
Hashing Modulo Alpha-Equivalence
Krzysztof Maziarz
Microsoft Research
Cambridge, UK

krmaziar@microsoft.com

Tom Ellis
Microsoft Research
Cambridge, UK

toelli@microsoft.com

Alan Lawrence
Microsoft Research
Cambridge, UK

allawr@microsoft.com

Andrew Fitzgibbon
Microsoft Research
Cambridge, UK

awf@microsoft.com

Simon Peyton Jones
Microsoft Research
Cambridge, UK

simonpj@microsoft.com

Abstract
In many applications one wants to identify identical sub-
trees of a program syntax tree. This identification should
ideally be robust to alpha-renaming of the program, but no
existing technique has been shown to achieve this with good
efficiency (better than O(𝑛2) in expression size). We present
a new, asymptotically efficient way to hash modulo alpha-
equivalence. A key insight of our method is to use a weak
(commutative) hash combiner at exactly one point in the
construction, which admits an algorithm with O(𝑛(log𝑛)2)
time complexity. We prove that the use of the commutative
combiner nevertheless yields a strong hashwith low collision
probability. Numerical benchmarks attest to the asymptotic
behaviour of the method.

CCSConcepts •Theory of computation→Design and
analysis of algorithms; • Software and its engineering;

Keywords hashing, abstract syntax tree, equivalence
ACM Reference Format:
Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew Fitzgibbon,
and Simon Peyton Jones. 2021. Hashing Modulo Alpha-Equivalence.
In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI ’21), June
20–25, 2021, Virtual, Canada. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3453483.3454088

1 Introduction
This paper addresses the problem of hashing abstract syntax
trees while respecting alpha equivalence. This is a generic
problem, with applications in many areas of programming
language implementation, for example common subexpres-
sion elimination (CSE), hashing for structure sharing, or as
part of pre-processing for machine learning.

PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (PLDI ’21), June 20–25, 2021,
Virtual, Canada, https://doi.org/10.1145/3453483.3454088.

Taking CSE as an example, consider the following program
fragment
(a + (v+7)) * (v+7)

A standard CSE transformation can rewrite this to
let w = v+7 in (a + w) * w

which can be computed more efficiently. However, CSE is
not entirely straightforward. Consider
(a + (let x = exp(z) in x+7)) *

(let y = exp(z) in y+7)

We might hope that CSE would spot that the two let-bound
terms are 𝛼-equivalent, and transform to

let w = (let x = exp(z) in x+7) in (a + w) * w

We would like to similarly spot the equivalence of the two
lambda terms in
foo (\x.x+7) (\y.y+7)

and transform to
let h = \x.x+7 in foo h h

So, we want to find all pairs, or more precisely all equivalence
classes, of 𝛼-equivalent subexpressions of a given program.
Since the program may be large, we would like to generate
the 𝛼-equivalence classes in reasonable time. If there were
a hash function invariant under 𝛼-renaming that could be
computed for every node in a single pass over the tree, the
equivalence classes could be generated in the cost of a single
sort. Somewhat surprisingly, the CSE literature barely men-
tions the challenge of hashing modulo 𝛼-equivalence, nor
does the wider literature on hashing of program fragments.
(One might wonder whether switching to de Bruijn index-
ing would solve the problem, but it does not, as we show in
Section 2.4.)
Another challenge is that in typical compilers the pro-

gram is subjected to thousands of rewrites, each of which
transforms the program locally. Ideally, we would like an
incremental hashing algorithm, so that we can continuously
monitor sharing, for example for register pressure sensitive
optimization algorithms.
In this paper we address these challenges, making the

following contributions:
1

https://doi.org/10.1145/3453483.3454088
https://doi.org/10.1145/3453483.3454088

PLDI ’21, June 20–25, 2021, Virtual, Canada Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew Fitzgibbon, and Simon Peyton Jones

• We present an algorithm that identifies all equivalence
classes of subexpressions of an expression, respecting
𝛼-equivalence (Section 3). The algorithm is developed
in two steps. The first defines an e-summary at each
node; this step is invertible, allowing the original expres-
sion (modulo 𝛼) to be reconstructed (Section 4). In the
second step we develop a more efficient representation
for e-summaries, optimized for the task of producing
a hash code for the e-summary (Section 5). This two-
step approach makes the correctness argument easy
(Section 3.2).

• We show that the algorithm runs in sub-quadratic time
(Section 6.1), and is compositional, so that it can readily
be made incremental (Section 6.3).

• A key step in making the algorithm efficient is to use
a weak hash combiner (exclusive-or) when computing
the hash of a finite map (Section 5.2). At first glance,
that weak combiner threatens the good properties of
hashing. However, we compute the theoretical collision
probability for our hash function, showing it can be
upper-bounded, with the bound decreasing exponen-
tially with the size of the hashing space (Section 6.2).

• Our proof also lays down several lemmas about compo-
sitional hashing functions, which we believe will prove
useful for analyses beyond the one done in this work.

We empirically evaluate the asymptotic behaviour of our
approach in Section 7, and discuss related work in Section 8.
A Haskell implementation of our hashing algorithm to-

gether with all the benchmarks and baselines can be found
at https://github.com/microsoft/hash-modulo-alpha.

2 The ProblemWe Address
Many algorithms were designed to analyse or transform
programs. These applications range from classical tools such
as compilers and static analysis methods, to understanding
and generating code using deep learning [2–4]. The code
being analysed or transformed is generally represented by an
Abstract Syntax Tree (AST), which represents computational
expressions using a tree structure. Subtrees of such an AST —
referred to as subexpressions — are useful, because they often
correspond to semantically meaningful parts of the program,
such as functions.

Many applications need to quickly identify all equivalent
subexpressions in an AST. Examples include common subex-
pression elimination (CSE), as mentioned above; structure
sharing to save memory, by representing all occurrences of
the same subexpression by a pointer to a single shared tree;
or pre-processing for machine learning, where subexpression
equivalence can be used as an additional feature, for example
by turning an AST into a graph with equality links.

2.1 What Does “Equivalent” Mean?
Downstream tasks may differ in what subexpressions they
consider “equivalent”. For example, here are four candidates:

• Syntactic equivalence means that two subexpressions
are equivalent if they are identical trees; the same shape,
with the same nodes, and the same variable names.

• 𝛼-equivalence is like syntactic equivalence but is in-
sensitive to renaming of bound variables. For example,
the expression (\x.x+y) is equivalent to (\p.p+y) (by
𝛼-renaming the lambda-bound variable), but not equiv-
alent to (\q.q+z), because the free variables differ.

• Graph equivalence goes beyond 𝛼-equivalence by treat-
ing a let expression as a mere textual description of
a graph. So (let x=e1 in let y=e2 in x+y) is equiva-
lent to (let y=e2 in let x=e1 in x+y), and to (e1+e2),
because all three describe the same underlying graph.

• Semantic equivalence says that two subexpressions are
equivalent if they evaluate to the same value, regardless
of the values of their free variables. For example (3+x+4)
is equivalent to (x+7) and (7+x) among many others.

The difficulty of deciding equivalence ranges from trivial
(syntactic equivalence) to undecidable (semantic equivalence).
In this paper we focus on 𝛼-equivalence. We specifically do
not want to go as far as graph equivalence, because let-
expressions express operational choices about object life-
times and evaluation order, and so graph equivalence is too
strong for the downstream tasks that we are interested in.
Of course, graph equivalence might be just right for other
applications, and it would be interesting to adapt the ideas
presented here, but we leave exploring that to future work.

2.2 Baseline: Purely Syntactic Equivalence
Purely syntactic equivalence is easy, and perfect for structure
sharing, but not for much else. For example, it is inadequate
for CSE, and other tasks, via two primary failure modes: false
negatives and false positives.

• False negatives: sensitivity to arbitrary variable names.
Consider this expression:
map (\y.y+1) (map (\x.x+1) vs)

The two lambda-expressions are not syntactically iden-
tical, but they are 𝛼-equivalent, and perform the same
computation in the same way. Similarly, consider
foo (let bar = x+1 in bar*y)

(let pub = x+1 in pub*y)

Here we would like to CSE the two arguments to foo,
even though they use different binders internally.

• False positives: name overloading. Consider the syntacti-
cally repeated subexpression x+2 in this example:
foo (let x=bar in x+2) (let x=pub in x+2)

The two subexpressions x+2 are unrelated, but they are
syntactically identical. If the goal is structure sharing
this is fine; indeed we might want to share the two

2

https://github.com/microsoft/hash-modulo-alpha

Hashing Modulo Alpha-Equivalence PLDI ’21, June 20–25, 2021, Virtual, Canada

x+2 subexpressions, to save memory. However, sharing
the two would be wrong for tasks similar to CSE. For
example, it would be clearly wrong to transform the
above expression into
let tmp = x+2
in foo (let x=bar in tmp) (let x=pub in tmp)

The second problem can readily be addressed, by prepro-
cessing the expression so that every binding site binds a
distinct variable name. This step takes time linear in the
expression size 𝑛; or, more precisely, if we take account of
the O(log𝑛) time to look up a bound variable in the envi-
ronment, O(𝑛 log𝑛). We assume this preprocessing in all
algorithms below.

2.3 Hashing For Syntactic Equivalence
A standard approach to determining subexpression equiva-
lence is to use some form of hashing. We compute a fixed-size
hash code for each node in the tree, and use these hash codes
to insert every node into a hash table.
Hashing gives a simple, direct, and compositional imple-

mentation for syntactic equivalence: the hash for a node is
computed by hashing the node constructor with the hashes
of the children. When used for structure sharing (to save
memory), this is often called hash-consing. When you are
just about to allocate a new node, first compute its hash
code, and then look that up in the hash table to see if that
node already exists. If so, use it; if not, allocate it and add
it to the hash table. In effect, we simply memoise the node
constructor functions.

But this simple approach fails for 𝛼-equivalence, because
(\x.x+1) and (\y.y+1) have different hash codes. How canwe
fix up the hashing approach to account for 𝛼-equivalence?

2.4 De Bruijn Indexing
One well-known way to become insensitive to 𝛼-renaming
is to use a nameless representation, typically de Bruijn in-
dexing. Lambdas have no binder; and each occurrence of
a bound variable is replaced by a number that counts how
many intervening lambdas separate that occurrence from its
binding lambda. For example, the expression (\x.\y.x+y*7)

is represented in de Bruijn form by (\.\.%1+%0*7), where
we use %𝑖 to represent a variable occurrence with de Bruijn
index 𝑖 .

