
Auto-FuzzyJoin:
Auto-Program Fuzzy Similarity Joins Without Labeled Examples

Peng Li∗
Georgia Institute of Technology

Atlanta, USA
pengli@gatech.edu

Xiang Cheng∗
Georgia Institute of Technology

Atlanta, USA
cxworks@gatech.edu

Xu Chu
Georgia Institute of Technology

Atlanta, USA
xu.chu@cc.gatech.edu

Yeye He
Microsoft Research
Redmond, USA

yeyehe@microsoft.com

Surajit Chaudhuri
Microsoft Research
Redmond, USA

surajitc@microsoft.com

ABSTRACT

Fuzzy similarity join is an important database operator widely used
in practice. So far the research community has focused exclusively
on optimizing fuzzy join scalability. However, practitioners today
also struggle to optimize fuzzy-join quality, because they face a
daunting space of parameters (e.g., distance-functions, distance-
thresholds, tokenization-options, etc.), and often have to resort to a
manual trial-and-error approach to program these parameters in
order to optimize fuzzy-join quality. This key challenge of auto-
matically generating high-quality fuzzy-join programs has received
surprisingly little attention thus far.

In this work, we study the problem of “auto-program” fuzzy-
joins. Leveraging a geometric interpretation of distance-functions,
we develop an unsupervised Auto-FuzzyJoin framework that can
infer suitable fuzzy-join programs on given input tables, without
requiring explicit human input such as labelled training data. Using
Auto-FuzzyJoin, users only need to provide two input tables 𝐿
and 𝑅, and a desired precision target 𝜏 (say 0.9). Auto-FuzzyJoin
leverages the fact that one of the input is a reference table to au-
tomatically program fuzzy-joins that meet the precision target 𝜏
in expectation, while maximizing fuzzy-join recall (defined as the
number of correctly joined records).

Experiments on both existing benchmarks and a new benchmark
with 50 fuzzy-join tasks created from Wikipedia data suggest that
the proposed Auto-FuzzyJoin significantly outperforms existing
unsupervised approaches, and is surprisingly competitive even
against supervised approaches (e.g., Magellan and DeepMatcher)
when 50% of ground-truth labels are used as training data. We have
released our code and benchmark on GitHub1 to facilitate future
research.

∗Both authors contributed equally.
1https://github.com/chu-data-lab/AutomaticFuzzyJoin

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3452824

CCS CONCEPTS

• Information systems → Entity resolution; • Computing

methodologies→ Unsupervised learning.

KEYWORDS

fuzzy join; similarity join; entity resolution; unsupervised learning

ACM Reference Format:

Peng Li, Xiang Cheng, Xu Chu, Yeye He, and Surajit Chaudhuri. 2021. Auto-
FuzzyJoin: Auto-Program Fuzzy Similarity Joins Without Labeled Examples.
In Proceedings of the 2021 International Conference on Management of Data
(SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3448016.3452824

1 INTRODUCTION

Fuzzy-join, also known as similarity-join, fuzzy-match, and entity
resolution, is an important operator that takes two tables 𝐿 and 𝑅
as input, and produces record pairs that approximately match from
the two tables. Since naive implementations of fuzzy-joins require
a quadratic number of comparisons that is prohibitively expensive
on large tables, extensive research has been devoted to optimizing
the scalability of fuzzy-joins (e.g., [11, 12, 14, 20, 23, 26, 36, 39]).
We have witnessed a fruitful line of research producing significant
progress in this area, leading to wide adoption of fuzzy-join as
features in commercial systems that can successfully scale to large
tables (e.g., Microsoft Excel [3], Power Query [8], and Alteryx [1]).

The need to parameterize fuzzy-joins. With the scalability
of fuzzy-join being greatly improved, we argue that the usability of
fuzzy-join has now become a main pain-point. Specifically, given
the need to optimize join quality for different input tables, today’s
fuzzy-join implementations offer rich configurations and a puzzling
number of parameters, many of which need to be carefully tuned
before high-quality fuzzy-joins can be produced.

Microsoft Excel, for instance, has a popular fuzzy-join feature
available as an add-in [3]. It exposes a rich configuration space,
with a total of 19 configurable options across 3 dialogs, as shown
in Figure 1. Out of the 19 options, 11 are binary (can be either true
or false), which already correspond to 211 = 2048 discrete config-
urations, which are clearly difficult to program manually. Similarly,
py_stringmatching [6], a popular open-source fuzzy-join package,
boasts 92 options. Note that we have not yet included parameters

https://github.com/chu-data-lab/AutomaticFuzzyJoin
https://doi.org/10.1145/3448016.3452824
https://doi.org/10.1145/3448016.3452824

Figure 1: A total of 19 parameters exposed to users in Fuzzy-

join for Microsoft Excel (across 3 dialog windows).

Figure 2: A sample of fuzzy-join parameters.

from numeric continuous domains, e.g., “similarity threshold” and
“containment bias” that can take any value in ranges like [0, 1].

Not surprisingly, we have seen recurring user questions in places
like Excel user forums, asking how fuzzy-joins can be programmed
appropriately, including how to set parameters like similarity-
thresholds2, token-weights3, distance-functions4, multi-column set-
tings5, etc. We note that these parameters are widely used in the
literature [11, 12, 14, 23, 26, 36, 39], which can be broadly classified
into four categories: Pre-processing, Tokenization, Token-weights,
and Distance-functions, as shown in Figure 2 (we will describe these
options in more detail in Section 2.2).

While seasoned practitioners may inspect input data and use
their experience to make educated guess of suitable parameters to
use (often still requiring trials-and-errors); less-technical users (e.g.,
those in Excel or Tableau) struggle as they either have to laboriously
try an infeasibly large number of parameter combinations, or live
with the sub-optimal default parameters. We argue that this is a

2https://www.reddit.com/r/excel/comments/9y6o6a/how_is_similarity_threshold_calculated_
when_doing/
3https://answers.microsoft.com/en-us/msoffice/forum/all/token-weights-for-fuzzy-lookup-add-
in-for-excel/c9c4a0f3-014f-4e2e-8672-b2303cfe3a4d
4https://www.excelforum.com/excel-programming-vba-macros/810739-fuzzy-logic-search-for-
similar-values.html
5https://www.mrexcel.com/forum/excel-questions/659776-fuzzy-lookup-add-multiple-
configurations-one-matchup.html

(a) Example: NCAA-Teams. (𝑙1 , 𝑟1), (𝑙2 , 𝑟2) are joined using Jaccard-distance, (𝑙3 , 𝑟3),
(𝑙4 , 𝑟4) are joined using Edit-distance. (𝑙6 , 𝑟6) are not joined because of an inferred
negative-rule “football” ≠ “baseball”, (𝑙7 , 𝑟7) are not joined because “2007” ≠ “2008”.

(b) Example: Super Bowl Games. (𝑙1 , 𝑟1), (𝑙2 , 𝑟2) are not joined despite of having small
Edit-distance. Pairs like (𝑙5 , 𝑟5), (𝑙6 , 𝑟6) are joined based on Jaccard-containment.

Figure 3: Examples of Fuzzy Join Cases.

significant pain point, and a major roadblock to wider adoption of
fuzzy-join.

In this paper, we explore the possibility of automatically pro-
gramming fuzzy-joins, using suitable parameters tailored to given
input tables. Our approach is designed to be unsupervised, requiring
no inputs from human users (e.g., labeled training examples for
matches vs. non-matches). It exploits a key property of fuzzy-join
tasks, which is that one of the input tables is often a “reference
table”, or a curated master table that contains few or no duplicates.
We note that the notion of reference tables is widely used in the
literature (e.g., [18, 19, 44]), and adopted by commercial systems
(e.g., SQL Server [4], OpenRefine/GoogleRefine [5], Excel [3], etc.).
As we will see, leveraging this key property of reference tables
allows us to infer high-quality fuzzy-joins programs without using
labeled data.

An intuitive example. We illustrate a few key ideas we lever-
age to auto-program fuzzy-joins using an intuitive example. On the
left of Figure 3(a) is a reference table 𝐿 with NCAA team names,
and on the right is a table 𝑅 with team names that need to be
matched against 𝐿. As can be seen, (𝑙1, 𝑟1) and (𝑙2, 𝑟2) share a large
set of common tokens, so intuitively we should tokenize by word
boundaries and join them using set-based metrics like Jaccard dis-
tance or Jaccard-Containment distance. On the other hand, (𝑙3, 𝑟3)
should intuitively also join, but their token overlap is not high
(Jaccard distance can be computed as 0.5), because of misspelled
“Missisippi” and “Bulldog” in 𝑟3. Such pairs are best joined by view-
ing input strings as sequences of characters, and compared using
Edit-distance (e.g., Edit-distance(𝑙, 𝑟) < 3).

Union-of-Configurations. Because different types of string varia-
tions are often present at the same time (e.g., typos vs. extraneous
tokens), ideally a fuzzy-join program should contain a union of
fuzzy-join configurations to optimize recall – in the example above,
Edit-distance(𝑙, 𝑟) < 3 ∨ Jaccard-distance(𝑙, 𝑟) < 0.2, to correctly
join these records. Note that for humans, programming such a
union of configurations manually is even more challenging than
tuning for a single configuration. Our approach can automatically
search disjunctive join programs suitable for two given input tables,
which can achieve optimized join quality (Section 2.2).

Learn-safe-join-boundaries. In order to determine suitable param-
eters for fuzzy-joins on given input tables, we leverage reference-
tables 𝐿 to infer what fuzzy-join boundaries are “safe” (generating

https://www.reddit.com/r/excel/comments/9y6o6a/how_is_similarity_threshold_calculated_when_doing/
https://www.reddit.com/r/excel/comments/9y6o6a/how_is_similarity_threshold_calculated_when_doing/
https://answers.microsoft.com/en-us/msoffice/forum/all/token-weights-for-fuzzy-lookup-add-in-for-excel/c9c4a0f3-014f-4e2e-8672-b2303cfe3a4d
https://answers.microsoft.com/en-us/msoffice/forum/all/token-weights-for-fuzzy-lookup-add-in-for-excel/c9c4a0f3-014f-4e2e-8672-b2303cfe3a4d
https://www.excelforum.com/excel-programming-vba-macros/810739-fuzzy-logic-search-for-similar-values.html
https://www.excelforum.com/excel-programming-vba-macros/810739-fuzzy-logic-search-for-similar-values.html
https://www.mrexcel.com/forum/excel-questions/659776-fuzzy-lookup-add-multiple-configurations-one-matchup.html
https://www.mrexcel.com/forum/excel-questions/659776-fuzzy-lookup-add-multiple-configurations-one-matchup.html

few false-positives). In Figure 3(b) for instance, unlike Figure 3(a),
even a seemingly small Edit-distance(𝑙, 𝑟) ≤ 1 is not “safe” on this
data set, and would produce many false-positives like (𝑙1, 𝑟1), (𝑙2,
𝑟2), etc., none of which are correct joins. While it may be obvious
to humans recognizing roman numerals in the data, it is hard for
algorithms to know without labeled examples. Here we leverage
an implicit property of the reference table 𝐿 that it has few or no
duplicates, to perform automated inference. Assume for a moment
that a fuzzy-join with Edit-distance(𝑙, 𝑟) ≤ 1 on this pair of 𝐿 and
𝑅 is a “safe” distance to use. Because 𝐿 and 𝑅 are similar in nature,
it then follows that this fuzzy-join on 𝐿 and 𝐿 is also “safe”. How-
ever, applying this self-fuzzy-join on 𝐿 leads to many joined pairs
like (𝑙1, 𝑙2), (𝑙2, 𝑙3), etc., contradicting with the belief that 𝐿 has few
fuzzy-duplicates, and suggesting that Edit-distance(𝑙, 𝑟) ≤ 1 likely
joins overly aggressively and is actually not “safe”. We generalize
this idea using a geometric interpretation of distance functions in a
fine-grained (per-record) manner, in order to learn “safe” fuzzy-join
programs that can maximize recall while ensuring high precision
(Section 3.1). This is a key idea behind Auto-FuzzyJoin.

Negative-rule-learning.We observe that similarity functions and
scores alone are sometimes still not sufficient for high-quality fuzzy
joins. For instance, existing solutions would join (𝑙6, 𝑟6) and (𝑙7,
𝑟7) in Figure 3(a) because of their high similarity scores, which as
humans we know are false-positive results. Our approach is able to
automatically learn what we call “negative rules”, by analyzing the
reference table 𝐿. Specifically, wewill findmany pairs of records like
(“2008 LSU Tigers baseball team”, “2008 LST Tigers football team”)
present at the same time in the reference table 𝐿, and because these
are from the reference table and thus unlikely to be duplicates, we
can infer a negative rule of the form “baseball” ≠ “football”, which
would prevent (𝑙6, 𝑟6) from being joined. Similarly, we can learn
a negative rule like “2007” ≠ “2008”, so that (𝑙7, 𝑟7) is not joined.
(Section 3.3).

