Griffon: Reasoning about Job Anomalies with
Unlabeled Data in Cloud-based Platforms

Liqun Shao Yiwen Zhu Siqi Liu”
Microsoft Microsoft University of Pittsburgh, PA, USA
Abhiram Eswaran Kristin Lieber Janhavi Mahajan
Microsoft Microsoft Microsoft
Minsoo Thigpen Sudhir Darbha Subru Krishnan
Microsoft Microsoft Microsoft

Soundar Srinivasan
Microsoft

ABSTRACT

Microsoft’s internal big data analytics platform is comprised of
hundreds of thousands of machines, serving over half a million jobs
daily, from thousands of users. The majority of these jobs are recur-
ring and are crucial for the company’s operation. Although admin-
istrators spend significant effort tuning system performance, some
jobs inevitably experience slowdowns, i.e., their execution time
degrades over previous runs. Currently, the investigation of such
slowdowns is a labor-intensive and error-prone process, which costs
Microsoft significant human and machine resources, and which
negatively impacts several lines of business.

In this work, we present Griffon, a system we built and have
deployed in our production analytics clusters since last year to au-
tomatically discover the root cause of job slowdowns. Most existing
solutions rely on labeled data (i.e., resolved incidents with labeled
reasons for job slowdowns), which is in most practical scenarios
non-existent or non-trivial to acquire. Others rely on time-series
analysis of individual metrics that do not target specific jobs holisti-
cally. In contrast, in Griffon we cast the problem to a corresponding
regression one that predicts the runtime of a job, and we show
how the relative contributions of the features used to train our
interpretable model can be exploited to rank the potential causes
of job slowdowns. Evaluated over historical incidents, we show
that Griffon discovers slowdown causes that are consistent with
the ones validated by domain-expert engineers in a fraction of the
time required by them.

*Work done while the author was at Microsoft.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoCC 19, November 20-23, 2019, Santa Cruz, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6973-2/19/11...$15.00
https://doi.org/10.1145/3357223.3362716

Carlo Curino
Microsoft

Konstantinos Karanasos
Microsoft

CCS CONCEPTS

« Computing methodologies — Causal reasoning and diag-
nostics; Anomaly detection; Classification and regression trees;
Mathematics of computing — Regression analysis; « Computer
systems organization — Cloud computing.

KEYWORDS

Job anomaly, job slowdown, anomaly detection, root cause analysis,
unlabeled data, analytics job, big data analytics cluster, reasoning
and diagnostics

ACM Reference Format:

Liqun Shao, Yiwen Zhu, Siqi Liu, Abhiram Eswaran, Kristin Lieber, Jan-
havi Mahajan, Minsoo Thigpen, Sudhir Darbha, Subru Krishnan, Soundar
Srinivasan, Carlo Curino, and Konstantinos Karanasos. 2019. Griffon: Rea-
soning about Job Anomalies with Unlabeled Data in Cloud-based Plat-
forms. In ACM Symposium on Cloud Computing (SoCC ’19), November

20-23, 2019, Santa Cruz, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/lO.l145/3357223.3362716

1 INTRODUCTION

Microsoft operates one of the biggest data lakes worldwide for its
big data analytics needs [9]. It is comprised of several clusters for a
total of over 250k machines and receives approximately half a mil-
lion jobs daily that process exabytes of data on behalf of thousands
of users across the organization. The majority of these jobs are
recurring and several of them are critical services for the company.
Hence, administrators and users put significant effort in tuning the
system and the jobs to optimize their performance. Nevertheless,
some jobs inevitably experience slowdowns in their execution time
(i-e., they take longer to complete than their previous occurrences)
due to either system-induced (e.g., upgrades in the execution envi-
ronment, network issues, hotspots in the cluster) or user-induced
reasons (e.g., changes in job scripts, increase in data consumed).
Such job slowdowns can have a catastrophic impact to the com-
pany. In fact, runtime predictability is often considered more impor-
tant than pure job performance in recurring production jobs [17].
First, several jobs are interdependent, that is, the output of a job

https://doi.org/10.1145/3357223.3362716
https://doi.org/10.1145/3357223.3362716

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

might be consumed by multiple other jobs [7]. Thus, the slowdown
of the first job can have a cascading effect on all other dependent
jobs, impacting vital services across the company. Second, some
business-critical jobs are associated with deadlines in the form of
service-level objectives (SLOs). Missing those SLOs can result in
substantial financial penalties on the order of millions of dollars.

Despite the importance of promptly resolving such incidents,
the current approach remains largely manual. Job slowdowns are
signaled either through tickets raised by customers or by missed
deadlines (for jobs with SLOs). In either case, a slow, labor-intensive
process of error triaging and root-cause analysis must be initiated
as the causes are usually far from the effects. In particular, on-
call engineers manually investigate causes of job slowdowns by
analyzing hundreds of logs and system traces through a complex
monitoring dashboard. Despite the existence of detailed metrics,
it can sometimes take several hours to resolve an incident. This
bottleneck costs millions of dollars in engineering time wasted on
investigation and in job SLO violations, and results in degraded
user experience.

In this work, we present Griffon, the system we built and have
deployed in our production big data analytics infrastructure to
automatically discover the main factors causing a job’s runtime
deviation through the use of machine learning. Griffon greatly
improves the situation described above. First, it helps users au-
tomatically find user-induced causes of their job slowdowns and
prevents them from raising tickets that are “false alarms” to system
administrators. Second, in case of actual infrastructure issues, it
directs administrators towards the most probable causes for a job
slowdown and allows early elimination of factors unrelated to the
slowdown. Third, by observing slowdowns in jobs submitted for
testing purposes, administrators can resolve system issues before
they affect user jobs.

Existing related works have used detection methods such as clas-
sification and clustering to perform analysis of anomalies in cloud
computing [1, 25]. However, to analyze anomalies, these methods
rely on labeled data, e.g., data from existing incidents that associate
jobs with their slowdown causes. Such labeled training data in pro-
duction cloud systems are extremely hard to obtain and can also be
erroneous. A few approaches do consider unlabeled data, but rely
either on time-series analysis or restrict their focus to machine or
VM behavior [5, 8, 10, 15, 30, 31, 34]. In contrast, we focus on job
instances that span several hundreds of machines but only during
the lifetime of the job. As a result, existing techniques are frequently
not applicable to identify root causes of job slowdowns.

Unlike existing efforts, Griffon employs an interpretable regres-
sion model to predict job runtime, which it leverages to suggest
reasons for runtime deviations. In particular, Griffon relies on:
(1) telemetry data that we collect at various levels of abstraction in
our clusters (i.e., at the job, machine, and cluster level); and (2) the
fact that the majority of our analytics jobs are recurring, i.e., simi-
lar jobs are executed at regular intervals (e.g., every hour, day, or
week) [9]. Combining these two, Griffon uses recurring jobs as
historical data to build models for predicting the runtime of future
occurrences of these jobs, using the collected metrics. Then, based
on the relative contribution of each metric/feature to the runtime
of a job that experienced a slowdown, we emit a list of possible
causes for the slowdown, ranked by their importance.

