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Abstract—For proof-of-work blockchains such as Ethereum,
the mining power decentralization is an important discussion
point in the community. Previous studies mostly focus on the
aggregated power of the mining pools, neglecting the pool
participants who are the source of the pools’ power. In this paper,
we present the first large-scale study of the pool participants
in Ethereum’s mining pools. Pool participants are not directly
observable because they communicate with their pools via private
channels. However, they leave “footprints” on chain as they
use Ethereum accounts to anonymously receive rewards from
mining pools. For this study, we combine several data sources
to identify 62,358,646 pool reward transactions sent by 47
pools to their participants over Ethereum’s entire near 5-year
history. Our analyses about these transactions reveal interesting
insights about three aspects of pool participants: the power
decentralization at the participant level, their pool-switching
behavior, and why they participate in pools. Our results provide
a complementary and more balanced view about Ethereum’s
mining power decentralization at a deeper level.

Index Terms—Blockchain, Ethereum, mining power decentral-
ization, mining pool participant.

I. INTRODUCTION

Major blockchains like Bitcoin [1] and Ethereum [2] are

based on Proof-of-Work mining [3]. The decentralization of

the mining power is a major concern of the community.

Previous studies show that mining pools aggregate most of

the mining power [4]–[8]. For example, the combined power

of the top 2∼4 pools for Ethereum and Bitcoin, which are

two of the biggest public blockchains, has already exceeded

the 50% threshold! However, the pool participants, who are

the source of the pools’ power, are largely missing in these

studies.

In this paper, we conduct the first large scale characteri-

zation of pool participants. Our study focuses on Ethereum,

which is one of the most popular public blockchains. The

challenge is that pool participants are not directly observ-

able because they communicate with their pools via private

channels. Fortunately, they leave “footprints” on chain as they

use Ethereum accounts to anonymously receive rewards from

mining pools. For this study, we combine several data sources

to identify pool reward transactions sent by pools to their

participants. Although these transactions only carry indirect

and partial information about pool participants, our analyses

reveal the following important insights:

• Insight 1: Despite the power concentration at the pool

level, the number of participants required to control more

than 50% of the total power has grown from several

hundred to several thousand. Overall, the power is more

decentralized at the participant level than 4 years ago.

However, we also find that this number varied signif-

icantly over time, which means it requires continuous

tracking. Additionally, as our current data and method-

ology cannot de-anonymize the participants, it’s possible

that some participants split themselves into many smaller

ones for various reasons, which could make our estima-

tion inaccurate if not completely off the target. Further

study to improve the estimation accuracy is important.

• Insight 2: Our study about multi-pool miners, who have

switched pools or participated in multiple pools, shows

that they control a significant amount of the total mining

power. This suggests that a large share of the mining

power is not owned by their pools or not loyal to them.

Even if the top pools could collude to launch a 51%

attack (which is a public noticeable event, as we explain

in Section II), they might have to factor in the heavy price

to pay if their participants switch to other honest pools.

• Insight 3: Concerned about the pools’ power, multiple

research groups have developed and published solu-

tions [9]–[11], such as FruitChain [11], to disincentivize

miners from joining mining pools. They attempt to reduce

the pools’ power concentration by removing a financial

benefit, i.e., by making it possible for small-power miners

to solo mine and enjoy a frequent and stable stream of

rewards. Our empirical evidence about solo-able miners

indicates that miners participate in pools even when they

are powerful enough to get stable rewards by solo mining,

so the benefits of pool participation are more than the re-

ward stability. Therefore, any solution that disincentivizes

pool participation by offering reward stability alone may

not be effective. Researchers need to identify and address

other reasons for pool participation.

We publish the data set collected for the study1. It contains

62,358,646 identified pool reward transactions, which are

sent by 47 pools to their participants over Ethereum’s entire

history since 2015. In the most recent 12 months2, the reward

transactions identified on average cover more than 76% of

1https://github.com/yangsrc/pool-dataset
2From 2019-04-01 to 2020-04-01.



the total mining power. Since the data are from the public

Ethereum, our results can be independently verified.

In addition to releasing a new data set, our contribution

includes 1) the first longitudinal and cross-pool analysis of

Ethereum’s pool participants; 2) the first to reveal and doc-

ument that mining power decentralization at the participant

level might be significantly different from the situation at

the pool level; 3) the first attempt to quantify the multi-pool

and solo-able mining power, which adds to a more complete

understanding of the fear and solutions about mining pools.

We review the important concepts and background in

Section II. A summary of our methodology and data set

is presented in Section III. We present our characterization

results and findings in Section IV. Section V presents related

work. Section VI concludes the paper.