After switching to de Bruijn indexing, can we use vanilla
hashing to determine equivalence, and thus solve the 𝛼-
equivalence challenge? Sadly, no: using de Bruijn indexing
remains vulnerable to both false positives and false nega-
tives:

• False negatives. Consider
\t. foo (\x.x+t) (\y.\x.x+t)

The two subexpressions (\x.x+t) are certainly equiva-
lent, and we could profitably transform the expression
to

\t. let h = \x.x+t in foo h (\y.h)

But with de Bruijn indexing, the two expressions look
different:
\. foo (\.%0+%1) (\.\.%0+%2)

Notice how the two occurrences of t have become %1

and %2 respectively.
• False positives. Consider

\t. foo (\x.t*(x+1)) (\y.\x.y*(x+1))

With de Bruijn indexing this looks like
\. foo (\.%1*(%0+1)) (\.\.%1*(%0+1))

This has two occurrences of (\.%1*(%0+1)), whichmight
be great for structure sharing, but is wrong for CSE.
Note that, unlike with simple syntactic equivalence,
these false positives cannot be eliminated by giving
every binder a unique name – with de Bruijn there are
no binders!

Moreover, using de Bruijn indexing as the internal represen-
tation of an expression in a compiler incurs serious costs
of its own, because terms need to be repeatedly traversed
as they are substituted under other binders, to adjust their
de Bruijn indices. We know of no systematic, quantitative
comparison of the engineering tradeoff between de Bruijn
and named representations in a substantial application (e.g.
a compiler), perhaps because the choice has such pervasive
effects that implementors are typically forced to make one
choice or the other, and stick to it. A decent attempt was
made in [14], with the conclusion that the costs of a de Bruijn
representation exceed the benefits.

2.5 Locally Nameless
The false negatives and false positives of de Bruijn indexing
are a serious problem for CSE-like purposes. However, they
can be avoided by using the “locally nameless” representa-
tion [5, 13, 21]. The idea is simple: the hash of an expression
is defined to be the hash of the de-Bruijn-ised representation
of the subexpression taken in isolation. For example, the hash
of (f x (\y.x+y)) would be the hash of (f x (\.x+%0)). In
this expression the free variables f and x remain unchanged,
but the locally-bound variable y has been de-Bruijn-ised. The
expression to be hashed has a mixture of de Bruijn indices
and named free variables.
The hash of an application (e1 e2) can be obtained by

combining the hash of e1 and e2; but the hash of (\x.e)

cannot be obtained from the hash of e. The hash of e incor-
porates the hash of each occurrence of x in e; but the hash of
(\x.e) must instead incorporate the hash of an appropriate
de Bruijn index at each of those occurrences. We cannot do
this compositionally; instead, we must first de-Bruijn-ise x

in e, and then take the hash of that.
This algorithm correctly does hashing modulo 𝛼-equival-

ence, but it comes with a cost in asymptotic complexity: as
we pass each lambda, we must re-hash the entire body.

3

PLDI ’21, June 20–25, 2021, Virtual, Canada Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew Fitzgibbon, and Simon Peyton Jones

In practice, the locally-nameless schemeworks sufficiently
well that it is used in Epigram [13] and the LEAN theorem
prover [6]. However, it suffers from the same complexity
issues as de Bruijn. Other things being equal, we would
prefer to avoid compiler technology that has asymptotic
complexity holes fundamentally built in, as well as the other
index-shuffling costs imposed by a de-Bruijn-based (includ-
ing locally nameless) representation [14]. Our contribution
is to show how to use a name-ful representation (avoiding
index shuffling), and still get compositional hashing with
asymptotically-good complexity.

3 The Key Ideas
In this section we describe the key ideas of our approach.
Before doing so, it is helpful to articulate our goal more
precisely.
Goal. Given an expression 𝑒 , in which every binding site
binds a distinct variable name, identify all equivalence classes
of subexpressions of 𝑒 , where two subexpressions are equiv-
alent if and only if they are 𝛼-equivalent. We wish to achieve
this goal in a way that is:

• Compositional. If we have already done the compu-
tation for e1 and e2, computing the result for (e1 e2)

should be done by combining the results from children.
In particular, context-dependent computation is not al-
lowed.

• Efficient. We consider this to mean that finding all
equivalent subexpressions should be sub-quadratic in
the size of the expression.

Compositionality helps with efficiency, because combining
two smaller expressions e1 and e2 into a bigger one involves
only combining the results of processing these subexpres-
sions. But, crucially for our applications, compositionality
also allows hashing to be incremental: if we have already
performed the equality-discovery task for a large expression,
and we make a small rewrite in that expression, we can ef-
ficiently recompute the results by examining only parts of
the expression that have changed. We give an analysis of
incrementality in Section 6.3.
As to complexity, we consider an algorithm that is qua-

dratic in expression size to be too expensive. Linear (constant
work at each node) would be ideal; in this paper we achieve
log-linear (generally O(𝑛(log𝑛)𝑘), with here 𝑘 = 2), which
we consider acceptable.

3.1 The Challenge of Compositionality
Given an application (e1 e2), a compositional algorithm will
somehow process e1 and e2 separately, and combine those
results to get the result for (e1 e2). Let us call “the result of
processing an expression” the e-summary for that expression.
You could imagine attaching the e-summary for e to the tree
node for e, and computing the e-summary for (e1 e2) from
the e-summaries for e1 and e2. The idea is that an e-summary

precisely identifies the equivalence class: two subexpressions
are 𝛼-equivalent iff their e-summaries are equal.
The difficulty with this approach is that the expressions

(x+2) and (y+2) are different, and must have different e-
summaries, but (\x.x+2) and (\y.y+2) are 𝛼-equivalent, and
must have the same e-summary. So an e-summary cannot
be a simple numeric hash code, because there is no way to
get the hash-code for, say, %0+2 from the hash-code of x+2.
Therefore, we need a richer e-summary. At one extreme,

an expression could of course be its own e-summary! That
would be fast to compute (a no-op), and compositional, but
asking if two e-summaries are equal would require an 𝛼-
respecting equality comparison between the two summaries.
The task of finding all equivalence classes would be absurdly
expensive, requiring an 𝛼-respecting equality comparison
between every pair of expressions.

We seek something in between the two. We will define an
e-summary that is not fixed-size (like a hash code), but from
which we can rapidly compute a hash code.

3.2 Overview of Our Approach
A general overview of our approach is as follows.

Step 1 (Section 4). We define a particular e-summary, with
the following properties:

• The e-summary for an expression can be computed in a
compositional way (Section 4.6). The cost of computing
it for all subexpressions is quadratic in expression size,
a problem we fix later.

• The e-summary for 𝑒 can be converted back to an ex-
pression 𝑒 ′ which is 𝛼-equivalent to 𝑒 (Section 4.2). That
is, e-summaries lose no information, except the names
of the bound variables.

• Two e-summaries are equal if and only if the expres-
sions from whence they came are 𝛼-equivalent.

Step 2 (Section 5). At this stage, it may appear that not much
has been gained. An expression 𝑒 and its e-summary are
inter-convertible, and comparing e-summaries is not much
faster than comparing the corresponding expressions. But, e-
summaries enjoy a crucial extra property: unlike expressions,
we can easily represent an e-summary in a hashed form that
is much more compact and enjoys O(1) comparison time.

The two-step approach makes the algorithm easier to rea-
son about. Step 1 loses no information, and hence cannot
give rise to false positives. Step 2 is just regular hashing
and, like any hash, can suffer from collisions and hence false
positives; but in Section 6.2 we show that the probability of
collision remains inversely exponential in the number of bits
in the hash code.

4 Step 1: A Compositional E-Summary
In this section we give the details of our e-summary. Al-
though it does not yet give a way to efficiently find equal

4

Hashing Modulo Alpha-Equivalence PLDI ’21, June 20–25, 2021, Virtual, Canada

*

\

λ

*

λλ x

*

λ b

b

*

x

x

* x

Structure VarMap

b

x\

*

*

*

x *

*

λ x. (λ b. x b) x

a b c d e

xb

x

x

λ

λ λ

Structure Structure StructureVarMap VarMap VarMap

λ

λ λ

Figure 1. (a) Input expression, with names at Lam and Var nodes. (b-e) E-Summaries for subexpressions, names only in the
VarMap. This diagram depicts an O(𝑛2) algorithm (Section 4.6); then the “smaller subtree” (Section 4.8) and “xor” (Section 5.2)
modifications reduce complexity for hash computation to O(𝑛(log𝑛)2).

subexpressions, it lays the groundwork for Step 2 discussed
in Section 5. Splitting the development in two in this way
allows much easier reasoning about correctness.
For the sake of concreteness, we use Haskell to express

our algorithm, its data types and its functions.

4.1 Preliminaries
First, we need a datatype for representing the expression:
type Name = String

data Expression = Var Name
| Lam Name Expression
| App Expression Expression

For simplicity, we use String for variable names and assume
they can be compared in constant time; a practical imple-
mentation should replace the String names with unique
identifiers that support constant-time comparison. As speci-
fied in Section 3, we assume that the variable names are all
unique. This requirement is easy to satisfy by renaming the
variables during preprocessing.

This language is very minimal, but it is enough to demon-
strate the 𝛼-equivalence challenge, and it can readily be
extended to handle richer binding constructs (let, case, etc.),
as well as constants, infix function application, and so on.

4.2 The Basic E-Summary
Recall from Section 3.1 that adding a lambda at the root of
an expression must transform distinct e-summaries (for, say,
x+2 and y+2) into the same one (for \x.x+2). To account for
this, we define the e-summary of an expression 𝑒 to be a pair
of:

• The structure, or shape, of 𝑒 (Section 4.3). The structure
of 𝑒 completely describes 𝑒 apart from its free variables
(imagine every free variable being replaced by <hole>,
so (add x y) has same structure as (add x x)).

• The free-variable map of 𝑒 (Section 4.4). The variable
map of 𝑒 is a list of 𝑒’s free variables, each with a tree

of positions in 𝑒 where it occurs (we define positions in
Section 4.5).

