existing mini-

mal solvers directly compute the similarity transformation.

Contributions. (1) We propose a new minimal solver for

the generalized pose-and-scale estimation problem that is

based on geometric relationships satisfied by two congruent

3D point sets up to unknown scale. Ours is the first gen-

eral purpose solver that is derived from only congruence

constraints. (2) We also exploit congruence constraints to

derive a specialized solver for the case when the four 3D

points are coplanar, which is very computationally efficient.

Our experiments on synthetic and real pose-and-scale

estimation datasets show that gP4Pc has similar accu-

racy to the best performing methods such as gDLS [35],

gDLS+++ [36]. However, gP4Pc leads to faster pose es-

timation than the aforementioned methods when using the

minimal solvers within a RANSAC estimation framework.

Finally, our specialized solver for coplanar points is about

3× faster than existing methods and gives accurate results.

2. Related Work

Motivated by applications using multi-camera systems,

Pless [30] first studied generalized camera models where

the viewing rays do not meet in a single center of projection.

Then, Nister [27] proposed the first absolute pose estima-

tion method for a generalized camera. Subsequently, Ven-

tura et al. [41] introduced the generalized pose-and-scale

problem for cameras where the internal scale is unknown

and proposed gP+s, the first pose-and-scale estimator. Since

then, researchers proposed different pose-and-scale estima-

tors [4, 7, 17, 35, 36] that improve speed and accuracy

by integrating additional constraints (e.g., inertial sensors)

or deriving efficient polynomial solvers. We review these

methods for generalized cameras in the following sections.

Absolute pose minimal solvers. There is extensive work

on camera pose estimation, especially for pinhole cam-

eras [9, 6, 13, 21, 10, 42, 29]. These efforts focus mostly

on minimal solvers for the three point case, which are effi-

cient and easy to use within robust estimation frameworks

such as RANSAC [6]. For generalized cameras, Nister [27]

and then Nister and Stewenius [28] presented the first pose

estimation methods. They studied generalized cameras with

known scale, i.e., assumed the distance between the multi-

ple projection centers to be known. Other related works are

those of Chen and Chang [5], Lee et al. [20], Schweighofer

and Pinz [33], Kneip et al. [14] and Fragoso et al. [7].

gP+s. Ventura et al. [41] introduced the generalized pose-

and-scale problem for generalized cameras with unknown

scale, i.e., when the distance between the multiple projec-

tion centers is unknown. Their method solves the rota-

tion, translation, and scale directly by solving a polynomial

system encoding the null space of a linear system which

describes the solution space of the unknown parameters.

They solve this polynomial system using automatic Gröbner

basis-based polynomial solvers [16] and handle both mini-

mal and overdetermined problems.

gDLS. Sweeney et al. [35] presented gDLS, a pose-and-

scale estimator for a generalized camera [30] inspired by the

work of Hesch et al. [10]. gDLS frames the pose-and-scale

problem as a least squares problem. They show that it is

possible to derive linear relationships between scale, depths

(distance from camera center to a 3D point) and transla-

tion as a function of rotation. gDLS exploits these linear

relationships to rewrite the gDLS least-squares problem as

a function of only the rotation. The least squares solution

can be found by solving a polynomial system in the Cayley-

Gibbs-Rodrigues rotation parameters, using the Macaulay-

matrix-based polynomial solver. The solutions correspond

to all the critical points of the least-squares objective.

uPnP. Kneip et al. [15] presented uPnP, which works for

both single and generalized cameras. Similar to DLS [10],

uPnP frames pose estimation as a least-squares problem

and rewrites it as a function of only rotational parameters.

While DLS and gDLS use a Cayley-Gibbs-Rodrigues rota-

tion parametrization, uPnP uses quaternions. To solve for

the quaternions, Kneip et al. find all the critical points of

the least-squares function by solving the polynomial sys-

tem in the quaternion parameters using a fast and universal

Gröbner-based polynomial solver. Unlike gDLS, uPnP can-

not recover the scale of a generalized camera.

gP1R2+s. Camposeco et al. [4] proposed a specialized

solver for the generalized pose-and-scale problem that as-

sumes a specific form of input – two point–rays and one 3D

point–point correspondence. Their method is very efficient

and accurate and can be used in SLAM applications where

mixed point and ray correspondences are available.

gDLS+++. Sweeney et al. [36] proposed a faster version

of gDLS that uses the same polynomial solver as uPnP [15]

and they extended that method to handle unknown scale.

3Q3 Kukelova et al. [17]. proposed a general method to

solve a polynomial system of three quadrics. Their method

can be used to solve the pose problem for which they can

solve for the roots of the octic polynomial very efficiently

and avoid computing a Gröbner basis.