Key features of Auto-FuzzyJoin. Auto-FuzzyJoin has the fol-
lowing features that we would like to highlight:
• Unsupervised. Unlike most existing methods, Auto-FuzzyJoin
does not require labeled examples of matches/non-matches.
• High-Quality. Despite not using labeled examples, it outperforms
strong supervised baselines (e.g., Magellan and DeepMatcher)
even when 50% of ground-truth joins are used as training data.
• Robust. Our approach is robust to tables with varying character-
istics, including challenging test cases adversarially-constructed.
• Explainable. Compared to black-box methods (e.g., deep models),
our approach produces fuzzy-join programs in a disjunctive form,
which is easy for practitioners to understand and verify.
• Extensible. Parameter options listed in Figure 2 are not meant
to be exhaustive, and can be easily extended (e.g., new distance
functions) in our framework in a manner transparent to users.

2 PRELIMINARIES

2.1 Many-to-one Fuzzy Joins

Definition 2.1. Let 𝐿 and 𝑅 be two input tables, where 𝐿 is the
reference table. A fuzzy join 𝐽 between 𝐿 and 𝑅 is a many-to-one
join, defined as 𝐽 : 𝑅 → 𝐿 ∪ ⊥.

The fuzzy join 𝐽 defines a mapping from each tuple 𝑟 𝑗 ∈ 𝑅 to
either one tuple 𝑙𝑖 ∈ 𝐿, or an empty symbol ⊥, indicating that no
matching record exists in 𝐿 for 𝑟 𝑗 , as 𝐿 may be incomplete. Note
that because 𝐿 is a reference table, each 𝑟 𝑗 can join with at most
one tuple in 𝐿. However, in the other direction, each tuple in 𝐿 can
join with multiple tuples in 𝑅, hence a many-to-one join.

The notion of reference tables is widely used both in the
fuzzy-join/entity-matching literature (e.g., [18, 19, 44]) and
commercial systems (e.g., Excel [3], SQL Server [4], OpenRe-
fine/GoogleRefine [5], etc.). In practice, we find that most bench-
mark datasets used for entity-resolution in the literature indeed
have a reference table, for which our approach is applicable. For
example, in the well-known Magellan data repository of ER6, we
find 19/29 datasets to have a reference table that is completely
duplicate-free, and 26/29 datasets to have a reference table that
has less than 5% duplicates, confirming the prevalence of reference
tables in practice.7

The reference table property essentially serves as a structural
constraint to prevent our algorithm from using fuzzy-join configu-
rations that are too “loose” (or join more than what is correct). We
refer readers to a full version of the paper [9] for an additional anal-
ysis showing that some form of constraints are necessary before
good fuzzy-joins can be inferred.

2.2 The Space of Join Configurations

A standard way to perform fuzzy-join is to compute a distance score
between 𝑟 and 𝑙 . There is a rich space of parameters that determine
how distance scores are computed. Figure 2 gives a sample such
space. There are four broad classes of parameters: pre-processing
(P), tokenization (T), token-weights (W), and distance-functions (D).
The second column of the figure gives example parameter options
commonly used in practice [11, 12, 14, 23, 26, 36, 39]. Combination
of these parameters (P, T, W, D) uniquely determines a distance
score for two input strings (𝑙 , 𝑟), which we term as a join function
𝑓 ∈ F , where F denotes the space of join functions.

Example 2.1. Consider join function 𝑓 = (𝐿, 𝑆𝑃, 𝐸𝑊 , 𝐽𝐷), which
uses lower-casing (L), space-tokenization (SP), equal-weights (EW),
and Jaccard-distance (JD) from Figure 2. Applying this 𝑓 to 𝑙1, 𝑟1 in
Figure 3(a), we can compute 𝑓 (𝑙1, 𝑟1) = 0.2. Additional examples of
score computation are shown in the last column of Figure 2.

In our experimentswe consider a rich spacewith hundreds of join
functions. Our Auto-FuzzyJoin approach treats these parameters
as black-boxes, and as such can be easily extended to additional
parameters not listed in Figure 2.

Given distance 𝑓 (𝑙, 𝑟) computed using 𝑓 , the standard approach
is to compare it with a threshold 𝜃 to decide whether 𝑙 and 𝑟 can
be joined. Together 𝜃 and 𝑓 define a join configuration 𝐶 .

Definition 2.2. A join configuration 𝐶 is a 2-tuple 𝐶 = ⟨𝑓 , 𝜃⟩,
where 𝑓 ∈ F is a join function, while 𝜃 is a threshold. We use 𝑆 =

{⟨𝑓 , 𝜃⟩|𝑓 ∈ F , 𝜃 ∈ R} to denote the space of join configurations.
Given two tables 𝐿 and 𝑅, a join configuration 𝐶 ∈ 𝑆 induces a

fuzzy join mapping 𝐽𝐶 , defined as:
𝐽𝐶 (𝑟) = argmin

𝑙∈𝐿,𝑓 (𝑙,𝑟)≤𝜃
𝑓 (𝑙, 𝑟), ∀𝑟 ∈ 𝑅 (1)

6https://sites.google.com/site/anhaidgroup/useful-stuff/data
7As we will see, for cases where reference tables are absent, our approach will still
work but may generate overly conservative fuzzy-join programs, which is still of high
precision but may have reduced recall.

The fuzzy join 𝐽𝐶 defined in Equation (1) ensures that each 𝑟

record joins with 𝑙 ∈ 𝐿 with the smallest distance. Note that this
can also be empty if 𝑓 (𝑙, 𝑟) > 𝜃,∀𝑙 ∈ 𝐿.

We observe that real data often have different types of varia-
tions simultaneously (e.g., typos vs. missing tokens vs. extraneous
information), one join configuration alone is often not enough to
ensure high recall. For example, in Figure 3(a), Jaccard distance
with threshold 0.2 may be suitable for joining pairs like (𝑙1, 𝑟1) as
these pairs differ by one or two tokens. However, for pairs like
(𝑙3, 𝑟3) that have spelling variations, Jaccard-distance (0.5) is high,
and Edit-distance is required to join (𝑙3, 𝑟3).

In order to handle different types of string variations, in this work
our algorithm will search for joins that use a set of configurations
𝑈 = {𝐶1,𝐶2, . . . ,𝐶𝐾 } (as opposed to a single configuration), where
the join result of𝑈 is defined as the union of the result from each
configuration 𝐶𝑖 .

Definition 2.3. Given 𝐿 and 𝑅, a set of join configurations 𝑈 =

{𝐶1,𝐶2, . . . ,𝐶𝐾 } induces a fuzzy join mapping 𝐽𝑈 , defined as:

𝐽𝑈 (𝑟) =
⋃

𝐶𝑖 ∈𝑈
𝐽𝐶𝑖
(𝑟), ∀𝑟 ∈ 𝑅 (2)

Intuitively, each 𝐶𝑖 produces high-quality joins capturing a spe-
cific type of string variations, and two records are joined in 𝑈 if
and only if they are joined by one configuration𝐶𝑖 ∈ 𝑈 (we discuss
scenarios with conflicts in Section 3).

2.3 Auto-FuzzyJoin: Problem Statement

Given 𝑅 and 𝐿, and a space of join configurations S, the problem is
to find a set of join configurations 𝑈 that produces “good” fuzzy-
join results. Let 𝐽𝑈 denote the fuzzy join mapping induced by𝑈 and
let 𝐽𝐺 denote the ground truth fuzzy join mapping. The “goodness”
of a solution𝑈 can be measured using precision and recall:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑈) = | {𝑟 | 𝑟 ∈ 𝑅, 𝐽𝑈 (𝑟) ≠ ∅, 𝐽𝑈 (𝑟) = 𝐽𝐺 (𝑟) } || {𝑟 | 𝑟 ∈ 𝑅, 𝐽𝑈 (𝑟) ≠ ∅} |
(3)

𝑟𝑒𝑐𝑎𝑙𝑙 (𝑈) = | {𝑟 | 𝑟 ∈ 𝑅, 𝐽𝑈 (𝑟) ≠ ∅, 𝐽𝑈 (𝑟) = 𝐽𝐺 (𝑟) } | (4)

The precision of 𝑈 is the fraction of predicted joins that are
correct according to the ground-truth; and the recall of𝑈 is defined
as the number of correct matches (a variant widely-used in the IR
literature [38]). We note that this definition of recall in absolute
terms simplifies our analysis, which is no different from the relative
recall [13], because the total number of correct joins (|{𝑟 | 𝑟 ∈
𝑅, 𝐽𝐺 (𝑟) ≠ ∅}|) is always a constant for a given data set.

Problem Statement. Given 𝐿 and 𝑅, and a target precision 𝜏 . Let
S = {⟨𝑓 , 𝜃⟩|𝑓 ∈ F , 𝜃 ∈ R} be the space of fuzzy-join configurations.
We would like to find a set of configurations𝑈 = {𝐶1,𝐶2, . . . ,𝐶𝐾 }
with𝐶𝑖 ∈ 𝑆 , that maximizes 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑈), while observing the required
precision 𝜏 . This recall-maximizing fuzzy-join problem (RM-FJ)
formulation can be written as an optimization problem:

(RM-FJ) max 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑈) (5)
s.t. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑈) ≥ 𝜏 (6)

𝑈 ∈ 2𝑆 (7)

Theorem 2.1. The decision version of the RM-FJ problem is NP-hard.

The hardness result can be obtained using a reduction from
densest-k-subhypergraph [30].

3 SINGLE-COLUMN AUTO-FUZZYJOIN

We now discuss Auto-FuzzyJoin when the join key is a pair of
single columns (we will extend it to multi-columns in Section 4).

3.1 Estimate Precision and Recall

In the RM-FJ formulation above, the hardness result assumes that
we can compute the precision and recall of any configuration𝑈 . In
reality, however, we are only given 𝐿 and 𝑅, with no ground truth.
To solve RM-FJ, we first need a way to estimate precision/recall
of a fuzzy-join without using ground-truth labels, which is a key
challenge we need to address in Auto-FuzzyJoin.

In the following, we show how precision/recall can be estimated
in our specific context of fuzzy-joins, by leveraging a geometric
interpretation of distances, and unique properties of the reference
table 𝐿. For ease of exposition, we will start our discussion with a
single join configuration 𝐶 , before extending it to a set of configu-
rations𝑈 = {𝐶1,𝐶2, . . . ,𝐶𝐾 }.
Estimate for a single-configuration𝐶. Given a configuration𝐶 ,
and two tables𝐿 and𝑅, we showhow to estimate the precision/recall
of𝐶 . Recall that a configuration𝐶 = ⟨𝑓 , 𝜃⟩ consists of a join function
𝑓 that computes distance between two records, and a threshold 𝜃 .

Assuming a “complete” 𝐿.We will start by analyzing a simplified
scenario where the reference table 𝐿 is assumed to be complete
(with no missing records). This is not required in our approach, but
used only to simplify our analysis (which will be relaxed later).

Using a geometric interpretation, given some distance function
𝑓 , records in a table can intuitively be viewed as points embedded
in a multi-dimensional space (e.g., with metric embedding [10]),
like visualized in Figure 4.

When 𝐿 is complete (containing all possible 𝑙 records in the
same domain), for each 𝑙 ∈ 𝐿, the closest neighbors of each 𝑙 tend
to differ in some standardized/structured manner, making these
closest neighbors to have similar distances to 𝑙 . For instance, for
most records 𝑙 in Figure 3(a), their closest neighbors differ from 𝑙

by only one token (either year or sport-name), which translates to
a Jaccard-distance of around 0.2. In Figure 3(b), for most records
𝑙 , their closest neighbors differ from 𝑙 by one character (in roman
numerals), or an Edit-distance of 1. The same extends to many
other domains – e.g., in a reference table with addresses, closest
neighbors to each 𝑙 will likely differ from 𝑙 by only house-numbers
(one token); and in a reference table with people-names, closest
neighbors to each 𝑙 will likely differ by only last-names (one token),
etc.

Because the closest neighbors of 𝑙 tend to have similar distances
to 𝑙 , we can intuitively visualize 𝐿 points in the local neighbors
of each 𝑙 as points on unit-grids in a multi-dimensional space –
Figure 4 visualizes reference records 𝑙 as blue points on the grid,
with similar distances between close neighbors (this is shown in
2D but can generalize into higher dimensions too).

