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DeepFN: Towards Generalizable Facial Action
Unit Recognition with Deep Face Normalization

Javier Hernandez, Daniel McDuff, Ognjen (Oggi) Rudovic, Alberto Fung, and Mary Czerwinski

Abstract—Facial action unit recognition has many applications from market research to psychotherapy and from image captioning to
entertainment. Despite its recent progress, deployment of these models has been impeded due to their limited generalization to
unseen people and demographics. This work conducts an in-depth analysis of performance across several dimensions: individuals
(40 subjects), genders (male and female), skin types (darker and lighter), and databases (BP4D and DISFA). To help suppress the
variance in data, we use the notion of self-supervised denoising autoencoders to design a method for deep face normalization
(DeepFN) that transfers facial expressions of different people onto a common facial template which is then used to train and evaluate
facial action recognition models. We show that person-independent models yield significantly lower performance (55% average F1 and
accuracy across 40 subjects) than person-dependent models (60.3%), leading to a generalization gap of ∆5.3%. However, normalizing
the data with the newly introduced DeepFN significantly increased the performance of person-independent models (59.6%), effectively
reducing the gap. Similarly, we observed generalization gaps when considering gender (∆2.4%), skin type (∆5.3%), and
dataset (∆9.4%), which were significantly reduced with the use of DeepFN. These findings represent an important step towards the
creation of more generalizable facial action unit recognition systems.

Index Terms—facial action units, person-independent models, generalization, bias, deep neural networks, data normalization.
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1 INTRODUCTION

FACIAL expression recognition technology offers the op-
portunity to comfortably capture the expressed emo-

tional experience of people and facilitate unique interac-
tion experiences [1]. While the specific meaning of facial
expressions may vary depending on the context [2], these
signals have been successfully used in a wide variety of
settings such as promoting engagement in human-robot
interaction [3], [4], monitoring depression of patients [5],
[6], estimating experienced pain [7], [8], [9], measuring
engagement of TV viewers [10], [11], and promoting driver
safety [12], [13] among others.

To help quantify facial activity, researchers often rely on
the Facial Action unit Coding System (a.k.a., FACS) [14], [15]
which decomposes facial movements into different muscle
activations called action units (AUs). For instance, AU12
indicates the activation of the zygomaticus major muscle
which pulls the corner of the lip and is frequently seen
during smiles. However, obtaining high quality labels for
each person can be very expensive and time consuming. For
instance, FACS labels are usually provided by expert coders
which may spend up to 30 minutes to label around one-
minute of video data [16]. To help provide scalable FACS
labeling, researchers have proposed and developed a wide
variety of methods and tools that automatically detect AUs
from face images (e.g., [1], [17], [18], [19], [20], [21]).

Despite the significant advancements in the recent years,
deploying such models in the wild is still challenging.
One of the biggest hurdles, which also applies to most
human-centered AI applications, involves the development
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of models that can generalize well across individuals or
groups of people despite their differences. In the context
of facial action unit recognition, some of the most readily
observable differences are those associated with individual
facial appearance such as head shape, amount of facial
hair or skin type which can significantly vary across peo-
ple and impair the ability of models to recognize rele-
vant facial activity. As a consequence, machine learning
models trained/tested with (non-overlapping) data of the
same person (a.k.a., person-dependent models) usually out-
perform those trained/tested on data from different peo-
ple (a.k.a., person-independent models) [22], [23]. Similar
differences have been observed when considering group-
independent and dependent models that split groups ac-
cording to different criterion that may similarly impact facial
appearances (e.g., gender [24], skin type [25]).

Poor cross-group generalization performance of machine
learning models can partly be explained due to the violation
of the independent and identically distributed (iid) data
assumption, since the training/test data are sampled from
highly correlated data (multiple images of the same person)
and data with non-stationary distribution (multiple persons
and over different periods of time). This is particularly
pronounced when considering certain groups of people who
may be underrepresented in existing training sets (e.g., older
age, darker skin) [26], [27], [28]. Interestingly, humans have
been shown to be similarly impaired with the out-group
homogeneity bias [29] and the cross-race effect [30] – sug-
gesting that people are usually better at identifying facial
variation of in-group members versus out-across members
as well. Furthermore, people are usually better at recog-
nizing emotions associated with expressions in faces from
people within their own demographics group [30]. In both
cases, the underlying biases in the data itself may result
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in poor decision making and the reinforcement of harmful
stereotypes [26].

Motivated by the previous limitations, this work ex-
plores whether we can minimize appearance differences
across people while maintaining their facial expressions
with the goal of improving cross-group generalization in the
context of AU recognition. The contributions of this work
are as follows.

1) This is the first work to systematically examine and
compare cross-group generalization across multiple
group splits within the same experimental condi-
tions. To do so, we evaluated group-dependent and
independent models based on individuals (40 peo-
ple), genders (male and female), skin types (light
and dark), and datasets (BP4D and DISFA) which
capture some of the typical sources of variance of
real-life deployments. Among the different condi-
tions, we found cross-dataset generalization to be
the most challenging one.

2) This is the first work to explore the use of face
transfer in the context of face normalization. In par-
ticular, we propose DeepFN which leverages self-
supervised denoising autoencoders to transfer fa-
cial expressions of different people onto a common
facial template (a.k.a., template of reference). This
simple yet effective method was successful in sig-
nificantly closing the gap between group-dependent
and independent models, especially when consider-
ing different skin types and genders.