Relation to gDLS [35]. Different from methods such as

gDLS that use a least-squares formulation, our proposed



method (gP4Pc) uses pure geometric constraints and the

polynomial system at the core of our method does not in-

volve the scale, translation or rotation parameters. Instead,

our formulation exploits point congruence relations to first

estimate the position of the four points along the viewing

rays. Our polynomial system is numerically stable and

achieves a comparable speed to gDLS. After computing

the distances, we estimate the similarity transformation us-

ing a 3D point-point registration method [11, 40]. Unlike

gDLS that can struggle with cases where no rotations exist

because of its Cayley-Gibbs-Rodrigues rotation parameter-

ization, gP4Pc works in these cases because it solves for

rotation as part of the point-to-point alignment step.

Relation to gP1R2+s [4] and P4Pf methods. Cam-

poseco et al. [4] solves the pose-and-scale problem us-

ing constraints derived from triangle congruence and a

parametrization similar to ours. However, they proposed a

specialized solver that uses one point-point and two point-

ray correspondence, whereas we handle the general case of

four point-ray correspondences. Specifically, they derive

distance constraints from a triangle formed by one known

point and two unknown points whereas we derive the con-

straints from four unknown points. Bujnak et al. [2, 3] and

Zheng et al. [43] used distance ratio constraints for the P4Pf

and PnPf problems respectively. This involves estimating

single camera pose with unknown focal length in the mini-

mal and non-minimal settings. While some of our derived

constraints are similar, they are used in a different problem.

Relation to 4PCS registration methods. The notion of

congruence and affine invariance in point sets are well stud-

ied and used in previous work on point-based scan regis-

tration [12, 1, 25, 39, 38]. We were inspired by the 4PCS

method and its variants, but we use congruence properties in

a completely different way from prior works by using them

to derive algebraic constraints in our problem.

3. Key Elements of Proposed Method

In this section, we first review affine invariance and con-

gruence properties of 4-point sets. Then, we describe the

new geometric constraints and the derivation of our method.

3.1. 4­Point Congruent Sets

Given three collinear points a,b, c, the ratio
||a−b||
||a−c||

is preserved under all affine transformations. Hutten-

locher [12] used this invariant to find all sets of four 2D

points in the plane that are equivalent under affine trans-

forms. This property also holds for affine transformations

in R
3 [1] which is useful in our case.

Let m denote the point where the two line segments

x1x2 and x3x4 intersect, where x1,x2,x3, and x4 are four

coplanar points which are not all collinear; there is always a
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Figure 2. (a) Four coplanar points x1, x2, x3 and x4 and the two

lines intersecting at the point m. (b) For non-coplanar points, the

closest points on the two lines are m
′ and m

′′ respectively. The

line joining m
′ and m

′′ is orthogonal to the two lines.

way to choose the pairs such that the lines intersect. Then,

the two ratios r1 and r2 can be defined as follows:

r1 =
‖x1 −m‖

‖x1 − x2‖
, r2 =

‖x3 −m‖

‖x3 − x4‖
. (1)

These ratios for non-coplanar points are defined as follows:

r1 =
||x1 −m′||

||x1 − x2||
, r2 =

||x3 −m′′||

||x3 − x4||
, (2)

where the two points m′ and m′′ lie on the lines x1x2 and

x3x4, respectively, such that the line connecting m′ and

m′′ is orthogonal to both x1x2 and x3x4. See Fig. 2 for an

illustration of both geometric settings.

Aiger et al. [1] proposed the 4PCS method to register

two 3D point scans, where they compute ratios from four

coplanar point base set defined in Equation (1) in the first

scan, and then efficiently find all subsets of four points in

the second scan that are approximately congruent to the

base set. Mohamad et al. [25] generalized the 4PCS al-

gorithm for non-coplanar four point bases by computing

the ratios described in Equation (2). Previously, the con-

gruence properties described here were used to efficiently

search for corresponding points in various point set regis-

tration tasks [1, 12, 25]. In contrast, we use them to derive

minimal solvers for 3D point-to-ray registration problems.

3.2. Constraints from affine invariants

In the minimal setting, we are given four 3D points

x1,x2,x3,x4 in one coordinate frame and four correspond-

ing 3D rays l1, l2, l3, l4 in a second coordinate frame. By

parameterizing the 3D points on each ray li using a 3D point

pi (the pinhole) and a 3D unit vector ui directed towards the

scene, the points on the ray in front of the camera can be ex-

pressed as pi + siui, where si ≥ 0, and xi,pi,ui ∈ R
3.

