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ABSTRACT

It is often critical for prediction models to be robust to distributional

shifts between training and testing data. From a causal perspective,

the challenge is to distinguish the stable causal relationships from

the unstable spurious correlations across shifts.We describe a causal
transfer random forest (CTRF) that combines existing training data

with a small amount of data from a randomized experiment to train

a model which is robust to the feature shifts and therefore transfers

to a new targeting distribution. Theoretically, we justify the ro-

bustness of the approach against feature shifts with the knowledge

from causal learning. Empirically, we evaluate the CTRF using both

synthetic data experiments and real-world experiments in the Bing

Ads platform, including a click prediction task and in the context of

an end-to-end counterfactual optimization system. The proposed

CTRF produces robust predictions and outperforms most baseline

methods compared in the presence of feature shifts.
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1 INTRODUCTION

A central assumption of the majority of machine learning algo-

rithms is that training and testing data is collected independently
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and identically from an underlying distribution. Contrary to this

assumption, in many scenarios training data is collected under

different conditions than the deployed environment [29]. For exam-

ple, online services commonly use counterfactual models of user

behavior to evaluate system and policy changes prior to online

deployment [3]. In these scenarios, models train on interaction data

gathered from previously deployed versions of the system, yet must

make predictions in the context of the new system (prior to deploy-

ment). Other domains with distribution or covariate shifts include

text and image classification [9, 34], information extraction [4], as

well as prediction and now-casting [20].

Conventional machine learning algorithms exploit all correla-

tions to predict a target value. Many of these correlations, however,

can shift when parts of the environment are unrelated to our task

change. Viewed from a causal perspective, the challenge is to dis-

tinguish causal relationships from unstable spurious correlations,

as well as to disentangle the influence of co-varying features with

the target value [1, 28, 30]. For example, in the counterfactual click

prediction task we may wish to predict whether a user would have

clicked on a link if we change the page layout (Figure 1). Training a

prediction model based on current click logged data will find many

factors related to an observation of a click (e.g., display choices such
as location and formatting, as well as factors related to ad quality

and relevance). Yet, these factors are often entangled and co-vary

due to platform policy, such as giving higher quality links more

visual prominence through their location and formatting. In other

cases, correlations may be unstable across environments as data

generating mechanisms or the platform policy changes. A click

prediction model based on this data may be unable to determine

how much the likelihood of a click is due to relevant contextual

features versus environmental factors. As long as the correlations

among these features do not change, the prediction model will

perform well. However, when the system is changed—perhaps a

new page layout algorithm reassigns prominence or locations for

links —the prediction model will fail to generalize. Moreover, such

drastic system changes are very common in practice, which will be

discussed in the real-application section.

One way to disentangle causal relationships from merely cor-

relational ones is through experimentation [8, 17]. For example,

if we randomize the location of links on a page it will break the

spurious correlations between page location and all other factors.

This allows us to determine the true influence or the “causal effect"

of page location on click likelihood. Unfortunately, randomizing

all important aspects of a system and policy is often prohibitively

https://doi.org/10.1145/3437963.3441722
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Figure 1: Challenges of robust prediction in a click predic-

tion task:While click likelihood depends on display choices

and ad quality, those two factors will co-vary in a way that

changes as platform policy shifts. Other correlations (e.g,.

business attributes) are unstable across environments.

expensive, as employing the random platform policy in the sys-

tem generally induces revenue loss compared with the a well-tuned

production system. Gathering the scale of randomization data neces-

sary for building a good prediction model is frequently not possible.

Therefore, it is desirable to efficiently combine the relatively small

scale randomized data and the large scale logged data for robust

predictions after the policy changes.

In this paper, motivated by an offline evaluation application in

the sponsored search engine, we describe a causal transfer random
forest (CTRF). The proposed CTRF combines existing large-scale

training data from past logs (L-data) with a small amount of data

from a randomized experiment (R-data) to better learn the causal

relationships for robust predictions. It uses a two-stage learning

approach. First, we learn the CTRF tree structure from the R-data.

This allows us to learn a decision structure that disentangles all the

relevant randomized factors. Second, we calibrate each node (such

as calculating the click probability) of the CTRF with both the L-

data and theR-data. The calibration step allows us to achieve the

high-precision predictions that are possible with large-scale data.

Further, we complement our intuitions with theoretical foundations,

showing that the model structure training on randomized data

should provide a robust prediction across covariate shifts.

Our contributions in this paper are 3-fold. Firstly, we introduce

a new method for building robust prediction models that combine

large-scale L-data with a small amount of R-data. Secondly, we

provide a theoretical interpretation of the proposed method and

its improved performance from the causal reasoning and invariant

learning perspective. Lastly, we provide an empirical evaluation of

the robustness improvements of this algorithm in both synthetic ex-

periments and multiple experiments in a real-world, large-scale on-

line system at Bing Ads. The Supplementary Material including re-

producible code, experiment details and theorem proofs is provided

in the GitHub repository :https://github.com/zengshx777/CTRF.

2 RELATEDWORK

2.1 Off-policy Learning in Online Systems

This work is motivated from the task of performing offline policy

evaluation in the online system [6, 21]. Occasionally, we would

like to know the outcome of performing an unexplored tuning

in the current system, which is also known as the counterfactual

outcome. For example, we are interested in the change in users

click probability after modifying the auction mechanism in the

online ads system [32]. Sometimes, the modifications can be drastic

from the previous policy. Instead of running the costly online A/B

testing [35], some offline methods are frequently used to predict

the counterfactual outcomes based on the existing logged data from

the current system. One novel solution is to build the model-based

simulator. Specifically, we build the model simulating the users

behaviour and measure the metrics change after implementing the

proposed policy changes in the simulator [3]. We usually train the

user-simulator model on the L-data generating under previous

platform policy. As a result, the covariate shift problem happens if

the proposed change is drastic.