II. BACKGROUND

Miners and mining pools. Starting with Bitcoin [1], many

popular cryptocurrencies (Ethereum [2], Litecoin [12] and

others [13]–[15]) employ proof-of-work (PoW) consensus

algorithms to maintain a decentralized ledger among peers in a

P2P network who do not need to trust each other. These PoW

algorithms incentivize miners, who are peers in the network,

to continuously grow a global chain of blocks. Miners are

required to compete for each new block by solving a unique

and computation-heavy puzzle, which is called block mining.

In return, miners are allowed to record their account addresses

in the coinbase field of a block to receive newly generated

crypto coins as reward3. The block puzzles are designed in

such a way that a miner, whose mining power accounts for

X% of the combined total in the network, has X% chance to

win the competition for each new block. For example, a miner

with 1% of the total power is expected to win and receive

a block reward once every 100 blocks. If 10 such miners

combine their power to mine collaboratively, they together,

with 10% of the total power, can expect to win once every 10

blocks. By splitting the reward for each block, each of them

can receive rewards 10 times more frequently (each time one

tenth of the reward). This practice can also reduce the variance

of the interval between two consecutive rewards received by

the miners. In the real world, many mining pools are created

to coordinate such collaborative mining. The miners who

join pools are called mining pool participants. People often

believe that small-power miners can especially benefit from

pool participation [16]. Otherwise, they might have to operate

without an income for a long and uncertain amount of time.

Figure 1 depicts Ethereum’s mining ecosystem, in which

mining pools play an important role. The operators of mining

pools (denoted as O1, O2) create blocks and set their accounts

as coinbases to receive rewards (denoted as Miner : O1

and Miner : O2 in the boxes representing blocks). Instead

of using their own computation power to solve the block

puzzles as what solo miners (denoted as S1) do, the pool

3Miners also collect transaction fees if they pack transactions into their
mined blocks.
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Fig. 1. Ecosystem of Ethereum mining. Miners (pools or solo miners) benefit
from block rewards (“Miner:...”). Pool operators further allocate the block
rewards to pool participants via on-chain transactions (TXs, “TX:...”).

operators use the combined mining power of the mining pool

participants (denoted as P1, P2 and P3). As shown in the

graph, one participant can join several pools. Pool operators

send pool reward transactions (denoted as TX : O1 → P1,

TX : O2 → P3 and etc.) to split and distribute the block

rewards to participants based on their estimated mining power

contribution. Pool operators often charge participants a fixed

fee and have craftily designed reward allocation and payment

policies [17].

A 51% attack is very noticeable when it is launched.

A 51% attack by top pools can be detected as they have to

divert more than 51% of the total mining power off the honest

chain to build a forked chain that grows faster than the honest

one. After they release the malicious fork to replace the honest

one, both forks of the chain are automatically recorded by the

nodes in the network, which could be independently examined

after the fact. Even if the victims of the attack do not cry out

loudly for their loss, a significant drop of mining power on

the replaced honest chain can be easily observed.

III. METHODOLOGY AND DATA SET

A. Methodology

We study mining pools and pool participants by observing

the amount, the source and the time they receive block re-

wards4 and pool rewards respectively. The amount of rewards

received is used to estimate the mining power of pools and

participants [19]. We are interested in the relative mining

power a pool or participant has, which is calculated as a

percentage of the combined total power in the network. More

precisely, given a time interval (e.g., a week, month, year), we

estimate the average mining power of a pool in that interval as

the ratio of the mining rewards received by the pool over the

4Ethereum’s variant of PoW algorithm allows a block to include no more
than two recent stale blocks as uncles (ommers) to reward their miners and
factor in their mining power contribution [18]. Our block reward calculation
includes these uncle (ommer) blocks. The rest of the paper will not explicitly
mention this again.



total rewards of all the mining pools and solo miners received

in the interval.

Ppool =
mining rewards received by this pool

total mining rewards

The average mining power of a pool participant is estimated

similarly:

Pparticipant =
pool rewards received by the participant

total mining rewards

In the rest of the paper, for brevity, we use “mining power” to

refer to the “average mining power in a given time interval”.