The unknown similarity transformation T maps each

point xi from the first coordinate frame into a point yi in

the second coordinate frame, such that the point yi lies on

the corresponding ray li (see Figure 3). Therefore, there

exists four scalars s1, s2, s3, s4 such that

yi = pi + siui, i ∈ {1, 2, 3, 4}. (3)
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Figure 3. Point-ray correspondence. The similarity transforma-

tion T maps the point xi into a point yi = pi + siui, where pi is

the pinhole, si > 0 is a scalar, and ui is the line-unit vector.

We now use the congruence relations (see Sec. 3.1) sat-

isfied by the four points yi for i = 1, 2, 3, 4 to derive new

constraints for solving the pose-and-scale problem. These

constraints provide us with linear and nonlinear equations

in the four unknowns, i.e., s1, s2, s3 and s4, respectively.

In our method, we first directly solve for s1, s2, s3 and s4
without needing to deal with the scale, rotation and trans-

lation parameters of the similarity transformation T . Then,

substituting the solutions into Equation (3), we obtain the

coordinates of yi for i = 1, 2, 3, 4. Finally, we estimate the

similarity transformation from the four corresponding point

pairs {xi ↔ yi} for i = 1, 2, 3, 4, respectively.

Case 1: Coplanar Points. Given the ratios r1 and r2
obtained from the input points x1,x2,x3,x4 according to

Equation (1), we can define two intermediate points for the

corresponding lines y1y2 and y3y4, yielding the following:

m12 = (1− r1)y1 + r1y2 (4)

m34 = (1− r2)y3 + r2y4. (5)

Based on the congruence property exploited by prior

methods [1, 12], we known that m12 = m34. After substi-

tutions and rearranging variables, we get three linear equa-

tions in s1, s2, s3 and s4 of the form:

(1− r1)(p1 + s1u1) + r1(p2 + s2u2) =

(1− r2)(p3 + s3u3) + r2(p4 + s4u4). (6)

Case 2: Non-coplanar Points. When the four points are

non-coplanar, the associated intermediate points will not

coincide. However, as mentioned before, the line joining

them will be orthogonal to the two underlying lines, y1y2

and y3y4, respectively. Thus, we have

(y1 − y2)
⊺(m12 −m34) = 0 (7)

(y3 − y4)
⊺(m12 −m34) = 0. (8)

By substituting m12 and m34 from Equations (5) and

y1,y2,y3 and y4 from Equation (3), we get two quadratic

equations in the variables, s1, s2, s3, and s4.

x1

x3

x2

x4

y1

y3

y2
y4

(a) (b)
Figure 4. Congruent point sets and distance ratios. (a) The four

points x1, x2, x3, x4, with two line segments highlighted. (b)

The congruent points y1, y2, y3, y4 and the corresponding line

segments. Congruence implies that the length ratio of segments

x1x2 and x1x3 is equal to that of y1y2 and y1y3.

3.3. Constraints from ratios of distances

Consider the tetrahedra A and B, formed by the point

sets, {x1,x2,x3,x4} and {y1,y2,y3,y4}, respectively.

By definition, A and B must be congruent to each other.

Let us now consider a pair of edges in tetrahedron A,

e.g., {x1x2,x1x3}. The corresponding edge pair in B is

{y1y2,y1y3} (see Figure 4). Observe that due to the un-

derlying congruence, the ratio of the length of the two edges

in these pairs must be the equal. Using d(a, b) to denote the

distance between points a and b, we have,

d(x1,x2)

d(x3,x4)
=

d(y1,y2)

d(y3,y4)
. (9)

Squaring both sides of the above equation and replacing

the left side by K1234 (constant term since x1,x2,x3 and

x4 are known) gives the following:

d(y1,y2)
2 −K1234d(y3,y4)

2 = 0. (10)

Rewriting d(yi,yj)
2 as e

⊺

ijeij , where eij is the vector be-

tween yi and yj , we get

e
⊺

12e12 −K1234e
⊺

34e34 = 0. (11)

After substituting y1,y2,y3, and y4 from Equation (3),

e12 and e34 has the following form.

e12 = y1 − y2 = p5 + s1u1 − s2u2 (12)

e34 = y3 − y4 = p6 + s3u3 − s4u4. (13)

In the equations above, we substituted the terms p1 − p2

and p3 − p4 with two new terms p5 and p6 respectively

to simplify the notation. We can now rewrite e
⊺

12e12 as a

quadratic polynomial q in s1, s2, s3 and s4 as follows:

qa = s21+s22−2u⊺

1u2s1s2+2u⊺

1p5s1−2u⊺

2p5s2+p
⊺

5p5.

(14)

Similarly, for e
⊺

34e34, we have the following polynomial:

qb = s23+ s24−2u⊺

3u4s3s4+2u⊺

3p6s3−2u⊺

4p6s4+p
⊺

6p6.