2.2 Transfer Learning and Domain Adaptation

The discrepancy across training (large scale logged data e.g.) and

testing (data after policy change e.g.) distribution is a long-standing

problem in the machine learning community. Classic supervised

learning might suffer from the generalization problem when the

training data has a different distribution with the data for testing,

which is also referred to the covariate (or distribution or dataset)

shift problem, or the domain adaptation task [5, 9, 29]. Specifi-

cally, the model learned on a training data (source domain) is not

necessarily minimizing the loss on the testing distribution (target

domain). This hampers the ability of the model to transfer from

one distribution or domain to another one.

Some researchers propose to correct for the difference through

sample reweighting [15, 25, 31]. Ideally, we wish to weight each unit

in the training set so that we can learn a model minimizing the loss

averaged on the testing distribution after reweighting. However,

this strand of approaches requires the knowledge of the testing

distribution to estimate the density and is likely to fail when the

testing distribution deviates a lot from the training distribution,

with extreme values in the density ratio. Another type of methods

is feature based. Some approaches aim at learning the features

or representations that have predictive power while remaining

a similar marginal distribution across source and target domain

[10, 36]. However, the balance on marginal distributions does not

ensure a similar performance on the target domain. We need to

justify the predictive performance for the learnt features on the

target domain.

2.3 Causality and Invariant Learning

Recently, some methods adapt the idea from causal inference to

define the transfer learning with assumptions on the causality rela-

tionship among the features [1, 14, 19, 22, 23, 28, 30]. Specifically,

researchers paraphrase the transfer difficulty as the confounding

problem in causal inference literature [16, 26]. The reason for poor

generalization performance is that the model is learning some spu-

rious correlation relationships on the source domain, which are not

expected to hold on the target domain. The invariant features across

the domains should be the direct causes of the outcome (suppose

being not intervened), as the causality relationship is presumably

to be stable across training and testing distribution [27]. Our work

focus on utilizing the R-data generating from a random policy,
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which is formally defined later, to exploit the causal relationship

with limited sample size. Within the same causality framework,

our model learns the invariant features that can transfer to the

unknown target domain and be robust to severe covariate shifts.

3 CAUSAL TRANSFER RANDOM FOREST

3.1 Problem Setup

Let 𝑦 ∈ Y be a binary outcome label given contextual features

𝑥 ∈ R𝑝
and intervenable features, 𝑧 ∈ R𝑝′

. We desire a model

to map from the feature space to a distribution over the outcome

space, i.e. learning the conditional distribution 𝑝 (𝑦 |𝑥, 𝑧). Taking our
motivating application, sponsored search, as a concrete example,

the contextual features 𝑥 include user context and the query issued

by the user; the features 𝑧 encode aspects that the publishers can

manipulate, for instance, the location or the quality of the ads; and𝑦

is whether or not a user clicked on the ad. In practice, an advertising

system takes many steps to create the pages showing the ads.

The feature shift problem arises when there is a drastic change

in the joint features distribution of 𝑝 (𝑥, 𝑧). This shift might happen

if the marginal distribution of contextual feature 𝑝 (𝑥) varies. More

commonly, the shift occurs when 𝑝 (𝑧 |𝑥) changes to another distri-

bution 𝑝∗ (𝑧 |𝑥), namely, we change the data generating mechanism

for 𝑧. This can happen when the platform policy change in the

sponsored search system. In this case, the model learned from the

training distribution 𝑝 (𝑥, 𝑧) = 𝑝 (𝑥)𝑝 (𝑧 |𝑥) might not generalize to

the new distribution 𝑝∗ (𝑥, 𝑧) = 𝑝 (𝑥)𝑝∗ (𝑧 |𝑥). Therefore, we wish
to learn a model 𝑝 (𝑦 |𝑥, 𝑧) that is robust to the feature distribution,

which can be safely transferred from original feature distribution

𝑝 (𝑥, 𝑧) to the new 𝑝∗ (𝑥, 𝑧).
We factorize the data (𝑥, 𝑧,𝑦) in the following way[6]:

𝑝 (𝑥, 𝑧,𝑦) = 𝑝 (𝑥)𝑝 (𝑧 |𝑥)𝑝 (𝑦 |𝑥, 𝑧), (1)

where 𝑝 (𝑥) denotes the distribution of contextual variable, 𝑝 (𝑧 |𝑥)
represents how the platform manipulates certain features, such as

the process of selecting ads and allocating each ad to the position

on a page, which involves a complicated system including auction,

filtering and ranking decisions [32]. Here 𝑝 (𝑦 |𝑥, 𝑧) is the user click
model. One question of interest is how the click through rate 𝐸 (𝑦)
changes if we make modifications to the system, i.e., replacing the
usual mechanism 𝑝 (𝑧 |𝑥) with a new one 𝑝∗ (𝑧 |𝑥),

𝐸∗ (𝑦) =
∫ ∫ ∫

𝑝 (𝑥)𝑝∗ (𝑧 |𝑥)𝑝 (𝑦 |𝑥, 𝑧)d𝑥d𝑧. (2)

Feature shifts happen if some radical modifications are proposed,

namely 𝑝 (𝑧 |𝑥) differs significantly from 𝑝∗ (𝑧 |𝑥). The user click

model 𝑝 (𝑦 |𝑥, 𝑧) cannot produce a reliable estimate for the new click

through rate 𝐸∗ (𝑦) as we usually learn the click model based on

𝑝 (𝑥, 𝑧) while the testing data for prediction is drawn from 𝑝∗ (𝑥, 𝑧).
As 𝑧 depends on 𝑥 differently under various policies, the correlation

between 𝑧 and 𝑦 might change after policy changes from 𝑝 (𝑧 |𝑥)
to 𝑝∗ (𝑧 |𝑥). In such a scenario, we wish to build a model that can

transfer from training distribution 𝑝 (𝑥, 𝑧) to the target distribu-

tion 𝑝∗ (𝑥, 𝑧), allowing one to evaluate the impact of radical policy

changes.