3) In light of our findings, we discuss the limitations
of this work and draw important ethical consider-
ations around reducing algorithmic biases, facilitat-
ing AI interpretability, and preserving data privacy
to help guide future research efforts in this area.

The remainder of the paper is organized as follows. First,
we review prior work on data normalization methods in the
context of facial expression recognition. Second, we describe
the proposed methodology which includes the appearance
normalization, the template selection, and the facial action
unit recognition model. Third, we describe the experimental
protocol which includes the considered groups, datasets,
and evaluation. Fourth, we provide the results for each one
of the considered groups. Finally, we discuss the results,
limitations of the work, and ethical considerations.

2 RELATED WORK

Performance differences between person-dependent and
person-independent models have been reported in several
studies [22], [23], [31]. One the one hand, person-dependent
models tend to perform better but offer limited practical use
as obtaining high quality annotations for each person can
be very expensive and time consuming. On the other hand,
person-independent models tend to perform worse but they
are more scalable as they do not require the training data
from target (test) subjects. To help improve performance
while still maintaining scalability, researchers have explored
a wide variety of methods to help minimize individual
differences in the context of person-independent models.

Arguably one of the most simple and commonly ex-
plored normalization methods involves applying some sort
of intuitive correction on the face images or sensed features
that helps minimize differences across people. For instance,
several studies have considered using the distance between
the eyes to help correct geometric or shape-based features
such as distances between different facial landmarks [32],
[33], [34]. Similarly, other studies have considered comput-
ing differences across different regions of the face to help
correct appearance-based features such as texture [34] or
applying color correction methods such as histogram equal-
ization to reduce the data distribution mismatch in the color
space [35]. Another correction method involves the use of
face alignment, especially in the context of face recognition.
For instance, Banerjee et al. [36] validated recent 2D/3D
face-alignment methods to quantify the effect of this pre-
processing step in the context of face recognition. As noted
by the authors, however, the quality of alignment did not di-
rectly translate into the performance of the face-recognizers,
as various (individual) facial details could be lost during this
processing step. This may be even more critical in the case of
facial action recognition as facial appearance and dynamics
of AUs are very person-specific. The work presented in this
paper similarly explores correcting the input images but
explores using more complex methods to normalize facial
appearance. In addition, we found that pre-processing the
images with histogram equalization helped facilitate the
normalization process.

An alternative normalization method involves the use of
unlabeled testing data to help calibrate the methods. For
instance, Baltrusaitis et al. [37] explored using unlabeled
testing data to estimate the neutral-looking face image and
serve as a reference to capture potential activations. While
this led to successful calibration of the AU classifiers, this
method depends on tracking methods such as the Con-
strained Local Models (CLMs) which are highly sensitive
to the performance of the facial landmark detection. Other
works have explored the smart selection or weighting of
training samples to ensure that they are representative of
the testing samples. For instance, Chu et al, [38] proposed a
Selective Transfer Machine (STM) approach for personalized
facial expression analysis - an inductive learning approach
that tries to align the distributions of the facial features’
of training and test subjects during training. In a separate
effort, Zen et al. [39] proposed to learn a regression function
that would learn from training subjects the optimal param-
eters of a facial expression classifier for a specific person.
Similarly, Feffer et al. [40] proposed a Mixture-of-Experts
deep learning approach that would tackle the individual
differences by selecting the most similar training subjects
and their corresponding expert-classifiers for the task of
valence/arousal estimation. Different from these works,
Yang et al. [41] proposed a two-step approach for person-
alized modeling of facial AU intensity from spontaneously
displayed facial expressions. In the first step, a matrix de-
composition algorithm (unsupervised) was applied to sepa-
rate the identity from facial expression of target subjects. The
obtained representations (expression plus identity features)
were then jointly modeled using the framework of Condi-
tional Ordinal Random Fields, resulting in a personalized
model for intensity estimation of AUs. The work presented
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Fig. 1. Overview of main the processing phases: 1) face images are first normalized with DeepFN to ensure individual differences are minimized,
and 2) the normalized images are used as input into a LeNet-5 convolutional neural network to recognize 12 facial action units.

in this paper similarly requires the use of unlabeled testing
data but differs from previous efforts in several important
ways: 1) the normalization step is completely separated
from the task of facial action unit recognition task allowing
easier optimization, 2) the normalization is performed at
the image level allowing easier inspection of the output
data, and 3) the normalization does not require the use
of facial landmark detection reducing the dependency on
other methods. Due to these, the proposed method could be
used as a pre-processing step for any of the facial action unit
recognition methods. To start exploring the potential value
of the proposed method, however, we selected a simple and
lightweight LeNet-5 which allowed quickly evaluation of
generalization performance across different groups.