Liqun Shao, Yiwen Zhu, Sigi Liu, et al.

400k

300k

200k

Number of running tasks

100k

Tues Wed Thurs Fri Sat Sun Mon

Day of the week

Figure 1: Running tasks in one of Microsoft’s production an-
alytics clusters, comprised of tens of thousands of machines.

Our contributions in this paper are the following:

(1) We present an end-to-end ranking system to identify the
root causes of job slowdowns without human-labeled data.

(2) We show how an interpretable regression model can be used
to reason about job slowdowns.

(3) We experimentally compare various models in terms of ac-
curacy, scalability in the model size and number of jobs, and
generalizability to jobs not seen before by the system.

(4) Griffon is deployed in our clusters and is used by our engi-
neers. Early indications show that slowdown causes gener-
ated by Griffon are closely correlated to causes validated by
domain experts. At the same time, Griffon drops the time
of investigation by orders of magnitude compared to the
existing manual process.

The rest of the paper is organized as follows. Section 2 provides
details on our production environment and the relevance of the
problem we focus on. Section 3 gives an overview of Griffon. Sec-
tion 4 describes our anomaly reasoning algorithm, while Section 5
discusses feature engineering and data collection. Section 6 pro-
vides details on Griffon’s deployment, and Section 7 presents the
results of our experimental evaluation. Section 8 discusses related
work, and Section 9 provides our concluding remarks.

2 BACKGROUND ON OUR ENVIRONMENT

In this section, we provide background on the characteristics of
our analytics clusters to give a sense of the scale of the problem we
target (Section 2.1). Then, we describe the current state of affairs in
finding the reasons for a job’s slowdown (Section 2.2).

2.1 Cluster Characteristics

At Microsoft we operate a massive data infrastructure, powering
our internal analytics processing [9]. This infrastructure consists of
several clusters, each comprised of tens of thousands of machines—
Table 1 highlights some details of our clusters’ scale. To make the
situation even more challenging, our cluster environments are also
heterogeneous, including several generations of machines.

Tens of thousands of users submit hundreds of thousands of jobs
to these clusters daily. Each job is a directed-acyclic graph (DAG) of
operators (which we term stages), and each stage consists of several

Griffon: Reasoning about Job Anomalies with Unlabeled Data in Cloud-based Platforms

Legend: M Waiting for resources Creating MM Queucing (Low/High Priority) MM Running (Low/High Priority)

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

6:24:30 AM 6:28:37 AM 6:32:44 AM 6:36:51 AM 6:40:58 AM 6:45:05 AM 6:49:12 AM 6:53:19 AM 6:57:26 AM 7:01:33 AM 7:05:40 AM 7:09:47 AM 7:13:54 AM 7:18:01 AM 7:22:08 AM
E———
——
_—
[s=————
1
L}
[}
L}
R
L
[
=
-I
1
L
L}
[}
"
T
[
-
12:05:48 AM 1211:19 AM 12:16:51 AM 12:22:22 AM 12:27:54 AM 12:33:25 AM 12:38:57 AM 12:44:28 AM 12:50:00 AM 12:55:31 AM 1:01:03 AM 1:06:34 AM 1:12:06 AM 1:17:37 AM 1:23:09 AM
-
-
-
s e—
‘s
—
-
 —
—_—
—
e
'™
-

Figure 2: The critical path of execution for two occurrences of the same job. The top one completed in 57 mins, while the bottom
one took 88 mins to complete. Each line of each occurrence corresponds to a job stage’s start/finish time. Just by looking at
this visualization tool, one might think that the top job is the errant job (due to some long stages), while in fact the bottom

one is the one diverging from the normal behavior.

l Dimension ‘ Description ‘ Size ‘
Daily Data I/O | Total bytes processed daily >1EB
Fleet Size Number of servers in the fleet | >250k

Cluster Size Number of servers per cluster | >50k

Table 1: Microsoft cluster environments.

tasks [35]. Each task gets executed in a cluster’s machine (and each
machine runs several tasks in parallel). Figure 1 depicts the number
of running tasks in one of our clusters over the course of a week. At
each moment in time there are between 200k-300k tasks running.

Given this extreme scale and complexity, job slowdowns are quite
common. Manually investigating such slowdowns, as we explain
in the following section is a painful and time-consuming effort.

2.2 Manual Job Slow-down Investigation

We now describe how Microsoft engineers used to approach job
slowdowns before Griffon got deployed in our clusters. Figure 2
shows two occurrences of the same job. The top one corresponds
to its regular execution, taking 57 mins to complete. The bottom

one experiences a slow down with a completion time of 88 mins.

The figure visualizes how long the various stages of the job take
to execute (although several stages might run in parallel, this tool
shows the ones in the critical path, as those determine the job’s
execution time).

To investigate this slowdown, an engineer will typically start by
looking at the visualization tool of Figure 2, trying to detect the
stages that seem abnormal. Note, however, that in this example, the

“regular” top occurrence is the one that seems to have longer stages.

Therefore, this tool is of limited use. Next, the engineer will have
to manually combine several other tools and system files to get

more information about the job and the system during the time this
job was executed. Given the scale of the system and the amount of
metrics collected, this process can take a considerable amount of
time to complete. Multiply this by the number of slowdowns and
one can easily see the significant opportunity in saving engineering
time and improving user experience by speeding up this process.
Note also that only a few engineers have the knowledge to perform
this manual analysis.

3 SYSTEM OVERVIEW

Griffon’s goal is to find the causes for job runtime degradations
in our big data analytics clusters. A central requirement we set
when we started designing Griffon was to not rely on labeled data,
i.e., there should be no need for existing slowdown instances as-
sociated with their causes. Acquiring labeled data in a complex
infrastructure like ours that has been operating for years is very
hard. Labeling data requires both infrastructure support and en-
gineering training. Most importantly, it would require significant
engineering time to label years-worth of historical data to get to a
meaningful training set.

Each job in our clusters is associated with a set of telemetry data
that we already collect for monitoring and debugging purposes (e.g.,
number of tasks, size of input data, load of machines the job was
executed on—see Section 5 for details), some of which contributed
to the job’s slowdown. Instead of finding a subset of the slowdown
causes (as a system that relies on labeled data would do), Griffon
ranks the causes (i.e., the features) in the order they affected the
deviation of the job’s runtime from its expected runtime, and then
suggests the top causes to the users. A formal description of the
problem and our approach for solving it is presented in Section 4.

Griffon’s architecture is depicted in Figure 3. It consists of two
pipelines: the offline training and the online prediction, which we
detail below.

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

Offline Training Pipeline

Data Historic Data

Preparation l Feature Selection

Filtered Data
l Feature Extraction
Features

Pre-processed
Data

Pre-processing

v
Metrics &
X Hyperparameters

ML Model Training

— ¥
Saved Model

Artifacts

Tracking
Server

Best Saved Model

Liqun Shao, Yiwen Zhu, Sigi Liu, et al.