Currently, some publishers run experiments to randomize the fea-

tures like the layout and advertisement in each impression shown

to the user, which makes 𝑧 independent of 𝑥 . Now, we formally

define the R-data as the data generated from 𝑝 (𝑥)𝑝 (𝑧), usually
limited in size due to the low performance and revenue of a random

policy. Meanwhile, we possess a large amount of past log data from

the distribution 𝑝 (𝑥)𝑝 (𝑧 |𝑥), which we call L-data. This leads to

the opportunity to more efficiently use R-data by pooling it with

large-scale L-data.

Although our approach is motivated by the online advertising

setting, it is not restricted to this domain or binary classification task.

We aim at building a robust model 𝑝 (𝑦 |𝑥, 𝑧) transferring from the

smaller R-data and the large scale L-data to the targeting source

𝑝∗ (𝑥, 𝑧). We focus on the case that 𝑝∗ (𝑥, 𝑧) differs drastically from

𝑝 (𝑥, 𝑧), which is either due to the change in the policy 𝑝 (𝑧 |𝑥) or the
variation in contextual features 𝑝 (𝑥). Although in this application,

we may know 𝑝∗ (𝑥, 𝑧) in advance, the proposed method does not

require any prior knowledge on the density of targeting source.

3.2 Proposed Algorithm

We base our algorithm on the random forest method [7], adapt-

ing prior work on the honesty principle for building causal trees

and forests [2, 33]. Usually, the tree-based method is composed of

two stages [13]: building decision boundary and calibrating each

leaf value at the end of the branch to produce an estimate 𝑝𝑖 . Fur-

thermore, the random forest framework performs bagging on the

training data and building decision tree on each bootstrap data

to reduce variance. Advantages of random forests include their

simplicity and ability to be paralleled.

To handle the feature shifts problem and use R-data efficiently,

we propose the Causal Transfer Random Forest (CTRF) algorithm.

The framework is shown in Figure 2. We propose to do bagging

and build decision trees solely on the R-data and then calculate

the predicted value (e.g., click probability) on the nodes of each

tree with pooled R-data and L-data. We make calibrations and

aggregate over all trees with the simple average here, which can be

extended to other approaches. We describe the detailed algorithm

in Algorithm 1.

Figure 2: CTRF: building random forest from R-data and L-data

We design the algorithm with the intuition that the R-data re-

duces the problem of spurious correlation, one of the main reasons



for the non-robustness of previous methods. Specifically, some of

the correlations between 𝑧 and the outcome 𝑦 are influenced by

the underlying generating mechanism, 𝑝 (𝑧 |𝑥). In such cases, the

correlation is spurious in the sense that it will disappear or change

if we modify 𝑝 (𝑧 |𝑥) to 𝑝∗ (𝑧 |𝑥). The model trained on 𝑝 (𝑥, 𝑧) will
exploit those spurious correlations without the knowledge that

the correlations will not hold on distribution 𝑝∗ (𝑥, 𝑧). It is impor-

tant to note that the spurious and non-spurious components of 𝑧’s

correlation with 𝑦 are often not well-aligned with the raw feature

representation of 𝑧. That is, this is not a feature selection problem.

Algorithm 1: Causal Transfer Random Forest

Input: R-data D𝑅 = {(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 ), 𝑖 ∈ I𝑅}, L-data D𝐿 =

{(𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 ), 𝑖 ∈ I𝐿} and the prediction point (𝑥∗, 𝑧∗).
Hyperparameters: bagging ratio: 𝑟

bag
; feature subsampling ratio:

𝑟
feature

; number of trees: 𝑛tree.

Bagging: sample the dataD𝑅
with replacement for 𝑛tree times with

sampling ratio 𝑟
bag

and sample on the feature set (𝑥, 𝑧) for each
bootstrap data with ratio 𝑟

feature
.

for 𝑏 = 1 to 𝑛tree do

Learn decison tree For the bootstrapped data, {(𝑥𝑏
𝑖
, 𝑧𝑏
𝑖
, 𝑦𝑏

𝑖
)},

build decision tree T𝑏 and corresponding leaf nodes L𝑏
𝑗

⊂
R𝑝+𝑝′, 𝑗 = 1, 2, · · · , 𝐿𝑏 , 𝐿𝑏 is the number of nodes for T𝑏 by maxi-

mizing the Information Gain (IG) or Gini Score.

Calibrations For each node L𝑏
𝑗
, we calculate the predicted value

by the mean value of samples in this node: 𝑦 𝑗
𝑏 = 𝑦𝑖 , (𝑥𝑖 , 𝑧𝑖 ) ∈

L𝑏
𝑗
, 𝑖 ∈ I𝑅 ∪ I𝐿

.

end for

Predictions Collect the predicted value 𝑦𝑏 for each T𝑏 by examin-

ing the node that (𝑥∗, 𝑧∗) belongs and produce a prediction after

aggregation, such as 𝑦 = ¯𝑦𝑏 .