Using an analogy from astronomy, we can intuitively think of
reference records in 𝐿 as “stars” on unit-grids, whereas the query
records 𝑟 ∈ 𝑅 (having different string variations from their corre-
sponding 𝑙) can be thought of as “planets” orbiting around “stars”
(with different distances to their corresponding 𝑙). Determining
which 𝑙 should each 𝑟 join amounts to finding the closest 𝑙 (star),
when using a suitable distance function 𝑓 .

(a) 𝑙1 is the closest left record to 𝑟1 .
We say (𝑙1, 𝑟1) is a “safe” join, be-
cause no other 𝐿 records exist in the
ball of distance 2𝑑 .

(b) 𝑙1 is the closest left record to 𝑟2 ,
since 𝑙2 is missing from 𝐿. We can
infer that (𝑙1, 𝑟2) is not a “safe” join,
because we find many 𝐿 records in
the ball of 2𝑑′.

Figure 4: Infer whether a join pair (𝑙, 𝑟) is “safe”, when using

a join function 𝑓 . We compute distance 𝑑 = 𝑓 (𝑙, 𝑟), and draw

a ball of distance 2𝑑 centered around 𝑙 . The more 𝐿 records

we find in the 2𝑑-ball, the more likely this join is not “safe”.

In an idealized setting where 𝐿 is complete, conceptually finding
the correct left record to join for a given 𝑟 is straightforward, as
one only needs to find the closest 𝑙 . In Figure 4(a) for example, we
would join 𝑟1 with 𝑙1 as 𝑙1 is the closest left record (blue dots) to 𝑟1.

Dealing with an “incomplete” 𝐿. In practice, however, 𝐿 can be
incomplete or have many missing records – in our visual model,
this would lead to missing blue points on the grid. Given some
𝑟 ∈ 𝑅 whose corresponding 𝑙 record is missing in 𝐿, the simplistic
approach of joining this 𝑟 with its closest 𝑙 ∈ 𝐿 leads to a false-
positive and lower precision.

For example, in Figure 4(b), 𝑟2 is a record that should join with the
reference record 𝑙2, which however is currently missing in 𝐿. This
makes correct fuzzy-joins challenging, because given 𝑙2 is absent in
𝐿, the closest 𝐿 record to 𝑟2 becomes 𝑙1, and a naive approach would
attempt to fuzzy-join (𝑟2, 𝑙1) using a distance of 𝑑 = 𝑓 (𝑟2, 𝑙1), which
creates a false-positive join. The key question we try to address, is
how to infer (without using ground-truth) that this particular 𝑑 is
too lax of a distance to use, and the resulting (𝑟2, 𝑙1) join is likely a
“bad” join (false-positive).

Our key idea here, is to infer the distances between 𝐿 records, and
use that to determine “safe” fuzzy-join distances to use. Specifically,
recall that when 𝐿 is complete and 𝐿 records are visualized on unit-
grids, like shown in Figure 4(a), closest neighbors of an 𝑙 tend to have
similar distances to 𝑙 , which we refer to as𝑤 , or the “width” of the
grid (shown in the figure). A hypothetical record 𝑟3 in Figure 4(a)
that lies right in between of 𝑙1 and 𝑙3 is then of distance 𝑤

2 to
both the two 𝐿 records, which intuitively cannot be reliable joined
with either 𝑙1 or 𝑙2. (Analogously, a “planet” lying right in between
two “stars” cannot be “claimed” by either). Intuitively, we can see
that in this case, the “safe” distance to join a pair of (𝑙, 𝑟) is when
𝑑 = 𝑓 (𝑙, 𝑟) < 𝑤

2 , which is when this 𝑟 would clearly lie on one side
and be closest to one 𝐿 record. (This can be shown formally via
triangle-inequality).

In the case when 𝐿 is incomplete with missing records, like
shown in Figure 4(b), estimating this grid-width𝑤 may not be as
straightforward. As a result, we perform this analysis in the other
direction – given a pair (𝑙, 𝑟) that we want to join, we compute
their distance 𝑑 = 𝑓 (𝑙, 𝑟). We then draw a ball centered around 𝑙
with a radius of 2𝑑 , and test how many additional 𝐿 records would
fall within this 2𝑑-ball. Because if 𝑑 < 𝑤

2 , which is a “safe” distance

to join based on our analysis above, then it follows that 2𝑑 < 𝑤 ,
meaning that in this 2𝑑-ball centered around 𝑙 we should expect to
see no other 𝐿 records (except 𝑙). If we indeed see no 𝐿 record in the
2𝑑-ball, we can be confident that this 𝑑 used to join (𝑙, 𝑟) is small
enough and the join is “safe”. Alternatively, if we observe many 𝐿

records in the 2𝑑-ball, this likely indicates that 2𝑑 ≥ 𝑤 , or 𝑑 ≥ 𝑤
2 ,

which based on our analysis above is too “lax” of a distance to be
“safe”.

Example 3.1. In Figure 4(a), to join 𝑟1, we first find its closest 𝐿,
which is 𝑙1, and compute 𝑑 = 𝑓 (𝑙1, 𝑟1). We then draw this 2𝑑 ball
around 𝑙1, and find no other 𝐿 records, indicating that this 𝑑 is small
enough and a “safe” distance to use for fuzzy-joins based on 𝑙1’s local
neighborhood.

In Figure 4(b), 𝑟2 should join 𝑙2, which however is missing in 𝐿.
In this case, we would find 𝑙1 to be closest to 𝑟2 in the absence of 𝑙2,
with a distance 𝑑 ′ = 𝑓 (𝑙1, 𝑟2). When we draw a 2𝑑 ′ ball around 𝑙1, we
find many additional 𝐿 records, which based on our analysis above
indicates that it is likely that this 𝑑 ′ ≥ 𝑤

2 , which is too “lax” to use in
this local neighborhood, and we should not join 𝑟2 with 𝑙1.

Note that in Figure 4(b), we have 4 missing 𝐿 records (marked
by dotted rectangles). This incomplete 𝐿, however, still allows us to
conclude that joining (𝑙1, 𝑟2) is not “safe”. In fact, in this 2-D example,
we can “tolerate” up to 7 missing 𝐿 records in the neighborhood while
still correctly deciding that (𝑙1, 𝑟2) is likely not “safe” to join.We should
note that this tolerance level goes up exponentially when records are
embedded in a higher-dimensional space (e.g., in a 3-D unit-cube, we
can tolerate up to 25 missing 𝑙 out of 27 positions).

Estimating join precision. Given 𝑟 ∈ 𝑅, let 𝑙 ∈ 𝐿 be the closest to
𝑟 with distance 𝑑 = 𝑓 (𝑙, 𝑟), we can estimate the precision of this
join pair (𝑙, 𝑟) (the likelihood of it being correct), to be the inverse
of the number of 𝐿 records within the 2𝑑 ball. We write this as
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑙, 𝑟), shown in Equation (8). We use the multiplicative-
inverse to estimate precision, because all 𝑙 within the 2d-ball are
reasonably close to 𝑟 , and are thus plausible counterparts to join
with this 𝑙 .

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑙, 𝑟) = 1
| {𝑙′ |𝑙′ ∈ 𝐿, 𝑓 (𝑙, 𝑙′) ≤ 2𝑓 (𝑙, 𝑟) } | (8)

Example 3.2. The precision of (𝑙1, 𝑟1) in Figure 4(a) can be esti-
mated as 1 per Equation (8), because 𝑙1 is closest to 𝑟1, and the 2𝑑 ball
around 𝑙1 has only one 𝐿 record (itself).

The precision of (𝑙1, 𝑟2) in Figure 4(b) can be estimated as 1
5 , since

the 2𝑑 ′ ball has 5 𝐿 records (note that 4 𝐿 records are missing).
For an example from tables, we revisit Figure 3(b). Here for 𝑟1, the

closest in 𝐿 by Edit-distance is 𝑙1 with 𝑑 = 1. While the pair is as close
as it gets for Edit-distance, the 2𝑑-ball around 𝑙1 (with a radius of
Edit-distance=2) has many 𝐿 records (e.g., 𝑙2, 𝑙5, etc.), indicating that
the join (𝑟1, 𝑙1) is of low precision.

We would like to note that this estimate 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑙, 𝑟) is not
intended to be exact when 𝐿 is incomplete. Because in our appli-
cation users typically want high-precision fuzzy-joins (e.g., target
precision of 0.9 or 0.8), our precision estimate only needs to be
informative to qualitatively differentiate between high-confidence
joins (clean balls), and low-confidence joins (balls with more than
one 𝐿 record). As soon as the balls contain more than one 𝐿 record,
the estimated precision drops quickly to below 0.5, at which point
our algorithm would try to avoid given a high precision target (i.e.,
it does not really matter if the estimate should really be 1

5 or 1
8).

Using the precision estimate for a single (𝑙, 𝑟) pair in Equation (8),
we can now estimate precision for a given configuration𝐶 = ⟨𝑓 , 𝜃⟩.
Recall that given 𝐶 , each 𝑟 ∈ 𝑅 is joined with 𝐽𝐶 (𝑟) (defined in
Equation (1)), which can be an 𝑙 ∈ 𝐿 or empty (no suitable 𝑙 to join
with). The estimated precision of a 𝑟 joined using 𝐶 if 𝐽𝐶 (𝑟) ≠ ∅ is:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑟,𝐶) = 1
| {𝑙′ |𝑙′ ∈ 𝐿, 𝑙 = 𝐽𝐶 (𝑟), 𝑓 (𝑙, 𝑙′) ≤ 2𝜃 } | (9)

The expected number of true-positives 𝑇𝑃 (𝐶) is the sum of ex-
pected precision of each 𝑟 that 𝐶 can join:

𝑇𝑃 (𝐶) =
∑

𝑟∈𝑅,𝐽𝐶 (𝑟)≠∅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑟,𝐶) (10)

And the expected number of false-positives 𝐹𝑃 (𝐶) is:

𝐹𝑃 (𝐶) =
∑

𝑟∈𝑅,𝐽𝐶 (𝑟)≠∅

(
1 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑟,𝐶)

)
(11)

Thus, the estimated precision and recall of a given 𝐶 is:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐶) = 𝑇𝑃 (𝐶)
𝑇𝑃 (𝐶) + 𝐹𝑃 (𝐶) , 𝑟𝑒𝑐𝑎𝑙𝑙 (𝐶) = 𝑇𝑃 (𝐶) (12)

Estimate for a set of configurations𝑈 .We now discuss how to
estimate the quality for a set of configurations𝑈 .

In the simple (and most common) scenario, the join assignment
of each 𝑟 ∈ 𝑅 has no conflicts within 𝑈 . This can be equivalently
written as ∀𝑟 ∈ 𝑅, |𝐽𝑈 (𝑟) | ≤ 1 (recall 𝐽𝑈 (𝑟) is the result induced
by 𝑈 defined in Equation (2)). In such scenarios, estimating for
𝑈 is straightforward. 𝑇𝑃 (𝑈) can be simply estimated as 𝑇𝑃 (𝑈) =∑
𝐶∈𝑈 𝑇𝑃 (𝐶), and 𝐹𝑃 (𝑈) as 𝐹𝑃 (𝑈) = ∑

𝐶∈𝑈 𝐹𝑃 (𝐶).
It is more complex when some 𝑟 has conflicting join assigning

in 𝑈 , with say 𝐽𝐶𝑖
(𝑟) = 𝑙 and 𝐽𝐶 𝑗

(𝑟) = 𝑙 ′, where 𝑙 ≠ 𝑙 ′. Because we
know each 𝑟 should only join with at most one 𝑙 ∈ 𝐿 (as 𝐿 is the
reference table), we use our precision estimate in Equation (9) to
compare 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟,𝐶𝑖) and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟,𝐶 𝑗), and pick the more
confident join as our final assignment. Other derived estimates like
𝑇𝑃 (𝑈) and 𝐹𝑃 (𝑈) can be updated accordingly.