Mining pools receive rewards by setting the coinbase ac-

count of the blocks they mine as the Ethereum accounts

they own. For transparency, mining pools usually disclose the

accounts they use. With this information, it is straightforward

to collect all the rewards received by each of the public mining

pools. However, collecting the pool rewards sent out by pools

to their participants is more challenging, because not all the

transactions that transfer Ethers out of pools’ accounts are

for rewarding participants. Some of the transactions might be

used for moving pools’ own cut of the rewards (pool fees)

or even for other unrelated purposes. To identify whether

an Ether transfer transaction from a pool’s account is for

sending pool rewards to a participant, we need to know

whether the receiver account of the transaction belongs to a

pool participant. A difficulty for us is that pool participants

usually stay anonymous and do not disclose their accounts

as there is no obvious reason for them to do so. Fortunately,

we discover a data source that can help us identify a large

number of accounts used by pool participants. Among all

the public mining pools, we find that 5 large pools, namely,

Ethermine [20], SparkPool [21], NanoPool [22], F2Pool [23],

EthPool [24], provide public APIs which could be used to

verify whether a given Ethereum account is owned by their

participants. Note that a participant account may be used by

the participant for other unrelated purposes. We only assume

that if a participant account receives an Ether transfer from an

identified pool account (not necessarily the pool whose API is

used to identify the account), this particular transfer is for the

pool to send pool rewards to the participant. More explicitly,

if an account A is verified as a participant account by pool P’s

API, we assume that:

• Assumption 1: all the Ether transfers from the accounts

of pool P to account A are for distributing pool rewards.

• Assumption 2: all the Ether transfers from the accounts

of other pools to account A are also for these pools to

distribute their rewards.

In Section III-C, we will provide evidence to show why

we believe that the above two assumptions are mostly true,

although we do not depend on them being 100% true. For

example, even without Assumption 2, the core findings about

the multi-pool participants in Section IV-B are still valid.

The APIs we discovered do not tell us whether two or more

accounts belong to the same participant. De-anonymization

techniques [25], [26] might help, which we leave to be

explored in future work. Our results do not depend on this

knowledge, unless otherwise noted and addressed.

B. Data Set Collection

Based on the above methodology and assumptions, we use

the following steps to collect the accounts used by pools and

participants and the rewards received by these accounts.

1) We collect the name of the pools and the accounts they

use by crawling the mining pool database of Ether-

scan [27], which is the most widely used blockchain

explorer for Ethereum.

2) We collect the accounts of pool participants by using the

following steps.

a) From step 1, we get the accounts of the 5 large

pools (see Section III-A) whose APIs can be used

to verify participant accounts5.

b) We scan all the Ethereum transactions and collect

those transactions that are sent out by the accounts

of the 5 pools to transfer Ethers.

c) We collect all the receiver accounts of the trans-

actions we get from the previous step as candidate

accounts of participants.

d) We use the candidate accounts to query the APIs

and recognize an account as a participant’s account

as long as it can be verified by any of the pools’

APIs.

3) We collect the mining rewards received by all the

identified pools and other miners (i.e., unidentified pools

and solo miners).

4) We collect the pool rewards sent to all the participant ac-

counts by scanning all the Ethereum transactions to find

out those which transfer Ethers from all the identified

pools to all the identified participant accounts.

We develop and assemble a cloud-based pipeline to collect,

store, and process the data set. It consists of the following

components: a blockchain data collector, which queries an

Ethereum full node to get all the blocks and transactions and

uploads them to a cloud-based data lake in JSON format; a

pool collector, which crawls the Etherscan website to get all

the publicly known Etheruem mining pools and the accounts

they use; a participant collector, which leverages Apache Spark

to scan all the Ethereum transactions stored in the data lake,

aggregates the receiver accounts of all pool initiated transac-

tions, and verifies the receiver accounts by calling the APIs of

the five large pools in a rate-throttled way6; a data analysis and

visualization platform, which includes Apache Spark, Python,

Jupyter Notebook and Matplotlib. Our data set is accessible at

https://github.com/yangsrc/pool-dataset, allowing reproducing

the results and further study.

Our data set (first 9,847,646 blocks) covers Ethereum’s

entire history, starting from inception (July 30, 2015) through

5These APIs cannot be used to enumerate all the participant accounts of the
pools. They can only be used to verify whether a given account is a participant
account or not.

6The pools’ web APIs use rate limiting to prevent abuse. It takes a long
time to verify a large number of candidate participant accounts.
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Fig. 2. Rewards received by recognized pools and participants as a percentage
of the total mining rewards for each week.

April 10, 2020, which is near 5 years. It contains all the

10,852,005 block (and uncle) rewards in the target period,

most of which are received by the identified pools. We find

47 public mining pools. They, in total, use 67 accounts.

We identify 980,168 participant accounts with the APIs we

discovered (see Section III-A). Out of the 69,285,505 Ether

transfer transactions sent out by all the 47 pools, 62,358,646

are identified as pool reward transactions by our approach.