Online Prediction Pipeline

Deployment
. ! User
Online Feature i .
. Scenario
Building !
! []
' @
Features |
Input:
Job ID
o for Job | Job ID
ID i
|
i
Web !
. i
Application i
Output: |
Prediction |
| Report l

Predicted
Results

Features

Model

1

i Anomaly Delta Feature Predicted

i Reasoning Contribution_ Runtime

i Algorithm § Mapping :
(Online) Causes of Job Confidence !

! Slowdown Level !

Server VM

Figure 3: System architecture.

B DataWrite

M CapacityAllocation
MaxTaskExecutionTime
InputSize

M OrganizationPriority

M IntermediateDataWritten

Figure 4: Griffon’s output for the slowdown of the job de-
picted in Figure 2.

Training The offline training process uses various metrics that we
collect at the job, machine, and cluster level to generate a model
that will be able to predict the runtime of a job given these features.
Our anomaly reasoning algorithm will use this model to rank the
features that contributed to the job’s slowdown. The training pro-
cess involves the following steps: (1) data preparation, i.e., collect
and clean the data from different sources in the cluster at regular
intervals; (2) feature engineering, i.e., extract raw features from
the collected data, create new ones, and choose the ones that we
will be using to train the model; and (3) model generation, i.e., the
creation of the model, including hyper-parameter tuning, training,
and model evaluation. The data preparation is detailed in Section 5,
whereas the model details are in Section 4.

The generated model is stored in the Tracking Server, which
tracks model runs and stores performance metrics and hyper-
parameter values (see Section 6).

Prediction The online prediction pipeline provides an API that
takes as input the ID of a job that was executed and experienced a
slowdown. This API is exposed to the users through a web appli-
cation. Then the Online Feature Building component gathers the
metrics associated with that job and provides the data to the Model
Server where the prediction model and the anomaly reasoning al-
gorithm are deployed. The output is a report with ranked reasons
for job slowdown. In addition, the system provides a confidence
level in the results (see Section 4.4).

High confidence means that users can rely on the output of the
system. On the other hand, low confidence means that the metrics
used are not sufficient to explain the job slowdown. The output of
the system is useful even in the latter case, because users can rule
out these metrics and focus their investigation in other areas.

Figure 4 shows Griffon’s output for the job slowdown of Figure 2.
In this case, Griffon suggests with high confidence that the increase
in data written by the job is the main reason for its slowdown. As
this is a user-induced reason and not a problem with the system, the
corresponding ticket can be closed without further investigation.

4 ANOMALY REASONING ALGORITHM

In this section, we describe our algorithm for reasoning about
anomalies. First, we formally define the problem (Section 4.1) and
discuss model interpretability (Section 4.2). Then we describe the
interpretable tree-based model that Griffon uses for determining
the reasons for a job’s slowdown (Section 4.3) and its associated
confidence level (Section 4.4).

Griffon: Reasoning about Job Anomalies with Unlabeled Data in Cloud-based Platforms

0.035 4

0.030

0.025

0.020 4

0.015 4

0.010 4

Probability Density

0.005

0.000

—-20 (I) 20 40 60 80 100
Runtime, in minutes

Figure 5: Example of baseline selection for a job template.

4.1 Problem Statement

We consider a set of jobs that have already been executed. Hence,
we know the runtime of each job. Through our collected metrics,
we also know the values of the features that we are interested in
(see Section 5.2 for feature selection).

The majority of the jobs submitted in our clusters are analytics
jobs! that are recurring, i.e., they are submitted at regular intervals
(typically hourly, daily, or weekly) [9]. We use the notion of job
template to refer to each of these recurring jobs. Jobs belonging to
the same template have very similar scripts with minor differences,
e.g., to access the latest data.

We also define the baseline of a job to be its “expected” runtime,
given the runtime of the other jobs that belong to the same template.
In practice, we use a set of jobs whose runtime falls between the
45th and 55th percentile for that template. A benefit of using a
percentile measure is that we avoid outliers. Therefore “slow jobs"
in our training data will not affect the baseline set. Figure 5 shows
the runtime distribution for one job template. The data we use for
baseline selection falls between the two orange lines.

For jobs that belong to templates with no previous occurrences,
we use the baseline of jobs with similar characteristics (in data
size and performed operations). Similarly, we define the baseline of
various features of a job to be their expected value, given the jobs
of the corresponding template.

Let x € R? be the p-dimensional features of a job, y € R be the
job’s runtime, and § € R its predicted runtime. Let yﬁ and x” be the
baseline of the runtime and the features, respectively. We define the
problem as follows: for each job, lacking human labeled reasons,
with features x and runtime y, predict the rank of different features
based on their influence on the deviation of § from Qﬁ .

Note that we could use the actual runtimes for both the job and
its baseline, instead of their predicted values. However, as we show
below, using the predicted runtimes allows us to decompose a job’s
runtime to the contributions of its features. This is key to identify
reasons for a job’s slowdown.

! Analytics jobs are executed using Scope, an internal SQL-like distributed query engine
that enables processing of petabytes of data per job [35].

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

4.2 Interpretable Model

Consider a machine learning model that is trained to predict the
runtime y of a job using a set of features x. That alone would be a
standard regression problem. However, in our setting we want to
use such a runtime prediction to find the features that contribute
the most to a job’s slowdown, that is, to the runtime’s deviation
from the job’s baseline y#. To this end, we need an interpretable
regression model for the job’s runtime.

We define a regression model to be interpretable, if the output
of the model can be expressed as the sum of contributions of each
of the model’s features:

K
g=c+) fe (1)
k=1

where c is a constant and fcy. is the contribution of feature x; to
the prediction.
Similarly, for a baseline job, let ;}ﬁ be the predicted runtime

based on the same model using the baseline features xf . We can
decompose the model prediction as:
K
P =c+y fel 2
k=1

where f cf is the contribution of feature x? to the prediction. If we

k
have multiple baseline jobs, the mean of Q'B and f cf across all the
baseline jobs will be used:

K
i = +chf 3)
k=1

where ﬁﬂ is the average predicted runtime based on the same model

and f cf the average contribution of feature x for all the baseline
jobs.

In our setting, we can quantify the delta feature contribution
Afcy of each feature xy to the deviation of § from ﬁﬁ as:

K K
§-3 = (foe - fef) = Y Afcy @
k=1 k=1

Being able to quantify the contributions of each feature to a job’s
slowdown allows us to rank the features in order of importance,
which is the goal of Griffon.

Note that proving that our method always finds the right reasons
for a job’s slowdown would require us to be able to determine the
exact contribution of each feature to the job’s runtime. This is
notoriously hard in complex distributed systems, comprising tens
of thousands of machines, such as our big data analytics clusters
that Griffon targets. Even if we consider the same exact job, its
behavior can vary greatly each time it gets executed, based on
various factors: the specific machines (often belonging to different
hardware generations) that are chosen by the cluster’s resource
manager to execute the job’s (possibly thousands of) tasks [9], the
machine load and possible hardware problems during execution
(e.g., network congestion, failed disks), tasks of other jobs sharing
the same machines (the “noisy neighbor” problem [14]), and so
on. Therefore, we cannot guarantee that Griffon will always find

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

the right reasons for a slowdown. Nevertheless, our experimental
results (see Section 7) show that in most practical scenarios, Griffon
does find the same reasons that were identified by expert engineers.
In parallel, we quantify the level of trust that a user should have on
a prediction by defining the confidence level for a prediction (see
Section 4.4).