(15)



Next, we arrange the 15 monomials in a column vector

s = [s21 s
2
2 s

2
3 s

2
4 s1s2 s1s3 s1s4 s2s3 s2s4 s3s4 s1 s2 s3 s4 1]

⊺

and substitute the polynomials from Eqns. (14) and (15) into

Eqn. (11) to get the following equation:

(β12 −K1234β34)
⊺s = 0, (16)

where β12 and β34 are column vectors denoting polynomi-

als coefficients from Eqns. 14 and 15, respectively.

Given six edges, there are fifteen distance ratios for all

the unique edge pairs. However, only five of these are inde-

pendent and the remaining ten can be derived from the five.

Without loss of generality we select five pairs: (e12, e34),
(e12, e13), (e12, e14), (e12, e23), and (e12, e24). Other than

Equation (16), we now have four other equations encoding

the distance ratio constraints:















(β12 −K1213β13)
⊺s = 0

(β12 −K1214β14)
⊺s = 0

(β12 −K1223β23)
⊺s = 0

(β12 −K1224β24)
⊺s = 0

, (17)

where Kijkl is the ratio of the squared lengths of edges eij
and ekl and the βij’s are defined similarly to β12 and β34.

Thus, the polynomial system encoding the congruency con-

straints is comprised of Equation (16) and Equations (17).

4. Proposed Solver (gP4Pc)

Our solver consists of two phases. The first one solves

for s1, s2, s3, and s4. These four values encode the “depths”

or distances between each point and the camera center cor-

responding to a point-to-ray pair. Then, the second phase

computes the similarity transformation by aligning the four

input points x1, x2, x3, x4 and their corresponding esti-

mated points y1, y2, y3, y4 using Equation (3) and s1, s2,

s3, and s4. The steps of our solution are the following:

1. Given the four input points x1, x2, x3, x4, find the

closest points on lines x1x2 and x3x4 and then com-

pute ratios r1 and r2 according to Equation (2) and the

terms Kijkl according to Equations (16) and (17).

2. Compute the polynomial coefficients βij according to

Equations (7), (8), (16) and (17) (we only use the first

of the four equations in (17)).

3. Solve the polynomial system using code generated by

an automatic solver generator [18, 19].

4. Keep solutions that satisfy si ≥ 0 ∀i = 1, 2, 3, 4.

5. For each solution, compute y1, y2, y3 and y4 using

Equation (3) and then compute the coordinate transfor-

mation from the point pairs – (x1,y1), (x2,y2), (x3,y3)

and (x4,y4) (see details in the next section).

The order of the points and rays in the input to the poly-

nomial solver matters at multiple steps. Initially, it matters

when computing the ratios r1, r2, Kijkl, and when comput-

ing the coefficients of the Equations (9) and (17). Never-

theless, thanks to the randomization inherent in RANSAC,

several permutations are sampled. This mitigates the need

to find a procedure to compute an optimal point permuta-

tion. We experimented with a variant of gP4Pc that uses six

different permutations and combines all the solutions to ob-

tain a larger pool of hypotheses. However, this variant did

not outperform the simpler and efficient version that uses

one permutation per minimal problem; see Sec. 5.

4.1. Specialized method for coplanar points.

Recall that when the input points are coplanar, there

are three linear constraints in s1, s2, s3 and s4 (see Equa-

tions (6)). However, we need another constraint to find a

unique solution to the four unknowns. So we use one of the

quadratic equations encoding the distance ratio constraints

(in our implementation, we always used Equation (15)) as-

sociated with edge pair (e12, e13). Using the linear con-

straints, we can eliminate s1, s2, s3 from the quadratic equa-

tion to obtain a new quadratic equation in only s4 which can

have two real roots. We keep the roots that are positive and

backsubstitute the value of s4 to obtain up to two solutions,

retaining only the solutions where all four values are real

and positive. The details are in the supplemental material.

5. Experimental Results

Robust Estimation. For RANSAC-based robust pose es-

timation, we solve our minimal problem by first running

gP4Pc and then using Umeyama’s method [40] for 3D

point-to-point alignment in order to estimate the similar-

ity transformation. We refer to that method as gP4Pc+s

to differentiate it from another variant gP4Pc+a which we

have experimented with. gP4Pc+a uses a linear method to

compute an affine transformation from the four 3D point

pairs instead of a similarity. During RANSAC, gP4Pc+a re-

tains the best affine hypothesis i.e., the one with the most

inliers and uses Umeyama’s method at the end to compute

the similarity transformation from all the inliers. However,

we found that gP4Pc+s consistently outperforms gP4Pc+a.