C. Data Set Characterization

In the following, we show that the data set we collect

covers a significant amount of mining activities of Ethereum

and provides supporting evidence for the two assumptions we

make in section III-A.

From our data set, we can calculate the following statistics

for all the history over 4+ years covered:

• Total mining rewards: the total mining rewards received

by all the miners (mining pools and solo miners) who

have ever directly produced Ethereum blocks: 38,456,433

Ethers.

• Mining rewards of 47-pool: the mining rewards received

by the 47 mining pools we recognize: 31,237,271 Ethers.

• Mining rewards of 5-pool: the mining rewards received by

the 5 large mining pools whose APIs we use to recognize

pool participants’ accounts: 20,621,001 Ethers.

• Pool rewards by 47-pool: the pool rewards received by

all the recognized accounts of pool participants from all

the 47 recognized mining pools: 25,854,355 Ethers.

• Pool rewards by 5-pool: the pool rewards received by all

the recognized accounts of participants from the 5 large

pools whose APIs we use to recognize these accounts:

20,420,738 Ethers.

Figure 2 shows a weekly breakdown of the above metrics. In

this figure, we normalize the latter four as a percentage of the

first one (total mining rewards), which can be interpreted as

their weekly average relative mining power (see Section III-A).

The line “mining rewards of 47-pool” shows that the 47 mining

pools we recognize control a great majority of the total mining

power in most weeks of the whole 4+ years. In the recent two

years, they control more than 93% of the total mining power

on average. The line “pool rewards by 47-pool” reflects the

amount of mining power contributed by the pool participants

whose accounts we recognize. We can see that these pool

participants control more than 60% of the total power in 80%

of the weeks of the whole 4+ years. In the recent two years,

the percentage number is even greater, 77% on average. It

clearly shows that the pools and participants, whose activities

are captured by our data set, control a significant amount of

total mining power. Figure 2 also provides evidence to support

Assumption 1 introduced in Section III-A, which says that if

account A is verified as a participant account by pool P, all the

Ethers transferred from P to A are for pool reward distribution.

To recall, we use the APIs of 5 large pools (see Section III-A)

to verify participant accounts. Line “mining rewards of 5-pool”

reflects the amount of Ether received by the 5 large pools

for mining blocks. Line “pool rewards by 5-pool” reflects the

amount of Ether sent out by the 5 large pools to the participants

recognized by their APIs. We can observe that the two lines

almost overlap with each other during most of the time. It

means the total pool rewards we identified, which are sent out

by the 5 large pools, closely match the total mining income of

the 5 pools for most of the weeks in the past 4+ years. As a

result, the following two points are highly likely true: (a) the 5

pools’ APIs can recognize most, if not all, of the accounts used

by their participants to receive pool rewards; (b) all the Ethers

sent by these pools to their participants are for pool reward

distribution. Point (b) suggests that Assumption 1 is likely true.

The reasoning is that: if Assumption 1 is true, then point (b)

above should be true. If, in addition, point (a) above is also

true, we should observe that the total amount of pool rewards,

which are recognized by our approach, is equal to the total

mining rewards received by the 5 pools (minus a small fraction

of pool fees). In reality, our observation is indeed very close

to this, which gives us good confidence about Assumption 1

and the two points above 7.

There is also evidence that leads us to make Assumption 2

in Section III-A. This assumption is needed for us to collect

the pool rewards sent out by the rest 42 pools, which do not

have APIs to directly verify the accounts of their participants.

We use the following indirect method to verify accounts for

these pools. If an account (a) is verified by any of the 5 large

pools, and (b) receives any Ether transfer from any of the 42

pools, we treat that account as a verified participant account

of the sending pool. Then we collect the transfer as a pool

reward sent out by the pool to the participant. Obviously this

method might introduce misidentified participant accounts, so

it is necessary to estimate the precision of the method, i.e., the

percentage of misidentified accounts. Since we do not have the

ground truth for the rest of pools, what we do is a leave-one-

out cross-validation on the 5 large pools with ground truth for

the estimation. Specifically, we pick one of the 5 large pools

as the validation pool and pretend that the validation pool

7Note that we, by no means, claim that this mathematically proves As-
sumption 1.
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Fig. 3. Weekly minimum number of participant accounts having over 50%
of the total mining power. The weekly mining power of each account is the
sum of its mining power across all the identified pools.

does not have the verification API. We use the above indirect

verification method, in which we only use the APIs of the

other 4 pools, to find out all the indirectly verified accounts

for the validation pool. After that, we count the number of

these accounts that are not misidentified by using the API of

the validation pool. The latter number divided by the former

number is the precision. By repeating the above process five

times, each time picking a different pool as validation, we have

five precision numbers. The average precision of this method

is as high as 97.7%, which strongly supports our confidence

on Assumption 2.