Output Random forest {T𝑏 , 𝑏 = 1, · · · , 𝑛tree} and prediction
ˆ𝑦∗.

Figure 3 demonstrates a spurious correlation instance in the ads

system, depicting the relationships between ads relevance 𝑥 , posi-

tion 𝑧 and the click outcome 𝑦. The solid lines represent the “stable”

relationship or effect between the ads relevance or the position and

the click, while the dashed line stands for the relationship we can

manipulate. In the L-data, the position is not randomly assigned

but instead associated with other features like ads relevance[6]. We

tend to allocate ads of higher relevance to the top of the page. How-

ever, the correlation between position and click changes if we alter

the policy allocating the position based on the relevance, namely

𝑝 (𝑧 |𝑥). Despite the correlation between position and click being

partially spurious, there is still a causal connection as well—higher

positioned ads do attract more clicks, all else being equal.

𝑥 : Ads relevance

𝑧: Position on the page 𝑦: Click or not click

Figure 3: CausalDirectedAcyclicGraph (DAG) for the online

advertisement system

Suppose the tree algorithm makes a split on the position feature,

subsequently it becomes hard to detect the importance of relevance

in two sub-branches split by position. As a result, if we only train on

L-data, the decision tree is likely to underestimate the importance

of ad relevance. We wish the decision tree structure we learn to dis-

entangle the unstable or spurious aspects of the correlation among

the features and only learn the “stable” relationships. This task

can be accomplished with the R-data as it removes the spurious

correlation. We formally define the “stable” relationship and prove

why R-data can learn those relationships in the next section.

3.3 Interpretations from Causal Learning

In this section, we justify our intuitions in the previous sections the-

oretically based on the results in causal learning. Previous literature

builds the connections between the capability to generalize and the

conditional invariant property. Theorem 4 in [30] demonstrates that

if there is a subset of features 𝑆∗ that are conditionally invariant,

namely the conditional distribution 𝑦 |𝑆∗ remains unchanged across

different distributions of 𝑝 (𝑥, 𝑧,𝑦), then the model built on those

features 𝑆∗ with pooling data, 𝐸 (𝑦𝑖 |𝑆∗𝑖 ), gives the most robust per-

formance. The robustness is measured by the worst performance

with respect to all possible choices of the targeting distribution

𝑝 (𝑥, 𝑧), which further ensures the model can transfer. This theorem

indicates that we should build a model on the set of features or the

transformed features with conditional invariant property.

However, learning the stable features is not simple given we

have only two types of distribution, The next theorem from [28, 30]

states the relationship between conditional invariance and causality.

Specifically, if we assume there are causal relationships or structural

equation models (SEM) [26], the direct causes of the outcome are

the conditionally invariant features , 𝑆∗ = PA𝑌 , where PA𝑌 denotes

the parents/direct causes for the outcome 𝑦.

With two well-established theorems above, we can look for the

direct causes instead of the conditional invariant features. The

following theorem shows that the R-data offers such opportunity.

Theorem (Retain stable relationships with R-data). As-
sume (𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 ) can be expressed with a direct acyclic graph (DAG) or
structural equation model (SEM). Then the model trained on R-data,
𝑝 (𝑥𝑖 , 𝑧𝑖 ) = 𝑝 (𝑥1

𝑖
)𝑝 (𝑥2

𝑖
) · · · 𝑝 (𝑥𝑝

𝑖
)𝑝 (𝑧1

𝑖
)𝑝 (𝑧2

𝑖
) · · · 𝑝 (𝑧𝑝

′

𝑖
) is consistent

for the most robust prediction:

𝐸 (𝑦𝑖 |𝑥𝑖 , 𝑧𝑖 ) ⇒ 𝐸 (𝑦𝑖 |PA𝑌 ) = 𝐸 (𝑦𝑖 |𝑆∗𝑖 ) (3)

The theorem assumes all the variables (𝑥𝑖 , 𝑧𝑖 ) are randomized

and independent with each other in R-data, which has a gap to

the R-data in practice as we cannot randomize the contextual

features 𝑥 . If the relationships between contextual features 𝑥 and

outcome 𝑦 are unstable, it is hard to learn the stable relationships

without randomizing on 𝑥 . However, randomizing on the manipu-

lable features 𝑧 will suffice in practice as the correlation between 𝑥

an 𝑦 is likely to be stable. For instance, the relationship between the

user preference or the ads quality itself and the intention to click

is expected to remain unchanged even if we switch the platform

policy on displaying ads. The theorem above suggests if the model

is trained on R-data, it actually relies on the direct causes or ro-

bust features 𝑆∗
𝑖
to make prediction. The detailed theorem proof is

provided in the Supplementary Material.

Likewise, CTRF firstly learns the structure of the model or iden-

tifies the stable features for splitting the trees merely with the

R-data. With our random forest method, the stable features are

the leaves sliced in the decision tree, which can be viewed as a



transformation of the raw features. This step serves as an analogy

to search for the direct causes or extract robust features. The calibra-

tion step on the leaf values with pooled data corresponds to make

predictions conditioning on all robust features. The second step will

not be “contaminated” by the spurious correlation in L-data as the

the decision tree structure has already identified a valid adjustment

set with R-data and is conditioning on that. We also investigate

whether the proposed method can pick up the stable features in the

synthetic experiments to demonstrate its theoretical property.