While the previous methods mainly focus on varia-
tions in facial appearance and features, it is worth noting
that researchers have also investigated other methods to
normalize other sources of variation such as out-of-plane
head rotations, illumination changes, and other (typically)
external artifacts that may be in the data [42], [43], [44]. In
the case of large-out-of-plane head-rotations, the majority of
studies attempt face frontalization - effectively mapping the
non-frontal faces to a frontal reference frame. For instance,
Werner et al. [45] proposed a face normalization method
which also depends on the quality of the facial landmark de-
tection and texture-warping. The authors showed that with
their face-normalization method they could train better-
performing CNN models for facial expression recognition
and AU detection, compared to when no face-normalization
was applied. The work presented here focuses on mini-
mizing differences in facial appearance across target people
while preserving information about their facial expressions.
Even though there are examples of other sources of variation
(such as the extreme head poses) in data used in this work,
the majority of data falls under the in-plane head rotations.
We show empirically that the proposed method based on
self-supervised autoencoders can successfully deal with this
range of head pose variation without adversely affecting the
AU estimation performance.

3 METHODS

This section describes the methodological details of the
proposed approach, DeepFN, as well as the facial action unit
recognition algorithm.

3.1 Facial Appearance Normalization
Some of the most popular methods for facial expression
transfer and expression synthesis start by detecting facial
landmarks or action units to help guide the transfer process
(e.g., [46], [47], [48], [49], [50]). As this work explores ways to
improve the task of facial action unit recognition, we chose
a method that does not require any explicit indication of
facial landmarks or action units. In particular, we selected
a self-supervised autoencoder approach which is composed
of three main components: (i) a shared encoder network (E),
used to reduce the dimensionality of face images onto a
lower dimensional latent space, (ii) one decoder network
(Dy), used to recover images of the reference template
selected for the normalization, and (iii) a second decoder
network, used to recover images of the individual, the face
image of whom we wish to normalize (Dx). Figure 1 (left) il-
lustrates the main components and how they are combined.

During training, the face images (the reference template
and the image of the subject to be normalized) were iter-
atively compressed with the encoder and recovered with
their corresponding decoder, while minimizing the root
mean squared error (RMSE) between the original input and
recovered image pixel values. As the same encoder is used
to embed the images of the two appearances, the latent
space learns to capture the sources of variance shared by
the two inputs (e.g., head poses and facial expressions). As
a preprocessing step, all the input images were converted
to gray scale and the pixels values were normalized using
the histogram equalization approach in order to facilitate
a more consistent distribution of pixel values across in-
dividuals, and also remove artifacts such as illumination
changes, skin colour variation, etc. In addition, random
affine transformations and Gaussian warps were used as
image augmentation techniques to help increase the amount
of training data (and thus, the variation of input images).
Specifically, the training process involved optimizing the
following joint self-supervised loss function:

arg min
E,Dx,Dy

1

n

n∑
i=1

|xi−Dx(E(x
′

i))|+
1

m

n∑
j=1

|yj−Dy(E(y
′

j))|

(1)
where xi represents the i-th image of the person to be

normalized, yj represents the j-th image of the template
of reference, and x

′

i and y
′

j represent their pre-processed
versions, respectively. This process was repeated for each
person that needed to be normalized.
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TABLE 1
Encoder network architecture used to compress facial information.

Layer Filters, Kernel Size, Strides Output
Input - 128, 128, 1

Conv2D/LeakyReLU 128, 5, 2 64, 64, 128
Conv2D/LeakyReLU 256, 5, 2 32, 32, 256
Conv2D/LeakyReLU 512, 5, 2 16, 16, 512
Conv2D/LeakyReLU 1024, 5, 2 8, 8, 1024

Flatten - 65536
Dense - 1024
Dense - 16384

Reshape - 4, 4, 1024
Conv2D/LeakyReLU 2048, 3, - 4, 4, 2048

PixelShuffler - 8, 8, 512

TABLE 2
Decoder network architecture used to recover facial information.

Layer Filters, Kernel Size, Strides Output
Input - 8, 8, 512

Conv2D/LeakyReLU 1024, 3, - 8, 8, 1024
PixelShuffler - 16, 16, 256

Conv2D/LeakyReLU 512, 3, - 16, 16, 512
PixelShuffler - 32, 32, 128

Conv2D/LeakyReLU 256, 3, - 32, 32, 256
PixelShuffler - 64, 64, 64

Conv2D/LeakyReLU 128, 3, - 64, 64, 128
PixelShuffler - 128, 128, 32

Conv2D/Sigmoid 1,5,- 128, 128, 1

During the testing phase, the images of the individual
to be normalized were similarly compressed (without aug-
mentation) but recovered with the alternate decoder (Dy) as
follows:

Xy = Dy(E(X)) (2)

where Xy represents the normalized images of the person.
Figure 1 shows the deep neural network architecture

used which was built on top of an existing code base1.
To ensure appropriate transfer, we allowed the network
to learn for 50K iterations which included a batch of 64
randomly selected template images followed by another
batch of 64 randomly selected images from the person
to be normalized. Table 1 and Table 2 show the specific
architecture implementation for the encoder and decoders,
respectively.

3.2 Template Selection
To normalize the facial appearance across people, DeepFN
requires a template (Y ) that provides the appearance to
be shared. While there are many potential options for the
selection of the template, this work leveraged the images of
the most expressive subject of the BP4D dataset which was
more likely to capture a rich gamut of facial variations while
still resembling some of the main dataset characteristics
(e.g., camera angle, illumination). In particular, we first
counted the number of facial action unit activations for
each person, and then selected the participant for which

1. https://github.com/joshua-wu/deepfakes faceswap

TABLE 3
LeNet-5 architecture used for facial action unit recognition.