Model choice We considered various model categories to predict
the runtime of a job, namely Linear Regression (LR), Random For-
est (RF), Gradient Boosted Tree (GBT), and Deep Neural Network
(DNN). Our main requirements were that the model be interpretable
and that it offers good accuracy.

A linear model can be expressed as y = o + Zle Brxy, where
a, Br. € R. It is trivial to show that it satisfies the interpretability
criterion of Eq. 1. However, as we show in Section 7.2, the accuracy
is worse than that of the other models. The DNN has acceptable
accuracy, but its interpretability is hard to establish. The GBT is
less accurate than RF. The RF model exhibited the best accuracy in
our experiments and therefore, is our model of choice in Griffon. In
the next section, we describe an appropriate tree interpreter that
reformulates a tree-based model to a linear form, so that we can
use it to rank feature contributions to job slowdowns.

Note that when training our models, we considered both a global
and per-template models. In the former case, we train a single unified
model to predict runtime using jobs of all templates together in the
training set. In the latter, we train one model per job template uti-
lizing training data drawn exclusively from jobs that belong to the
particular template. In Section 7, we compare the two approaches
in terms of accuracy, scalability, and generalizability.

4.3 Interpretable Random Forest

In a Random Forest (RF) model, for each tree, in order to make a
prediction, we traverse a path from the root of the tree to a leaf. This
path consists of a series of decisions based on the model’s features.
Assuming there are M nodes on the path, each node separates the
feature space into two, given a feature x; and a threshold #;: the
one child node corresponds to x; < fi, the other to xp > t;. In
other words, from the root node where all the samples reside, a
partition based on feature x; and threshold t; thus separates the
data samples to the two children that correspond to smaller feature
spaces.

Consider a tree j of the model and a node m € j that is parti-
tioned from its sibling based on feature x. Let 7j,, j be the mean
target value for all samples that reside on node m. Then the contri-
bution of feature x; to the final prediction due to this partitioning
is calculated as:

Amcontribj (x, k) = (gm,j - ym_lyj)lj(m, k) (5)

for 2 < m < M, where node m—1 is m’s parent. I;(m, k) equals
to 1 if the partitioning at node m—1 involves feature x. for tree j
or 0 otherwise. The number of samples that reside on each node
becomes smaller and smaller by traversing the path, as the feature
space gets smaller. The contribution of x; to the final prediction
can be calculated as the sum of all Ap,contrib; (x, k):

Liqun Shao, Yiwen Zhu, Sigi Liu, et al.

M
contribj(x, k) = Z Amcontrib;(x, k) (6)
m=2
M
= > Gmj = Gm-1,))j (m. k) (7)
m=2

The prediction of the target value from this tree is 7jas,; and can
be expressed using the sum of all features’ contributions along the
path:

M
Yj=9m,j =Y+ ng,j_gm—l,j (®)
m=2
M K
=cj+ Z Z Amcontrib; (x, k) 9)
m=2 k=1

where c; is the full sample mean. Treelnterpreter 28] combines the
results of all trees in our Random Forest by taking the sum of the
contribution from each tree. Thus, each prediction is decomposed
into a sum of contributions from the features, as follows:

1 J K 1 J

=- > c¢j+ » (=) contribj(x,k)) (10)
y b]Z:; J kZZI J ; J

where J is the number of trees, c; is the full sample mean for each
j*h tree, and K is the number of features involved.

1
Refers to Eq. 10, using ¢ = 7 Z?zl cj for the average runtime

1
across the whole training set and fc = - 2{:1 contribj(x, k) for

the contribution of feature xj to the predicted runtime, we get
to Eq. 1, which shows that our Random Forest model meets the
interpretability criterion. Therefore, it can be used to detect reasons
for job slowdowns in Griffon.

4.4 Confidence Level

The confidence level shows how reliable is the prediction made by
our model for the contribution of each feature to a job’s slowdown.
We consider two factors that affect our model confidence: (1) the
relative error in predicting the runtime of the job (by comparing
the model prediction with the actual runtime of the job);? (2) the
confidence intervals estimated by the random forest [20].

The relative error is defined as following:

|predicted_runtime — actual_runtime|
error_rate =

(11)

actual_runtime

We use two thresholds, t; and t2, for the relative error, as ex-
plained below.

The confidence interval of the random forest method is es-
timated based on the prediction of each decision tree, y;,Vj €
{1,2,3,---,J}. We take the pth and (100 — p)th percentile of the
distribution of y;. If the final prediction y is within this range, we

2We also considered taking into account the prediction errors for the baseline jobs in
the definition of confidence. However, we decided to not include them, as we observed
that the prediction for baseline jobs is very accurate (with a Mean Absolute Ratio Error
of 2.2%). This is due to the fact that a large part of the baseline jobs are included in
the training set of the prediction models. Therefore, it is expected that predictions
especially for these jobs to be very accurate.

Griffon: Reasoning about Job Anomalies with Unlabeled Data in Cloud-based Platforms

consider the prediction to have low variance, since the predictions
from all trees are consistent.
We define three confidence levels as follows:

High The prediction y is within the range of p™ and (100 —
p)th percentile of y;, and the relative error is lower than
threshold t;

Medium The relative error is between t; and ty;

Low Other scenarios.

Parameters p, #; and fp are tuned as hyper parameters using
validation data. High confidence means our model can reliably
predict the slowdown reasons. Low confidence means the reasons
are likely to fall outside the metrics we used. In the API, the user
will be presented the level of confidence. A low confidence indicates
more investigation will be needed. However, even in this case, as
the model has examined many metrics, the DRI can focus their
investigation in other areas.

5 DATA PREPARATION AND FEATURE
ENGINEERING

5.1 Data Preparation

In our clusters, we keep hundreds of metrics for monitoring, report-
ing, and troubleshooting purposes, which result in petabytes of logs
and metrics per day. Moreover, the features we are interested in
are scattered both physically (in different files across our hundreds
of thousands of machines) and logically (we need to process and
combine different files to generate features). To perform the re-
quired data preparation and extract features out of the data, we use
Scope [35], which provides a SQL-like language and can support
our scale.

Feature extraction occurs both during the offline training phase
and the online prediction (see Figure 3). Given that data freshness
is not an issue for training (we do not need data of the current
day), we use data that becomes available daily in our clusters and
includes years-worth of historical data. For prediction, we need to
collect features only for a single job (or a group of jobs), but latest
data is required, as a user might want to debug their job that just
finished. Thus, we use different data sources that allow us to access
data within minutes from when they are produced (but that do not
allow access to historical data, so cannot be used for training).