IV. DETAILED STUDIES AND INSIGHTS

The data analysis results in this section provide insights

about three aspects of pool participants: the power decentral-

ization at the participant level, their pool-switching behavior,

and why they participate in pools.

A. Mining Power at the Participant Level: More Decentralized

The mining powers of pools come from their participants.

Previous work [4], [5], [7] was primarily concerned about the

power concentration trend at the pool level. In this subsection,

we study the trend at the participant level. This can help

us evaluate the likelihood of another possible strategy of

collusion: what if the top pools collude not only among

themselves but also with their participants, so that they can

attack without the consequence of losing these participants

to other (more honest) pools? Specifically, the question is

whether this strategy requires the pools to bribe only a few

very large participants, or a large number of them?

Observation: We measure the mining power of pool partici-

pants based on the amount of pool rewards they receive. More

precisely, we estimate the weekly power associated with each

account used by participants to receive the rewards. Figure 3

shows, for each week in the 4+ years, the minimum number of

participant accounts, whose combined mining power exceeds

50% of the whole network. We can see that the number of par-

ticipant accounts that control the majority of the mining power

went through a long and gradual growth from several hundred

to more than twenty thousand, and then fluctuated around the
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Fig. 4. Weekly minimum number of participant accounts having over 50%
of the pool mining power.

level of several thousand. It is possible that one participant uses

multiple accounts to receive rewards. As acknowledged earlier,

the changes in the number of accounts may not match exactly

with the changes in the number of participants. In the extreme

case, the number of participants could have even decreased,

while each of them uses many more accounts. Due to the

limitation of our data set and methodology, we leave the de-

anonymization [25], [26] of the participant accounts to future

work. In the following discussions, we do not consider the

extreme cases and assume that the large increase of accounts

observed is positively correlated with the participant growth.

The increase of participants contrasts with the history at the

pool level. This increase in decentralization could be caused

by a large number of newly joined participants as well as a

flatter power distribution among existing participants.

Despite the large increase of participant accounts over the

near 5-year period, the increase is not monotonic. For example,

Figure 4 shows the power distribution in the two largest pools,

SparkPool and Ethermine. Each curve shows the minimum

number of participant accounts who can control the majority

power of each pool. It is worth the attention that, since the

2018-08, the curve of SparkPool trends down considerably

and the number falls to a few and dozens, while the Ethermine

curve is relatively flat8. This suggests that the degree of power

concentration at the participant level could change drastically

over time. A data analytic work that monitors the trend can

help the community to more precisely foresee the risk.

Discussion: Given this level of decentralization, we believe

that there is no imminent concern about pools being able to

collude with enough participants so that they could attack

without risk losing their power. To a certain extent, our

results can be used as evidence to confirm that the memory-

intensive design of Ethereum’s mining algorithm, which favors

general purpose computing device (GPU) over customized

single-purpose ASICs, has succeeded in making the Ethereum

network more decentralized than Bitcoin, whose mining algo-

rithm favors ASICs, in terms of the power concentration at

8There are still around thousands of participant accounts that receive pool
rewards from Ethermine in the same period of time.
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the participant level [28].

B. The Power of the Multi-Pool: Significant Deterrence

The total mining power of multi-pool participants who do

change pools is another metric to indicate how stable the

relation between pools and their participants is. If such multi-

pool participants control significant power, it suggests that

dishonest top pools might pay a heavy price if they launched

a 51% attack (which is a public noticeable event, as we

explained in Section II), because many participants can easily

leave these dishonest pools as the public’s trust on them has

collapsed.

Observation: We identify multi-pool participants by observing

whether their accounts are used to receive pool rewards from

more than one pools. For each of the recognized 980,168

participant accounts, we count the number of pools from which

they have received pool rewards. The results are aggregated

and shown in Figure 5. We can see that over 17% of the

accounts receive rewards from more than one pools, ranging

from 2 pools to 20 pools. Our analyses reveal a wide spectrum

of participation behaviors including migration of mining power

from one pool to another in one go, simultaneous participation

in multiple pools and many variations in between. In Figure 6,

we present two examples9 about how participants receive pool

9The accounts are 0xa06b0fa1384e28b87354b459a5798cdf5b6fa094 and
0x013fb52a8d412739aae37745db813478ee6f9996.