Given 𝑇𝑃 (𝑈) and 𝐹𝑃 (𝑈), the estimated precision/recall of𝑈 is:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑈) = 𝑇𝑃 (𝑈)
𝑇𝑃 (𝑈) + 𝐹𝑃 (𝑈) , 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑈) = 𝑇𝑃 (𝑈) (13)

3.2 AutoFJ Algorithm

Given the hardness result, we propose an intuitive and efficient
greedy approach AutoFJ to solve the RM-FJ problem. Recall that
our goal is to maximize recall while keeping precision above a
certain threshold 𝜏 , where precision and recall can be estimated
according to Equation (13). A greedy strategy is then to prefer
configurations that can produce the most number of true-positives
(TP), i.e., maximal recall, at the “cost” of introducing as few false-
positives as possible (FP), i.e., minimal precision loss. We call this
ratio of TP to FP “profit” to quantify how desirable a solution is:

𝑝𝑟𝑜 𝑓 𝑖𝑡 (𝑈) = TP(U)
FP(U)

(14)

Algorithm 1 AutoFJ for single column
Require: Tables 𝐿 and 𝑅, precision target 𝜏 , search space 𝑆
1: 𝐿𝐿, 𝐿𝑅 ← apply blocking with 𝐿 − 𝐿 and 𝐿 − 𝑅
2: 𝐿𝑅 ← Learn negative-rules from 𝐿𝐿 and apply rules on 𝐿𝑅 (Alg. 2)
3: Compute distance with different join functions 𝑓 ∈ 𝑆
4: Pre-compute precision estimation for each configuration𝐶 ∈ 𝑆
5: 𝑈 ← ∅
6: while 𝑆 \𝑈 ≠ ∅ do
7: 𝑚𝑎𝑥_𝑝𝑟𝑜 𝑓 𝑖𝑡 ← 0
8: for all𝐶 ∈ 𝑆 \𝑈 do

9: if 𝑝𝑟𝑜 𝑓 𝑖𝑡 (𝑈 ∪ {𝐶 }) >𝑚𝑎𝑥_𝑝𝑟𝑜 𝑓 𝑖𝑡 then
10: 𝐶∗ ← 𝐶 ,𝑚𝑎𝑥_𝑝𝑟𝑜 𝑓 𝑖𝑡 ← 𝑝𝑟𝑜 𝑓 𝑖𝑡 (𝑈 ∪ {𝐶 })
11: if 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑈 ∪ {𝐶∗ }) > 𝜏 then

12: 𝑈 ← 𝑈 ∪ {𝐶∗ }
13: else

14: break

15: return 𝑈

Given a space of possible configurations 𝑆 , our greedy algorithm
in Algorithm 1 starts with an empty solution 𝑈 (Line 5). It iter-
atively finds the configuration from the remaining candidates in
𝑆 \𝑈 , whose addition into the current𝑈 leads to the highest profit
(Line 9).8 The entire greedy algorithm terminates when the esti-
mated precision of 𝑈 falls below the threshold 𝜏 (Line 14) or there
is no remaining candidate configurations (Line 6).

EfficiencyOptimizations.We perform twomain optimizations to
improve efficiency of the greedy algorithm. First, we pre-compute
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟,𝐶) ∀𝑟 ∈ 𝑅, 𝐶 ∈ 𝑆 based on given 𝐿 and 𝑅, as opposed
to computing these measures repeatedly in each iteration.

Second, we apply blocking [15, 20, 41] to avoid comparing all
record pairs. However, unlike standard blocking, we could not
expect users to tune parameters in the blocking component (e.g.,
tokenization schemes, what fraction of tokens to keep, etc.) based on
input data, precisely because our goal is to have end-to-end hands-
off Auto-FuzzyJoin. Instead of performing automated parameter-
tuning for blocking, we use a default blocking that is empirically
effective: we use 3-gram tokenization to tokenize each record and
we use TF-IDF weighting schema to weight each token; we measure
the similarity between each 𝑙 and 𝑟 by summing the weights of
their common tokens; for each 𝑟 , we keep the top |

√
𝐿 | number of

candidate matches from 𝐿 with the largest similarity scores and
block others. As we will show in experiments, our default blocking
strategy achieves a significant reduction in running time with close
to zero loss in recall.

Complexity of Algorithm 1. Since the number of 𝐿-𝐿 and
𝐿-𝑅 tuple pairs after blocking is |𝐿 |

√
|𝐿 | + |𝑅 |

√
|𝐿 |, it takes

𝑂 (|𝑆 | (|𝐿 |
√
|𝐿 | + |𝑅 |

√
|𝐿 |)) to compute the distance (Line 3). To com-

pute 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟,𝐶), we need to first find 𝑙 ∈ 𝐿 closest to 𝑟 , then
we need to find 𝑙 ′ ∈ 𝐿 that have distance smaller than 2𝜃 with
𝑙 . Since after blocking, for each 𝑟 ∈ 𝑅 or 𝑙 ∈ 𝐿, we have |

√
𝐿 |

records in the candidate set. Hence the time complexity for com-
puting the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟,𝐶) is𝑂 (

√
𝐿) and the complexity for the pre-

computing step (Line 4) is𝑂 (|𝑆 | |𝑅 |
√
|𝐿 |). At each iteration, with our

pre-computation, it takes 𝑂 (1) time to compute the profit for each
configuration (Line 9). Therefore, the time complexity of greedy
steps (Line 6 to Line 14) is𝑂 (|𝑆 | |𝑅 |) (we have at most |𝑅 | iterations
since each iteration needs to join a new right record to increase

8If there are multiple configurations with the same profit at an iteration, which rarely
happens on large datasets, we break ties randomly.

Algorithm 2 Learning and Applying Negative Rules
Require: Tables 𝐿 and 𝑅, 𝐿𝐿 and 𝐿𝑅
1: Apply lowercasing, stemming, and removing punctuation for all 𝐿 and 𝑅
2: 𝑁𝑅 ← ∅
3: for 𝑙1, 𝑙2 ∈ 𝐿𝐿 do

4: 𝑊1 ← set of words of 𝑙1 ,𝑊2 ← set of words of 𝑙2
5: Δ1 ← |𝑊1 \𝑊2 |, Δ2 ← |𝑊2 \𝑊1 |
6: if |Δ1 | = 1 and |Δ2 | = 1 then
7: 𝑁𝑅 ← 𝑁𝑅 ∪ (Δ1,Δ2)
8: for 𝑙, 𝑟 ∈ 𝐿𝑅 do

9: 𝑊1 ← set of words of 𝑙 ,𝑊2 ← set of words of 𝑟
10: Δ1 ← |𝑊1 \𝑊2 |, Δ2 ← |𝑊2 \𝑊1 |
11: if |Δ1 | = 1 and |Δ2 | = 1 and (Δ1,Δ2) ∈ 𝑁𝑅 then

12: Remove (𝑙, 𝑟) from 𝐿𝑅

13: return 𝐿𝑅

profit). Hence, the total time complexity is𝑂 (|𝑆 | |𝐿 |
√
|𝐿 |+|𝑆 | |𝑅 |

√
|𝐿 |).

The space complexity is dominated by computing distance between
tuple pairs, which is in 𝑂 (|𝑆 | |𝐿 |

√
|𝐿 | + |𝑆 | |𝑅 |

√
|𝐿 |).

3.3 Learning of Negative-Rules

While tuning fuzzy-join parameters is clearly important and useful,
we observe that there is an additional opportunity to improve join
quality not currently explored in the literature.

Specifically, in many real datasets there are record pairs that are
syntactically similar but should not join. For example, in Figure 3(a),
(𝑙6, 𝑟6) with “2007 LSU Tigers football team” and “2007 LSU Tigers
baseball team” should not join despite their high similarity, because
as human we know that “football” ≠ “baseball”. Similarly (𝑙7, 𝑟7)
with “2007 Wisconsin Badgers football team” and “2008 Wisconsin
Badgers football team” should not join, since “2007” ≠ “2008”.

Such negative rules are often dataset-specific with no good
“global” rules to cover diverse data. Our observation is that we
can again leverage reference table 𝐿 to “learn” such negative rules
— if a pair of records in the 𝐿 table only differ by one pair of words,
then we learn a negative rule from that pair. The learned negative
rules can then be used to prevent false positives in joining 𝐿 and 𝑅.

Definition 3.1. Let 𝑙1, 𝑙2 ∈ 𝐿 be two reference records,𝑊 (𝑙1) and
𝑊 (𝑙2) be the set of words in the two records, respectively. Denote by
Δ12 =𝑊 (𝑙1) \𝑊 (𝑙2), and Δ21 =𝑊 (𝑙2) \𝑊 (𝑙1). We learn a negative
rule NR(Δ12,Δ21), if |Δ12 |=1 and |Δ21 |=1.

Note that since 𝐿 is a reference table with little or no dupli-
cates, the negative rules we learned intuitively capture different
“identifiers” for different entities of the same entity type.

We summarize the algorithm for learning and applying negative
rules in Algorithm 2. The inputs are the 𝐿-𝐿 and 𝐿-𝑅 tuple pairs that
survive in the blocking step. The tuples will be first preprocessed
by lowercasing, stemming and removing punctuations (Line 1).
The algorithm will then learn negative rules from 𝐿-𝐿 tuple pairs
(Line 2 to Line 6). Then it applies the learned negative rules on 𝐿-𝑅
tuple pairs (Line 7 to Line 11), where the tuple pairs that meet the
negative rules will be discarded and will not be joined.

While negative-rule learning can be applied broadly regardless of
whether fuzzy-joins are auto-tuned or not, in the context of Auto-
FuzzyJoin our experiments show that it provides an automated
way to improve join quality on top of automated parameter tuning.

4 MULTI-COLUMN AUTO-FUZZYJOIN

We now consider the more general case, where the join key is given
as multiple columns, or when the join key is not explicitly given,
in which case our algorithm has to consider all columns.

Figure 5: Example multi-column fuzzy join: Movies.

Figure 5 shows an example of two movie tables with attribute
like names, directors, etc. Intuitively, we can see that names and di-
rectors are important for fuzzy-join, but not descriptions. Users may
either select name and director as key columns for Auto-FuzzyJoin,
or may provide no input to the algorithm. In either case, the al-
gorithm has to figure out what columns to use and their relative
“importance” in making overall fuzzy-join decisions.

4.1 Multi-Column Join Configuration

Given that multiple columns may have different relative “impor-
tance”, we extend single-column configuration 𝐶 = ⟨𝑓 , 𝜃⟩ as fol-
lows. We define a join function vector as F = (𝑓 1, 𝑓 2, ...𝑓𝑚), where
𝑓 𝑗 ∈ F is the join function used for the 𝑗𝑡ℎ column pair. In addition,
we define a column-weight vector as w = (𝑤1,𝑤2, ...,𝑤𝑚), where
𝑤𝑖 ∈ [0, 1] is the weight associated with 𝑗𝑡ℎ column pair.

Let 𝑙 [𝑗] and 𝑟 [𝑗] be the value in 𝑗𝑡ℎ column of record 𝑙 and
𝑟 , respectively. Given F and w, the distance between 𝑙 and 𝑟 is
computed as the sum of weighted distances from all columns:

Fw (𝑙, 𝑟) =
𝑚∑
𝑗=1

𝑤 𝑗 𝑓 𝑗 (𝑙 [𝑗], 𝑟 [𝑗])

Definition 4.1. A multi-column join configuration is a 3-tuple
⟨F,w, 𝜃⟩, where F ∈ F𝑚 is a join function vector, w ∈ R𝑚 is a
column-weight vector, and 𝜃 ∈ R is a threshold.

Let 𝑆 = {⟨F,w, 𝜃⟩| F ∈ F𝑚,w ∈ R𝑚, 𝜃 ∈ R} be the space of
possible multi-column join configurations. A multi-column join
configuration 𝐶 ∈ 𝑆 induces a fuzzy join mapping 𝐽𝐶 (𝑟) for each
𝑟 ∈ 𝑅, defined as:

𝐽𝐶 (𝑟) = argmin
𝑙∈𝐿,Fw (𝑙,𝑟)≤𝜃

Fw (𝑙, 𝑟), ∀𝑟 ∈ 𝑅 (15)

4.2 Multi-Column AutoFJ

Given the space of multi-column configurations 𝑆 , the Auto-
FuzzyJoin problem is essentially the same as RM-FJ in the single-
column setting: we want to find a set of configuration𝑈 ∈ 2𝑆 that
maximizes the 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑈), while having 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑈) ≥ 𝜏 .

A naive approach is to invoke the single-column fuzzy join so-
lution in Algorithm 1 with the multi-column join configuration
space 𝑆 . However, such a simple adaptation is not practical, because
the new multi-column search space is exponential in the number
columns𝑚 (each column has its own space of fuzzy-join configu-
rations, which can combine freely with configurations from other
columns). Exploring this space naively would be too slow.