5.2 Feature Engineering and Selection

In collaboration with domain experts, we selected a subset of the
features we collect to train our models in Griffon, based on what
could potentially impact the runtime of a job. As already discussed,
a job can experience a slowdown compared to its previous oc-
currences, due to either user-induced or system-induced reasons.
User-induced reasons can be captured by metrics collected at the
job-level, whereas metrics related to system-induced reasons can
be split to either machine-level or cluster-level, as detailed below.

Job-level These are metrics collected for each job. Griffon cur-
rently uses approximately 15 such features, including data
read within and across racks, data written, data skewness
metrics, job priority, execution DAG features (e.g., number
of stages and tasks), and user information.

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

Machine-level These are metrics collected at the machines
used during the execution of a job, such as CPU load, al-
location delays, I/O reads/writes. Due to the challenges of
collecting such features and correlating them with each job,
in production Griffon currently uses only a few of them, but
we are working on adding more.

Cluster-level These relate to the cluster environment when
a job was executed. Examples of the ones we use are job
queuing times, number of failed and revoked vertices, and
execution environment version.

Challenges One of the biggest challenges with feature engineering
is the correlation between features, which often results in high
variance in the model prediction. While certain highly correlated
features (> 0.95) were removed, feature data was preserved to the
greatest extent, because correlated features may indicate different
problems with a job. For instance, input size and input size per
task have a correlation of 0.9. However, the former might indicate
that the slowness reason was more data, whereas the latter might
indicate data skew. Fortunately, random forest models, as the one
Griffon relies on, are by design robust to correlated features thanks
to the way they are constructed. First, each tree of the forest is
developed based on a small subset of the overall features. This
automatically reduces the likelihood of having correlated features
within the same tree. Second, once a set of features is picked for a
tree, this tree is constructed using a decision tree learner algorithm.
This algorithm typically works top-down, by choosing a feature
at each step that “best” splits the dataset. Given that correlated
features would split the dataset in a similar way, once a feature is
picked, its correlated features are less likely to be picked.

6 TRACKING AND DEPLOYMENT

Model Tracking Machine learning is an iterative process, and
reproducibility and versioning are crucial to productionalize ma-
chine learning models. To track model history in Griffon, we use
MLflow [24] in our Tracking Server (see Figure 3), which is de-
ployed as an Azure Linux VM. For each model, we track logging
parameters, code versions, metrics, and model artifacts.

Model Serving In order to make available to end users a model
that we trained and stored in the Tracking Server, we use one of
MLflow’s “flavors™ to build an Azure Machine Learning image out
of that model. Then we deploy this image as an Azure Container
Instance, using the Azure ML Service’s [23] in the Model Server
(see Figure 3).

The models that are deployed in the Model Server are made
available to end users through a web application, which exposes a
scoring API. The web application runs on a flask web server [13].

Model Monitoring It is critical to monitor the model performance
and retrain models if they go stale. To ensure this, we have pro-
visioned our pipeline to allow single click retraining. Decoupling
data sources from the training pipeline helps to easily refresh our
data, retrain, and deploy the model with minimal impact to end
users.

3 An MLflow flavor is a convention that deployment tools use to understand the model.

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

0.175 1 Template 1
Template 2
01501 Template 3
> Template 4
= 0125
[Template 5
a
>, 0.100
k=
=
& 0075
Qo
o
2
A 0.050 -
0.025 -
0.000 . : : : : : :
0 10 20 30 40 50 60 70 80

Runtime, in minutes

Figure 6: Runtime distribution for the jobs of different tem-
plates.

7 EVALUATION

We now present our experimental evaluation for Griffon. In Sec-
tion 7.1 we discuss Griffon’s effectiveness in finding the actual
causes of job slowdowns. In Section 7.2 we compare different ma-
chine learning models for training, whereas Section 7.3 studies
the scalability of different models as the number of job templates
increases. In Section 7.4 we compare the model performance when
training our model with an increasing number of jobs per template.
In Section 7.5 we show early evidence that Griffon can be applicable
in different domains.

We carried out our experiments on Windows using Python 3.7.
We used a machine with eight 2.90 GHz processors and 64 GB RAM
for the experiments in Sections 7.1 and 7.2, and a high-memory
Virtual Machine (VM) for the scalability experiments of Section 7.3.

The job and feature data is obtained from the Microsoft pro-
duction clusters, as described in Section 5.1. We use historical job
data with different job templates, as described in Section 5.2, over a
period of three months.

7.1 Validation Results

Working with domain experts at Microsoft, we picked a set of
job templates that are considered important for our production
clusters (SLO critical), and trained Griffon based on those. Note
that the runtime distribution of the jobs of different templates
varies significantly, which poses extra challenges for the runtime
prediction based on machine learning models. Figure 6 shows the
runtime distributions for five of the templates that we used.

From these templates, we then randomly picked seven jobs that
experienced slowdowns (five from these templates and two from
different templates), and compared the causes for slowdowns that
were identified by the experts with those suggested by Griffon. For
these jobs, Table 2 shows the reasons identified by the experts and
Griffon (with their ranking), Griffon’s confidence level, and if the
job belonged to one of the templates used for training the model
(in-t). We use Ry to denote the reason that Griffon predicted for
a job’s slowdown with rank x. For readability, we show only the

Liqun Shao, Yiwen Zhu, Sigi Liu, et al.

reasons that were common between Griffon and experts and use
R, variables for the rest.

The results in Table 2 show that the reasons generated by Griffon
are highly correlated with the reasons manually validated by our
domain expert engineers. For job 1, the top predicted reason is the
same as the manually validated reason with high confidence. For
jobs 2 and 4, our system predicted the validated reason in the top 5
slowdown reasons, which is consistent with the confidence level
medium. For job 3, our model does not identify the same reasons
as the experts, also consistent with low confidence. Adding more
features as planned (e.g., additional machine-level features) will
allow us to improve the model’s prediction capability and minimize
such low-confidence cases. Jobs 6, 7 and 8 show the robustness
of our model: although Griffon was not trained using these job
templates, it can still find the correct reasons with high confidence
by using knowledge gathered by other similar job templates. Impor-
tantly, we observed no misleading predictions, i.e., there were no
cases where Griffon predicted wrong slowdown reasons with high
confidence. This means that even predictions with low confidence,
which are usually due to large deviations between the predicted
and the actual runtimes of a job, can be useful in ruling out the
currently used features from the investigation.

7.2 Picking the Right Model

As discussed in Section 4, we experimented with various categories
of models for the job runtime prediction, including Linear Regres-
sion (LR), Random Forest (RF), Gradient Boosted Trees (GBT) and
Deep Neural Networks (DNN) with two hidden layers without hy-
per parameter tuning. For each of these categories, we consider
both a global and per-template models.

We use Mean Absolute Ratio Error (MARE) as a metric to eval-
uate each model’s accuracy. As the runtime distribution varies
significantly across different job templates, we normalize the es-
timation error by the baseline runtime of each job template (see
Section 4.1), calculating the average runtime per job template in
the training data:

Ytest; — gtesti

1 n
MARE = Z | | (12)

i=1 ytesti

where n is the number of jobs in the testing data, ytest;, Jtest;» and

yﬁ:st,— are the predicted, actual, and baseline runtime from testing
data, respectively.