20
15

-0
7

20
15

-1
1

20
16

-0
3

20
16

-0
6

20
16

-1
0

20
17

-0
2

20
17

-0
6

20
17

-0
9

20
18

-0
1

20
18

-0
5

20
18

-0
8

20
18

-1
2

20
19

-0
4

20
19

-0
7

20
19

-1
1

20
20

-0
3

Week

0

20

40

60

M
in

in
g 

po
w

er
(%

) 61.91%

Fig. 7. Weekly mining power of the multi-pool participants
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Fig. 8. Weekly mining power proportion of the 5 large pools controlled by
the multi-pool participants.

rewards from multiple pools over time. Each dot in the figure

represents a pool reward from a particular pool, whose name

is shown on the Y-axis. The rewards are ordered by the time

of rewarding along the X-axis. The top subgraph of Figure 6

shows a participant who migrated twice: it first received

rewards only from DwarfPool, then migrated to NanoPool,

and then moved again to Ethermine. The bottom one shows

a participant who simultaneously participated in two pools

as it received pool rewards alternatively from NanoPool and

DwarfPool over a long time.

In Figure 7, for each week, we show all the mining power

controlled by the multi-pool participants. We find 171,354 such

participant accounts and they always control a significant part

of the mining power, once as much as 61.91% of the total in

2016. In 2020, they control at least 39% of the network total

mining power. Figure 8 shows, for each of the 5 large pools

whose APIs are used to verify participants, the percentage of

their mining power contributed by the multi-pool participants.

We can see that they account for a significant share (at least

31% since 2019) of the total power controlled by each pool.

They could significantly weaken these pools if they choose to

move their power out of these pools.

In Figure 9, we further quantify what would happen if

all the multi-pool participants in the top 3 pools move their

mining power elsewhere. We can see that, should the multi-

pool participants choose to move their power out of the top
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Fig. 9. Weekly mining power of the top 3 pools if multi-pool participants
move their power out of the 3 pools.
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Fig. 10. Weekly mining power of these two-pool participants which migrate
their power from one pool (DwarfPool) to another one (Ethermine).

3 pools, the pools’ power share could drop far below 50%,

making them unable to control the majority power anymore

in all the past weeks. This is not just speculation. Figure 10

provides a real-world example in which the migration of pool

participants causes the rise of a pool (Ethermine) and the fall

of another (DwarfPool). This figure shows, for each week,

the total power these participants allocate to each of the two

pools (see the “DwarfPool” line and the “Ethermine” line)

and the sum of the two (see the “Both” line). We can clearly

observe that, from the 30th week (in February, 2016) to the

51st week (in July, 2016), the power of DwarfPool drops

sharply from 12.8% to 6.7%, while the power of Ethermine

rises quickly from nearly zero to 4%. Since the total power

that these participants contribute to the two pools stays around

13% during this time, the simultaneous power drop and rise

of the two pools are partly caused by a significant amount of

participant migration from one pool to another.

Discussion: The results indicate that a significant portion of

the power used by the pools is not owned by them. Thus, it is

unlikely that pools can simply lure participants to join them

and do whatever they want after that. Multi-pool participation

is a rational behavior with several potential benefits. For

example, a multi-pool participant may pay less pool fees, have

better software or support, gain more rewards by pool hopping,
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Fig. 11. Distribution of the expected reward frequency for the participants
to successfully mine a block if they solo mine. The participant accounts are
ordered by decreasing mining power along the X-axis. It is the snapshot of
the power distribution in the latest week covered by our data set (from April
4 to April 10 in 2020).

and reduce risk by not putting all eggs into one basket. For

the sake of decentralization, not having loyalty to a specific

pool is a rational and healthy behavior.

C. Disincentivizing Pool Participation: Harder Than It Seems

Researchers often believe that a stable financial reward is

the primary reason why miners join pools [10], [11], [29].

They proposed solutions to remove this incentive, hoping

to disincentivize pool participation as a result. Do the real-

world data support this hypothesis? We focus on solo-able

participants. These are participants who, if solo mine, would

get rewards as frequently as they do from pool participation.

Hence, a stable reward from the pool seems not to be the

primary incentive for these solo-able participants.

Observation: For the study of solo-able participants, we first

estimate the frequency each participant can be expected to

successfully mine blocks 10 if she solo mines. As explained in

Section II, there is a linear relationship between the amount of

mining power controlled by a participant 11 and the expected

time she has to wait before she can successfully solo mine

a block. More precisely, if a participant has X% of the total

mining power, she is expected to successfully solo mine one

block every 100

X
blocks. Multiplying it by block time, which

is the average time it takes to mine a block, we get the expected

time for her to solo mine a block: 100

X
× block time. For

example, if a participant has 0.1% of the total mining power

and the average block time is 15 seconds 12, her expected

reward frequency is once per 15,000 seconds (or once per

250 minutes).