Layer Filters, Kernel Size Output
Input - 64, 64, 1

Conv2D/ReLu 6, 3x3 62, 62, 6
AvgPool2D - 31, 31, 6

Conv2D/ReLu 16, 3x3 29, 29, 16
AvgPooling2D - 14, 14, 16

Flatten - 3136
Dense - 120
Dense - 84

Dense/Sigmoid - 12 or 5

the median across all action units was the highest in the
dataset (see y in Figure 1 and bottom row of Figure 2).
This participant was excluded from the action unit classi-
fication analysis to help provide a fair comparison. While
not included in this work, we also explored the creation
of synthetic reference models such as avatars that can be
easily controlled [51], [52] or synthetic methods such as
StyleGAN [53]. However, we found that the demographics
as well as range of facial expressions were limited compared
to when considering real subjects [54], lowering the quality
of the expressions transfer results.

3.3 Action Unit Recognition
Once all the images were transferred into a common tem-
plate of reference, we fed them into a facial action unit
classifier that only sees a single appearance (the images
mapped to the template). For the purpose of our analysis,
we selected the LeNet-5 convolutional neural network archi-
tecture (see right of Figure 1) which was originally proposed
by LeCun et al. [55]. Among the different possibilities, we
selected LeNet-5 as it provided a simple and lightweight
solution (388K parameters) to quickly evaluate different
experimental conditions while avoiding overfitting. In terms
of loss function, we used the binary cross entropy function
which allows for multiple probabilistic activations for a
single image. Table 3 shows the specific architecture imple-
mentation of the classifier.

4 EXPERIMENTAL PROTOCOL

4.1 Groups
The main motivation of this work is to improve the gener-
alization of facial action unit models across different groups
of people. To help evaluate this, we performed multiple
within-group and cross-group evaluations across different
group splits, and then applied DeepFN to evaluate whether
it helped bridge the performance gap. In particular, we
considered the following group splits.

Person. The first group split considers each individual as
their own separate group as it captures the most frequently
considered source of facial appearance variance (e.g., [22],
[23]), especially in the context of face recognition [56]. The
within-group evaluations included models that were trained
and tested with data from the same person (a.k.a., person-
dependent models). The cross-group evaluations included
models that were trained and tested with data from different

https://github.com/joshua-wu/deepfakes_faceswap
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people (a.k.a., person-independent models). In this case,
person-dependent models capture the optimal performing
scenario in which identity labels and data from a specific
subject are available and, consequently, good model gener-
alization can be more easily achieved.

Gender. The second group split divides participants
according to their gender (male and female) which captures
facial variance in terms of sex-related facial characteristics
such as the amount of hair or the shape of the jaw [24]. The
within-group evaluations included models that were trained
and tested with male participants as well as models that
were trained and tested with female participants. The cross-
group evaluations included models that were trained with
males and tested with females, as well as the opposite. For
convenience, we will refer to these experiments as gender-
dependent and gender-independent models, respectively.
However, it is important to note that both of them fall under
the category of person-independent models as the subjects
used for training and validation were different than the ones
used for testing.

Skin Type. The third group split divides participants
according to their skin skin type (lighter and darker skins)
which captures facial variance in terms of skin pigmenta-
tion and other facial characteristics that may be correlated
correlated with it (e.g., shape of the nose [25]). This group
split has been more frequently been examined in the context
of algorithmic biases of computer vision [26], [27], [28]. The
within-group evaluations included models that were trained
and tested with participants with lighter skin (e.g., skin
type I and II) as well as models that were trained and tested
with participants with darker skin (e.g., skin type V and VI)
(a.k.a., skin-dependent models). The cross-group evalua-
tions included models that were trained with participants
with lighter skin and tested with those with darker skin, as
well as the opposite (a.k.a., skin-independent models). To
annotate skin type for each of the participants, we used the
Fitzpatrick Phototype Scale [57] which separates skin types
into six main categories. To help amplify differences associ-
ated with skin types, we group participants into lighter skin
(types below or equal to II) and darker skin (types above or
equal to V).

Dataset. The fourth group split divides participants ac-
cording to the dataset in which they participated (BP4D
and DISFA) which captures facial variance in terms of
a wide variety of factors such participant demographics
and specific data collection settings (e.g., camera angle,
illumination) [37]. The within-group evaluations included
models that were trained and tested with participants from
the same dataset (a.k.a., database-dependent models). The
cross-group evaluations included models that were trained
with one dataset and tested with those from another one
(a.k.a., database-independent models).

4.2 Datasets

To systematically evaluate performance under the differ-
ent group splits, this work mainly leverages the bench-
mark Binghamton-Pittsburgh 4D Spontaneous Expression
Dataset (BP4DSpontaneous) [58] due to its diverse set of
demographics and wide use in the context of facial action
unit recognition. In particular, the dataset contains a total

of around 140K images distributed across 41 participants
(23 females) who were instructed to perform 8 different
tasks designed to elicit authentic emotions (e.g., playing
games, watching a film, social interview). The images were
annotated by expert FACS coders. In our study, we focused
on the following 12 facial action units: AU01 (inner brow
raiser), AU02 (outer brow raiser), AU04 (brow lowerer),
AU06 (cheek raiser), AU07 (lid tightener), AU10 (upper lip
raiser), AU12 (lip corner puller), AU14 (dimpler), AU15 (lip
corner depressor), AU17 (chin raiser), AU23 (lip tightener),
and AU24 (lip pressor). In addition to providing binary
occurrence values for each of the actions units, the dataset
also includes intensity values (ranging from 1 to 8) for a
smaller subset of the action units (AU06, AU10, AU12, AU14
and AU17) which will be considered in part of the analysis.
Figure 3 shows visual examples of the different action units.