4 EXPERIMENTS ON SYNTHETIC DATA

4.1 Setup and Baselines

In this part, we evaluate the proposedmethod and comparewith sev-

eral baseline methods in the presence of covariate shifts. Given it is

a novel scenario (small amount of R-data with large L-data), we

design two synthetic experiments to create an artificial case that the

data generating mechanism 𝑝 (𝑧 |𝑥) changes. The first experiment

specifies the causality relationship between variables explicitly. The

second experiment is a simulated auction similar to the real-world

online, in which the relationship between variables are specified

implicitly. In both experiments, we have some parameters control-

ling the degree of covariate shift which allows us to evaluate the

performance against different degree of distributional variation.

In our experiments, we compare the causal transfer random forest
(CTRF) with the following methods: logistic regression (LR) [24],

Gradient Boosting Decision Tree (GBDT) [18], logistic regression

with sampling weighting (LR-IPW), Gradient Boosting Decision

Tree with sample reweighting (GBDT-IPW), random forest model

trained on R-data (RND-RF), random forest model trained on L-

data (CNT-RF), random forest model trained with the L-data and

R-data pooling together (Combine-RF). Among all those methods,

LR-IPW and GBDT-IPW are designed to handle distribution shifts

with a proper weighting with ratio of densities [5, 15]. Implemen-

tation details are included in the Supplementary Material.

As our method is designed to handle extreme covariate shifts,

we evaluate different methods in terms of the performance on the

shifted testing data only. Although our method is not restricted

to classification task, we only focus on the binary outcome to be

coherent with our motivated application from ads click. For binary

classification task, we focus on the following two metrics, AUC

(area under curve) and the cumulative prediction bias, | ¯𝑦𝑖 − 𝑦𝑖 |/𝑦𝑖 ,
which is the adjusted difference in the mean value of predicted

values and actual outcomes. AUC captures the prediction power of

the model while the cumulative prediction bias captures how our

method can predict the counterfactual change, such as the change

in the overall click rate.

4.2 Synthetic Data with Explicit Mechanism

We generate the data in a similar fashion with the experiments

in [19]. We generate two sets of features 𝑆,𝑉 for predictions. 𝑆

represents the stable feature or the direct cause of the outcomewhile

𝑉 represents the unstable factors that have spurious correlation

with the outcome. We consider three possible scenarios for the

relationships between (𝑆,𝑉 ): (a)𝑆 ⊥⊥ 𝑉 , 𝑆 and 𝑉 are independent;

(b) 𝑆 → 𝑉 , 𝑆 is the cause for𝑉 ; (c)𝑉 → 𝑆 ,𝑉 is the cause for 𝑆 . Figure

4 demonstrates these three cases. In all cases, 𝑆 = (𝑆1, · · · , 𝑆𝑝𝑠 ) is

the stable feature while 𝑉 = (𝑉1, · · · ,𝑉𝑝𝑣 ) is the possible unstable
factors sharing spurious correlation with the outcome.

𝑆

𝑦 𝑉

(a) 𝑆 ⊥⊥ 𝑉

𝑆

𝑦 𝑉

(b) 𝑆 → 𝑉

𝑆

𝑦 𝑉

(c)𝑉 → 𝑆

Figure 4: Three possible relationships among the variables

In case (a), we generate (𝑆,𝑉 ) from independent standard Normal

distributions and transform them into the binary vectors,

𝑆 𝑗 ,𝑉𝑘 ∼ N(0, 1), 𝑆 𝑗 = 1
𝑆 𝑗>0

,𝑉𝑘 = 1
𝑉̃𝑘>0

.

In case (b), we generate 𝑆 from Normal distributions first and gen-

erate 𝑉 as a function of 𝑆 .

𝑆 𝑗 ∼ N(0, 1), 𝑉̃𝑘 = 𝑆𝑘 + 𝑆𝑘+1
+ N(0, 2), 𝑆 𝑗 = 1

𝑆 𝑗>0
,𝑉𝑘 = 1

𝑉̃𝑘>0
.

In case (c), we generate 𝑉 first and simulate 𝑆 as a function of 𝑉 .

𝑉̃𝑘 ∼ N(0, 1), 𝑆 𝑗 = 𝑉̃𝑗 + 𝑉̃𝑗+1 + N(0, 2), 𝑆 𝑗 = 1
𝑆 𝑗>0

,𝑉𝑘 = 1
𝑉̃𝑘>0

.

For the outcome, we keep the generating procedure same across

three cases. The binary outcome 𝑦 is generated solely as a function

of 𝑆 ,

𝑦 = sigmoid(
𝑝𝑠∑
𝑗=1

𝛼 𝑗𝑆 𝑗 +
𝑝𝑠−1∑
𝑗=1

𝛽 𝑗𝑆 𝑗𝑆 𝑗+1) + N (0, 0.2), 𝑦 = 1𝑦̃>0.5,

where sigmoid(𝑥) = 1/(1 + exp(−𝑥)). This specification includes

both the linear and non-linear effect of 𝑆 . The parameters take

values as 𝛼 𝑗 = (−1) 𝑗 ( 𝑗%3 + 1) ∗ 𝑝/3, 𝛽 𝑗 = 𝑝/2.

In addition to different generating mechanisms, we introduce

an additional spurious correlation with biased sample selection.