Our key observations here is that (1) given a wide table, there are
often only a few columns that contribute positively to the overall
fuzzy-join decisions; (2) the relative “importance” of these useful
columns is often a static property, which depends only on the data
and task at hand, and is independent of the search algorithm used.
For example, in Figure 5, the fact that column “names” is the most
important, “directors” is less important, and “description” is not
useful, would hold true irrespective of the distance-functions used
and/or the set of input columns considered.

We therefore propose a multi-column AutoFJ algorithm shown
in Algorithm 3, which is inspired by the forward selection approach

Algorithm 3 AutoFJ for multiple columns
Require: Tables 𝐿 and 𝑅, precision target 𝜏 , and search space 𝑆
1: 𝑈 ← ∅,𝑈 ∗ ← ∅ w← (0, 0, ...0) ,
2: 𝐸 ← {e1, e2, ...em }, where ej is a𝑚-dimensional vector with the 𝑗𝑡ℎ position set

to 1 and the rest to 0.
3: while 𝐸 ≠ ∅ do
4: for all ej ∈ 𝐸 do

5: for all 𝛼 ∈ { 1
𝑔
, 2
𝑔
, . . . ,

𝑔−1
𝑔
} do

6: w′ ← (1 − 𝛼)w + 𝛼ei
7: 𝑈 ′ ← invoke Algorithm 1 with weight vector w′.
8: if 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑈 ′) > 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑈 ∗) then
9: 𝑈 ∗ ← 𝑈 ′, w∗ ← w′, e∗ ← ej
10: if 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑈 ∗) > 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑈) then
11: 𝑈 ← 𝑈 ∗ , w← w∗ , 𝐸 = 𝐸 \ e∗
12: else

13: break

14: return U

to feature selection in machine learning [17]. At a high-level, our
algorithm starts from an empty set of join column (Line 1), and
iteratively expands this set by adding the most important column
from the remaining columns (Line 4 to Line 9). The importance of a
candidate column is determined by the resulting join quality after
adding it, which can be estimated using techniques from Section 3.1
(Line 7 to Line 9). The algorithm terminates when the join quality
cannot be improved by adding an extra column (Line 13) or there is
no remaining columns (Line 3). This adding one-column-at-a-time
approach is reminiscent of forward selection [17].

In addition, as the set of candidate columns expands, instead of
searching for the column-weight vector w blindly (which would
again be exponential in𝑚), we leverage the fact that column impor-
tance is a static property of the data set (Observation (2) above), and
thus in each iteration we “inherit” column-weights from previous
iterations, and further scale them linearly relative to the observed
importance of the new column added in this iteration (Line 6).

Complexity ofAlgorithm3.The search algorithm inAlgorithm 3
invokes single-column AutoFJ𝑂 (𝑚2𝑔) times (where𝑚 is the num-
ber of input columns, and 𝑔 the discretization steps for weights),
which is substantially better than the naive 𝑂 (𝑔𝑚) we started with.
Hence, the time complexity is 𝑂 (𝑚2𝑔(|𝑆 | |𝐿 |

√
|𝐿 | + |𝑆 | |𝑅 |

√
|𝐿 |)). Its

space complexity is𝑂 (𝑚(|𝑆 | |𝐿 |
√
|𝐿 | + |𝑆 | |𝑅 |

√
|𝐿 |)) since we need to

precompute distances for all𝑚 columns. In practice, we observe that
it terminates after a few iterations (only selecting a few columns
from a wide table). This, together with other optimizations we
propose, makes multi-column AutoFJ very efficient.

5 EXPERIMENTS

We evaluate the effectiveness, efficiency, and robustness of fuzzy-
join algorithms. All experiments are performed on a machine with
two Intel Xeon E5-2673 v4 CPUs at 2.30GHz and 256GB RAM.

5.1 Single-Column Auto-FuzzyJoin

5.1.1 Datasets. We constructed 50 diverse fuzzy-join datasets us-
ing DBPedia [34]. Specifically, we obtained multiple snapshots
of DBPedia9 (from year 2013, 2014, 2015, 2016, etc.), which are
harvested from snapshots of Wikipedia over time. Each entity in
a DBPedia snapshot has a unique “entity-id”, an “entity-name”
(fromWikipedia article titles), and an “entity-type” (e.g., Political
Parties, Soccer Leagues, NCAA teams, Politicians, etc., which are
9http://downloads.dbpedia.org/

extracted from Wikipedia info-boxes). Because these entity-names
are edited by volunteers, their names can have minor changes
over time (e.g., “2012 Wisconsin Badgers football team” and “2012
Wisconsin Badgers football season” are the titles/entity-names
used in two different snapshots, referring to the same Wikipedia ar-
ticle/entity because they share the same unique “entity-id” across
time).

For each DBPedia snapshot from a specific year, and for each
entity-type, we build a table with names of all entities in that type
(e.g., NCAA-Teams from the snapshot in year 2013). Two tables of the
same type from different years can then be used as a fuzzy-join task
(e.g., NCAA-Teams in year 2013 vs. 2016). Because the entity-id of
these entities do not change over time, it allows us to automatically
generate fuzzy-join ground-truth using entity-id.

We randomly select 50 entity-types for benchmarking. We use
the 2013 snapshot as 𝐿, and use the union of all other snapshots as
𝑅, which would create difficult cases where multiple right records
join with the same left record, as well as cases where a right record
has no corresponding left record. We further remove equi-joins
from all datasets that are trivial for fuzzy joins. These 50 data sets
and their sizes are shown in the leftmost two columns of Table 2.
We released this benchmark together with our Auto-FuzzyJoin
code on GitHub10 to facilitate future research.
5.1.2 Evaluation Metrics. We report quality of Fuzzy-Join algo-
rithms, using the standard precision (P) and recall (R) metrics, de-
fined in Equation (3) and (4) of Section 2.

Recall that AutoFJ automatically produces a solution that maxi-
mizes recall while meeting a certain precision target. In comparison,
existing fuzz-join approaches usually output (their own version
of) similarity/probability scores for each tuple pair, and ask users
to pick the right threshold. In order to compare, for each existing
method, we search for the similarity (probability) threshold that
would produce a precision score that is “closest to but not greater
than” AutoFJ, and report the corresponding recall score (which
favors baselines). We call this recall score adjusted recall (AR).

For example, suppose AutoFJ produces results with precision
0.91, recall 0.72. Suppose an existing baseline produces the follow-
ing (P, R) values at different threshold-levels: {(0.8, 0.8), (0.9, 0.7),
(0.92, 0.6), (0.95, 0.5)}. The adjusted recall (AR) for this baseline
will be reported as 0.7, for its corresponding precision (0.9) is “clos-
est to but not greater than” the 0.91 precision produced by AutoFJ.
We can see that this reported AR clearly favors the baseline, but
allows us to compare recall at a fixed precision target.

In addition to the AR, we also measure the quality of fuzzy-joins
using Precision-Recall AUC score (PR-AUC), defined as the entire
area under the Precision-Recall curves. This is a standard metric
that does not require the thresholding procedure above.
5.1.3 Single-Column Fuzzy Join Algorithms.
• AutoFJ. This is our method, and we use target precision 𝜏 = 0.9,
the step size for discretizing numeric parameters 𝑠 = 50. Table 1 lists
the parameter values we used in experiments (c.f. Figure 2). In total,
we consider 4 options for preprocessing, 2 for tokenization and 2
for token weights. For distance function, we consider 2 character-
based distance, 8 set-based distance and 1 embedding distance 11.

10https://github.com/chu-data-lab/AutomaticFuzzyJoin
11https://github.com/explosion/spacy-models/releases//tag/en_core_web_lg-2.3.0

http://downloads.dbpedia.org/
https://github.com/chu-data-lab/AutomaticFuzzyJoin
https://github.com/explosion/spacy-models/releases//tag/en_core_web_lg-2.3.0

Parameters Values

Preprocessing L, L+S, L+RP, L+S+RP
Tokenization 3G, SP
Token Weights EW, IDFW

Distance Function

Character-based JW, ED

Set-based

JD, CD, MD, DD, ID
*Contain-Jaccard
*Contain-Cosine

*Contain-Dice Distance
Embedding GED

* We design three hybrid distance functions named Contain-Jaccard, Contain-Cosine
and Contain-Dice. If two records have containment relationship (i.e. 𝑟 ⊆ 𝑙), they are
equivalent to the standard distance functions; Otherwise, output 1.

Table 1: Parameter Options Considered in the Experiments

Among the 8 set-based functions, the first 5 of them are standard
functions; while the last 3 are hybrid ones we added. In total we
have 4 × 2 + 4 × 2 × 2 × 8 + 4 × 1 = 140 join functions (note that the
tokenization and token-weight parameters are only applicable to
set-based distance).
• Best Static Join Function (BSJ). In this method, we evaluate the
join quality of each individual join function from the space of 140
discussed above. We compute the Adjusted-Recall (AR) score of
each join function on each data set, and report the join function
that has the best average AR over 50 datasets. This can be seen as
the best static join function, whereas AutoFJ produces dynamic
join functions (different datasets can use different join functions).
• Excel. This is the fuzzy-join feature in Excel 12. The default
parameter setting is carefully engineered and uses a weighted com-
bination of multiple distance functions.
• FuzzyWuzzy (FW). This is a popular open-source fuzzy join
package with 5K+ stars 13. It produces a score for every tuple pair
based on an adapted and fine-tuned version of the edit distance.
• ZeroER [48]. This is a recent unsupervised entity resolution (ER)
approach that requires zero labeled examples. It uses a generative
model that is a variant of a Gaussian Mixture Model to predict
the probability of a tuple pair being a match. The features used in
ZeroER are generated by the Magellan [32] package.
• ECM [24]: This is an unsupervised approach with the Fellegi and
Sunter framework [29]. We use the implementation from [25] that
uses binary features and Expectation-Conditional Maximization
(ECM) algorithm. The features are generated by the Magellan [32]
package and binarized using the mean value as the threshold.
• PPjoin (PP) [49]: This is a set similarity join algorithm that em-
ploys several filtering techniques to optimize efficiency. We use an
existing implementation 14 and use Jaccard similarity.
•Magellan [32]. This is a supervised approach that uses conven-
tional ML models based on similarity values as features. We use
the open-source implementation with random forest as the model.
For each dataset, we randomly split the data into a training and a
test set by 50%-50%. Note that 50% training data is generous given
that the amount of available labeled data is usually much smaller
in practice. The reported AR are the average results over 5 runs.
•DeepMatcher (DM) [40]. This is a supervised approach that uses
a deep learning model with learned record embedding as features.
We use the same setup as Magellan in terms of train/test split. We
use the open-source implementation with its default model.

12https://www.microsoft.com/en-us/download/details.aspx?id=15011
13https://github.com/seatgeek/fuzzywuzzy
14https://github.com/usc-isi-i2/ppjoin

•Active Learning (AL). This is an active learning based supervised
approach. The algorithm interactively queries users to label new
tuple pairs until 50% joined pairs in the data are labeled. We use
the implementation from modAL [21] with default query strategy,
and we use the same model and features as Magellan.
• Upper Bound of Recall (UBR). There are many ground-truth
pairs in 𝐿 and 𝑅 that are difficult for fuzzy-joins (e.g., (“Lita
(wrestler)", “Amy Dumas"), (“GLYX-13", “Rapastinel"), etc.). These
pairs have semantic relationships that are out of the scope of fuzzy-
joins. To test the true upper-bound of fuzzy-joins, for each 𝑟 we
find its closest 𝑙 ∈ 𝐿 using all possible configurations 𝐶 ∈ 𝑆 , which
collectively is the set of fuzzy-join pairs that can be produced. We
call a ground-truth pair (𝑙, 𝑟) feasible if it is in the set, and report
the recall using all feasible ground-truth pairs. This gives us a true
upper-bound of fuzzy-join on these data sets.

5.1.4 Single-Column Fuzzy Join Evaluation Results.
Overall Quality Comparison. Table 2 shows the overall quality
comparison between AutoFJ and other approaches on 50 datasets.
The average precision of AutoFJ is 0.886, which is very close to
the target precision 𝜏 = 0.9. We compute the Pearson correlation
coefficient between the actual precision and the estimated precision
(PEPCC) over AutoFJ iterations for each dataset. As we can see in
Table 2, the average PEPCC over all datasets is 0.894, which shows
that the actual/estimated precision match well across iterations.