Therefore, an e-summary is a pair of a structure and a free-
variable map:

data ESummary = ESummary Structure VarMap

We will elaborate each of these types in the following sec-
tions. In Figure 1, we show how e-summaries are built up
for an example expression. Our basic algorithm has the fol-
lowing signature:

summariseExpr :: Expression -> ESummary

The function summariseExpr converts an Expression into its
ESummary. A key correctness property is that we can recon-
struct an Expression from an ESummary, up to the names of
bound variables. That is, it is possible to implement
rebuild :: ESummary -> Expression

so that rebuild (summariseExpr e) is 𝛼-equivalent to e; in
other words, an ESummary loses no necessary information.
Indeed, others have suggested using a representation in
which a lambda contains a list of the occurrences of its
bound variable as the primary representation of lambda
terms [1, 12, 17].

4.3 Expression Structure
The structure of an expression 𝑒 expresses the shape of 𝑒 ,
ignoring the identity of its free variables.

data Structure
= SVar −− Anonymous
| SLam (Maybe PosTree) Structure
| SApp Structure Structure

Variables are replaced by an anonymous SVar. A lambda does
not name its bound variable; instead, it lists the positions
at which that bound variable occurs in its body. Of course
an actual list, of the form {L,LLRL,RRL} would be alarmingly
inefficient, instead position trees (of type PosTree) are used,
as described in Section 4.5.
We will build values of type Structure using “smart con-

structors”.
5

PLDI ’21, June 20–25, 2021, Virtual, Canada Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew Fitzgibbon, and Simon Peyton Jones

mkSVar :: Structure
mkSLam :: Maybe PosTree -> Structure -> Structure
mkSApp :: Structure -> Structure -> Structure

You can think of these as simply renamings of the underlying
data constructors (e.g. mkSVar = SVar), but in Section 5.1 we
will exploit the flexiblity of being able to redefine mkSVar.

4.4 Free Variables Map
The free-variable map of an expression maps each free vari-
able of 𝑒 to the positions at which that variable occurs. It
supports the following operations:
emptyVM :: VarMap
singletonVM :: Name -> PosTree -> VarMap
extendVM :: Name -> PosTree -> VarMap -> VarMap
removeFromVM :: Name -> VarMap

-> (VarMap, Maybe PosTree)
−− Removes one item from the map, returning what
−− the variable mapped to, or Nothing if it
−− was not in the map

toListVM :: VarMap -> [(Name, PosTree)]

One possible implementation of VarMap is to use Haskell’s
Data.Map library:

type VarMap = Map Name PosTree

We will introduce a few more operations on VarMap as we
go along; all can be implemented straightforwardly using
standard libraries.

4.5 Position Trees
A value of type PosTree identifies a set of one or more SVar
nodes inside a Structure. A PosTree is a skeleton tree, with
the same structure as the expression, reaching only the leaves
of the expression that are occurrences of one particular vari-
able:
data PosTree
= PTHere
| PTLeftOnly PosTree
| PTRightOnly PosTree
| PTBoth PosTree PosTree

So the occurrences of variable "x" in
App (App (Var "f") (Var "x")) (Var "x")

are described by the position tree
PTBoth (PTRightOnly PTHere) PTHere

In a Structure, an SLam node contains a position tree that
describes all the occurrences of that variable. A position tree
always represents one or more occurrences, so an SLam node
actually contains a (Maybe PosTree), with Nothing indicating
that the bound variable does not occur at all in the body of
the lambda.

As with Structure, we use “smart constructors” (mkPTHere,
mkPTBoth, etc.) so that we can give these “constructors” extra
behaviour in Section 5.1.

4.6 Full Algorithm
After designing the auxiliary data structures, we may instan-
tiate our algorithm as follows
data ESummary = ESummary Structure VarMap

summariseExpr :: Expression -> ESummary
summariseExpr (Var v)
= ESummary mkSVar (singletonVM v mkPTHere)

summariseExpr (Lam x e)
= ESummary (mkSLam x_pos str_body) vm_e
where
ESummary str_body vm_body = summariseExpr e
(vm_e, x_pos) = removeFromVM x vm_body

summariseExpr (App e1 e2)
= ESummary (mkSApp str1 str2) (merge vm1 vm2)
where
ESummary str1 vm1 = summariseExpr e1
ESummary str2 vm2 = summariseExpr e2
merge =

mergeVM mkPTLeftOnly mkPTRightOnly mkPTBoth

mergeVM :: (PosTree -> PosTree) −− Left only
-> (PosTree -> PosTree) −− Right only
-> (PosTree -> PosTree -> PosTree) −− Both
-> VarMap -> VarMap -> VarMap

Most of the work is done in App nodes, where we need to
combine variable maps from the node’s children. To that
end, we use a new function mergeVM, which combines the
position trees from the children’s maps. The three argument
functions to mergeVM say what to do if only the left map has
the variable in its domain, only the right map does, or both.
In the call to mergeVM we simply use the constructors from
PosTree for these three cases.
The time complexity of this version of our algorithm is

quadratic, because at each App node the mergeVM operator
must touch every element of the domain of the mapping, tak-
ing time proportional to the number of free variables of the
expression. In Section 4.8, we discuss the key optimization
needed to bring the complexity down to log-linear. However,
we first prove that the conversion to ESummary is reversible
by designing the rebuild function.

4.7 Rebuilding
The rebuild function (Section 4.2) is easy to write

rebuild :: ESummary -> Expression
rebuild (ESummary SVar vm) =
Var (findSingletonVM vm)

rebuild (ESummary (SLam p s) vm) =
Lam x (rebuild (ESummary s (extendVM x p vm)))
where x = ... −− fresh variable name

rebuild (ESummary (SApp s1 s2) vm) =
App (rebuild (ESummary s1 vm1))

(rebuild (ESummary s2 vm2))
where m1 = mapMaybeVM pickL vm

m2 = mapMaybeVM pickR vm

6

Hashing Modulo Alpha-Equivalence PLDI ’21, June 20–25, 2021, Virtual, Canada

pickL :: PosTree -> Maybe PosTree
pickL (PTLeftOnly p) = Just p
pickL (PTBoth pl _) = Just pl
pickL _ = Nothing

findSingletonVM :: VarMap -> Name
−− The map should be a singleton map;
−− return its unique key

mapMaybeVM :: (PosTree -> Maybe PosTree)
-> VarMap -> VarMap

−− Apply the function to every element of
−− the map; delete if the function returns Nothing

In this function we use two new functions over VarMap:
• findSingletonVM expects its argument to be a single-
ton map, and returns the unique Name from its domain
(which should be mapped to PTHere). The function fails
if the map is not a singleton, but that should not happen
if the ESummary is well-formed.

• mapMaybeVM applies a function to every element of the
domain of the map; if the function returns Nothing that
element is deleted.

In the SLam casewe have to invent a fresh variable name, since
the original name is not recorded, and hence the returned
expression is only 𝛼-equivalent to the original, not identical1.

Why do we go to the trouble of defining rebuild, which is
not even part of the original problem specification?We define
rebuild because its existence guarantees that our e-summary
is not information-losing, and that in turn guarantees that
the hash-code for an e-summary will have few collisions
(assuming it is a strong hash). This is important: for example,
consider a degenerate, information-losing e-summary that
recorded only the size of the tree; it would be fast and com-
positional, but its information loss would lead to rampant
false positives.
In the next section we will optimize the e-summary to

improve the complexity of summariseExpr, using the rebuild

function to drive our decisions about what information the
e-summary needs to record.

4.8 Using the Smaller Subtree
When processing an App node, the algorithm from Section 4.6
uses mergeVM which transforms every element of its range,
thereby taking time proportional to the number of free vari-
ables of the expression. For very unbalanced trees this might
be quadratically expensive. In this section we modify the
algorithm so that it only transforms the smaller map, leaving
the other unchanged. The more unbalanced the tree, the less
traversal we do; the worst case becomes a balanced tree, and
that has only O(𝑛 log𝑛) complexity.

1As an alternative, it would be easy to record that name in the Structure,
to recover precisely the original expression, rather than just an 𝛼-equivalent
one. If we did so, this name should not participate in calculation of the hash
values described in Section 5.

First, we augment the Structure datatype with a Bool flag
in SApp that records which child has more free variables:

data Structure
= SVar
| SLam (Maybe PosTree) Structure
| SApp Bool Structure Structure

−− True if the left expr has more free vars
−− False if the right expr has more free vars

Now, the key App case of summariseExpr becomes
summariseExpr (App e1 e2) = ESummary str vm
where
ESummary str1 vm1 = summariseExpr e1
ESummary str2 vm1 = summariseExpr e2
str = mkSApp left_bigger str1 str2
tag = structureTag str
vm = foldr add_kv big_vm (toListVM small_vm)
left_bigger = vm1 `isBiggerThanVM` vm2
(big_vm, small_vm) = if left_bigger

then (vm1, vm2)
else (vm2, vm1)

add_kv :: (Name, PosTree) -> VarMap -> VarMap
add_kv (v, p) vm
= alterVM (\mp -> mkPTJoin tag mp p) v vm

alterVM :: (Maybe PosTree -> PosTree)
-> Name -> VarMap -> VarMap

−− Alter the value to which the key is mapped

As you can see from the definition of vm, we convert the
smaller map to a list of key-value pairs using toListVM, and
add them one at a time to the larger map using add_kv. The
new function alterVM alters the mapping at one key; the
argument function allows the caller to behave differently
depending on whether or not the key was in the map before-
hand. But what is this mysterious tag and the new mkPTJoin

operation on position trees? 2

First, structureTag extracts from a Structure some kind
of “tag” (an integer, say)
type StructureTag = Int
structureTag :: Structure -> StructureTag

This function must satisfy one simple property: a structure
must have a different tag to the tag of any of its sub-structures.
We abstract away the exact implementation of structureTag,
but one simple possibility is to have it return the depth of the
Structure, which can be computed and stored at the point
when a Structure is constructed.

Next, here is the new definition of PosTree:
data PosTree
= PTHere
| PTJoin StructureTag

(Maybe PosTree) −− Child from bigger map
PosTree −− Child from smaller map

As you can see from add_kv, we make a tagged PTJoin for
every variable in the smaller map, but variables that appear
2Readers who feel there must be a more mathematically elegant way to do
this might enjoy Appendix C, but the way described here is simple and fast.