Table 3 shows the results of MARE scores for the four model
categories. Random forest performs best in terms of accuracy, both
for the global and per-template model. Given its high accuracy and
interpretability (as discussed in Section 4.2), RF is the approach we
use in our production Griffon deployments. Moreover, we observe
that the global model tracks closely the performance of the per-
template model, while allowing to reason about jobs that we have
not sufficiently encountered previously. In the next section, we
demonstrate that the global model scales much better than the per-
template models with an increasing number of templates. Hence,
we use the global model in production.

Griffon: Reasoning about Job Anomalies with Unlabeled Data in Cloud-based Platfor

ms

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

Table 2: Result subset validated by engineers.

Job Griffon’s Predicted List of Engineer Validated Confidence in-t
Ranked Reasons Reason Level
1 [Input Size, Rz, R3] Input size High Yes
2 [R1, R, R3, Revocation, Rs] Revocation Medium Yes
3 [R1, Ry, R3, Ry, Rs, Rg] Framework issue Low Yes
4 [R1, Ro, R3, R4, High compute hours] High compute hours Medium Yes
5 [Time skew, Rz, R3, R4] Time skew High Yes
6 [High compute hours, Ry, R3] High compute hours High No
7 [Ry, Usable machine count, R3, Ry] Usable machine count High No
8 [High compute hours, Ry] High compute hours High No
10° y mmm global M5 —— global TT [6000 0.150 - 0.150
B single MS - —— single TT | 5000 V\/ L 0.125
1o | 0.125 -
—_ 4000 L —_
g e L 0.100 - 0.100 o
= 103 4 - L < 2
o 10 3000 £ 0075 (0075 ¢
n
2000
102 | 0.050 A I I I - 0.050
- 1000 0.025 4 M global MARE —— global SIT | 0.025
) Lo m single MARE —— single SIT
10° 4 0.000 1 =p—=p =y = mp mp omomgoms 000

1 2 4 8 16 32 64128240
Number of Templates

(a@)MSand TT

1 2 4 8 16 32 64128240
Number of Templates

(b) MARE and SIT

Figure 7: Scalability of global vs. per-template models

Table 3: MARE scores for runtime predictions by LR, RF,
GBT, and DNN with global and per-template models (lower
is better).

LR RF GBT DNN

Per-Template 0.186 0.116 0.124 0.146
Model

Global Model 0.235 0.121 0.277 0.353

7.3 Scalability of Global vs. Per-template
Models

We assess the scalability of the global and per-template models by
training them with an increasing number of job templates, as shown
in Figure 7. We added job templates incrementally to the training
set and repeated each experiment 10 times. We use 5-fold cross
validation for hyper parameter tuning with random grid search.
With more job templates, the training time (TT) and the model
size (MS) for both global and per-template models increased. We
observe that the MARE for global model is better than per-template

0.6 400
—— MARE —— Training Time
0.5 1
300 &
0.4 o
2 £
<S(0.3 200 .g
c
0.2 1 ©
- 100
0.1 A
0.0 T T T —-0
1 10 100 1000 10000

Number of Observations per Job Template

Figure 8: Model performance (in terms of MARE and train-

ing time) with varying training sample sizes.

models when training with a larger number of job templates. This
can be attributed for the most part to the larger sample size for
the global model, as a result of the unification of the training set.
In contrast, when training the per-template models with 240 job

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

Table 4: Contribution of each feature to the high gas mileage
of American-made Ford Granada compared to other Ameri-
can cars.

Feature Ford Mean Baseline Delta FC
Granada (in mpg)

Year 81 76 75 2.07
Horsepower 88 104 106 1.07
Weight 3060 2978 3224 0.7
Displacement 200 194 221 0.04
Acceleration 17.1 15.5 16.1 -0.19
Cylinders 6 5.5 5.8 -1.4

templates, many templates only have a small number of samples
and the MARE is high. We also report the prediction time on a single
job, i.e. the single inference time (SIT). The SIT didn’t increase with
the model size, which is important to deliver a real-time experience
to Griffon’s users.

Overall, the above experiments demonstrate the scalability of
the global model for cloud-scale training. At the other extreme, a
template-specific model suffers from lack of training data and the
ability to generalize to new (unseen) templates. As part of our future
work, we plan to cluster job templates using unsupervised machine
learning methods and train “semi-global” models that take into
account multiple job templates that share similar characteristics to
strike a balance between the two approaches.

7.4 Varying Size of Training Data

In order to determine the impact of the number of jobs per template
on our model performance, we retrain our global model assuming
that we only have a limited number of observations for each job
template. In particular, we train our model with n observations
per job template, where n € {1, 10, 100, 1000, 10000}. The MARE
and the training time are reported in Figure 8. We used 22 job
templates and, for each run of the experiment, a random sample of
n observations were selected as the training data. When n > 10, the
MARE dropped below 20%, and the prediction accuracy continues
to improve for larger sample sizes, although less significantly. Note
that the training time increased exponentially to the sample size.

7.5 Model Generalization

The baseline approach for interpretation described in this paper
allows job runtime prediction results to be interpreted and com-
pared to a set of similar jobs. Data in the real world frequently looks
similar to our dataset: Gaussian mixture distributions of a target
variable are commonly encountered.

This section presents an example of employing Griffon on an-
other dataset in another field. A classic dataset from statistics is the
“Auto” dataset of gas mileage, which is represented well by a linear
superposition of three Gaussians by region of origin: American,
European and Japanese. Manufacturers might be interested in un-
derstanding what factors drive higher gas mileage in American cars
relative to other American cars. Here gas mileage is the equivalent
to job runtime.

Liqun Shao, Yiwen Zhu, Sigi Liu, et al.

Table 4 summarizes the delta contribution of each feature (FC)
to the high gas mileage of American-made Ford Granada compared
to other American cars based on our anomaly reasoning algorithm,
described in Section 4. We observe that “Year” and “Horsepower"
contribute the most to high gas mileage, while “Weight" and “Dis-
placement" make marginal contributions. “Acceleration” and “Cylin-
ders" contribute to low gas mileage.

8 RELATED WORK

Anomaly detection [4] refers to the problem of finding patterns in
data that do not conform to expected behavior. In contrast, anomaly
reasoning, which is the purpose of this work, encompasses recog-
nizing, interpreting, and reacting to unfamiliar objects or familiar
objects appearing in unexpected contexts.

Anomaly reasoning is particularly important for large-scale sys-
tems, as it is not possible to manually track all machines and ap-
plications at scale. Below we discuss the main categories of works
that are related to Griffon.

Interpretable models Building an effective anomaly system re-
quires both interpretable models and reasoning algorithms. Several
efforts have focused on interpreting the results of machine learning
models. Their goal is to provide proper explanation about how or
why the algorithm produces a specific prediction and to identify
interactions between features and estimation results [11, 16, 29].
In Griffon, we use an interpretable random forest model to rank a
job’s slowdown reasons given the contribution of various features.
Similar methods to interpret a tree model can be generalized to
boosting algorithms [33].