Specifically, we set an inclusion rate 𝑟 = (0, 1) to create a spurious

correlation between 𝑦 and 𝑉 . If the average value of 𝑉𝑖 =
∑𝑝𝑣

𝑗=1
𝑉𝑖 𝑗

and 𝑦𝑖 exceed or fall below 0.5 together, we include sample 𝑖 with

probability 𝑟 . Otherwise, we include the sample with probability

1 − 𝑟 . Namely, if 𝑟 > 0.5, 𝑉 and 𝑦 share positive correlation and

the correlation is negative if 𝑟 < 0.5. The parameter 𝑟 controls the

degree of spurious correlation which induces the covariate shifts.

We generate a small amount of R-data following case (a) with

size 𝑛𝑟 = 1000, a large amount of L-data following case (b) 𝑛𝑙 =

5000 and the testing data from case (c) with size 𝑛𝑡 = 2000 to mimic

the policy change on testing data. We create a lower amount of

R-data to mimic the real business scenario that randomizing the

platform policy reduces the revenue and thus is expensive to collect.

We keep a slightly larger proportion of R-data than the one in

practice for fair comparisons (such as RND-RF) to demonstrate the

essential advantage of the proposed method. Additionally, we set

𝑟 = 0.7 on the L-data and let 𝑟 vary from 0.1 to 0.9 on the testing

data to create additional deviance in the distribution. We also vary

the number of features in total 𝑝 ∈ [20, 40, 80] and keep 𝑝𝑠 = 0.4𝑝 .

Within each configuration, we perform the experiments 200 times

and calculate the average AUC and cumulative bias.

Figure 5 shows the comparison of AUC against the variation on

both 𝑝 and 𝑟 . The top row demonstrates the comparison within the
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Figure 5: AUC comparison when 𝑝 = 20, 40, 80. The top row

compares with random forest based method and the bottom

row compares other baselines. CTRF produces largest AUC

in most cases.

domain of random forest. The CTRF (red lines) performs the best

regardless of feature dimensions. The second row in Figure 5 shows

the comparison with LR, LR-IPW, GBDT and GBDT-IPW. Although

the performances are indistinguishable when 𝑝 = 20, the advantage

of CTRF emerges as we have more spurious correlations.
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Figure 6: Bias comparison when 𝑝 = 20, 40, 80, with top row

comparing with random forest based method and bottom

row comparing other baselines. CTRF achieves the lowest

bias in all cases.

Figure 6 shows the comparison in terms of the bias. A lower

value represents a better performance. The top row shows the

comparison with other random forest based methods. Generally, the

cumulative bias increases as 𝑟 on the testing data decreases, which

means the testing data deviates more from the L-data. However,

the advantage of CTRF (red lines) increases slightly as 𝑟 decreases,

which demonstrates the robustness against covarites shifts. The

comparison with LR or GBDT based methods at the bottom row

shows a similar trend with the AUC. The CTRF achieves a lower

bias among all the approaches and its advantage increases as we

have more features.

In terms of the scalability, we find that the advantage of CTRF

over other methods increases as the feature size 𝑝 goes up, with

a larger AUC and smaller bias. Additionally, the CTRF builds the

decision tree solely on the R-data and the calibration stage on the

pooled data is much less computationally intensive, which further

demonstrates its advantage in scalability.

4.3 Synthetic Auction: Implicit Mechanism

In this subsection, we setup a synthetic auction scenario with a

single tuning parameter in the policy, demonstrating both how

simple parameters can introduce bias into a domain and CTRF’s

ability to transfer between them. We first generate synthetic sam-

ples of classification data, or a mapping from features to a true

relevant/irrelevant binary label. From this data, we build a true

relevance model with random forest to estimate the probability an

item is relevant. Second, we build our L-data and testing auctions

by sampling (20 per auction) from the underlying relevance features

and assigning a relevance score. Per auction, the items are thresh-

olded with the corresponding relevance reserve parameter and the

remaining items are ranked. This provides layout and position in-

formation, in addition to the relevance score and relevance features.

Third, Given the layout and items, a simulated user chooses a single

ad as relevant uniformly at random to click, and leaves the others

not clicked. The choice of click is uniform across positions, which

means that position is purely a factor spuriously correlated with

the relevance while not affecting the click. We provide the detailed

generating mechanism in the Supplementary Material.

Figure 8: Procedures for simulating auctions. Position is an

unstable factor for predicting click as the users pick ads uni-

formly on a page to click and its correlation with relevance

score varies across policy, which is implicitly determined by

the relevance reserve parameter.

The tuning parameter in the experiment is the relevance reserve
parameter 𝑟 , controlling the requirement that any item shown to a

user meet a minimum relevance, which controls 𝑝 (𝑧 |𝑥) implicitly.

The mechanism to generate simulated auction is illustrated in Fig-

ure 8. This parameter affects the correlation between relevance and

position, which can vary between L-data and testing data. Specif-

ically, we generate the L-data with relevance reserve parameter

𝑟 = 0.5 while the testing data with the relevance reserve varying in

𝑟 ∈ [0.5, 0.9], simulating a desire to increase the quality of items

presented to a user (with a higher threshold). A larger value in

𝑟 > 0.5 represents a higher deviation from the L-datawith 𝑟 = 0.5.

For the R-data, we do not have the auction procedure and we pick
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Figure 7: AUC (left graph), cumulative prediction bias (middle graph) and probability of including confounding factor "posi-

tion" as Top 5 important features (right graph) versus treatment reserve 𝑟 . Higher 𝑟 represents a larger change in the testing

distribution. CTRF performs the best among all random forest methods.

up the advertisement uniformly random to display on the page. The

size of R-data is approximately 20% of the L-data.