7

PLDI ’21, June 20–25, 2021, Virtual, Canada Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew Fitzgibbon, and Simon Peyton Jones

only in the larger map are left untouched. The tag allows
rebuild to invert this combining operation, in a unique way,
determined by whether or not each item is tagged with the
tag for this structure:
rebuild (ESummary str@(SApp left_bigger s1 s2) vm)
= App (rebuild (ESummary s1 vm1))

(rebuild (ESummary s2 vm2))
where
tag = structureTag str
small_m = mapMaybeVM upd_small vm
big_m = mapMaybeVM upd_big vm
(vm1, vm2) = if left_bigger

then (big_m, small_m)
else (small_m, big_m)

upd_small :: PosTree -> Maybe PosTree
upd_small (PTJoin ptag mpt pt)

| ptag == tag = Just pt
upd_small _ = Nothing

upd_big :: PosTree -> Maybe PosTree
upd_big (PTJoin ptag mpt pt)

| ptag == tag = mpt
upd_big pt = Just pt

The left_bigger flag in SApp tells whether the bigger map
came from the left or right argument. The tag in PTJoin

tells whether it belongs to the SApp under consideration, or
belongs to one deeper in the structure.

Note that in this version of summariseExpr, the amount of
work done in an App node is proportional to the size of the
smaller variable map from the node’s children.

5 Step 2: Hashing an E-Summary
To obtain an integer hash value that can be used for down-
stream tasks, we will use the following functions
hashStructure :: Structure -> HashCode
hashVM :: VarMap -> HashCode
hashESummary :: ESummary -> HashCode

Our aim is for all of these functions to work in O(1) time.
Conversion from an e-summary to HashCode is information-
losing, and non-invertible.

To implement hashESummary, we may simply do
hashESummary (ESummary str map) =
hash (hashStructure str, hashVM map)

We deal with hashStructure in Section 5.1, and hashVM in
Section 5.2.

5.1 Hashing Structures
hashStructure can easily be implemented by computing the
hash at construction time, and storing it in the Structure
object itself. That would be enough to achieve the complex-
ity bound we desire. But there is an even more attractive
possibility: since hashStructure is the only function we will
need for structures, we can represent a structure simply by
its hash code, dispensing entirely with the tree, thus

type Structure = HashCode

−− "Constructors" combine hash values
mkSVar :: Structure
mkSLam :: Maybe PosTree -> Structure -> Structure
mkSApp :: Structure -> Structure -> Structure

hashStructure :: Structure -> HashCode
hashStructure s = s

The “constructors” of the tree are implemented by O(1) hash
combiners, and hashStructure becomes the identity function.
We can apply precisely the same reasoning to PosTree, and
represent a value of type PosTree by its HashCode.

Of course, identifying each Structure and PosTree with its
HashCode has a much lower constant factor than representing
structures and positions as trees: instead, we only manipu-
late hash codes. In exchange, we will no longer be able to
write rebuild. However, recall that rebuild is not used in the
final implementation; its only purpose is that its existence
shows the correctness of the algorithm. By thinking first in
terms of the non-information-losing data structure, and then
thinking of efficient representations of those structures, we
can get both an easy correctness argument and an efficient
implementation.

5.2 Hashing Variable Maps
Hashing variable maps is a little more tricky. It would be
prohibitively (indeed asymptotically) slow to compute the
hash of the variable map afresh at each node. Instead, as for
structures, we would like to compute the hash of a node’s
variable map using the hashes of its children. Doing so is far
from trivial. We might try to pair a map with its hash, thus:
data VarMap = VM (Map Name PosTree) HashCode

and try to compute the hash for (f vm args), where f is a
function that returns a new VarMap, from the hash of vm and
f’s other arguments args. But consider removeVM: how can
we start with the hash of a map, and compute the hash of a
map from which a particular entry has been removed?
Our key idea is this: we define the hash of a variable map

as the XOR, written ⊕, of the hashes of its entries, where an
entry is a (variable, position-tree) pair (𝑣, 𝑝). This definition
has big advantages:

• Since ⊕ is commutative and associative, it does not
matter in which order we consider the entries.

• We can compute the hash of removing (𝑣, 𝑝) from a
map 𝑚 by simply XORing 𝑚’s hash with the hash of
(𝑣, 𝑝), since (𝑎 ⊕ 𝑏) ⊕ 𝑎 = 𝑏

More generally, we could use any operator ⊕ that is associa-
tive, commutative, and invertible. The trouble is that XOR
is a cryptographically weak hash combiner, so using it to
combine hashes in this way looks suspicious—won’t we get
lots of unwanted collisions? Fortunately, these fears are un-
founded: we prove in Section 6.2 that in our algorithm the
use of XOR does not lead to excess hash collisions.

8

Hashing Modulo Alpha-Equivalence PLDI ’21, June 20–25, 2021, Virtual, Canada

Computing hashes is now rather easy. The algorithm of
Section 4.8 needs only singletonVM, alterVM, and removeFromVM:
−− Arbitrary implementation − can be the builtin hash
entryHash :: Name -> PosTree -> HashCode
entryHash key pos = hash (key, pos)

singletonVM :: Name -> PosTree -> VarMap
singletonVM key pos = VM (Map.singleton key pos)

(entryHash key pos)

alterVM :: (Maybe PosTree -> PosTree)
-> Name -> VarMap -> VarMap

alterVM f key (VM entries old_hash)
| Just old_pt <- lookupVM entries key
, let new_pt = f (Just old_pt)
= VM (Map.insert key new_pt entries

(old_hash ⊕ entryHash key old_pt
⊕ entryHash key new_pt)

| otherwise
, let new_pt = f Nothing
= VM (Map.insert key new_pt entries)

(old_hash ⊕ entryHash key new_pt)

removeFromVM :: Name -> VarMap
-> (VarMap, Maybe PosTree)

−− Deletes a Name from the VarMap, returning
−− its current PosTree, or Nothing if it was not in the map
removeFromVM key map@(VM entries old_hash)
| Just pt <- Map.lookup key entries
= (VM (key `Map.delete` entries)

(old_hash ⊕ entryHash key pt), Just pt)
| otherwise
= (map, Nothing)

6 Analysis
In this section, we formally analyze the time complexity of
our final algorithm, and then upper-bound the probability of
obtaining incorrect results due to hash collisions. Through-
out this section we use |𝑒 | to denote the number of nodes in
expression 𝑒 .

6.1 Time Complexity
We start by bounding the amount of work done in App nodes,
and then derive the time complexity for the entire algorithm.
We present first a formal proof, and then an intuitive argu-
ment which may help the reader to see why the formal proof
works.

Lemma 6.1. Let 𝑒 be an expression. The total number of
alterVM and removeFromVM operations performed in App nodes
by summariseExpr ran on 𝑒 is O(|𝑒 | log |𝑒 |).

Proof. Denote the number of operations in question as𝑂𝐴𝑝𝑝 (𝑒).
Let us define

𝑇 (𝑛) = max
𝑒 : |𝑒 | ≤𝑛

𝑂𝐴𝑝𝑝 (𝑒).

We will prove that 𝑇 (𝑛) is O(𝑛 log𝑛), which will conclude
the proof of the lemma.

First, consider a single App node 𝑣 in 𝑒 with children 𝑣1, 𝑣2.
The number of map operations performed when processing
𝑣 is O(min(𝑚1,𝑚2)), where 𝑚𝑖 = |𝑚𝑎𝑝𝑖 | is the size of the
free variables map from 𝑣𝑖 . Since a free variables map only
contains variables that are used in a given subtree, its size is
bounded by the number of nodes in the subtree - i.e.𝑚𝑖 ≤ |𝑣𝑖 |,
and therefore min(𝑚1,𝑚2) ≤ min(|𝑣1 |, |𝑣2 |).

From the analysis above we get that for 𝑛 > 1
𝑇 (𝑛) ≤ max

1≤𝑎<𝑛
(𝑇 (𝑎) +𝑇 (𝑛 − 1 − 𝑎) +𝐶 ·min(𝑎, 𝑛 − 1 − 𝑎)) ,

(1)
where 𝑎 and 𝑛−1−𝑎 correspond to |𝑣1 | and |𝑣2 |, respectively,
and𝐶 is a constant resulting from the use of O notation. Due
to symmetry, we can rewrite Equation 1 as

𝑇 (𝑛) ≤ max
1≤𝑎≤ 𝑛−1

2

(𝑇 (𝑎) +𝑇 (𝑛 − 1 − 𝑎) +𝐶𝑎) . (2)

Now, we will prove inductively that𝑇 (𝑛) ≤ 𝐶𝑛 log2 𝑛. The
base case of 𝑛 = 1 holds, since 𝑇 (1) = 0 as an expression
consisting of a single node cannot have any App nodes. Then
𝑇 (𝑛) ≤ max

1≤𝑎≤ 𝑛−1
2

(𝑇 (𝑎) +𝐶𝑎 +𝑇 (𝑛 − 1 − 𝑎))

Using 𝑇 (𝑛 − 1 − 𝑎) ≤ 𝑇 (𝑛 − 𝑎):
≤ max

1≤𝑎≤ 𝑛−1
2

(𝑇 (𝑎) +𝐶𝑎 +𝑇 (𝑛 − 𝑎))

By inductive hypothesis on 𝑇 (𝑎) and 𝑇 (𝑛 − 𝑎):
≤ max

1≤𝑎≤ 𝑛−1
2

(
𝐶𝑎 log2 𝑎 +𝐶𝑎 +𝐶 (𝑛 − 𝑎) log2 (𝑛 − 𝑎)

)
Regrouping terms:
= 𝐶 max

1≤𝑎≤ 𝑛−1
2

(
𝑎(log2 𝑎 + 1) + (𝑛 − 𝑎) log2 (𝑛 − 𝑎)

)
Using log2 𝑎 + 1 = log2 𝑎 + log2 2 = log2 2𝑎:
= 𝐶 max

1≤𝑎≤ 𝑛−1
2

(
𝑎 log2 2𝑎 + (𝑛 − 𝑎) log2 (𝑛 − 𝑎)

)
Using 2𝑎 < 𝑛:
< 𝐶 max

1≤𝑎≤ 𝑛−1
2

(
𝑎 log2 𝑛 + (𝑛 − 𝑎) log2 𝑛

)
Expression under max does not depend on 𝑎:
= 𝐶 𝑛 log2 𝑛

□

An intuitive alternative to the above derivation may prove
illuminating: in an App node, we do work proportional to the
smaller subtree. Let’s imagine that we are touching every
node in that subtree to mark the amount of work done; we
need to compute the total number of touches. Now flip this
around: how many times could a fixed node 𝑣 be touched?
If we follow a path 𝑣 = 𝑢1, 𝑢2, ..., 𝑢𝑘 from 𝑣 to the root, any
App node 𝑢𝑖 on such path could "trigger" 𝑣 being touched,
but only if 𝑢𝑖−1 was the smaller child of 𝑢𝑖 . Therefore, if
we follow the path 𝑢1, ..., 𝑢𝑘 , any time we see a node that
triggered touching 𝑣 the current subtree size at least doubles,
so 𝑣 could only have been touched log𝑛 times. There are 𝑛
nodes 𝑣 , so total touches can’t exceed 𝑛 log𝑛.