The average recall of AutoFJ is 0.624. Given that the average
recall upper bound (UBR) is 0.834, AutoFJ produces about 75%
of correct joins that can possibly be generated by any fuzzy-join
program. As we can see, AutoFJ outperforms all other approaches
on 21 out of 50 datasets. On average, the recall of AutoFJ is 0.062
better than Excel, the best among all unsupervised approaches, and
0.129 better than AL, the best among all supervised approaches that
use 50% of joins as training data. To test the statistical significance
of this comparison, We perform an upper-tailed T-Test over the 50
datasets, where the null hypothesis (𝐻0) states that the mean of
AutoFJ’s recall is no better than that of a baseline’s AR. As shown
in the second last row of Table 2, the p-values of all baselines are
smaller than 0.003, showing that the differences are significant.

The last row of Table 2 shows the average PR-AUC scores of
AutoFJ and other methods over 50 datasets. As we can see, the
PR-AUC of AutoFJ is on average 0.057 better than Excel, the
strongest unsupervised method, and 0.056 better than Magellan,
the method with the highest PR-AUC score among all supervised
methods. This indicates that AutoFJ can outperform other baselines
across different precision levels. The details of PR-AUC scores on
each dataset can be found at the full version of this paper [9], where
we show that AutoFJ outperforms all other methods in terms of
PR-AUC on 28 out of 50 datasets.

Among all unsupervised baselines, Excel, as a commercial-grade
tool that features carefully engineered weighted combination of
multiple distance functions, performs the best. In fact, Excel is even
better than BestStaticJF, the best statistic configuration tuned on
the 50 datasets. We also observe that FW and ZeroER has gener-
ally worse performance than Excel and BestStaticJF, because FW
and ZeroER use predetermined sets of similarity functions while
Excel and BestStaticJF have various degrees of feature engineer-
ing. ECM and PPJoin under-perform other unsupervised methods,

https://www.microsoft.com/en-us/download/details.aspx?id=15011
https://github.com/seatgeek/fuzzywuzzy
https://github.com/usc-isi-i2/ppjoin

Dataset Size (L-R) UBR

AutoFJ

Unsupervised Supervised Ablation Study

BSJ Excel FW ZeroER ECM PP Magellan DM AL AutoFJ-UC AutoFJ-NR

PEPCC RERCC P R AR AR AR AR AR AR AR AR AR AR AR

Amphibian 3663 - 1161 0.605 0.942 0.954 0.797 0.537 0.388 0.514 0.513 0.504 0.372 0.485 0.786 0.588 0.861 0.511 0.533
ArtificialSatellite 1801 - 72 0.75 0.91 0.986 0.761 0.486 0.264 0.375 0.403 0.042 0.194 0.125 0.199 0.011 0.142 0.278 0.486
Artwork 3112 - 245 0.967 0.753 0.993 0.907 0.837 0.755 0.89 0.731 0.592 0.371 0.518 0.691 0.354 0.715 0.841 0.873
Award 3380 - 384 0.753 0.986 0.993 0.917 0.43 0.331 0.393 0.365 0.115 0.237 0.201 0.209 0.092 0.165 0.367 0.372
BasketballTeam 928 - 166 0.867 0.942 0.993 0.873 0.62 0.554 0.711 0.018 0.042 0.398 0.331 0.247 0.089 0.379 0.53 0.681
Case 2474 - 380 0.997 0.936 0.966 0.987 0.976 0.584 0.853 0.763 0.584 0.529 0.166 0.803 0.809 0.983 0.958 0.976
ChristianBishop 5363 - 494 0.933 0.952 0.993 0.931 0.789 0.662 0.652 0.603 0.407 0.283 0.5 0.649 0.313 0.756 0.713 0.802
CAR 2547 - 190 0.947 0.829 0.992 0.925 0.842 0.711 0.895 0.421 0.095 0.221 0.389 0.449 0.135 0.408 0.805 0.842
Country 2791 - 291 0.821 0.969 0.996 0.898 0.608 0.471 0.546 0.464 0.241 0.244 0.254 0.29 0.068 0.403 0.423 0.577
Device 6933 - 658 0.878 0.969 0.999 0.93 0.664 0.553 0.657 0.477 0.222 0.198 0.295 0.106 0.14 0.298 0.584 0.658
Drug 5356 - 157 0.535 0.96 0.993 0.731 0.363 0.134 0.401 0.376 0.408 0.045 0.07 0.595 0.008 0.541 0.293 0.427
Election 6565 - 727 0.872 0.976 0.993 0.926 0.651 0.501 0.318 0.162 0.073 0.177 0.11 0.651 0.418 0.342 0.55 0.362
Enzyme 3917 - 48 0.813 0.625 0.970 0.775 0.646 0.5 0.604 0.583 0.5 0.208 0.5 0.321 0.033 0.318 0.646 0.667
EthnicGroup 4317 - 946 0.938 0.933 0.932 0.958 0.803 0.551 0.765 0.513 0.463 0.225 0.015 0.726 0.464 0.876 0.729 0.776
FootballLeagueSeason 4457 - 280 0.871 0.945 0.794 0.878 0.614 0.532 0.65 0.575 0.468 0.132 0.282 0.882 0.201 0.437 0.571 0.582
FootballMatch 1999 - 53 0.906 0.958 0.987 1 0.755 0.472 0.321 0.34 0.415 0.208 0.623 0.715 0.052 0.466 0.472 0.66
Galaxy 555 - 17 0.529 0.912 1.000 0.714 0.294 0.353 0.412 0.118 0.059 0.235 0.235 0.319 0.044 0.217 0.412 0.294
GivenName 3021 - 154 0.994 0.39 0.174 0.973 0.922 0.831 0.857 0.078 0.013 0.442 0.286 0.565 0.06 0.886 0.909 0.922
GovernmentAgency 3977 - 571 0.839 0.965 0.998 0.902 0.627 0.531 0.623 0.469 0.336 0.261 0.343 0.386 0.41 0.467 0.543 0.611
HistoricBuilding 5064 - 512 0.924 0.958 0.985 0.939 0.785 0.654 0.768 0.664 0.416 0.236 0.066 0.537 0.284 0.603 0.656 0.795
Hospital 2424 - 257 0.79 0.961 0.999 0.854 0.568 0.475 0.451 0.444 0.136 0.292 0.23 0.191 0.141 0.145 0.49 0.626
Legislature 1314 - 216 0.917 0.908 0.986 0.925 0.801 0.736 0.819 0.708 0.509 0.208 0.023 0.66 0.328 0.748 0.75 0.796
Magazine 4005 - 274 0.942 0.849 0.976 0.942 0.825 0.741 0.788 0.42 0.179 0.281 0.318 0.123 0.286 0.423 0.755 0.847
MemberOfParliament 5774 - 503 0.972 0.975 0.995 0.949 0.704 0.571 0.147 0.308 0.018 0.205 0.008 0.63 0.251 0.742 0.569 0.688
Monarch 2033 - 242 0.917 0.972 0.998 0.902 0.649 0.355 0.645 0.306 0.236 0.351 0.095 0.328 0.101 0.454 0.322 0.612
MotorsportSeason 1465 - 388 0.93 0.973 -0.158 0.971 0.874 0.902 0.912 0.827 0.912 0.196 0.912 0.98 0.959 0.994 0.905 0.933
Museum 3982 - 305 0.8 0.956 0.997 0.889 0.58 0.521 0.58 0.374 0.246 0.193 0.193 0.14 0.11 0.227 0.528 0.633
NCAATeamSeason 5619 - 34 1 NA* NA* 1 0.412 0.382 0.059 0.588 0.412 0.118 0.294 0.928 0.059 0.503 0.824 0.382
NFLS 3003 - 10 1 NA* NA* 1 0.5 1 0.5 0.5 0.5 0.2 1 0.933 0 0.633 0.4 0.5
NaturalEvent 970 - 51 0.882 0.815 0.968 0.811 0.588 0.588 0.333 0.49 0.275 0.412 0.118 0.1 0.241 0.054 0.549 0.588
Noble 3609 - 364 0.915 0.979 0.997 0.936 0.445 0.393 0.646 0.426 0.234 0.363 0.033 0.125 0.065 0.443 0.365 0.308
PoliticalParty 5254 - 495 0.76 0.986 0.997 0.819 0.402 0.327 0.467 0.408 0.228 0.204 0.069 0.264 0.071 0.309 0.331 0.362
Race 2382 - 175 0.571 0.985 0.990 0.766 0.337 0.269 0.349 0.206 0.143 0.194 0.16 0.217 0.034 0.103 0.291 0.309
RailwayLine 2189 - 298 0.836 0.967 0.998 0.877 0.55 0.393 0.597 0.117 0.091 0.285 0.289 0.234 0.061 0.325 0.487 0.52
Reptile 797 - 819 0.979 0.849 0.918 0.757 0.966 0.84 0.941 0.932 0.925 0.527 0.893 0.969 0.94 0.985 0.938 0.964
RugbyLeague 418 - 58 0.828 0.91 0.994 0.933 0.483 0.414 0.224 0.259 0.052 0.276 0.259 0.139 0.221 0.145 0.293 0.483
ShoppingMall 223 - 227 1 0.872 0.994 0.771 0.824 0.95 0.887 0.642 0.063 0.509 0.547 0.653 0.446 0.699 0.931 0.862
SoccerClubSeason 1197 - 51 0.98 -0.075 0.921 0.97 0.627 0.98 0.922 0.549 0.941 0.275 0.961 0.825 0.331 0.668 0.98 0.627
SoccerLeague 1315 - 238 0.622 0.932 0.992 0.757 0.433 0.294 0.387 0.282 0.235 0.168 0.197 0.199 0.076 0.103 0.357 0.471
SoccerTournament 2714 - 290 0.945 0.978 0.885 0.961 0.762 0.666 0.517 0.597 0.4 0.176 0.11 0.764 0.339 0.797 0.728 0.672
Song 5726 - 440 0.984 0.862 0.993 0.971 0.916 0.759 0.87 0.445 0.227 0.28 0.327 0.848 0.543 0.954 0.875 0.911
SportFacility 6392-672 0.607 0.99 0.999 0.867 0.418 0.323 0.378 0.357 0.216 0.201 0.146 0.103 0.043 0.21 0.327 0.396
SportsLeague 3106 - 481 0.638 0.955 0.993 0.738 0.38 0.337 0.418 0.289 0.191 0.179 0.214 0.13 0.104 0.139 0.351 0.339
Stadium 5105 - 619 0.591 0.992 0.999 0.854 0.396 0.307 0.367 0.339 0.21 0.2 0.139 0.186 0.096 0.281 0.318 0.354
TelevisionStation 6752 - 1152 0.711 0.991 1.000 0.874 0.495 0.486 0.174 0.146 0.048 0.154 0.044 0.385 0.064 0.638 0.47 0.451
TennisTournament 324 - 27 0.889 0.619 0.956 0.944 0.63 0.593 0.444 0.556 0.37 0.556 0.519 0.674 0.257 0.433 0.593 0.556
Tournament 4858 - 459 0.832 0.983 0.996 0.894 0.606 0.556 0.366 0.468 0.275 0.207 0.431 0.657 0.183 0.606 0.503 0.527
UnitOfWork 2483 - 380 0.995 0.952 0.958 0.984 0.974 0.811 0.887 0.763 0.618 0.55 0.434 0.825 0.9 0.974 0.966 0.974
Venue 4079 - 384 0.737 0.973 0.997 0.885 0.56 0.466 0.568 0.49 0.391 0.214 0.133 0.497 0.086 0.423 0.526 0.56
Wrestler 3150 - 464 0.412 0.986 0.996 0.774 0.265 0.203 0.248 0.222 0.006 0.164 0.08 0.409 0.091 0.317 0.244 0.265
Average 0.834 0.894 0.938 0.886 0.624 0.539 0.562 0.442 0.306 0.267 0.299 0.485 0.24 0.495 0.575 0.608
Significant Test P-value 3e-5 3e-3 3e-9 2e-13 6e-21 3e-12 9e-5 2e-20 5e-6
Average PR-AUC 0.715 0.647 0.658 0.481 0.419 0.156 0.459 0.659 0.411 0.521

*The correlation coefficients are NA because the algorithm terminates with one iteration.
Table 2: Performance evaluation on 50 single-column fuzzy join datasets.

because ECM binarizes features and lose information, while PPJoin
uses vanilla Jaccard similarity.

Among all supervised baselines that use 50% all joins as training
data, AL achieves the best result based on AR as it carefully selects
which examples to include in the training set. The deep model DM
performs poorly, which is not entirely surprisingly as deep learning
approaches typically require a large number of labeled examples to
perform well.

It is also worth highlighting that AutoFJ (and Excel) outper-
forms the best supervised baseline even when 50% of all ground-
truth labels are used as training data.
Ablation Study (1): Contribution of Union of Configurations.