Implementation Details. We implemented gP4Pc in C++

using the Theia library [37] and the polynomial solver of

Larsson et al. [19]. We report the numerical stability, ac-

curacy, and robustness of gP4Pc on synthetic and real data.

The experiments include the following baselines gP+s [41],

gDLS [35], and gDLS+++ [36]. We modified the gDLS

implementation in Theia, specifically the routine that eval-

uates RANSAC hypotheses. Our version is faster than the

original Theia implementation, and we used this modified

routine for all the experiments. Finally, we also avoid the
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Figure 5. Evaluation on synthetic data (with RANSAC loop). [Left to right] The effect of noise on average reprojection error, inlier

count, rotation error, translation error and scale error respectively for different minimal solvers used within a RANSAC framework.

Figure 6. Numerical Stability. [Left to right] CDF of RMSE error

distribution for estimated distances from 10
5 trials and scatter plot

of rotation and translation errors for gP4Pc from those trials.

Figure 7. Solver evaluation on synthetic data. [Left to right] Ro-

tation, translation and scale estimation errors for two gP4Pc vari-

ants and three baselines on minimal problems with noisy input.

adaptive strategy to pick the number of RANSAC iterations

used in Theia and instead use a fixed number of iterations.

5.1. Evaluation on Synthetic Data

In this section, we present results on four different ex-

periments conducted on synthetic data.

Numerical Stability. We generated 105 test problems, each

with 100 points randomly selected from the [−10, 10] ×
[−10, 10] × [−10, 10] cube and 10 random cameras in the

[−5, 5] × [−5, 5] × [10, 20] cube respectively, from which

we sampled four point-ray pairs. No measurement noise

was added. The true transformation in all cases was the

identity transformation. Fig. 6 shows the cumulative dis-

tribution function (CDF) of the RMSE distribution for the

distances from our solver and the scatter plots of the esti-

mated rotation and translation errors. The estimated values

are mostly accurate (RMSE ≤ 10−2) and produce accurate

similarity estimates. However, sometimes erroneous dis-

tances (RMSE ≥ 1.0) result in higher estimation errors.

Evaluation on noisy data. We compared gP4Pc+s (the

similarity variant) and three baselines on synthetic problems

where noise was added to the image measurements. Using

a similar method as before, we generated 100 test problems

with 10 cameras and 100 points each, with focal length set

to 1000, image resolution set to 1000×1000 and 3D points

transformed by applying a randomly generated similarity

transformation. The average estimation errors across the

100 runs are shown in Figure 7. The experiment shows that

gP4Pc is more accurate than gP+s but typically less accurate

than gDLS and gDLS+++ on synthetic test data.

Performance of solvers with RANSAC. Next, we eval-

uated both gP4Pc solvers – the ’+s’ and ’+a’ variants as

well as the three baselines – gP+s [41], gDLS [35] and

gDLS+++ [36] on synthetic test problems containing out-

liers. We conducted three sets of runs with 25%, 50% and

75% outliers respectively at different noise levels and in

each case we used 1000 iterations of RANSAC and a 2.5
pixel inlier threshold. We present results for the 75% outlier

rate experiment in Figure 5. The top half of the figure shows

the average reprojection error, inlier count, rotation, transla-

tion and scale estimation errors for the five solvers. We ob-

serve that gP4Pc+s generally performs better than gP4Pc+a.

Also, for most noise levels, the performance of gP4Pc+s is

comparable to that of gDLS, gDLS+++ and gP+s although

gDLS is a bit more accurate than all the other methods.

Specialized solver for coplanar points. We also evaluated

our specialized solver for coplanar 3D points on synthetic

data using a similar experiment setup, except that, in this

case the 3D points lie on the XY plane embedded in R
3

and then a random rotation and translation is applied such

that the points fall within the cube [−10, 10]× [−10, 10]×
[−10, 10]. The bottom half of Figure 5 shows the perfor-

mance of the gP4Pc specialized solvers and compares them

to gDLS, gDLS+++ and gP+s. The most notable differ-

ence is in the running times. See Table 5.1 for the aver-



Configuration gP+s gDLS gDLS+++ gP4Pc+s gP4Pc+a

Co-planar points 42.9 597.6 223.9 12.61 19.19

General 41.25 578.29 224.18 723.66 706.48

Table 1. Timings. in [µ-sec] per minimal problem for the solvers.

The two right entries in the top row are for our specialized solvers.

Seq. #Imgs. gP4Pc+s (6p) gP4Pc+a (6p) gP4Pc+s (1p) gP4Pc+a (1p)

Average Camera Position Estimate Error (in cm.)