To study cross-dataset generalization, we also use the
Denver Intensity of Spontaneous Facial Actions (DISFA)
benchmark dataset [59] which includes around 130K images
distributed across 27 participants (12 females) watching
emotive video stimulus. Similarly, the images were anno-
tated by expert coders. For the purpose of our experiments,
we focused on the following five facial action units which
were also provided in the BP4D dataset: AU01, AU02, AU04,
AU06, and AU12. See * in Figure 3.

Table 4 shows the number of participants considered for
each of the group splits discussed in the previous section.
In particular, there were seven participants that met the
criteria of having lighter skin type (two females), eight
with darker skin type (six females), 22 female, 18 males,
40 in BP4D, and 27 in DISFA. To help illustrate appearance
differences across different group splits, Figure 2 shows the
average facial appearance (middle row) as well as their
luminance histograms (blue bars on the top row). The figure
also includes the same information after applying DeepFN
(bottom row and red bars on the histogram) showing greater
consistency across the different group splits.

4.3 Evaluation

Table 5 shows a summary of all the experiments. For each of
the conditions, we randomly selected four participants for
training, two for validation, and the remaining participants
for testing from their corresponding pool of participants
(see Table 4). These numbers were mostly determined by
the size of the smaller group (seven people with lighter
skin) and were kept the same across conditions to help
facilitate a fair performance comparison. Each model was
trained for a total of 50 epochs and testing predictions were
obtained using the model that yielded the highest F1-score
in the validation set. Each of the conditions was repeated
20 times to help minimize potential selection effects. All
the neural networks were optimized with Adam with a
learning rate of 0.00005 and exponential decay rates of 0.5
and 0.999 for the first and second-moment estimates, respec-
tively. The specific implementation was built in Python 3.5.6,
Keras 2.2.4, and Tensorflow 1.14.0.

To capture the overall performance for each model,
we first computed the average between the F1-score and
accuracy for each of the action units (at a threshold of 0.5),
and then aggregated them for each of the participants. For
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Fig. 2. Average facial appearance before (middle row) and after applying DeepFN normalization (bottom row) for different groups. The top row
shows the luminance histograms of the average images before (blue) and after (orange) normalization.

Fig. 3. Subset of facial action units [15], [60] considered in the study.
* indicates the actions used when studying cross-dataset generalization.

each of the conditions, we then computed the average and
standard deviation across all the participants. To compare
performance across conditions, we used two-sample t-test
comparisons with a significance score when p < 0.05.

5 RESULTS

Table 5 provides an overview of the results obtained for each
of the experiments across conditions. In this section we will
review the results for each of these groups.

TABLE 4
Number of available participants for each for the data splits

Group Split Sample Size
People 40
Female 22
Male 18
Darker skin 8
Lighter skin 7
BP4D 40
DISFA 27

5.1 Cross-person Generalization

When evaluating the models with the original (unnormal-
ized) data, person-independent models achieved an average
score of 55% and person-dependent models achieved an
average score of 60.3% which were significantly different
(p < 0.001). This difference indicates that the performance
impact of having access to person-specific data is around
5.3% in this dataset. This finding is consistent with previ-
ous work showing that person-dependent models lead to
greater performance as both training and testing data follow
the same distribution. In this case, 60.3% can be considered
as the optimal performing results for our experimental
setting in which no individual differences exists.

When evaluating the models with DeepFN (normal-
ized) data, we observe that person-independent models
increased to 59.6% which was significantly higher than its
unnormalized person-independent counterpart (p < 0.001)
and very similar to the unnormalized person-dependent
results (p = 0.375). This finding suggests that DeepFN can
effectively minimize individual differences associated with
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TABLE 5
(Top) Average and standard error bars for different experimental conditions and (bottom) overview of experimental details for each of the
conditions including average accuracy and F1 score (%) and standard deviation. #AUs: number of facial action units, Reps.: repetitions.

Condition Name Group Dataset #AUs Analysis Train→ Test Reps. Original DeepFN
Person-dependent Person BP4D 12 Within Tasks→ Tasks 20x40 60.3 (3.8) 61.1 (4.0)

Person-independent Person BP4D 12 Cross People→ People 20x2 55.0 (3.7) 59.6 (3.6)

Gender-dependent Gender BP4D 12 Within Male→Male
Female→ Female

20x2 55.0 (4.3) 60.2 (3.8)

Gender-independent Gender BP4D 12 Cross Male→ Female
Female→Male

20x2 52.6 (3.9) 57.7 (3.2)

Skin-dependent Skin type BP4D 12 Within Lighter→ Lighter
Darker→ Darker

20x2 55.2 (6.5) 58.7 (4.6)

Skin-independent Skin type BP4D 12 Cross Lighter→ Darker
Darker→ Lighter

20x2 49.9 (5.1) 57.4 (4.0)

Dataset-dependent Dataset BP4D
DISFA

5 Within BP4D→ BP4D
DISFA→ DISFA

20x2 54.0 (4.7) 61.5 (5.1)

Dataset-independent Dataset BP4D
DISFA

5 Cross BP4D→ DISFA
DISFA→ BP4D

20x2 44.6 (4.8) 51.1 (5.1)

Fig. 4. Average and standard error for person-independent models with (DeepFN) and without (original) normalization across facial action units.

appearance. Person-dependent models with DeepFN main-
tained a performance of 61.4% which was similar than its
unnormalized counterpart (p = 0.388), suggesting that the
face transfer process did not lose relevant facial expression
information.