To study the benefit of using a set of configurations, we compare
AutoFJ with AutoFJ-UC that only uses one single best configura-
tion. Note that the single configuration selected by AutoFJ-UC can
be different for each dataset. The column AutoFJ-UC in Table 2
shows the quality of the best single configuration on each dataset.
The average adjusted recall is 0.575, which is 0.049 lower than
AutoFJ, but still higher than all other methods. This suggests that
(1) dynamically using a single configuration is better than using

any static configuration; and (2) dynamically selecting a union of
configurations can further boost the performance.
Ablation Study (2): Contribution of Negative Rules. The col-
umn AutoFJ-NR in Table 2 shows the AR results of AutoFJ without
negative rules. As we can see, without negative-rules, the average
AR decreases to 0.608, which shows the benefit of negative-rules.
Robustness Test (1): Adding Irrelevant Records to the Right

Table. We construct an adversarial test to evaluate the robustness
of AutoFJ as follows. For each dataset, we insert irrelevant records
to the 𝑅 by randomly picking records from other 49 datasets. Fig-
ure 6(a) shows the average precision and recall over 50 datasets with
different amounts of irrelevant records added. As we can see, even
when 80% of records in the R are irrelevant, AutoFJ can still achieve
an average precision of around 84% with recall almost unaffected.
Robustness Test (2): Zero Fuzzy Joins. We construct a second
adversarial test, where the 𝐿 and 𝑅 are taken from different entity-
type that are completely unrelated (e.g., 𝐿 from “Satellites” joins
with 𝑅 from “Hospitals”), such that any joins produced are false
positives. We construct 10 such cases. Figure 6(b) shows the false
positive rate (defined as the number of false positives divided by

(a) Irrelevant 𝑅 Records (b) Zero Fuzzy Joins (c) 𝐿 Incompleteness (d) Sensitivity to Blocking
Figure 6: (a, b, c): Single-Column robustness tests. (d): sensitivity to blocking.

the number of records in 𝑅) of AutoFJ and Excel, the best baseline.
In all cases, the false positive rate of AutoFJ is below 5% and much
smaller than Excel.
Robustness Test (3): 𝐿 Incompleteness. In this work, we do not
assume the reference table 𝐿 to be complete, and we take this into
account when estimating precision (c.f. Equation (9)). However, an
extremely sparse 𝐿 can affect our estimation. To test its robustness,
we make the already incomplete 𝐿 even more sparse by randomly
removing records in 𝐿. Figure 6(c) shows the average performance
of AutoFJ and Excel across 50 datasets with different amounts of
records removed from 𝐿 tables. As expected, the average precision
decreases as 𝐿 table becomes more and more sparse. However, even
with 30% 𝐿 records removed, AutoFJ can still achieve precision of
0.81. In all cases, the recall of AutoFJ is still at least 0.051 higher
than Excel.
Sensitivity to Blocking. Figure 6(d) shows the average perfor-
mance on 50 datasets varying the blocking factor 𝛽 , where 𝛽 ×

√
|𝐿 |

is the number of left records kept for each right record. A smaller
𝛽 gives faster algorithms, but potentially at the cost of join quality.
As we can see, after 𝛽 exceeds 1.0 (e.g., we keep top 1.0×

√
100 = 10

records for each right record if |𝐿 | = 100), the performance of
AutoFJ remains almost unchanged even if we increase 𝛽 further.
Varying Target Precision. Figure 7(a) shows the average preci-
sion and recall on 50 datasets, as we vary the precision target 𝜏 . As
𝜏 decreases, the average precision of AutoFJ decreases accordingly.
Note that the two align very well (the correlation-coefficient of
the two is 0.9939), suggesting that our precision estimation works
as intended. Compared to other baseline methods, our method re-
main the best as we vary the target, and our algorithm consistently
outperforms Excel, the strongest baseline, by at least 0.062.
Efficiency Analysis. Overall, AutoFJ finishes 15/50 data sets in 30
seconds, 33/50 in 1 minute, and 49/50 in 130 seconds. To compare
the running time of AutoFJ with other methods, we bucketize 50
datasets into 5 groups based on the size of |𝐿 | × |𝑅 |. Figure 7(b)
shows the average running time of AutoFJ and other methods over
datasets in each group. As we can see, the running time of AutoFJ is
comparable to other methods. PPJoin is the fastest method since it
employs an efficient version of Jaccard similarity. DM is on average
10 times slower than other methods because it needs to train deep
neural networks. AutoFJ is on average 2-3 times slower than ECM
and Excel, but faster than ZeroER, Magellan and FW. AutoFJ is
2-3 times faster than AL.
Varying Configuration Spaces. We run AutoFJ using a varying
number of configurations from the space listed in Table 1. The
reduced configuration space is achieved by removing some options
for the 4 parameters. For example, if we only use L and L+S+RP for
pre-processing instead of all four options, the space reduces to 70
from 140. Figure 7(c) shows the average performance of AutoFJ
over 50 datasets with different size of the configuration space. As

we can see, the average precision is almost unchanged as we vary
the space size, showing the accuracy of our precision estimation.
The average recall decreases slightly with a smaller number of
configurations, because the expressiveness of fuzzy-matching is
reduced accordingly. We compute the AR of Excel and Magellan
using the precision of AutoFJ with different configuration space.
As we can see, even with 24 configurations, the recall of AutoFJ
is still 0.036 higher than the AR of Excel and 0.105 higher than
Magellan.

Figure 7(d) shows the running time of each component of AutoFJ
as we vary the configuration space. As we can see, the running
time is greatly reduced as the configuration space shrinks. With
24 configurations, the algorithm becomes 2 times faster than using
140 configurations. Also, as we can see in Figure 7(d), the pre-
computation for precision takes less than 10% of the overall time.
In contrast, if we compute this repeatedly at every iteration (e.g.,
with 140 configurations, there are about 45 iterations on average
for each dataset), our overall running time can be 6x slower (with
this component taking 85% time).
5.2 Multi-Column Auto-FuzzyJoin

5.2.1 Multi-Column Datasets. For multi-column fuzzy joins, we
use 8 benchmark datasets in the entity resolution literature [32, 33,
40], as shown in Table 3.

Dataset Domain #Attr. Size (L-R) #Matches

Fodors-Zagats (FZ) [7] Restaurant 6 533 - 331 112
DBLP-ACM (DA) [2] Citation 4 2,616 - 2,294 2,224
Abt-Buy (AB) [2] Product 3 1,081 - 1,092 1,097

Rotten Tomatoes-IMDB (RI) [22] Movie 10 7,390 - 556 190
BeerAdvo-RateBeer (BR) [22] Beer 4 4,345 - 270 68

Amazon-Barnes & Noble (ABN) [22] Book 11 3,506 - 354 232
iTunes-Amazon Music (IA) [22] Music 8 6,907 - 484 132

Babies’R’Us-BuyBuyBaby (BB) [22] Baby Product 16 10,718 - 289 109

Table 3: Multi-column fuzzy join datasets.

5.2.2 Multi-Column Fuzzy Join Algorithms.
• AutoFJ. This is our proposed Algorithm 3, using precision target
𝜏 = 0.9, discretization steps 𝑠 = 50, and the column-weight search
steps 𝑔 = 10. Given 140 join functions, and a table with𝑚 columns,
we can in theory have as many as 140𝑚 configurations. In our ex-
periments, we add an additional constraint that distance functions
considered in the same configuration should be the same across all
columns. This is for efficiency considerations, but nevertheless pro-
duces fuzzy-joins with state-of-the-art quality. To handle missing
values in the datasets, we treat missing values as empty strings, and
assign maximum distances when comparing two missing values.
• Excel, FW, ZeroER, ECM and PP, Magellan, DM, AL. These
are the same methods as we described in Section 5.1.3. Since Excel,
FW and PP handle all columns in the same way, we invoke these
methods with all columns concatenated.
5.2.3 Multi-Column Fuzzy Join Evaluation Results.
Overall Quality Comparison. Table 4(a) shows the overall qual-
ity comparison between AutoFJ and other methods on multi-
column datasets. As we can see, AutoFJ remains the best method

(a) Vary Target Precision (b) Running Time Comparison (c) Vary Space Size (d) Vary Space Size

Figure 7: (a): Varying Target Precision, (b): Efficiency Comparison, (c, d): Varying Configuration Space Sizes.

Dataset Column Selected Weight Selected

AutoFJ Unsupervised Supervised

P R Excel FW ZeroER ECM PP Magellan DM AL

RI name, director 0.9, 0.1 0.955 0.995 0.805 0.947 1.000 0.895 0.332 0.990 0.594 1.000

AB name 1 0.957 0.451 0.035 0.015 0.045 0.213 0.018 0.035 0.111 0.255
BB title, company struct 0.6, 0.4 0.688 0.713 0.426 0.370 0.019 0.537 0.130 0.418 0.227 0.541
BR beer name, factory name 0.9, 0.1 0.909 0.882 0.824 0.721 0.515 0.824 0.765 0.574 0.572 0.967

ABN title, pages 0.8, 0.2 0.8 0.983 0.966 0.901 0.957 0.987 0.948 0.796 0.812 1.000

DA title, year 0.8, 0.2 0.967 0.987 0.978 0.692 0.942 0.108 0.980 0.985 0.966 1.000

FZ phone, class 0.1, 0.9 0.8 1 1.000 0.857 0.929 0.179 0.929 1.000 0.896 1.000

IA song name, genre 0.7, 0.3 0.967 0.853 0.794 0.265 0.824 0.824 0.618 0.944 0.323 0.988

Average 0.880 0.858 0.728 0.596 0.654 0.571 0.590 0.718 0.563 0.844
P-value 0.024 0.003 0.029 0.028 0.011 0.034 0.001 0.369

Average PR-AUC 0.847 0.785 0.583 0.676 0.487 0.744 0.879 0.729 0.864

(a) Overall Multi-Column Join Quality Comparison

Dataset

AutoFJ Excel AL

ΔR ΔAR ΔAR
FZ 0 -0.018 0
DA 0 -0.018 -0.001
AB 0 -0.01 -0.066
RI 0 -0.079 0
BR 0 -0.015 -0.093
ABN 0 0.004 0
IA 0 -0.176 -0.024
BB 0 -0.343 -0.041

Average 0 -0.082 -0.028

(b) Multi-Column Robustness

Table 4: Multi-Column Fuzzy Join Evaluations.

on average in the multi-column joins. The recall of AutoFJ on aver-
age is 0.13 better than Excel, the strongest unsupervised baseline,
and 0.014 better than AL, the strongest supervised method. AutoFJ
outperforms all other methods on 3 out of 8 datasets and achieves
comparable results to the best baseline on the remaining datasets.
We also perform upper-tailed T-Test to verify the statistical signifi-
cance of our results. As shown in the second to the last row of Table
4, with the exception of AL, the p-values for all other baselines are
smaller than 0.034.

The last row of Table 4(a) shows the average PR-AUC of AutoFJ
and other methods. As we can see, AutoFJ significantly outper-
forms all other unsupervised methods and achieve comparable
performance compared to supervised methods such as Magellan
and AL that uses 50% joins as training data. The PR-AUC on each
dataset can be found in the full version [9] of this paper.
Effectiveness of Column Selection. Table 4(a) reports the
columns selected by AutoFJ and their corresponding weights. Ob-
serve that the selected columns are indeed informative attributes,
such as Name and Director in Rotten Tomatoes-IMDB (RI) dataset
(with Name being more important). Also note that AutoFJ is able
to achieve these results typically using only one or two columns.
Robustness Test: Adding Random Columns. We test the ro-
bustness of AutoFJ on multi-column joins by adding adversarial
columns with randomly-generated strings in both 𝐿 and 𝑅 tables.
The length of each random string is between 10-50. Table 4(b) shows
the change of performance of AutoFJ, Excel and AL, after adding
random columns. Since random columns do not provide any useful
information, they are not selected by AutoFJ, and hence have no
effect on our results. In contrast, as Excel and AL use all input
columns, adding random columns does affect their results.
6 RELATEDWORK

Fuzzy join, also known as entity resolution and similarity join, is a
long-standing problem in data integration [27, 28], with a long line

of research on improving the scalability of fuzzy-join algorithms
(e.g., [11, 12, 14, 20, 23, 26, 36, 39, 42, 43, 45, 46, 50]).

Existing state-of-the-art in optimizing join quality are pre-
dominantly supervised methods (e.g., Magellan [32] and Deep-
Matcher [40]), which require labeled data of matches/non-matches
to be provided before classifiers can be trained. In contrast, our
proposed Auto-FuzzyJoin is unsupervised and mainly leverages
structural properties of reference tables, Surprisingly, this unsuper-
vised approach outperforms supervised methods even when 50% of
ground-truth labels are used as training data.