9

PLDI ’21, June 20–25, 2021, Virtual, Canada Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew Fitzgibbon, and Simon Peyton Jones

Lemma 6.2. Let 𝑒 be an expression. The total number of
map operations (i.e. singletonVM, alterVM and removeFromVM)
performed by summariseExpr ran on 𝑒 is O(|𝑒 | log |𝑒 |).
Proof. We perform exactly one map operation per every Var

and Lam node, while the total number of map operations
performed in App nodes is bounded due to Lemma 6.1. □

Theorem 6.3. Let 𝑒 be an expression. The total running time
of the summariseExpr algorithm ran on 𝑒 is O(|𝑒 | log2 |𝑒 |).
Proof. The singletonVM, alterVM and removeFromVM operations
are dominant, so it is sufficient to bound the time spent in
these operations.
From Lemma 6.2, we get that the total number of these

operations is O(|𝑒 | log |𝑒 |). Since we implement the map as a
balanced binary search tree, addition and removal take time
logarithmic in terms of the size of the map (which never
exceeds |𝑒 |), while singletonVM takes constant time. □

6.2 Proof That Our Hashing Function Is Strong
In this section, we show that summariseExpr composed with
hashESummary is a strong hashing function. We assume that
we have access to a source of true randomness (e.g. a stream
of random bits), which can be used to instantiate randomly
chosen hash combiners. Under this assumption, we prove
that it is possible to choose all hashing functions and hash
combiners in a randomized way, such that the probability of
hash collisions is low.
Definition 6.4. Wewill call a function 𝑓 : 𝐴 → 𝐵 random if
every value of 𝑓 (𝑎) for 𝑎 ∈ 𝐴 was chosen uniformly over 𝐵,
and independently from all the other values 𝑓 (𝑎′) for 𝑎′ ≠ 𝑎.

Note that a random function 𝑓 according to Definition 6.4
is one that was chosen randomly, but when 𝑓 is called for a
fixed argument, its value is deterministic.

In practice, it may not be possible to obtain true random-
ness, or one may prefer to fix the seed and make the hashing
algorithm deterministic; nevertheless, our theoretical results
indicate that there is nomore reason to expect hash collisions
than if we had used a strong combiner in Section 5.2.
Throughout this section we denote the hash width as

𝑏 ∈ Z+, and H = {0, 1}𝑏 . By hash we denote calls to a generic
hash function for primitive objects.
Lemma 6.5 (XOR hash combiner for sets). Given a random
function 𝑓 : 𝐴 → H, define the set hash ℎ : 2𝐴 → H by

ℎ(𝑆) =
⊕
𝑠∈𝑆

𝑓 (𝑠)

where
⊕

denotes XOR-aggregation. Then

∀
𝑆1,𝑆2⊆𝐴;𝑆1≠𝑆2

𝑝 (ℎ(𝑆1) = ℎ(𝑆2)) =
1
2𝑏

Proof. Fix 𝑆1 and 𝑆2; from the properties of XOR, we have⊕
𝑠∈𝑆1

𝑓 (𝑠) =
⊕
𝑠∈𝑆2

𝑓 (𝑠) ↔
⊕

𝑠∈𝑆1⊖𝑆2
𝑓 (𝑠) = 0

where 𝑆1 ⊖ 𝑆2 is the symmetric difference of 𝑆1 and 𝑆2. As
𝑆1 ⊖ 𝑆2 ≠ ∅, we can take any 𝑥 ∈ 𝑆1 ⊖ 𝑆2, and obtain⊕

𝑠∈𝑆1⊖𝑆2
𝑓 (𝑠) = 0 ↔ 𝑓 (𝑥) =

⊕
𝑠∈𝑆1⊖𝑆2−{𝑥 }

𝑓 (𝑠) (3)

Since the values of 𝑓 are chosen independently, we may
assume the value for 𝑥 is drawn last, at which point the right
side of Equation 3 is a constant. As 𝑓 (𝑥) is chosen uniformly,
the probability of 𝑓 (𝑥) being equal to any constant is 1

|H | . □

Lemma 6.6. LetD be a datatype defined recursively (such as
Structure or PosTree). It is possible to construct in a random-
ized way a compositional hashing scheme ℎ : D → H (that
is, compute the hash for 𝑑 ∈ D in the constructor by calling a
hash combiner on the hashes of children), so that

∀
𝑎,𝑏∈D;𝑎≠𝑏

𝑝 (ℎ(𝑎) = ℎ(𝑏)) ≤ |𝑎 | + |𝑏 |
2𝑏

where |𝑑 | is the number of constructor calls when building 𝑑
(i.e. both those for "leaf" objects and "branch" combiners).

Proof. See Appendix A. □

Theorem 6.7. Let 𝐸 be the set of all Expression objects. It is
possible to instantiate summariseExpr with hashing functions
and combiners into H chosen in a randomized way, so that

∀
𝑒1,𝑒2∈𝐸;𝑒1.𝑒2

𝑝 (h(𝑒1) = h(𝑒2)) ≤ 5 |𝑒1 | + |𝑒2 |
2𝑏

where h(𝑒) = hashESummary(summariseExpr(𝑒)) and 𝑒1 . 𝑒2
means 𝑒1 and 𝑒2 are not 𝛼-equivalent.

Proof. Since a full (hash-free) e-summary preserves all infor-
mation relevant to 𝛼-equivalence, the only way a collision
can happen is when we convert pieces of an e-summary into
hash values. We now consider all such places one by one.
First, we may get a collision when either hashing vari-

able names, or auxiliary compositional objects (structures,
position trees, and variable map entries that combine the
position tree with the variable name). As the total number of
calls to hash combiners in each of the four categories does
not exceed |𝑒1 | + |𝑒2 |, from Lemma 6.6, the probability of
collision in any of the four cases is bounded by 4 |𝑒1 |+ |𝑒2 |

2𝑏 .
Moreover, collisions may arise due to XOR-aggregation of

hashes when hashing variable maps. From Lemma 6.5, the
probability of this event is bounded by 1

2𝑏 .
Finally, the top-level call to a hash combiner (to combine

hashes of structure and variable map) may produce a colli-
sion. As we assume that combiner to be random, the proba-
bility of this event is simply bounded by 1

2𝑏 .
Summing up, we get

𝑝 (h(𝑒1) = h(𝑒2)) ≤
4(|𝑒1 | + |𝑒2 |) + 2

2𝑏
≤ 5 |𝑒1 | + |𝑒2 |

2𝑏
□

10

Hashing Modulo Alpha-Equivalence PLDI ’21, June 20–25, 2021, Virtual, Canada

Theorem 6.8. Let 𝐸 be the set of all Expression objects. It is
possible to instantiate summariseExpr with hashing functions
and combiners into H chosen in a randomized way, so that for
any 𝑒 ∈ 𝐸, summariseExpr recovers the correct set of equivalence
classes of subexpressions with probability at least 1−5|𝑒 |3 ·2−𝑏 .

Proof. There are
(|𝑒 |
2
)
< 1

2 |𝑒 |
2 pairs of subexpressions; any

single pair can cause a collision leading to summariseExpr

returning an incorrect set of equivalence classes. Probability
of a collision for a fixed pair of subexpressions is bounded
by Theorem 6.7. □

One practical consequence of Theorem 6.8 is that 128-bit
hashes are enough even for very large-scale applications.
Specifically, if 𝑏 = 128 and we consider expressions up to a
billion nodes, |𝑒 | ≤ 109, then the probability of having at least
one collision is bounded by approximately 5 · 1027 · 2−128 <
10−10. In Appendix B, we empirically verify that the observed
collision rate is indeed consistent with theory.

6.3 Incrementality
One crucial property of our algorithm is compositionality:
computing the hash of a subtree only requires the results
from children, and there is no need to orchestrate anything
across the entire expression, with the exception of ensuring
all variable names are unique, which is an invariant that
is easy to maintain. Therefore, the algorithm can be made
incremental: if a subtree of node 𝑣 in an expression 𝑒 is
modified, e-summaries (and therefore hashes) of most nodes
will often stay unchanged.

More specifically, let us say that we have already computed
all subtree hashes for an expression 𝑒 , and we modify a
subtree under node 𝑣 . The only affected nodes are those
lying on the path from 𝑣 to the root, and also those in the
rewritten subtree (in particular, modifying a subtree might
have required creating some fresh nodes). Recomputing e-
summaries for the latter is unavoidable, and the cost of that
depends on the specifics of a rewrite – for example, if the
subtree of 𝑣 has constant size, then the work done for the
nodes in that subtree will also be constant. In this section,
we will focus on the former, and try to bound the amount of
work needed to recompute e-summaries for all nodes on the
path from 𝑣 to the root.

Let 𝑣 = 𝑢ℎ, 𝑢ℎ−1, · · · , 𝑢0 be the path in question, where ℎ is
the depth of 𝑣 . Work done when recomputing the e-summary
for 𝑢𝑖 is in the worst case proportional to the size of the free
variable map for 𝑢𝑖 . Note that any free variable that is used
in the subtree of 𝑢𝑖 is either bound in one of the nodes 𝑢 𝑗 for
𝑗 < 𝑖 , or it is never bound in the entire expression 𝑒 . If we
denote the number of variables that are nowhere bound as
𝑓 , then the work done in 𝑢𝑖 is O(𝑖 + 𝑓); summing over all 𝑖 ,
we get a bound of O(ℎ2 + ℎ𝑓). Of course, the upper-bound
of O(|𝑒 | (log |𝑒 |)2) still holds.
In summary, if a subtree of a node at depth ℎ is rewrit-

ten, then updating all subtree hashes takes time O(min(ℎ2 +

Table 1. Algorithms considered in our evaluation. Note that
some of them do not produce the correct set of equivalence
classes, and are only given to define complexity minima.