Anomaly reasoning with labeled data Existing related works
have used detection methods such as classification and clustering
to perform analysis of anomalies in cloud computing. A detailed
survey of those work can be seen in [1, 25]. For example, a fault
detection and isolation system based on k-nearest neighbor has
been proposed to rank machines in order of their anomalous be-
havior [3]. Other works have used a hybrid of SVM classification
and k-medroids clustering to detect intrusions of the network [6].
An anomaly-based clustering method has also been suggested to
detect failures in general production systems [12].

The downside of these approaches is that they require labeled
data. Such data is hard to acquire in many settings, including ours.
In the context of an infrastructure that has been operating for
many years, labeling data requires infrastructure support and, most
importantly, training a large number of engineers to add labels
when resolving anomalies. Moreover, it is almost impossible to
perform labeling for the years-worth of historical data.

Anomaly reasoning with unlabeled data A few approaches
have considered unlabeled data, but focus either on time-series
analysis or are restricted to machine or VM metrics [5, 8, 10, 15,
30, 31, 34]. For instance, an anomaly detection and reasoning sys-
tem has been proposed to detect security problems during VM
Live Migration [34]. This work is based on time series data related
to resource utilization statistics, e.g., file read/write, system call,
CPU usage. PREdictive Performance Anomaly pREvention (PRE-
PARE) [31] predicts performance anomalies using a 2-dependent
Markov model and a classifier based on system-level metrics, such

Griffon: Reasoning about Job Anomalies with Unlabeled Data in Cloud-based Platforms

as CPU, memory, network traffic. Another related work developed
an Unsupervised Behavior Learning (UBL) system to capture the
anomalies and infer their causes [10]. To circumvent the need for
labeling data, Self Organizing Map (SOM) has been suggested to
model the system behavior, and deviations are used for the anomaly
detection [18].

Similar to Griffon, those methods estimate the contribution of
each attribute to the anomaly and provides information about
which system-level metrics to look into. However, they require
time-dependent series of data to capture the anomalies. In contrast,
we focus on job instances that span several hundreds of machines
but only during the lifetime of the job. Thus, our features are nei-
ther time series nor machine-centric (although we do employ some
system-level data to examine the system’s impact on a particular
job’s execution).

Other works in anomaly reasoning aim to pinpoint the faulty
components of a system by tracing the system’s activities [2, 21, 22,
26]. The methods rely more on the estimation of the time series’
change point and the propagation pattern or the execution graph.
However, those methods require significant domain knowledge and
are hard to generalize.

To the best of our knowledge, Griffon is the first anomaly rea-
soning system to be deployed at this scale in production to identify
the causes of job slowdowns in analytics clusters. Unlike existing
approaches, it follows a job-centric approach and does not rely
neither on labeled data nor on time series analysis.

Weak supervision Acknowledging the difficulty of hand-labeling
data but also the importance of having labeled data, weak super-
vision attempts to strike a balance between supervised and unsu-
pervised learning. Recent systems, such as Snorkel [27], bypass
the problem of hand-labeling data by instead providing labeling
functions, which label data programmatically. It would be inter-
esting to see how a system like Griffon can use such techniques
to encode knowledge of domain expert engineers as functions to
further improve its anomaly detection capabilities.

9 CONCLUSION & FUTURE WORK

We presented Griffon, a system that we built and have deployed
in production to detect the causes of job slowdowns in Microsoft’s
big data analytics clusters, consisting of hundreds of thousands of
machines. Griffon does not require labeled data to perform anomaly
reasoning. Instead, it uses an interpretable machine learning model
to predict the runtime of a job that has experienced a slowdown.
Using this model, we can determine the contribution of each feature
in the deviation of the job’s runtime compared to previous normal
executions of the job (or of jobs with similar characteristics).

Our evaluation results using historical incidents showed that
Griffon discovers the same slowdown reasons that were detected by
domain expert engineers. We also compared various categories of
models and showed that a global (i.e., trained over all jobs) random
forest model strikes a good balance between accuracy, training time,
model size, and generalization capabilities.

Towards data-driven decisions Griffon is part of our bigger vi-
sion towards employing data-driven decisions to optimize various

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

aspects of our systems. Taking Griffon’s capabilities a step fur-
ther, knowing the job slowdown reasons allows us to automatically
tune the system to avoid such slowdowns in the future. This may
include both system parameters, such as dynamically setting the
number of running tasks per machine, and application parameters,
such as the degree of parallelism for each stage of a job. Moreover,
such parameter autotuning does not have to be constrained to job
slowdowns—we can use it to automatically and dynamically set
various parameters in our systems to improve their performance.

Furthermore, although Griffon currently targets our internal
analytics clusters, the above techniques can be applied to other
environments, such as various public Azure services, including the
Azure SQL and HDInsight offerings. Similar data-driven decisions
are increasingly applied in various companies [19, 32].

ACKNOWLEDGMENTS

We would like to thank Microsoft ’s Big Data analytics team, and in
particular Sarvesh Sakalanaga, Vamsi Kuppa, Sankar Nemani, David
Olix, and Anusha Chavva, for their invaluable help in bringing
Griffon to production. We also thank Anupam Upadhyay for many
stimulating discussions that helped shape this effort, as well as
Panagiotis Garefalakis for his initial work on visualizing cluster
metrics. Finally, we thank Mathias Lécuyer, our shepherd, and the
anonymous reviewers for their insightful feedback and suggestions.

REFERENCES

[1] Shikha Agrawal and Jitendra Agrawal. 2015. Survey on anomaly detection using

data mining techniques. Procedia Computer Science 60 (2015), 708-713.

Marcos K Aguilera, Jeffrey C Mogul, Janet L Wiener, Patrick Reynolds, and

Athicha Muthitacharoen. 2003. Performance debugging for distributed systems

of black boxes. In ACM SIGOPS Operating Systems Review, Vol. 37. ACM, 74-89.

[3] Kanishka Bhaduri, Kamalika Das, and Bryan L Matthews. 2011. Detecting abnor-
mal machine characteristics in cloud infrastructures. In 2011 IEEE 11th Interna-
tional Conference on Data Mining Workshops. IEEE, 137-144.

[4] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM Comput. Surv. 41 (2009), 15:1-15:58.

[5] Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie Symons, and Evgenia
Smirni. 2009. Automated anomaly detection and performance modeling of enter-
prise applications. ACM Transactions on Computer Systems (TOCS) 27, 3 (2009),
6.

[2

[6] Roshan Chitrakar and Chuanhe Huang. 2012. Anomaly based intrusion detection
using hybrid learning approach of combining k-medoids clustering and naive
bayes classification. In 2012 8th International Conference on Wireless Communica-
tions, Networking and Mobile Computing. IEEE, 1-5.

[7] Andrew Chung, Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Greg
Ganger, and Panagiotis Garefalakis. 2019. Peering through the dark: an Owl’s
view of inter-job dependencies and jobs’ impact in shared clusters. In SIGMOD.