As we use the random forest model to generate the true relevance

score, we compare the CTRF within the domain of random forest

based methods only, including CNT-RF, RND-RF, Combine-RF and

the oracle one training RF on the testing data. Figure 7 illustrates

prediction performance of all method while setting CNT-RF as the

baseline. To illustrate the advantage over the baseline method, CNT-

RF, we minus the AUC of CNT-RF from that of all other methods

and minus the bias of the corresponding model from the bias of

CNT-RF. Therefore, a larger value in the graphs indicates a better

performance of the corresponding method.

In Figure 7, we observe that when the reserve for testing data

lies close to 0.5, all models show similar performance. However,

as we increase 𝑟 on testing data and raise the degree of covariate

shift, the CTRF method (red lines) greatly improves in both AUC

and bias. Also, the CTRF demonstrates a better prediction power

and lower bias compared with the RND-RF and Combine-RF. This

illustrates CTRF’s ability to transfer knowledge from one domain

to a similar but distinct domain with unstable factor (in this case,

an ad’s position).

We calculate the probability of including the “position”, which

is a known spuriously correlated factor by design, in the top 5

factors ranking by feature importance [11] evaluated on the train-

ing dataset. As shown in the right panel of Figure 7, the random

forest learned on the R-data (RND-RF,CTRF are identical) has a

lower probability of identifying the unstable or confounding fac-

tor as important predictors, compared with the one utilizing the

L-data (CNT-RF, Combine-RF). This demonstrates that the first

stage of structure learning or the decision boundary onR-data can

reduce spurious correlation. This also validates utilizing the large

amount of the L-data to calibrate the parameters in the structure

or trees in the second stage as the prediction does not rely on the

unstable factor.

5 EXPERIMENTS ON REAL-WORLD DATA

In this section, we present experimental results in the real-world

application with data collected from a sponsored search search

platform (Bing Ads). First, we discuss howR-data is collected from

real traffic. Next, we demonstrate the robustness of CTRF-trained

click models against the distribution shifts. Finally, we show that

CTRF-enabled holistic counterfactual policy estimation improves

global marketplace optimization problem real business scenarios.

5.1 Randomized Experiment (R-data)

Randomized data (R-data) collection is very important step to

create CTRF since training requires R-data to learn the structure

of trees. In order to collect R-data, we used existing randomiza-

tion policy on paid search engine which is triggered less than %1

of the live traffic. The existing randomization policy is triggered

in typical sponsored search requests and there is no difference

between randomized and mainstream traffic in terms of user and

advertiser selection. For a given paid search request, if randomiza-

tion is enabled, special uniform randomization policy is triggered.

In this uniform randomization policy, all choices that depend on

models are completely randomized. In particular, the ads are ran-

domly permuted and the page layout (where ads are shown on the

page) is chosen at random from the feasible layouts. The user cost

(due to lower relevance) of such randomization is very high and

consequently, limits the trigger rate for the randomized policy.

5.2 Robustness to Real-World Data Shifts

We train the user click model on the data collected from the main-

stream traffic and randomized traffic in the search engine, corre-

sponding to the L-data and R-data respectively. We validate the

proposed method on an exploration traffic with some radical exper-

iments (layout template change, for example), which is the testing

data with covariate shifts. We only compare the method with CNT-

RF, Combine-RF and Oracle-RF, which trains a random forest on

the testing data. The last one cannot be implemented in practice

yet it serves to illustrate the capacity of the random forest method.

We fix the total training size to be approximately 1 million with

each method
1
and include the same feature set from production

for a fair comparison. We focus on three metrics of interests: AUC

(area under curve), RIG (Relative Information Gain) and cumulative

prediction bias
2
.

1
The ratio of R-data and L-data is about 1:7, after down-sampling on the L-data.

The proportion of R-data is upweighted for fair comparison. Otherwise, the perfor-

mance of CNT-RF and Combined-RF will be very close.

2
Relative information gain is defined as the RIG = (𝐻 (𝑦) + 𝐿)/𝐻 (𝑦) , 𝐿 is the log

loss produced by the model and𝐻 (𝑝) = −𝑝log(𝑝) − (1−𝑝) log(1−𝑝) is the entropy
function. Higher value indicates better performance.



Table 1: Performance comparison for different random for-

est based model, evaluated on some exploration flights with

radical policy changes

Methods AUC RIG Cumulative Bias

CNT-RF 0.9273 0.4424 3.87%

Combine-RF 0.9282 0.4460 3.39%

CTRF 0.9285 0.4477 2.90%

Oracle-RF 0.9287 0.4484 0.58%

Table 1 shows that CTRF achieves the best performance among

all the random forest candidates
3
. As for AUC and RIG, The CTRF

shows a slightly better performance than other random forest can-

didates and is very close to Oracle-RF, which indicates its nearly-

optimal prediction performance. In terms of the bias, although with

a gap with the Oracle-RF, the CTRF reduces the cumulative bias

for click rate prediction to a non-negligible degree, which is very

essential to the publishers in decision making. As we are evaluat-

ing all the performance on a part of the traffic performing some

radical changes, the results demonstrate that the CTRF improves

the robustness of user click model in terms of prediction power.

5.3 End-to-end Marketplace Optimization

In addition to the prediction power of the model, we also evaluate

how the usage of CTRF can advance the decision making procedure

in real business optimization at Bing Ads.