Algorithm Time True True
complexity pos. neg.

Structural (§2.3) O(𝑛) Yes No
De Brujin (§2.4) O(𝑛 log𝑛) No No
Locally Nameless (§2.5) O(𝑛2 log𝑛) Yes Yes
Ours (§3 - §5) O(𝑛 (log𝑛)2) Yes Yes

ℎ𝑓 , |𝑒 | (log |𝑒 |)2)). While in the worst case this is of the same
order of magnitude as recomputing all hashes from scratch, if
all variables are bound (𝑓 = 0), and the tree is reasonably bal-
anced, we obtain something much faster; in particular, if the
tree is balanced (i.e. has height O(log |𝑒 |)), then recomputing
after a rewrite takes time O((log |𝑒 |)2).

7 Empirical Evaluation
In this section we empirically evaluate the running time of
our final algorithm. We consider two settings: synthetic, au-
tomatically generated lambda terms (Section 7.1), and several
hand-picked realistic examples corresponding to commonly
used machine learning models (Section 7.2).
In Table 1, we list the hashing algorithms that we com-

pare in this section. The first two, Structural and De Bruijn,
are incorrect: they do not meet the specification outlined
in Section 3. Specifically, they may equate distinct expres-
sions (false positives), or fail to equate 𝛼-equivalent ones
(false negatives). We present these algorithms here to give
a sense of the extra performance cost of hashing modulo
𝛼-equivalence.

The Locally Nameless algorithm is the fastest onewe know
that meets the specification, while Ours is the algorithm
presented in this paper.
We implemented all four in Haskell, over the following

expression type
data Expression h = Var h Name

| Lam h Name Expression
| App h Expression Expression

In each case, the hashing algorithm simply annotates each
node with a hash-value, yielding a result of type Expression

HashCode. We did not model the cost of putting these hash-
codes into a hash table and identifying equivalence classes,
since this cost is the same in all cases. The implementation of
our algorithm is optimized over the source code listed in this
paper by the addition of strictness annotations and replacing
two map operations with a single fused map operation in
a couple of places; similar optimizations were applied to
the baseline algorithms. The garbage collector was disabled
during timing. Constant factors may of course vary in other

11

PLDI ’21, June 20–25, 2021, Virtual, Canada Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew Fitzgibbon, and Simon Peyton Jones

100 101 102 103 104 105 106 107

Number of nodes (balanced expressions)

10−8

10−6

10−4

10−2

100
T

im
e

ta
ke

n
to

ha
sh

al
l

su
b

ex
pr

es
si

on
s

(s
)

O(n
)O(

n
lo
g
2 n)

O(
n

2 lo
g
n)

Locally Nameless

Ours

De Bruijn*

Structural*

100 101 102 103 104 105 106 107

Number of nodes (unbalanced expressions)

10−8

10−6

10−4

10−2

100

T
im

e
ta

ke
n

to
ha

sh
al

l
su

b
ex

pr
es

si
on

s
(s

)

O(n
)O(

n
lo
g
2 n)

O(
n

2 lo
g
n)

Locally Nameless

Ours

De Bruijn*

Structural*

Figure 2. Empirical evaluation on synthetically generated expressions: balanced trees (left), and highly unbalanced ones
(right). Note that the algorithms marked with (*) produce an incorrect set of equivalence classes, so the key comparison is
between Locally Nameless and Ours.

implementations, but we are mainly interested in how the
algorithms behave relative to each other.

7.1 Random Expressions
In Figure 2, we show time taken by the four algorithms to
hash all subexpressions of randomly generated expressions
of varying size. We generated two different families of ran-
dom expressions:

• Balanced trees. Here we generated expressions that are
roughly balanced trees, at each point generating a Lam

or App node with equal probability. Each Lam node has
a fresh binder, and at variable occurrences we choose
one of the in-scope bound variables.

• Wildly unbalanced trees with very deeply nested lamb-
das. This case is not as unrealistic as it sounds: a realistic
language will include let bindings, and deeply-nested
stacks of let expressions are very common in practice,
especially in machine-generated code.

The results reassure us that our algorithm meets the claimed
complexity bounds – note the quadratic behaviour of Locally
Nameless for unbalanced trees. Moreover, although there is
a constant-factor cost compared to the non 𝛼-respecting al-
gorithms, the slowdown is much smaller than Locally Name-
less.

7.2 Real-Life Examples
Our interest in the problem of hashingmodulo𝛼-equivalence
was directly motivated by our parallel work on a prototype
compiler for machine learning models, and the discovery
that a significant amount of time was being spent on pre-
processing the AST to find equivalent subtrees. In that con-
text, in Table 2 we show a different empirical evaluation,

Table 2. Empirical evaluation on hand-picked realistic ex-
pressions. Each measurement is time in milliseconds to com-
pute all subexpression hashes for each expression. Note that
the algorithms marked with (*) produce an incorrect set of
equivalence classes.

Algorithm MNIST CNN GMM BERT 12
𝑛 = 840 𝑛 = 1810 𝑛 = 12975

Structural* 0.011 ms 0.027 ms 0.38 ms
De Bruijn* 0.035 ms 0.089 ms 1.70 ms
Locally Nameless 0.30 ms 2.00 ms 820.0 ms
Ours 0.14 ms 0.36 ms 3.6 ms

using real expressions found in machine learning workflows:
"MNISTCNN" [11] is a convolution kernel from a deep neural
network used in computer vision; "GMM" [16] is the Gauss-
ian Mixture Model benchmark from the ADBench suite [19];
and "BERT" [7] is a model from natural language processing,
implemented using the PyTorch library [15]. Conveniently
for our benchmarks, BERT also has a parameter controlling
the number of “layers”, which linearly scales the expression
size due to loop unrolling. We see that on practical exam-
ples, our algorithm is only up to 4× slower than running
de Brujin on the expression once, and much faster than the
locally nameless baseline, while enjoying a better bound on
the worst-case time complexity. In Figure 3 we show perfor-
mance on BERT as the number of layers is varied.

8 Related Work
We found surprisingly few papers about the problem of find-
ing common subexpressions modulo 𝛼-equivalence. Shao

12

Hashing Modulo Alpha-Equivalence PLDI ’21, June 20–25, 2021, Virtual, Canada

104

Number of nodes (BERT)

10−6

10−5

10−4

10−3

10−2

10−1

100

T
im

e
ta

ke
n

to
ha

sh
al

l
su

b
ex

pr
es

si
on

s
(s

)

O(n)
O(n log

2 n)
O(n

2 log n)

Locally Nameless

Ours

De Bruijn*

Structural*

Figure 3. Empirical evaluation on expressions from the
BERT model. Note that the algorithms marked with (*) pro-
duce an incorrect set of equivalence classes, so the key com-
parison is between Locally Nameless and Ours.

et al. describe the impressive FLINT compiler, which uses
de Bruijn representation and aggressive hash-consing to
achieve very compact type representations and constant-
time equality comparison [18]. It is not clear how they deal
with the false positives and false negatives we mention in
Section 2.4. Murphy takes a similar approach in the TILT
compiler [14]. Again, the goal is structure sharing and the
mechanism is de Bruijn indexing, but he seeks to conceal the
tiresome de Bruijn index-shuffling (which is somewhat ex-
posed in FLINT) behind an abstraction “curtain” that allows
the client to use a simpler named interface. He mentions the
problem of false negatives, and concludes that the overheads
of his abstractions are too high.
Filliatre and Conchon describe a hash-consing library in

OCaml, again with the goal of structure sharing [9]. But their
focus is very different to ours: they are concerned about
the API design for a hash-consing library, including issues
such as when to clear out the hash table. Concerning 𝛼-
equivalence, they use de Bruijn indexing from the outset,
without discussion.

The “locally nameless” representation [5, 13] has a long
history, indeed Weirich et al. [21] observe that it “is men-
tioned in the conclusion of de Bruijn’s paper”. They further
note that "If we remove names from bound patterns (which
are preserved only for error messages) the locally name-
less representation interacts nicely with hash-consing, as all
𝛼-equivalent terms have the same representation".

The idea of representing a lambda with a “map” of the
occurrences of its bound variable, which we adopt for our
e-summaries in Section 4, has been studied before [1, 17].
Kennaway and Sleep describe another representation, di-
rector strings, in which information about occurrences is
stored in the application nodes, rather than the lambdas [10].

McBride gives a very helpful overview of these approaches
[12], but none of them addresses the question of composi-
tional hashing.
Dietrich et al. [8] discuss hashing source code abstract

syntax trees (ASTs), with the goal of minimising rebuilds in
a build system. If, for example, one changes the white-space
layout, the timestamp of the file will change, but the AST
(and its hash) will not. They do not consider 𝛼-equivalence
at all, and it seems likely that an 𝛼-renamed program would
indeed be considered different by their system.
There is literature [20, 22] on detecting code clones, or

plagiarisms, which does typically hash ASTs, but there the
goal is usually to generate many pairs of candidates (i.e. false
positives are welcomed), so does not apply to our use cases.

Acknowledgements We warmly thank these colleagues
for their feedback on earlier drafts of this paper: Conor
McBride, David Collier, Leonardo de Moura, Max Willsey,
Stephanie Weirich and Tom Minka.

References
[1] Andreas Abel and Nicolai Kraus. 2011. A Lambda Term Representation

Inspired by Linear Ordered Logic. Electronic Proceedings in Theoretical
Computer Science 71 (Oct 2011), 1–13. https://doi.org/10.4204/eptcs.
71.1

[2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi.
2017. Learning to represent programs with graphs. arXiv preprint
arXiv:1711.00740 (2017).

[3] Matej Balog, Alexander Gaunt, Marc Brockschmidt, Sebastian
Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning to Write
Programs. In Proceedings of ICLR’17. https://www.microsoft.com/en-
us/research/publication/deepcoder-learning-write-programs/

[4] Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and
Oleksandr Polozov. 2018. Generative code modeling with graphs.
arXiv preprint arXiv:1805.08490 (2018).