Among unsupervised methods, our evaluation suggests that the
carefully-tuned Excel (with default settings) is a strong baseline. It
employs a variant of the generalized fuzzy similarity [18], which is
a weighted combination of multiple distance functions. The weight
functions, as well as pre-processing parameters, were carefully-
tuned on English data.

Other entity-matching approaches include AutoEM [51] and
Ditto [37], which uses pre-trained entity-type-models and language-
models for entity-matching, respectively. ZeroER [48] is a recent
unsupervised method that uses a predetermined set of features and
Gaussian Mixture Model to determine matches.

Additional methods to facilitate complex table joins include
methods that leverage search engines [16, 31, 35], and program-
synthesis [47, 52].

7 CONCLUSIONS

In this paper, we propose an unsupervised Auto-FuzzyJoin to
auto-program fuzzy joins without using labeled examples. We for-
malized this as an optimization problem that maximizes recall under
a given precision constraint. Our results suggest that this unsuper-
visedmethod is competitive even against state-of-the-art supervised
methods. We believe unsupervised fuzzy entity matching is an in-
teresting area that is still under-studied, and clearly worth attention
from the research community.

REFERENCES

[1] [n.d.]. Alteryx: Fuzzy Match Documentation. https://help.alteryx.com/2018.2/
FuzzyMatch.htm.

[2] [n.d.]. Benchmark datasets for entity resolution. https://dbs.uni-
leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_
for_entity_resolution.

[3] [n.d.]. Excel: Fuzzy Lookup Add-In. https://www.microsoft.com/en-us/download/
details.aspx?id=15011. ([n. d.]).

[4] [n.d.]. Fuzzy Lookup in SQL Server. https://docs.microsoft.com/en-us/sql/
integration-services/data-flow/transformations/fuzzy-lookup-transformation.

[5] [n.d.]. OpenRefine Fuzzy Reconciliation. https://github.com/OpenRefine/
OpenRefine/wiki/Reconciliation.

[6] [n.d.]. Python string match library: py_stringmatching. http://anhaidgroup.
github.io/py_stringmatching/v0.4.1/Tutorial.html.

[7] 2019.7.12. Duplicate Detection, Record Linkage, and Identity Uncertainty:
Datasets. http://www.cs.utexas.edu/users/ml/riddle/data.html.

[8] 2019.7.12. Fuzzy Join in Power Query. https://support.microsoft.com/en-
us/office/fuzzy-match-support-for-get-transform-power-query-ffdd5082-
c0c8-4c8e-a794-bd3962b90649.

[9] 2020.07.06. Supplemental materials for AutoFJ, with a anony-
mous URL. https://www.dropbox.com/sh/myiees5wv716n2f/AAA-
Px5AVDxt4kXJoKXnskSxa?dl=0.

[10] Ittai Abraham, Yair Bartal, and Ofer Neimany. 2006. Advances in metric embed-
ding theory. In Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing. 271–286.

[11] Foto N. Afrati, Anish Das Sarma, David Menestrina, Aditya G. Parameswaran,
and Jeffrey D. Ullman. 2012. Fuzzy Joins Using MapReduce. In Proceedings of
ICDE.

[12] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. Efficient Exact
Set-Similarity Joins. In Proceedings of VLDB.

[13] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. 1999. Modern information
retrieval. Vol. 463. ACM press New York.

[14] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up all
pairs similarity search. In Proceedings of WWW.

[15] Mikhail Bilenko, Beena Kamath, and Raymond JMooney. 2006. Adaptive blocking:
Learning to scale up record linkage. In Sixth International Conference on Data
Mining (ICDM’06). IEEE, 87–96.

[16] Christian Bizer. 2014. Search Joins with the Web.. In ICDT. 3.
[17] Jie Cai, Jiawei Luo, Shulin Wang, and Sheng Yang. 2018. Feature selection in

machine learning: A new perspective. Neurocomputing 300 (2018), 70–79.
[18] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. 2003.

Robust and efficient fuzzy match for online data cleaning. In Proceedings of
the 2003 ACM SIGMOD international conference on Management of data. ACM,
313–324.

[19] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. 2006. A primitive
operator for similarity joins in data cleaning. In 22nd International Conference on
Data Engineering (ICDE’06). IEEE, 5–5.

[20] Xu Chu, Ihab F Ilyas, and Paraschos Koutris. 2016. Distributed data deduplication.
Proceedings of the VLDB Endowment 9, 11 (2016), 864–875.

[21] Tivadar Danka and Peter Horvath. 2018. modAL: A modular active learning
framework for Python. arXiv preprint arXiv:1805.00979 (2018).

[22] Sanjib Das, AnHai Doan, Paul SuganthanG. C., Chaitanya Gokhale, Pradap Konda,
Yash Govind, and Derek Paulsen. 2019.07.12. The Magellan Data Repository.
https://sites.google.com/site/anhaidgroup/projects/data.

[23] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. 2014. Clusterjoin: A similarity
joins framework using map-reduce. Proceedings of the VLDB Endowment 7, 12
(2014), 1059–1070.

[24] Jonathan De Bruin. 2015. Probabilistic record linkage with the Fellegi and Sunter
framework: Using probabilistic record linkage to link privacy preserved police
and hospital road accident records. (2015).

[25] J De Bruin. 2019. Python Record Linkage Toolkit: A toolkit for record linkage and
duplicate detection in Python. https://doi.org/10.5281/zenodo.3559043

[26] Dong Deng, Guoliang Li, Shuang Hao, Jiannan Wang, and Jianhua Feng. 2013.
MassJoin: A MapReduce-based Algorithm for String Similarity Joins. In Proceed-
ings of ICDE.

[27] AnHai Doan, Alon Halevy, and Zachary Ives. 2012. Principles of data integration.
Elsevier.

[28] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios. 2007.
Duplicate Record Detection: A Survey. IEEETKDE 19, 1 (2007), 1–16.

[29] Ivan P Fellegi and Alan B Sunter. 1969. A theory for record linkage. J. Amer.
Statist. Assoc. 64, 328 (1969), 1183–1210.

[30] MT Hajiaghayi, K Jain, K Konwar, LC Lau, II Mandoiu, A Russell, A Shvartsman,
and VV Vazirani. 2006. The minimum k-colored subgraph problem in haplotyp-
ing and DNA primer selection. In Proceedings of the International Workshop on
Bioinformatics Research and Applications (IWBRA). Citeseer, 1–12.

[31] Yeye He, Kris Ganjam, and Xu Chu. 2015. Sema-join: joining semantically-related
tables using big table corpora. Proceedings of the VLDB Endowment 8, 12 (2015),

1358–1369.
[32] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan, Jef-

frey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, et al. 2016.
Magellan: Toward building entity matching management systems. Proceedings of
the VLDB Endowment 9, 12 (2016), 1197–1208.

[33] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity
resolution approaches on real-world match problems. Proceedings of the VLDB
Endowment 3, 1-2 (2010), 484–493.

[34] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo NMendes, Sebastian Hellmann, MohamedMorsey, Patrick Van Kleef, Sören
Auer, et al. 2015. DBpedia–a large-scale, multilingual knowledge base extracted
from Wikipedia. Semantic Web 6, 2 (2015), 167–195.

[35] Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Robert Meusel, Heiko Paul-
heim, and Christian Bizer. 2015. The mannheim search join engine. Journal of
Web Semantics 35 (2015), 159–166.

[36] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. 2011. PASS-JOIN: A
Partition-based Method for Similarity Joins. In Proceedings of VLDB.

[37] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2021. Deep entity matching with pre-trained language models. VLDB 2021 (2021).

[38] Charles T Meadow, Donald H Kraft, and Bert R Boyce. 1999. Text information
retrieval systems. Academic Press, Inc.

[39] AhmedMetwally and Christos Faloutsos. 2012. V-SMART-Join: A ScalableMapRe-
duce Framework for All-Pair Similarity Joins of Multisets and Vectors. In Pro-
ceedings of VLDB.

[40] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep learning for entity matching: A design space exploration. In Proceedings of
the 2018 International Conference on Management of Data. ACM, 19–34.

[41] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. 2016.
Comparative analysis of approximate blocking techniques for entity resolution.
Proceedings of the VLDB Endowment 9, 9 (2016), 684–695.

[42] Yasin N Silva, Walid G Aref, and Mohamed H Ali. 2010. The similarity join
database operator. In 2010 IEEE 26th International Conference on Data Engineering
(ICDE 2010). IEEE, 892–903.

[43] Yasin N Silva and Jason M Reed. 2012. Exploiting mapreduce-based similar-
ity joins. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data. 693–696.

[44] Mohammad Karim Sohrabi and Hosseion Azgomi. 2017. Parallel set similarity join
on big data based on locality-sensitive hashing. Science of computer programming
145 (2017), 1–12.

[45] Rares Vernica, Michael J Carey, and Chen Li. 2010. Efficient parallel set-similarity
joins using mapreduce. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 495–506.

[46] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can we beat the prefix
filtering? An adaptive framework for similarity join and search. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data. 85–96.

[47] Robert H Warren and Frank Wm Tompa. 2006. Multi-column substring matching
for database schema translation. In Proceedings of the 32nd international conference
on Very large data bases. Citeseer, 331–342.

[48] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-
ruganathan. 2020. ZeroER: Entity Resolution using Zero Labeled Examples. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 1149–1164.

[49] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang. 2011.
Efficient similarity joins for near-duplicate detection. ACM Transactions on
Database Systems (TODS) 36, 3 (2011), 1–41.

[50] Minghe Yu, Guoliang Li, Dong Deng, and Jianhua Feng. 2016. String similarity
search and join: a survey. Frontiers of Computer Science 10, 3 (2016), 399–417.

[51] Chen Zhao and Yeye He. 2019. Auto-EM: End-to-end Fuzzy Entity-Matching
using Pre-trained Deep Models and Transfer Learning. In The World Wide Web
Conference. 2413–2424.

[52] Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-join: Joining tables by
leveraging transformations. Proceedings of the VLDB Endowment 10, 10 (2017),
1034–1045.

https://help.alteryx.com/2018.2/FuzzyMatch.htm
https://help.alteryx.com/2018.2/FuzzyMatch.htm
https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
https://www.microsoft.com/en-us/download/details.aspx?id=15011
https://www.microsoft.com/en-us/download/details.aspx?id=15011
https://docs.microsoft.com/en-us/sql/integration-services/data-flow/transformations/fuzzy-lookup-transformation
https://docs.microsoft.com/en-us/sql/integration-services/data-flow/transformations/fuzzy-lookup-transformation
https://github.com/OpenRefine/OpenRefine/wiki/Reconciliation
https://github.com/OpenRefine/OpenRefine/wiki/Reconciliation
http://anhaidgroup.github.io/py_stringmatching/v0.4.1/Tutorial.html
http://anhaidgroup.github.io/py_stringmatching/v0.4.1/Tutorial.html
http://www.cs.utexas.edu/users/ml/riddle/data.html
https://support.microsoft.com/en-us/office/fuzzy-match-support-for-get-transform-power-query-ffdd5082-c0c8-4c8e-a794-bd3962b90649
https://support.microsoft.com/en-us/office/fuzzy-match-support-for-get-transform-power-query-ffdd5082-c0c8-4c8e-a794-bd3962b90649
https://support.microsoft.com/en-us/office/fuzzy-match-support-for-get-transform-power-query-ffdd5082-c0c8-4c8e-a794-bd3962b90649
https://www.dropbox.com/sh/myiees5wv716n2f/AAA-Px5AVDxt4kXJoKXnskSxa?dl=0
https://www.dropbox.com/sh/myiees5wv716n2f/AAA-Px5AVDxt4kXJoKXnskSxa?dl=0
https://sites.google.com/site/anhaidgroup/projects/data
https://doi.org/10.5281/zenodo.3559043

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Many-to-one Fuzzy Joins
	2.2 The Space of Join Configurations
	2.3 Auto-FuzzyJoin: Problem Statement

	3 Single-Column Auto-FuzzyJoin
	3.1 Estimate Precision and Recall
	3.2 AutoFJ Algorithm
	3.3 Learning of Negative-Rules

	4 Multi-Column Auto-FuzzyJoin
	4.1 Multi-Column Join Configuration
	4.2 Multi-Column AutoFJ

	5 Experiments
	5.1 Single-Column Auto-FuzzyJoin
	5.2 Multi-Column Auto-FuzzyJoin

	6 Related Work
	7 Conclusions
	References