In Figure 11, we show the distribution of the reward fre-

quency of the participant accounts in the most recent complete

10Solo miners receive mining rewards automatically as soon as they
successfully mine a block.

11More accurately, it is the percentage of the total mining power a
participant has.

12In theory, a PoW consensus algorithm makes sure that the average block
time converges to a predefined parameter, e.g. 13 seconds, no matter how the
total mining power of the blockchain changes over time. However, Ethereum’s
block time parameter has been adjusted many times and its targeting algorithm
is an approximate one. In the following calculations, we use the actual
measured weekly average block time instead of the parameter value directly.
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Fig. 12. Weekly mining power controlled by the solo-able participants. We
assume the solo-able threshold to be once per day, and also show the results
for the threshold set as other values.

week13 covered by our data set. Among the 81,290 participant

accounts, we can see that 21,219 accounts have so little power

that they are expected to get solo mining rewards no more

frequently than once every half year. However, there are 423

accounts14 whose solo mining reward frequency is at least

once per day. In other words, the participants who own these

accounts have enough power to solo mine at least one block

per day15. As a comparison, the current largest pools, like

SparkPool [21] and Ethermine [20], cap their pool payments

to the same frequency of once per day. This means, these

large pools assume that most of the participants could survive

at least this frequency. Thus, we use once per day as one rea-

sonable frequency threshold to determine which participants

are solo-able16.Compared to the current mining difficulty, the

rest of the accounts seem to have too little power to solo

mine. They have to join pools for stable rewards. However,

the very existence of the solo-able participants suggests that

the currently non-solo-able might still stay in pools even after

they are capable of solo mining.

Figure 12 shows, for each week, the percentage of the total

power controlled by all the solo-able participants (see the

line for “once per day”)17. For several months in the first

year, they once have more than half of the total power. In

2020, they on average controlled 36.2% of the total mining

power. Figure 13 further shows that they also account for a

significant share of the power in the top pools. For example,

in the most recent week, the solo-able account for 56.5% of

SparkPool’s total mining power, 34.5% of Ethermine, 45.1%

of F2Pool, which are the three largest pools of that week.

Additionally, some of these solo-able participants also mine in

13The week is from April 4 to April 10 in 2020.
14As will be shown in the next paragraph, these accounts control a

significant amount of the total mining power in the network, although they
only account for a small fraction of all the participant accounts.

15If some of these participants use several accounts to receive rewards, they
can solo mine blocks more frequently than what we estimate.

16At the time of this writing, to be solo-able within one day, a participant
needs to control at least 0.0154% of the total power.

17This figure also shows similar results for lower (once per week, once per
month) and higher (twice per day) solo-able thresholds.
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Fig. 13. Weekly percentage of the large pools’ mining power controlled by
the solo-able participants.
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Fig. 14. Weekly mining power of the participants who are multi-pool, solo-
able, both multi-pool and solo-able.

multiple pools (see Section IV-B for more findings on multi-

pool participants). Figure 14 shows the total mining power

controlled by such both multi-pool and solo-able participants

in each week. On average, they account for 33.8% of the

total mining power weekly in 2020. It provides evidence that

a considerable number of solo-able participants would like

to mine in multiple pools. The reasons that these solo-able

participants would rather split their power across multiple

pools than combine all their power to solo mine are especially

interesting, which could be future studied.

In summary, we present strong evidence indicating that there

exist participants who join and stay in pools not because they

have too little mining power to solo mine. And these solo-

able participants, who control a large amount of mining power,

are definitely not a rare minority. Their significant existence

challenges a key assumption made by previous proposals [9]–

[11]: a stable financial reward is the primary reason why

miners join pools. For example, FruitChain [11] introduces

fruit blocks, which are much easier to mine than normal

blocks. They assume that most of the participants would not

join pools as long as their mining power is enough for them to

solo mine these fruit blocks. This assumption is not supported

by our evidence.



Discussion: Our results suggest that we should identify other

incentives when designing protocols to effectively disincen-

tivize pool participation. Admittedly, some possible incentives

might be very difficult to remove because pools do offer good

value to participants. For example, pools take care of partic-

ipants’ operational overhead (e.g., running a well-connected

full node, handling software upgrade), so that participants’

job can be simplified into providing computing power. This

is a strong incentive for participants, which may be hard to

remove in practice.