[8] Ira Cohen, Jeffrey S Chase, Moises Goldszmidt, Terence Kelly, and Julie Symons.

2004. Correlating Instrumentation Data to System States: A Building Block for

Automated Diagnosis and Control.. In OSDI, Vol. 4. 16-16.

Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao, Giovanni M.

Fumarola, Botong Huang, Kishore Chaliparambil, Arun Suresh, Young Chen,

Solom Heddaya, Roni Burd, Sarvesh Sakalanaga, Chris Douglas, Bill Ramsey, and

Raghu Ramakrishnan. 2019. Hydra: a federated resource manager for data-center

scale analytics. In NSDIL

[10] Daniel Joseph Dean, Hiep Nguyen, and Xiaohui Gu. 2012. Ubl: Unsupervised

behavior learning for predicting performance anomalies in virtualized cloud

systems. In Proceedings of the 9th international conference on Autonomic computing.

ACM, 191-200.

Filip Karlo Dosilovi¢, Mario Br¢i¢, and Nikica Hlupi¢. 2018. Explainable artificial

intelligence: A survey. In 2018 41st International convention on information and

communication technology, electronics and microelectronics (MIPRO). IEEE, 0210-

0215.

Songyun Duan, Shivnath Babu, and Kamesh Munagala. 2009. Fa: A system for

automating failure diagnosis. In 2009 IEEE 25th International Conference on Data

Engineering. IEEE, 1012-1023.

Flask. 2019. Flask - A Python Microframework.

[

—_
o

[12

(13

SoCC ’19, November 20-23, 2019, Santa Cruz, CA, USA

[14

[15]

[16]

[17

[19

[20]

[21]

[22]

[23]

[24]
[25]

Panagiotis Garefalakis, Konstantinos Karanasos, Peter R Pietzuch, Arun Suresh,
and Sriram Rao. 2018. Medea: scheduling of long running applications in shared
production clusters. EuroSys (2018).

Xiaohui Gu and Haixun Wang. 2009. Online anomaly prediction for robust cluster
systems. In 2009 IEEE 25th International Conference on Data Engineering. IEEE,
1000-1011.

David Gunning. 2017. Explainable artificial intelligence (xai). Defense Advanced
Research Projects Agency (DARPA), nd Web (2017).

Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur Narayana-
murthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Ifiigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. 2016. Morpheus: Towards Auto-
mated SLOs for Enterprise Clusters. In OSDL

Teuvo Kohonen. 2012. Self-organizing maps. Vol. 30. Springer Science & Business
Media.

linkedinds 2019. An Introduction to Al at LinkedIn. https://engineering.linkedin.
com/blog/2018/10/an-introduction-to-ai-at-linkedin.

Nicolai Meinshausen. 2006. Quantile Regression Forests. Journal of Machine
Learning Research 7 (2006), 983-999.

Haibo Mi, Huaimin Wang, Gang Yin, Hua Cai, Qi Zhou, and Tingtao Sun. 2012.
Performance problems diagnosis in cloud computing systems by mining request
trace logs. In 2012 IEEE Network Operations and Management Symposium. IEEE,
893-899.

Haibo Mi, Huaimin Wang, Gang Yin, Hua Cai, Qi Zhou, Tingtao Sun, and Yangfan
Zhou. 2011. Magnifier: Online detection of performance problems in large-
scale cloud computing systems. In 2011 IEEE International Conference on Services
Computing. IEEE, 418-425.

Microsoft. 2019. Azure Machine Learning Service - Build, train, and deploy models
from the cloud to the edge.

MLflow. 2019. MLflow - A platform for machine learning lifecycle.

Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel, and
Muttukrishnan Rajarajan. 2013. A survey of intrusion detection techniques in

[26

[35

Liqun Shao, Yiwen Zhu, Sigi Liu, et al.

cloud. Journal of network and computer applications 36, 1 (2013), 42-57.

Hiep Nguyen, Yongmin Tan, and Xiaohui Gu. 2011. Pal: Propagation-aware
anomaly localization for cloud hosted distributed applications. In Managing
Large-scale Systems via the Analysis of System Logs and the Application of Machine
Learning Techniques. ACM, 1.

Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan Fries, Sen
Whu, and Christopher Ré. 2017. Snorkel: Rapid Training Data Creation with Weak
Supervision. PVLDB (2017).

Ando Saabas. 2018. Treelnterpreter.

Wojciech Samek, Thomas Wiegand, and Klaus-Robert Miiller. 2017. Explainable
artificial intelligence: Understanding, visualizing and interpreting deep learning
models. arXiv preprint arXiv:1708.08296 (2017).

Yongmin Tan, Xiaohui Gu, and Haixun Wang. 2010. Adaptive system anomaly
prediction for large-scale hosting infrastructures. In Proceedings of the 29th ACM
SIGACT-SIGOPS symposium on Principles of distributed computing. ACM, 173-182.

Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venkatramani,
and Deepak Rajan. 2012. Prepare: Predictive performance anomaly prevention
for virtualized cloud systems. In 2012 IEEE 32nd International Conference on
Distributed Computing Systems. IEEE, 285-294.

uberds 2019. How Uber Organizes Around Machine Learning. https://urlzs.com/
J4Rk9.

Soeren H Welling, Hanne HF Refsgaard, Per B Brockhoff, and Line H Clemmensen.
2016. Forest floor visualizations of random forests. arXiv preprint arXiv:1605.09196
(2016).

Qiannan Zhang, Yafei Wu, Tian Huang, and Yongxin Zhu. 2013. An intelli-
gent anomaly detection and reasoning scheme for VM live migration via cloud
data mining. In 2013 IEEE 25th International Conference on Tools with Artificial
Intelligence. IEEE, 412-419.

Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Ake Larson, Ronnie Chaiken,
and Darren Shakib. 2012. SCOPE: parallel databases meet MapReduce. VLDB J.
21,5 (2012), 611-636.

https://engineering.linkedin.com/blog/2018/10/an-introduction-to-ai-at-linkedin
https://engineering.linkedin.com/blog/2018/10/an-introduction-to-ai-at-linkedin
https://urlzs.com/J4Rk9
https://urlzs.com/J4Rk9

	Abstract
	1 Introduction
	2 Background on our Environment
	2.1 Cluster Characteristics
	2.2 Manual Job Slow-down Investigation

	3 System Overview
	4 Anomaly Reasoning Algorithm
	4.1 Problem Statement
	4.2 Interpretable Model
	4.3 Interpretable Random Forest
	4.4 Confidence Level

	5 Data Preparation and Feature Engineering
	5.1 Data Preparation
	5.2 Feature Engineering and Selection

	6 Tracking and Deployment
	7 Evaluation
	7.1 Validation Results
	7.2 Picking the Right Model
	7.3 Scalability of Global vs. Per-template Models
	7.4 Varying Size of Training Data
	7.5 Model Generalization

	8 Related Work
	9 Conclusion & Future Work
	Acknowledgments
	References