[5] Arthur Charguéraud. 2012. The locally nameless representation. Jour-
nal of automated reasoning 49, 3 (2012), 363–408.

[6] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris
van Doorn, and Jakob von Raumer. 2015. The Lean Theorem Prover
(System Description).. In CADE (Lecture Notes in Computer Science),
Amy P. Felty and Aart Middeldorp (Eds.), Vol. 9195. Springer, 378–388.
http://dblp.uni-trier.de/db/conf/cade/cade2015.html#MouraKADR15

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018).

[8] Christian Dietrich, Valentin Rothberg, Ludwig Füracker, Andreas
Ziegler, and Daniel Lohmann. 2017. cHash: Detection of Redundant
Compilations via {AST} Hashing. In 2017 USENIX Annual Technical
Conference (USENIX 17). 527–538.

[9] Jean-Christophe Filliâtre and Sylvain Conchon. 2006. Type-safe mod-
ular hash-consing. In Proceedings of the 2006 ICFP Workshop on ML.
12–19. https://dl.acm.org/doi/abs/10.1145/1159876.1159880

[10] Richard Kennaway and M Ronan Sleep. 1987. Variable Abstraction
in O(n log n) Space. Inform. Process. Lett. 24, 5 (1987), 343–349. http:
//dx.doi.org/doi:10.1016/0020-0190(87)90161-X

[11] Yann Le Cun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. 1989.
Handwritten digit recognition with a back-propagation network. In
Proceedings of the 2nd International Conference on Neural Information
Processing Systems. 396–404.

13

https://doi.org/10.4204/eptcs.71.1
https://doi.org/10.4204/eptcs.71.1
https://www.microsoft.com/en-us/research/publication/deepcoder-learning-write-programs/
https://www.microsoft.com/en-us/research/publication/deepcoder-learning-write-programs/
http://dblp.uni-trier.de/db/conf/cade/cade2015.html#MouraKADR15
https://dl.acm.org/doi/abs/10.1145/1159876.1159880
http://dx.doi.org/doi:10.1016/0020-0190(87)90161-X
http://dx.doi.org/doi:10.1016/0020-0190(87)90161-X

PLDI ’21, June 20–25, 2021, Virtual, Canada Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew Fitzgibbon, and Simon Peyton Jones

[12] Conor McBride. 2018. Everybody’s Got To Be Somewhere. Electronic
Proceedings in Theoretical Computer Science 275 (Jul 2018), 53–69. https:
//doi.org/10.4204/eptcs.275.6

[13] Conor McBride and James McKinna. 2004. Functional pearl: I am not a
number—I am a free variable. In Proceedings of the 2004 ACM SIGPLAN
workshop on Haskell. 1–9.

[14] Tom Murphy. 2002. The Wizard of TILT: Efficient?, Convenient, and
Abstract Type Representations. Technical Report CMU-CS-02-120. Dept.
Computer Science, Carnegie-Mellon Univ, Pittsburgh, PA.

[15] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024–
8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

[16] Douglas A Reynolds. 2009. Gaussian Mixture Models. Encyclopedia of
biometrics 741 (2009), 659–663.

[17] Masahiko Sato, Randy Pollack, Helmut Schwichtenberg, and Takafumi
Sakurai. 2013. Viewing 𝜆-terms through maps. Indagationes Mathe-
maticae 24, 4 (Nov. 2013), 1073–1104. http://dx.doi.org/10.1007/3-540-
44881-0_5

[18] Zhong Shao, Christopher League, and Stefan Monnier. 1998. Imple-
menting Typed Intermediate Languages. In Proceedings of the Third
ACM SIGPLAN International Conference on Functional Programming
(ICFP ’98). Association for Computing Machinery, New York, NY, USA,
313–323. https://doi.org/10.1145/289423.289460

[19] Filip Srajer, Zuzana Kukelova, and Andrew Fitzgibbon. 2018. A bench-
mark of selected algorithmic differentiation tools on some problems in
computer vision and machine learning. Optimization Methods and Soft-
ware 33, 4-6 (2018), 889–906. http://github.com/Microsoft/ADBench

[20] Mikkel Jønsson Thomsen and Fritz Henglein. 2012. Clone detection
using rolling hashing, suffix trees and dagification: A case study. In
2012 6th International Workshop on Software Clones (IWSC). IEEE, 22–
28.

[21] Stephanie Weirich, Brent A Yorgey, and Tim Sheard. 2011. Binders
unbound. ACM SIGPLAN Notices 46, 9 (2011), 333–345.

[22] Jingling Zhao, Kunfeng Xia, Yilun Fu, and Baojiang Cui. 2015. An AST-
based code plagiarism detection algorithm. In 2015 10th International
Conference on Broadband and Wireless Computing, Communication and
Applications (BWCCA). IEEE, 178–182.

14

https://doi.org/10.4204/eptcs.275.6
https://doi.org/10.4204/eptcs.275.6
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dx.doi.org/10.1007/3-540-44881-0_5
http://dx.doi.org/10.1007/3-540-44881-0_5
https://doi.org/10.1145/289423.289460
http://github.com/Microsoft/ADBench

Hashing Modulo Alpha-Equivalence PLDI ’21, June 20–25, 2021, Virtual, Canada

A Proof of Lemma 6.6
For convenience, we first restate Lemma 6.6 below, and then
outline the proof.

Lemma 6.6. LetD be a datatype defined recursively (such as
Structure or PosTree). It is possible to construct in a random-
ized way a compositional hashing scheme ℎ : D → H (that
is, compute the hash for 𝑑 ∈ D in the constructor by calling a
hash combiner on the hashes of children), so that

∀
𝑎,𝑏∈D;𝑎≠𝑏

𝑝 (ℎ(𝑎) = ℎ(𝑏)) ≤ |𝑎 | + |𝑏 |
2𝑏

where |𝑑 | is the number of constructor calls when building 𝑑
(i.e. both those for "leaf" objects and "branch" combiners).

Proof. Given 𝑑 = 𝐶𝑜𝑛(𝑑1, · · · , 𝑑𝑘) ∈ D, we define
ℎ(𝑑) = 𝑓 (|𝑑 |, ℎ𝑎𝑠ℎ(𝐶𝑜𝑛), ℎ(𝑑1), · · · , ℎ(𝑑𝑘))

where 𝑓 is a random hash combiner. That is, we combine the
hashes of children and the constructor, and salt it with the
size |𝑑 | of the object 𝑑 . As 𝑓 only accepts elements of H as
arguments, here we silently assume |𝑑 | < 2𝑏 ; if that is not
the case, then the bound to be proven is vacuous, and hence
there is nothing to do.
We will now bound the probability of ℎ(𝑎) = ℎ(𝑏) by

induction on max(|𝑎 |, |𝑏 |).
It is easy to check that for |𝑎 | = |𝑏 | = 1 (i.e. both 𝑎 and𝑏 are

leaves) the inequality holds. Now, assume max(|𝑎 |, |𝑏 |) ≥ 2;
without loss of generality |𝑎 | ≥ |𝑏 |.

Denote 𝑎 = 𝐶𝑜𝑛𝑎 (𝑎1, · · ·), 𝑏 = 𝐶𝑜𝑛𝑏 (𝑏1, · · ·). We now
distinguish three cases.

Case 1: |𝑎 | > |𝑏 | We can see that computing ℎ(𝑎) and ℎ(𝑏)
involves exactly one call to 𝑓 of the form 𝑓 (|𝑎 |, ∗), while all
the other calls are for 𝑓 (𝑥, ∗) for 𝑥 < |𝑎 |. Since the values for
𝑓 are drawn uniformly and independently, we can assume
they are drawn in the order of increasing first argument to
𝑓 (breaking ties arbitrarily). When the value for 𝑓 (|𝑎 |, ∗) is
being drawn, all other values can be considered constant,
and so 𝑝 (ℎ(𝑎) = ℎ(𝑏)) = 1

2𝑏 .

Case 2: |𝑎 | = |𝑏 |, 𝐶𝑜𝑛𝑎 ≠ 𝐶𝑜𝑛𝑏 Here ℎ(𝑎) = ℎ(𝑏) requires
that either ℎ𝑎𝑠ℎ(𝐶𝑜𝑛𝑎) = ℎ𝑎𝑠ℎ(𝐶𝑜𝑛𝑏), or the top level calls
to 𝑓 produce a collision. Similarly to the previous case, the
probability of either of these events can be bounded by 1

2𝑏 ,
and we get 𝑝 (ℎ(𝑎) = ℎ(𝑏)) ≤ 2

2𝑏 .

Case 3: |𝑎 | = |𝑏 |, 𝐶𝑜𝑛𝑎 = 𝐶𝑜𝑛𝑏 In this final case, the first
two arguments to 𝑓 are the same, which means that a hash
collision on children of 𝑎 and 𝑏 can possibly propagate up-
wards and imply a collision at the top level. Therefore, we
will need to use the inductive hypothesis.

More specifically,ℎ(𝑎) = ℎ(𝑏) can arise in twoways: either
ℎ(𝑎𝑖) = ℎ(𝑏𝑖) for all 𝑖 , which of course implies ℎ(𝑎) = ℎ(𝑏),
or the two tuples of arguments to 𝑓 do not match, and the
collision is produced with the two top-level calls to 𝑓 .

For the former case, recall that 𝑎 ≠ 𝑏, and therefore 𝑎𝑖 ≠ 𝑏𝑖
for some 𝑖 . Combining that with ℎ(𝑎𝑖) = ℎ(𝑏𝑖), we can apply
the inductive hypothesis; this is legal, since max(|𝑎𝑖 |, |𝑏𝑖 |) <
max(|𝑎 |, |𝑏 |). The probability of ℎ(𝑎𝑖) = ℎ(𝑏𝑖) is therefore
bounded by |𝑎𝑖 |+ |𝑏𝑖 |

2𝑏 . The case when the top level calls to
𝑓 produce a collision can be analyzed as before, yielding
probability of collision equal to 1

2𝑏 .
Summing up the probabilities from the two subcases, we

get

𝑝 (ℎ(𝑎) = ℎ(𝑏)) ≤ |𝑎𝑖 | + |𝑏𝑖 | + 1
2𝑏

<
|𝑎 | + |𝑏 |

2𝑏
□

B Empirical Frequency of Hash Collisions
To experimentally verify the bound from Theorem 6.7, in
this section we evaluate the empirical frequency of hash
collisions. To do this, we first modified our algorithm to
use 16-bit integers, as for 32-bit and above one needs an
enormous number of trials to find a collision.
However, measuring the amount of collisions in a mean-

ingful way is non-trivial: while we can check how often
hashes of two random expressions collide, it might be that
more collisions arise in real applications; what is worse, there
may be adversarial pairs of expressions specially crafted to
make our hashes collide. Of course, if the hash function is
fixed, there exist pairs of expressions that produce a hash
collision. However, note that Theorem 6.7 assumes our hash
function is not fixed: instead, the hash combiners that are
used should be chosen randomly. In practical terms, our the-
orem states the following: if we instantiate our algorithm,
and seed its hash combiners with a randomly chosen seed,
then there is no way to consistently break it - while for a fixed
seed one can laboriously find a collision, there is no pair of
expressions that would collide reliably across many seeds.
This is a much stronger claim than just stating that two ran-
dom expressions rarely collide, and to verify it, one needs
to play a malicious user, and try to construct adversarial
examples that are more likely to collide than random ones.