1 8 6.30 ± 0.23 6.64 ± 0.87 6.24 ± 0.27 6.64 ± 0.73
2 8 8.40 ± 0.18 8.44 ± 0.21 8.40 ± 0.18 8.41 ± 0.19
3 32 7.34 ± 0.82 7.34 ± 0.76 7.42 ± 0.73 7.47 ± 0.78
4 8 8.36 ± 0.42 8.42 ± 0.70 8.35 ± 0.44 8.48 ± 0.68
5 14 6.39 ± 0.33 6.55 ± 0.45 6.39 ± 0.42 6.55 ± 0.44
6 23 7.18 ± 0.28 7.23 ± 0.32 7.16 ± 0.26 7.21 ± 0.40
7 8 7.43 ± 1.31 8.17 ± 1.73 7.47 ± 1.52 8.28 ± 1.95
8 10 8.44 ± 0.91 8.38 ± 1.16 8.44 ± 0.89 8.45 ± 1.26
9 6 6.73 ± 1.19 6.63 ± 1.44 6.54 ± 1.16 6.51 ± 1.40
11 57 7.02 ± 0.35 7.12 ± 0.39 7.05 ± 0.34 7.14 ± 0.38
12 66 5.85 ± 0.92 6.51 ± 1.08 5.88 ± 0.92 6.08 ± 1.22

(mean ± s.d.) 7.22 ± 1.13 7.40 ± 1.22 7.21 ± 1.15 7.38 ± 1.31

time/m.p. (ms.) 0.249 0.250 0.237 0.238

time (sec.) 10.35 13.40 1.729 2.243

Table 2. Ablation Study - Office sequences: The camera posi-

tion errors (mean, standard dev. in cm.) per sequence for the four

proposed variants of our method. The variants using one and six

permutations are indicated as (1p) and (6p) respectively. The vari-

ants using similarity and affine transforms are indicated as ’+a’

and ’+s’ respectively. Timings are reported for just the minimal

solver as well as for the total time with 1000 RANSAC iterations.

age running time for the minimal solvers. For the general

purpose case, gP+s is the fastest. However, for the case of

coplanar points, our specialized solver is extremely fast. It

takes 12.61 µ-sec per problem, which is 3× faster than gP+s

which take 42.61 µ-sec per problem.

5.2. Evaluation on Office Dataset

In this section, we report results on real datasets using

all the solvers for a SLAM-trajectory registration task. This

task requires localizing a moving camera w.r.t. an existing

3D reconstruction by solving the generalized gP+s prob-

lem. We will first report results on the Office dataset [41].

This dataset contains 12 sequences, each of which contains

ground truth camera poses for keyframes that were collected

using an ART-2 optical tracker, the SfM scene reconstruc-

tion (3D point cloud and 2D image measurements and as-

sociated SIFT features [24]). We discarded sequence 10 as

it had invalid data. To obtain 2D–3D correspondences, we

used exhaustive nearest neighbor SIFT descriptor matching

and the standard Lowe’s ratio test with a threshold of 0.7.

In our RANSAC implementation, we used a reprojection

error threshold of 2 pixels and 1000 iterations and we did

not run any nonlinear pose optimization. We repeated each

experiment 100 times and report average errors.

Seq. #Imgs. gP+s gDLS gDLS+++ gP4Pc

Average Camera Position Estimate Error (in cm.)

1 8 6.24 ± 0.25 6.12 ± 0.27 6.24 ± 0.23 6.24 ± 0.27
2 8 8.39 ± 0.14 8.42 ± 0.14 8.39 ± 0.14 8.40 ± 0.18
3 32 7.26 ± 0.74 7.31 ± 0.70 7.46 ± 0.80 7.42 ± 0.73
4 8 8.39 ± 0.47 8.41 ± 0.41 8.33 ± 0.43 8.35 ± 0.44
5 14 6.30 ± 0.22 6.29 ± 0.21 6.31 ± 0.22 6.39 ± 0.42
6 23 7.20 ± 0.23 7.15 ± 0.24 7.17 ± 0.29 7.16 ± 0.26
7 8 7.54 ± 1.34 7.42 ± 1.24 7.15 ± 1.07 7.47 ± 1.52
8 10 8.51 ± 0.80 8.42 ± 0.75 8.40 ± 0.86 8.44 ± 0.89
9 6 6.51 ± 1.08 6.64 ± 1.05 6.77 ± 1.16 6.54 ± 1.16

11 57 7.05 ± 0.31 6.99 ± 0.30 6.99 ± 0.28 7.05 ± 0.34
12 66 5.59 ± 0.95 5.57 ± 1.00 5.63 ± 0.99 5.88 ± 0.92