Figure 4 shows the average performance per action unit
when using person-independent models with and without
DeepFN. As can be seen, DeepFN provided an average im-
provement of around 4.6% (STD: 2.9) for the considered AU
with the greatest gains for AU04 (11.4%) and the smallest
gains for AU14 (0.8%).

5.2 Cross-gender Generalization

When using the original data, gender-independent models
achieved an average score of 52.6% and gender-dependent
models achieved an average score of 55% which were sig-
nificantly different (p = 0.009). This difference indicates that
the impact of having different genders across training and
testing sets is around 2.4% in this dataset.

When using DeepFN, we observe that gender-
independent models increased to 57.7% which was signifi-
cantly higher than its unnormalized counterpart (p < 0.001)
and gender-dependent models increased to 60.2% which
was also significantly higher than its unnormalized counter-
part (p < 0.001). The fact that gender-independent models
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Fig. 5. Average and standard error bars for different training/testing splits
of gender-independent and dependent models.

with DeepFN yielded higher results than gender-dependent
models without DeepFN indicates that the normalization
is helping address individual differences beyond gender
which is to be expected as the proposed method normalizes
differences at the individual level.

To further explore these results, Figure 5 shows the
results for each of the training/testing combinations with
and without DeepFN. As can be seen, the use of DeepFN
yielded a consistent average improvement of 5.2% across the
different conditions. While we originally hypothesized that
within-group evaluations would outperform cross-group
evaluations, however, we observe that experiments in which
women were used as part of the testing set yielded better
performance than those in which men were used as part
of the testing set, irrespective of the training group and
normalization method (p <= 0.001). When considering the
intensity of facial action units, we observe that the activa-
tions of female participants were more intense than those
associated with male participants on average (p <= 0.001),
suggesting that recognizing expressions in females may be
easier.

5.3 Cross-skin Generalization
When using the original data, skin-independent models
achieved an average score of 49.9% and skin-dependent
models achieved an average score of 55.2% which were
significantly different (p = 0.025). This difference indicates
that the impact of having different skin types across training
and testing sets is around 5.3% which is a bit larger than
the generalization gap associated with gender (2.4%). While
we have not seen prior work comparing these two types
of the generalization, this finding seems to suggest that skin
type may have a greater impact than gender in the context of
model generalization. However, it is important to note that
the number of subjects in the skin type condition is smaller
than in the gender condition (see Table 4).

When using DeepFN, we observe that skin-independent
models increased to 57.4% which was significantly higher

Fig. 6. Average and standard error bars for different training/testing splits
of skin-independent and dependent models.

than its unnormalized counterpart (p < 0.001) and skin-
dependent models increased to 58.7% which was similar
to its unnormalized counterpart (p = 0.110). In this case,
skin-independent models with DeepFN yielded higher but
comparable results than skin-dependent without DeepFN
(p = 0.290), suggesting that the normalization method ad-
dressed the main source of data variance in this condition.

Figure 6 shows the results for each of the train-
ing/testing combinations with and without DeepFN. We
see that the use of DeepFN yielded a consistent average
improvement of 5.7% across the different conditions. This
difference was the smallest when training and testing with
people with darker skin, in which performance was already
at the level of person-dependent models (around 60%).
Similarly, we observe that experiments in which people with
darker skin were used as part of the testing set yielded
better performance than those considering lighter skin, ir-
respective of the training group and normalization method
(p <= 0.020). This finding is consistent with the gender
differences as the majority of participants with darker skin
were female (6 out of 8) and can be also observed on the
average facial appearance of Figure 2.

5.4 Cross-dataset Generalization

When using the original data, dataset-independent models
achieved an average score of 44.6% and dataset-dependent
models achieved an average score of 54% which were sig-
nificantly different (p < 0.001). This difference indicates that
the impact of having different datasets across training and
testing sets is around 9.4%. This difference was the largest
observed gap across all the group conditions indicating
that cross-dataset generalization is one of the most difficult
challenges to address.

When using DeepFN, we observe that dataset-
independent models increased to 51.1% which was
significantly higher than the unnormalized counterpart
(p < 0.001) and dataset-dependent models increased to
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Fig. 7. Average and standard error bars for different training/testing splits
of dataset-independent and dependent models.

61.5% which was also significantly higher than the unnor-
malized counterpart (p < 0.001). However, the gap between
dataset-independent models and dataset-dependent mod-
els was significant (p < 0.001) indicating that even though
DeepFN was able to close a significant part of the gap,
there are potentially other sources of unaddressed vari-
ance such as illumination and camera angle as shown in
Figure 2 (right) that could help further normalize facial
appearance.