5.3.1 Marketplace Optimization in a Nutshell. The goal of Market-

place Optimization for sponsored search is to find optimal operating

points for each component of the search engine given all market-

place constraints. Marketplace optimization is very different from

optimizing certain objective functions with a given machine learn-

ing model. While model training focuses on reducing prediction

error for unobserved data, Ads Marketplace Optimization focuses

on improving global objectives like total clicks, revenue when new

machine learning model is used as part of a bigger system. Due

to data distribution shifts between components of a larger sys-

tem, a locally optimized click model does not necessarily give best

performances for global metrics. Therefore, whole components of

the system may need to be tuned together by using more holistic

approaches like A/B testing [35] or similar.

5.3.2 Experimental Data Selection and Simulation Setup. Robust
click prediction plays a very crucial role in improving holistic Ads

Marketplace Optimizer like an open box simulator [3] which can

easily have biased estimations due to data distribution shifts in

counterfactual environments. In our problem context, we integrate

CTRF to an open box offline simulator and show that a new simula-

tor with CTRF will give better results for offline policy estimation

scenarios when data distribution shift is significant.

For experimental runs, we use an open box simulator with two

versions of random forest, CTRF and CNT-RF (typical RF used),

along with the generalized linear Probit model [12] for click pre-

diction. Then, we run offline counterfactual policy estimation jobs

3
We omit the standard error here for brevity and the reported difference here is

considered as “significant” in practical application.

with modified inputs over logs collected from real traffic. Finally,

we compare predictions for marketplace level click metrics with

different models against A/B testing by using same production data

that is collected from A/B testing experiment.

To select experimental data, we checked the counterfactual vs

factual feature distribution similarity of multiple real tuning sce-

narios in search engine traffic. We applied Jensen-Shannon (JS)

divergence to compute the similarity of two distributions. Based on

this distance metric, we selected 2 tuning use cases out of 10 can-

didate cases with significantly higher distribution shift, which fits

the proposed approach. First use case belongs to capacity change

for Text Ads blocks. Second use belongs to page layout change.

This also demonstrates that drastic policy changes are common in

online advertisement tuning tasks. Details on this procedure are

included in the Supplementary Material.

5.3.3 Experiments on Real Case Studies. In the first case, the ca-

pacity of the particular ad block that contains Textual Ads was

increased on the traffic in May 2019 for 10 days time period during

A/B testing. The change was expected to increase both overall click

yield and click yield on textual ad slice for target ad block. For

simulator runs, we used 4.6 million samples from control traffic

(L-data) and 100K samples from the randomized traffic (R-data)

that belongs to 3 weeks time period before end date of A/B testing.

The randomized traffic corresponds to page view requests where

the mechanisms in online system are randomized, as described in

Section 5.1.

In simulator runs with CTRF, we train the forest and tree struc-

tures from R-data and combine the L-data and R-data to cali-

brate the leaves of trees in the forest. Each simulation job uses its

trained model to score counterfactual page views that generated

from replying control traffic logs in open box manner with the

suggested input modification (capacity change of ad block). Table 2

presents the comparison of an open box simulator with generalized

Probit model, with CTRF and the random forest trained on control

traffic (CNT-RF) based on relative Click Yield delta error
4
against

A/B testing experiment that was active for 10 days in May 2019.

To make a fair comparison, we use the same amount of training

data for different variants of random forest models. We observe

that click yield deltas coming from simulator results with CTRF is

significantly better than other approaches since results from CTRF

enabled simulator are closer to A/B Testing results from real traffic.

In the second scenario, the layout of product shopping ads was

significantly updated in May 2019 for a week time period during

A/B testing. The change was expected to increase both overall click

yield and click yield on product shopping ads slice for target ad

block. In this experiment, we used 15M samples from the control

traffic in A/B testing and the same randomized traffic in the previous

experiment. The bottom part in Table 2 presents the comparison

of different model-based simulators in the relative error against

the A/B testing experiment that was active for a week in May

2019. Since the modification for the second experiment yielded a

radical shift in feature distribution of product shopping Ads. The

differencewith CTRF enabled simulator vs other approaches is more

4
Relative Click Yield delta error is defined as |ΔCYMethod − ΔCYAB |/ |ΔCYAB |.
ΔCYMethod is the predicted change in click rate by the model. ΔCYAB is the actual

change in A/B testing.



Table 2: Performance comparison in two cases with radical

changes

Ad capacity change ΔCY Error ΔCY Error (Text Ads)

Probit Model 34.94% 17.13%

CNT-RF 12.11% 9.96%

CTRF 2.07% 8.76%

Layout change ΔCY Error ΔCY Error (Shopping Ads)

Probit Model 35.48% 45.08%

CNT-RF 58.06% 34.92%

CTRF 22.58% 13.38%

prominent. Thus, open box simulator with CTRF also outperforms

other approaches in this scenario.

6 DISCUSSION AND CONCLUSIONS

We present a novel method, causal transfer random forest, to com-

bine limited randomized data (R-data) and large scale logged

data (L-data) in the learning problem. We propose to learn the

tree structure or the decision boundary with the R-data and cali-

brate the leaf value of each tree with the whole data (R-data and

L-data). This approach overcomes the spurious correlation in L-

data and the limitations on sample size for the R-data to provide

robustness against covariate shifts. We evaluate the proposed model

in the extensive synthetic data experiments and implement it in

Bing ads system to train the user click model. The empirical results

demonstrate its advantage over other baselines against the radical

policy changes and robustness in real-world prediction tasks. For

future work, there are some important research questions to ex-

plore, such as a better understanding of the relative importance of

the R-data versus the L-data, how much R-data is needed and

how this quantity related to the degree of distributional shift.
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