(mean ± s.d.) 7.18 ± 1.17 7.16 ± 1.15 7.17 ± 1.13 7.21 ± 1.15

time/m.p. (ms.) 0.028 0.199 0.102 0.237

num solns./m.p. 4.8 2.5 2.7 2.6

time (sec.) 2.279 1.719 1.431 1.729

Table 3. Quantitative Evaluation - Office sequences: The cam-

era position errors (mean, standard dev. in cm.) per sequence for

our method gP4Pc+s and baselines (gP+s, gDLS, gDLS+++). All

the methods have similar performance on this dataset. The average

running time for the minimal solvers and the total time for pose es-

timatin using 1000 RANSAC iterations are reported as well as the

average number of valid solutions from the minimal solvers.

gP4Pc+s

GT GT

gP4Pc+a

Figure 8. Top view of the estimated and ground truth trajectories

for gP4Pc+s (on the left) and gP4Pc+a (on the right).

We first report results from an ablation study for our

solver in Table 5.1. The mean camera position error and

the standard deviation in cm. from 100 runs is shown for

each sequence. We compare two variants each of gP4Pc+s

and gP4Pc+a, each with either one or six random permuta-

tions respectively (indicated by suffices (1p) and (6p)). We

observe that gP4Pc+s (1p) has the smallest error across all

sequences and has a mean error of 7.21cm pixels and a stan-

dard deviation of 1.15cm. Fig. 8 shows trajectories com-

puted by gP4Pc+a (1p) and gP4Pc+s (1p) for Sequence 3.

Next we compared gP4Pc+s(1p) with gP+s, gDLS and

gDLS+++ on the Office sequences. The results are shown in

Table 5.1. In the rest of the paper, we drop the (1p) suffix for

brevity. While gP4Pc had a mean position error of 7.21 ±
1.15 cm, gDLS with a mean error of 7.16 ± 1.15cm was the

best method. However, notice that the error margin between

the four methods was extremely small considering the stan-

dard deviation of their errors. Therefore, we conclude that

gP4Pc is competitive with the state of the art on this dataset.

The mean running time of the solver is also shown in the ta-

ble as well as the average number of hypotheses and the to-



Rotation Error [deg] (10−2) Translation Error (10−3) Scale Error
(

10−4
)

time [sec]

gP+s gDLS gDLS+++ 3Q3 gP4Pc gP+s gDLS gDLS+++ 3Q3 gP4Pc gP+s gDLS gDLS+++ 3Q3 gP4Pc gP+s gDLS gDLS+++ 3Q3 gP4Pc

T1 10.8 14.1 14.0 13.5 14.0 7.91 1.11 1.10 28.4 1.10 5.01 8.54 8.61 19.0 8.61 336 195 189 162 189
T2 10.6 10.5 10.6 11.1 11.4 20.5 19.7 19.9 21.7 21.7 14.1 13.4 12.6 17.5 16.2 155 84 82 72 96
T3 9.69 8.06 7.68 10.2 9.27 68.7 57.9 54.6 71.8 68.4 58.3 51.0 51.3 59.3 60.7 153 74 74 68 68
T4 9.04 8.49 8.51 10.2 9.10 12.6 12.2 12.7 15.0 12.8 16.2 15.5 16.0 17.6 15.2 302 150 152 138 167
T5 5.20 5.02 5.20 5.97 5.69 9.59 9.34 9.59 11.4 11.5 21.6 21.8 21.6 28.5 32.1 362 333 362 295 282
T6 7.72 6.09 6.29 7.00 6.77 18.0 16.7 16.5 16.9 16.0 91.3 76.2 80.0 104.0 89.7 115 47 54 53 43

Tavg 8.84 8.71 8.71 9.7 9.37 22.9 19.5 19.1 27.5 21.9 34.4 31.1 31.7 41 37.1 237 147 152 131.1 141

K1 1.66 1.56 1.64 1.80 1.58 1.34 1.25 1.29 1.43 1.29 2.45 2.56 2.70 2.40 2.69 2.03 1.34 1.44 0.94 0.89
K2 7.42 7.62 7.69 8.32 7.57 7.61 6.91 7.07 8.50 7.30 0.97 0.87 0.98 107.0 0.90 2.95 1.79 1.95 1.34 1.90
K3 10.2 10.1 10.1 13.1 11.6 6.01 6.01 5.93 7.73 7.00 46.2 40.6 43.1 50.2 47.0 20.2 11.8 12.2 8.50 12.8
K4 2.67 2.58 2.58 3.24 3.05 3.45 3.34 3.54 3.80 3.39 11.1 11.2 11.8 13.6 12.2 2.46 1.61 1.41 1.08 1.67
K5 2.99 2.77 2.79 2.72 2.47 1.54 1.44 1.45 1.39 1.43 7.05 7.61 7.45 6.93 7.50 1.80 1.31 1.13 0.77 1.08
K6 6.11 5.76 6.50 6.51 6.84 4.92 4.70 4.96 4.84 5.26 23.8 21.8 24.9 22.7 23.6 7.30 4.16 4.71 3.36 3.72