Figure 7 shows the results for each of the train-
ing/testing combinations with and without DeepFN. Note
that the right-most condition (i.e., BP4D→ BP4D) is equiv-
alent to the person-independent models considered in sec-
tion 5.1 but considering a smaller set of facial action units,
leading to a slightly higher score. In this condition, within-
group evaluations yielded significantly better performance
than cross-group evaluations as hypothesized (p < 0.012).
The use of DeepFN also yielded average improvements of
8.3% for three of the conditions but only 2.1% when training
on BP4D and testing on DISFA. We believe the smaller
improvement may be due to two main factors. On the one
hand, the difference in class priors across the two datasets
may have limited the ability to learn facial action units.
On the other hand, the template of reference was selected
from the same distribution as the training data (BP4D) and
negatively impacted the expression transfer of more dissim-
ilar images (DISFA). The latter seems to be supported by
Figure 2 that shows greater differences between the original
(middle) and normalized (bottom) DISFA images.

6 DISCUSSION

This work has proposed and evaluated DeepFN, a deep
facial appearance normalization method that minimizes ap-
pearance differences across people to help facilitate the task
of facial action unit recognition. In particular, we explored
the use of self-supervised denoising autoencoders that en-
able us to transfer facial expressions in a self-supervised

manner. To evaluate the potential impact of DeepFN in the
context of generalization, we performed multiple within-
group and cross-group evaluations with both unnormalized
and normalized data.

When considering the optimal machine learning sce-
nario in which both labels and images of the testing sub-
jects were available (i.e., person-dependent models), we
obtained an average F1 and accuracy performance of 60.3%.
In contrast, person-independent models with unnormalized
data yielded a significantly lower performance of 55%,
which was successfully corrected when normalizing the
data with DeepFN (59.6%). To analyze different types of
person-independent models, we further constrained the
groups of participants selected for training and testing sets
in terms of gender (male and female), skin type (lighter and
darker), and dataset (BP4D and DISFA). Overall, we ob-
served that cross-group evaluations performed worse than
within-group evaluations on average which is consistent
with the iid assumption that requires that both training
and testing data follow the same distribution. The gap
between within and cross-evaluations was the largest for
the evaluations examining different datasets (9.4%) followed
by skin type (5.3%) and gender (2.4%). For all the cases,
DeepFN helped close a significant part of the gap which
was more pronounced when considering gender and skin
type.

The previous results seem to support that the use of
DeepFN can effectively minimize individual differences
while keeping relevant facial expression information. How-
ever, we observed some differences across certain conditions
that suggest that further improvements could be made in
terms of template selection. In our study, we selected the
most expressive subject of the BP4D dataset as a template,
which helped capture a large range of facial action units.
However, the specific attributes of the selected subject more
closely resemble certain groups of subjects which could
have differently impacted others (e.g., Asian female). For
instance, we observed that testing on female subjects and
people with darker skin, which were predominantly female,
led to slightly better performance than its male and lighter
skin counterparts. While the use of DeepFN helped slightly
close this gap, the differences across groups still existed. In
addition, we observed that transferring faces of the DISFA
dataset, which was collected under different settings, led to
an observable decrease in transfer quality (see right images
of Figure 2) which could be expected due to the additional
sources of variance (e.g., camera angle, illumination) which
were not present in the template of reference. Future efforts
will need to systematically study the role of template selec-
tion to enable more consistent normalization results across
different groups. We believe the appearance of the ideal
template should have similar resemblance across all the
groups (e.g., average face) as well as capture a rich range
of different sources of variance (e.g., facial expressions, illu-
mination, body poses). Recent computer vision efforts such
as controllable avatars or generative adversarial networks
(e.g., [51], [52], [61], [62]) could be helpful in this space.
In addition, we believe there exist some complementary
efforts in the context of face frontalization (e.g., [56]) that
could be used in combination with the proposed approach
to help provide a more comprehensive facial appearance
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normalization.
To facilitate facial expression transfer in a self-supervised

manner, this work iteratively transferred the data from each
person to the template of reference. This approach yielded
good qualitative performance but the training process can
be considered too temporally costly for real-time analy-
sis. While not explored in this work, there exist multiple
methods that can be used to help speed-up the learning
process such a re-using an existing pre-trained autoencoder
and fine-tuning it with the new data, and/or building a
supervised version of the autoencoder that allows normal-
izing any face without the need of seeing unlabeled data.
Training the supervised approach would require obtaining
large amounts of paired images (original and normalized
faces) which could be provided with the method discussed
in this work and/or some of the recent efforts focused on
systematic manipulation of synthetic faces (e.g., [62], [63],
[64]). Due to the quick advancements of computer vision, we
believe the temporal cost associated with training DeepFN
will be significantly reduced in the near term.