Therefore, in this section we consider two ways to create
a pair of expressions:

• Random expressions. Here we generate two random bal-
anced expressions as in Section 7.1, and discard pairs
that turn out to be alpha-equivalent.

• Adversarial expressions. As discussed above, we acted as
an adversary, and designed a way to generate pairs of
expressions that are more likely to produce collisions.
We describe this in detail in Appendix B.1.

For both ways of generating pairs of expressions we varied
the expression size between 128 and 4096, for each size draw-
ing 10 · 216 pairs and hashing them looking for collisions. We
then divided the resulting number of collisions by 10 to get
an estimated number of collisions per 216 samples. Note that
the resulting value for a perfect hash function would be 1 (in

15

PLDI ’21, June 20–25, 2021, Virtual, Canada Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew Fitzgibbon, and Simon Peyton Jones

 1

 10

 100

 1000

 10000

 1000

N
um

be
r

of
 c

ol
lis

io
ns

 p
er

 2
16

 tr
ia

ls

Expression size

Empirical (random expr.)
Empirical (adversarial expr.)

Perfectly random hash
Bound from Theorem 6.7

Figure 4. Empirical number of collisions for both random
and adversarial pairs of expressions with varying size.

expectation). On the other hand, Theorem 6.7 upper-bounds
the collision probability by 5 |𝑒1 |+ |𝑒2 |

2𝑏 , and since we are com-
paring pairs of expressions of the same size |𝑒1 | = |𝑒2 | = 𝑛,
we get an upper-bound of 10𝑛 collisions per 216 samples.

In Figure 4, we plot the resulting number of collisions
for the two ways of generating expression pairs, as well
as a lower-bound (perfect hash function) and upper-bound
(Theorem 6.7). For random expressions, our hash achieves a
close-to-perfect number of collisions, which does not appear
to grow with 𝑛. On the other hand, adversarial expression
pairs generate more collisions as 𝑛 grows, but still two orders
of magnitude less than the theoretical upper-bound. Note
that we do not consider 𝑛 > 4096, as for 𝑛 = 216

10 ≈ 6500
our upper-bound becomes vacuous: 𝑛 is too close to 2𝑏 to
provide any guarantees on the frequency of collisions.

B.1 Generating Adversarial Expression Pairs
Here we describe the procedure to generate adversarial pairs
of expressions. This process is not specialized to our specific
algorithm, and hence may work for other compositional
hashing algorithms that act on tree-like objects.

The idea is as follows: we start with two small non-alpha-
equivalent expressions with no free variables. Concretely,
we choose

𝑒1 = \x . App (Var x) (App (Var x) (Var x))
𝑒2 = \x . App (App (Var x) (Var x)) (Var x)

Then, until the right expression size is reached, we transform
the expressions by wrapping both of them in either a Lam

or an App node. In other words, we create a pair of highly
unbalanced expressions (similarly to Section 7.1) which dif-
fer only at the very bottom. Intuitively, when hashing the
resulting expressions, the (likely different) hashes of 𝑒1 and
𝑒2 will get repeatedly transformed in the same way when the
algorithm computes the hashes for larger subtrees. Crucially,
if the hashes collide at some point, they will stay the same
indefinitely, as the way 𝑒1 and 𝑒2 are extended upwards is
the same. Hence, a collision at the lower level will propagate

to cause a collision at the top level, causing the collision
probability to grow with expression size.

C An Alternative to StructureTag
Our initial algorithm of Section 4.6 transforms PosTrees from
both subtrees of an App node. Since this is prohibitively ex-
pensive, in Section 4.8 we show that it is enough to transform
only one of the subtrees, as long as we introduce an appro-
priately chosen StructureTag. In this section, we discuss an
alternative to the StructureTag approach, which yields an
algorithm with the same final time complexity.
Since this alternative is more complex, we refrain from

mentioning it in themain body of the paper. Herewe describe
the key ideas involved, which the reader may find interesting.
To arrive at the alternative formulation, consider the fol-

lowing question: can we transform PosTrees from both chil-
dren, and still get good time complexity due to laziness? In
other words, can we avoid actually tagging PosTrees in a
given map, and instead lazily store the transformation to be
applied?

Formally, consider a variable map after the optimizations
of Section 5.1, i.e. with PosTrees simply being represented
by hash-codes (elements of H). Extending a PosTree with
one of the markers (PTLeftOnly, PTRightOnly and PTBoth) cor-
responds to transforming the hash-code in a fixed way (al-
though dependent on the particular hash combiner); denote
these transformations as 𝑓𝐿, 𝑓𝑅 : H→ H and 𝑓𝑏𝑜𝑡ℎ : H2 → H.
To simplify the following analysis, we will now focus on 𝑓𝐿
and 𝑓𝑅 ; extending it to handle 𝑓𝑏𝑜𝑡ℎ is easy, as in a given node
it only needs to be called at most as many times as the size
of the smaller of the children’s variable maps.
If we focus on the set of values in the variable map, the

problem is the following: we want to maintain a set of hash-
codes, with the possibility of quickly applying either 𝑓𝐿 or
𝑓𝑅 on all the values. This hints at a lazy solution: maintain
a transformation 𝑓 : H→ H together with the set of hash-
codes, with the meaning that 𝑓 should be applied on all
elements of the set. Applying 𝑓𝐿 on all elements of such a
lazy-transformation-augmented set is just a matter of setting
𝑓 ′ = 𝑓𝐿 ◦ 𝑓 .
However, this is not so easy: when we look up an entry in

the variable map, we need to pass the obtained value through
the lazy transformation 𝑓 . Therefore, 𝑓 has to be represented
in a way such that it is possible to evaluate it in constant
time, even though 𝑓 may have been created out of a very
long sequence of function compositions. Moreover, adding a
new entry to the variable map requires passing the newly
added value 𝑥 through 𝑓 −1, so that when the value is read
out later and passed through 𝑓 we recover 𝑓 (𝑓 −1 (𝑥)) = 𝑥 .

It remains to show an efficient representation of functions
𝑓 : H→ H, such that composing, evaluating, and inverting
takes constant time.
To simplify this, we can notice that fast inversion is not

strictly necessary if we always manipulate pairs of a function
16

Hashing Modulo Alpha-Equivalence PLDI ’21, June 20–25, 2021, Virtual, Canada

and its inverse i.e. (𝑓 , 𝑓 −1); note that composing (𝑓 , 𝑓 −1)
with (𝑔,𝑔−1) can be computed as (𝑓 ◦ 𝑔,𝑔−1 ◦ 𝑓 −1). We still
need to be able to invert our fundamental building blocks
(𝑓𝐿 and 𝑓𝑅), but since that happens only once before the
algorithm commences, it does not have to be done in constant
time.

While many possible representations that satisfy the afore-
mentioned requirements exist, one natural choice are linear
functions, i.e. functions of the form 𝑓 (𝑥) = 𝑎 · 𝑥 + 𝑏, where
𝑎, 𝑏 ∈ H, and all operations are carried out modulo |H|. In-
deed, a linear 𝑓 can be represented with just a pair of (𝑎, 𝑏),
evaluating it on 𝑥 ∈ H takes constant time, and a compo-
sition of two linear functions represented by (𝑎𝑓 , 𝑏 𝑓) and

(𝑎𝑔, 𝑏𝑔) is (𝑎𝑓 · 𝑎𝑔, 𝑎𝑓 · 𝑏𝑔 + 𝑏 𝑓). Invertibility can be guaran-
teed by requiring that 𝑎 is coprime with |H|; for the case of
H = {0, 1}𝑏 , this simply means that 𝑎 is odd.

Using linear transformations on hash-codes poses a poten-
tial risk, as it could lead to collisions, especially if the choice
of 𝑓𝐿 and 𝑓𝑅 is particularly unfortunate; because of that, us-
ing a StructureTag-based variant is preferable. However, we
have also implemented the variant described in this section,
and found that it in practice it also produces strong hashes.
We believe that, with careful analysis, one could likely derive
guarantees similar to the one of Theorem 6.7.

17

	Abstract
	1 Introduction
	2 The Problem We Address
	2.1 What Does ``Equivalent'' Mean?
	2.2 Baseline: Purely Syntactic Equivalence
	2.3 Hashing For Syntactic Equivalence
	2.4 De Bruijn Indexing
	2.5 Locally Nameless

	3 The Key Ideas
	3.1 The Challenge of Compositionality
	3.2 Overview of Our Approach

	4 Step 1: A Compositional E-Summary
	4.1 Preliminaries
	4.2 The Basic E-Summary
	4.3 Expression Structure
	4.4 Free Variables Map
	4.5 Position Trees
	4.6 Full Algorithm
	4.7 Rebuilding
	4.8 Using the Smaller Subtree

	5 Step 2: Hashing an E-Summary
	5.1 Hashing Structures
	5.2 Hashing Variable Maps

	6 Analysis
	6.1 Time Complexity
	6.2 Proof That Our Hashing Function Is Strong
	6.3 Incrementality

	7 Empirical Evaluation
	7.1 Random Expressions
	7.2 Real-Life Examples

	8 Related Work
	References
	A Proof of Lemma 6.6
	B Empirical Frequency of Hash Collisions
	B.1 Generating Adversarial Expression Pairs

	C An Alternative to StructureTag