Kavg 5.18 5.07 5.22 5.95 5.52 4.15 3.94 4.04 4.62 4.27 15.3 14.1 15.2 34.0 15.7 6.12 3.67 3.81 2.62 3.68

Table 4. Results on TUM & KITTI: See upper and lower sections for results on the TUM sequences T1:6 are (Fr1 Desk, Fr1 Desk2,

Fr2 LargeNoLoop, Fr1 Room, Fr2 Pion.SLAM and Fr2 Pion.SLAM 2) and the KITTI sequences K1:6 (Drive 1, 9, 19, 22, 23 and 29)

respectively. gDLS and gDLS+++ lead in terms of accuracy followed by gP4Pc. 3Q3 is the fastest method followed by gP4Pc in terms of

total running time. But, gP4Pc is more accurate than 3Q3 and only slightly slower on average (it is actually faster on 3 of the 12 sequences).

tal running times. Even though gP+s had the fastest solver,

it produces many more hypotheses to verify whereas both

gDLS and gP4Pc produce fewer hypotheses. The total run-

ning time for gDLS+++ was 1.43 making it the fastest but

gP4Pc and gDLS take 1.73 and 1.72 seconds respectively

and are not very far behind in terms of running times.

5.3. Evaluation on TUM and KITTI datasets

We also evaluated gP4Pc on the TUM [34] and KITTI [8]

datasets using the protocol proposed by Fragoso et al. [7].

They reconstruct the scene from the SLAM trajectories and

remove a series of frames from the reconstructions to form

a generalized camera query and apply a random similarity

transformation to the query camera poses. This makes it

possible to calculate rotation, position and scale errors, un-

like the Office dataset [41] where only ground truth cam-

era position data is available. We compared gP4Pc with

gP+s [41], gDLS [35], 3Q3 [17] and gDLS+++ [36]. We

excluded gDLS* [7] which becomes identical to gDLS+++

in the unconstrained setting i.e. when pose priors are absent.

We report average errors across 100 runs of the same

query. Table 4 shows the rotation, translation, scale errors

and timings for the five methods. The upper and bottom

parts of the Table presents results on the TUM and KITTI

datasets respectively. The rotation, translation, and scale

errors for gP4Pc are slightly larger than that of gDLS and

gDLS+++. While 3Q3 is the fastest method on average, it is

also the least accurate. The experiment confirms that gP4Pc

produces competitive pose-and-scale estimates. In terms of

the total running time with RANSAC, gP4Pc is only slightly

slower than 3Q3 on average (in fact, it was faster than 3Q3

in three cases). gDLS (with our modified implementation)

and gDLS+++ are usually ranked next in terms of speed

followed by gP+s. The reported timings were obtained on

a PC with a 2.1 GHz Xeon CPU with 48 GB RAM using

single threaded implementations. We analyzed the number

of hypotheses generated by different minimal solvers on the

“Drive 1” sequence, which for gP+s, gDLS, gDLS+++, 3Q3

and gP4Pc is about 3.9, 1.6, 2.4, 1.9 and 1.1 respectively.

Thus, on these datasets, gP4Pc tends to produce the fewest

solutions to evaluate during RANSAC resulting in a notice-

able speedup compared to other methods.

6. Conclusions

We presented gP4Pc, a new method for generalized

pose-and-scale estimation from four point-ray pairs. Un-

like existing methods (e.g., gDLS [35], gDLS+++ [36],

and gP+s [41]) that use a least-squares-based formulation,

gP4Pc instead uses 4-point congruence constraints to solve

the problem. By solving a new polynomial system using an

efficient Gröbner-based polynomial solver, we estimate the

point distances along the rays from the pinholes and then es-

timate the final transformation using 3D point-point align-

ment methods. We also presented a fast version of gP4Pc

for when the 3D points are coplanar. Our experiments show

that gP4Pc is comparable to the state-of-the-art solvers in

terms of accuracy. On the TUM and KITTI datasets, it of-

ten generated fewer solution candidates that needed to be

checked compared to existing methods and provided a good

trade-off between accuracy and speed.

Currently, the order in which the point-ray pairs are pre-

sented to the solver matters in certain geometric configu-

rations. Currently, we do not have an effective strategy to

select the optimal order or permutation of the input and rely

on randomization. However if one could efficiently find a

good order, it could potentially boost the accuracy of the

method further without adding any computational overhead.

This could be an interesting direction for future work.
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