To help evaluate the performance of DeepFN across
different conditions, this work has made some experimental
decisions that are important to consider. For instance, this
work has mainly considered evaluations using the BP4D
dataset which provided a rich collection of images from
different subjects required for the normalization. In addi-
tion, the dataset contains a very diverse set of participants
in terms of demographics which facilitated exploring dif-
ferent generalization across different groups. However, the
number of available subjects for some of the groups was
relatively small (7 for the people with lighter skin) which
constrained the training size across all the other conditions
for consistency purposes. This work has also considered
the LeNet-5 network to recognize facial action units which
facilitated performing a large number of experiments and
repetitions (see Reps. on Table 5) in a manageable amount
of time, However, it is important to note that this network
is relatively simple and that there is a wide variety of more
complex network architectures which are currently being
used to obtain state-of-the-art-performance (e.g., [17], [65]).
Due to the exploratory nature of this work, we believe
these experimental decisions were necessary to facilitate a
fair and comprehensive evaluation but acknowledge that
they could have impacted the results. For instance, we
would expect to see greater DeepFN benefits when reducing
the number of training subjects as well as reducing the
complexity of the network, as it may be more difficult to
learn generalizable features. In contrast, we may expect de-
creased benefits when significantly increasing the number of
training subjects as well as increasing the complexity of the
neural network. While future efforts will need to consider
different experimental decisions to further understand the
role of DeepFN, especially when considering state-of-the-
art methods, we believe the results of this work highlight
the potential value of the proposed methodology.

7 ETHICAL CONSIDERATIONS

This work studies the problem of model generalization
across different groups which is important to not only
improve performance when deploying the models in the

real-world but also to help prevent potential biases that can
differently impact underrepresented groups (e.g., security
screening, job interviews). While this work has shown sig-
nificant performance improvement when considering differ-
ent groups, it is important to note that there were still some
significant gaps across different data splits (e.g., testing with
female subjects yielded better performance) which should
be further minimized to help prevent algorithmic biases.
In addition, the evaluations presented in this work were
performed in semi-controlled datasets which suffer from
their own biases (e.g., young population) and may not
be representative of real-world demographics. To address
these limitations, it is important to consider not only recent
advancements in computer vision such as the generation
of synthetic images [62] but also acknowledge their unique
potential biases [54] which can indirectly increase some of
the gaps.

Another challenge when deploying AI systems like the
one considered in this work, is the ability to interpret and
understand what the models are doing. In contrast to prior
work that frequently considered normalizing features with
intuitive methods (e.g., range correction, relative changes),
this work separates the learning process into two main
phases: one fully dedicated towards minimizing individual
differences, and another one fully dedicated towards learn-
ing facial action unit recognition. This separation offers an
opportunity to examine the output of the models after the
normalization process which can be used to isolate potential
failures in the generalization process. Furthermore, the use
of a shared facial appearance provided a familiar channel
of model introspection (faces) that facilitates the intuitive
detection of AI limitations. For instance, Figure 2 easily al-
lowed us to identify potential limitations when transferring
faces across datasets (right). In the future, we expect to see
more approaches further separating the learning process
with the hope of better isolating and debugging potential
failures.

Finally, it is important to note that facial expression
transfer algorithms like the one considered in this work
can pose serious risks to the privacy of individuals as their
appearance could be easily manipulated without their con-
sent. For instance, there has been an increase of manipulated
videos in sensitive scenarios such as politics and pornog-
raphy with very profound and worrisome implications to
society [50]. While there has been recent progress towards
the automated detection of these misuses (e.g., [66], [67],
[68]), it is critical to find ways to obtain the informed
consent of users. In this work, we mitigated this by only
considering the appearance of participants who explicitly
contributed their data for research purposes as a template
of reference. However, future work considering different
template selections will need to consider the importance of
obtaining consent too. Despite the shortcomings of expres-
sion transfer methods, however, we believe there are several
positive applications such as helping preserve the privacy
of individuals (e.g., [69], [70], [71]) and helping minimize
potential algorithmic biases as explored in this work.
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8 CONCLUSION

This work has explored the use of facial expression transfer
to minimize individual differences across people in the
context of facial action unit recognition, and systematically
evaluated its potential generalization benefits by perform-
ing multiple within and cross-group comparisons in terms
of people, gender, skin type, and dataset. The results of this
work demonstrate that the proposed methodology can yield
significant generalization gains but more work is needed to
assess its replicability across different experimental condi-
tions. We are looking forward to a future when similar face
normalization methods can be used not only to deploy more
accurate models in the wild but also provide more consistent
performance across different groups of people.
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[70] H. Hukkelås, R. Mester, and F. Lindseth, “DeepPrivacy: A Genera-
tive Adversarial Network for Face Anonymization,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 11844 LNCS,
pp. 565–578, sep 2019.

[71] B. Zhu, H. Fang, Y. Sui, and L. Li, “Deepfakes for medical video
de-identification: Privacy protection and diagnostic information
preservation,” in AIES 2020 - Proceedings of the AAAI/ACM Confer-
ence on AI, Ethics, and Society, vol. 7, no. 20. New York, NY, USA:
Association for Computing Machinery, Inc, feb 2020, pp. 414–420.


	1 Introduction
	2 Related Work
	3 Methods
	3.1 Facial Appearance Normalization
	3.2 Template Selection
	3.3 Action Unit Recognition

	4 Experimental Protocol
	4.1 Groups
	4.2 Datasets
	4.3 Evaluation

	5 Results
	5.1 Cross-person Generalization
	5.2 Cross-gender Generalization
	5.3 Cross-skin Generalization
	5.4 Cross-dataset Generalization

	6 Discussion
	7 Ethical Considerations
	8 Conclusion
	References