V. RELATED WORK

In this section, we summarize the related work from the

following aspects:

Ethereum. The Ethereum blockchain has been widely studied.

Many studies [29]–[32] focus on the security of Etherum’s

smart contracts. Some [33], [34] reveal various attacks at the

p2p level. Other works [35], [36] propose layer-2 protocols to

improve Ethereum’s scalability and confidentiality. In addition,

researchers also study how to build decentralized applications

(Dapps) on Ethereum [37], [38]. This paper studies the mining

power decentralization problem from the view of Ethereum’s

pool participants and the effectiveness of the existing mitigat-

ing proposals.

Mining pools/participants. Kroll et. al. theoretically analyzed

the economy of Bitcoin mining and whether the Bitcoin

protocol can survive attacks from Goldfinger-type adversaries

[39]. Eyal et. al. proposed selfish mining attack [40] and

block withholding attack [41] that can be employed by mining

pools to gain an unfair advantage. Kwon et. al. proposed

fork after withholding (FAW) attack, which is more efficient

than selfish mining [42]. Gervais et. al. proposed a framework

which can analyze the security and performance of a POW-

based blockchain regarding different parameters [3]. For pool

participants, Wang et. al. studied the computation power

distribution among participants of F2pool in Bitcoin [43].

Lewenberg et. al. have studied the advantage a participant

may achieve with pool switching strategies [44]. Belotti et. al.

studied the pool-hopping phenomenon in Bitcoin [45]. Our

work conducts a large-scale empirical study on the mining

power evolution and mining behaviors of pool participants in

Ethereum.

Centralization. Several works have studied mining power

centralization in PoW blockchains [4]–[7]. The work done by

Gencer et.al. [4] shows that the top three Ethereum mining

pools have a combined 61% mining power of the network,

indicating that Ethereum is quite “centralized” at the pool

level. In addition, various attacks related to centralization

such as collusion attacks [46], [47], are discussed. However,

none of them provides the large-scale and cross-pool study

of Ethereum’s pool participants, which turns out to be another

perspective for evaluating decentralization. They also have not

gone beyond the simplistic standpoint of technical feasibility

to study social and economic factors inherent in blockchain

systems. To mitigate the centralization due to pool mining,

Miller et. al. proposed nonoutsourceable mining puzzles to

disincentivize pool formation and a multitier reward scheme to

pay small-power miners more frequently [10]. Luu et. al. pro-

posed SmartPool, a decentralized pool that improves security

and reduces income variance for participants [9]. Similarly,

Fruitchain is introduced to make the mining reward steady

for single miners, to remove the incentive of participating in

mining pools [11]. Our work suggests that participants join

and stay in pools for more reasons than getting a more stable

income. Proposals only focusing on the latter issue might

not work as well as expected. On the mining hardware

side, researchers find ways, such as memory-hard puzzles,

to reduce the performance advantage of ASICs over CPUs

and GPUs, which lowers the entry barrier and investment risk

to attract more miners. For example, cryptocurrencies such

as Ethereum, Litecoin, Monero, Zcash, and Grin [48] have

adopted Ethash [18], Scrypt [49], CryptoNight [50], Equihash

[51] and Cuckoo cycle [52], respectively. Our findings show

that this does increase decentralization for Ethereum at the

participant level.

Empirical study of blockchain. Since blockchain data are

public, many studies have looked into the data and made many

observations. Meiklejohn et. al. analyze the bitcoin ledger to

deanonymize addresses [53]. Similarly, Zcash [25], Monero

[54], and cross-ledger transactions [55] are analyzed. Chen et.

al. generally study Ethereum ledger data and propose efficient

algorithms to detect DDoS-like attacks [56]. Compared to

[56], our study focuses on the evolving mining powers of

Ethereum with much more details. Different from the previous

work which analyzes the ledger data, Kim et. al. collect data

from the p2p layer of Ethereum and conduct comprehensive

analytics [57]. Gencer et. al. also study the p2p network of

both bitcoin and ethereum [4].

VI. CONCLUSIONS

In this paper, we present a large-scale and longitudinal anal-

ysis of Ethereum’s pool participants. To our best knowledge,

it is the first empirical characterization of the mining power

decentralization of Ethereum beneath the surface of pools. We

show that a new perspective of the mining power could deepen

and challenge the current understanding of the decentralization

problem. We admit that this paper raises more questions than

it answers. Our results invite similar comparative studies of the

pool participants of other major blockchains (e.g., Bitcoin), as

well as future work that uncovers new data sets or uses new

angles to analyze pool participants.
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