
Optimizing Data Access in Database Applications
using Static Analysis

Thesis

Submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

by

K. Venkatesh Emani
Roll No: 134058001

Advsior

Prof. S. Sudarshan

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

Mumbai
2019

To the memory of my grandfather, Emani Venkateswarlu.

Declaration
I declare that this written submission represents my ideas in my own words and where

others’ ideas or words have been included, I have adequately cited and referenced the original
sources. I also declare that I have adhered to all principles of academic honesty and integrity and
have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I
understand that any violation of the above will be cause for disciplinary action by the Institute
and can also evoke penal action from the sources which have thus not been properly cited or
from whom proper permission has not been taken when needed.

(Signature)

(Name of the student)

(Roll No.)

Date:

Abstract

Database applications are typically written using a mixture of imperative languages and embed-
ded queries (expressed using SQL/other frameworks) for data access. Traditionally, the imper-
ative and declarative parts of these applications have been optimized separately. Techniques for
optimization that span across the declarative and imperative parts in database applications are
called holistic optimization techniques.

In this thesis, we present novel holistic optimization techniques for optimizing data access in
applications that access data using database abstractions. In such applications, data processing
logic often gets distributed across the declarative and imperative parts of a program. Conse-
quently, data access from the application is often inefficient due to iterative queries, transfer
of unused data, over-specification of queries, and other reasons. We propose techniques based
on static program analysis and program transformations to automatically rewrite database ap-
plications for efficient data access. When more than one transformations are applicable on a
particular program, our techniques can systematically generate all equivalent alternatives using
the given set of program transformations, represent these alternatives efficiently, and choose the
best rewrite based on a cost model. We also improve upon existing techniques for optimizing
the evaluation of user defined functions in databases, which, similar to database applications,
contain a mix of imperative code and declarative SQL queries. We demonstrate that the static
analysis techniques we develop can be applied to other optimizations as well as test data gen-
eration for queries in database applications. Our experiments on real world and benchmark
applications show that our techniques have wide applicability and provide significant perfor-
mance benefits.

i

Contents

Abstract i

List of Figures vii

1 Introduction 1
1.1 Problem Overview and Motivation . 1
1.2 Summary of Contributions . 4
1.3 Organization of the Thesis . 5

2 Literature Survey 7
2.1 Early Approaches . 7
2.2 Recent Approaches . 8

2.2.1 Batching of Query Results . 8
2.2.2 Prefetching Query Results . 10
2.2.3 Prefetching Query Results at the Earliest Program Point 11
2.2.4 Pushing Computation to the Database 11
2.2.5 Optimizing Transactions in Database Applications 13
2.2.6 Optimizing User Defined Functions in Databases 13
2.2.7 Optimizations for ORM Applications 14

2.3 Summary . 16

3 Translating Imperative Code to SQL 17
3.1 Introduction . 17
3.2 Overview . 19
3.3 DAG Based IR . 21

3.3.1 Background . 21
3.3.2 D-IR . 23
3.3.3 Algorithm for D-IR Construction . 25

3.4 F-IR Representation . 26
3.4.1 Fold . 26
3.4.2 Converting Loops to Fold . 27

3.5 F-IR Transformations . 30
3.5.1 Transformation Rules . 30
3.5.2 Generating and Using Equivalent SQL 32
3.5.3 Application of Transformation Rules 32
3.5.4 Extensions . 33

iii

3.5.5 Limitations . 36
3.6 Related Work . 36
3.7 Experimental Evaluation . 37

3.7.1 Applicability . 38
3.7.2 Performance Impact . 40

3.8 Summary . 43

4 Cobra: A Framework for Cost-based Rewriting of Database Applications 45
4.1 Introduction . 45
4.2 Motivating Example . 47
4.3 Background . 49

4.3.1 Volcano/Cascades AND-OR DAG . 50
4.3.2 Program regions . 50

4.4 AND-OR DAG Representation of Programs 51
4.4.1 Region as a State Transition . 52
4.4.2 Region AND-OR DAG . 52

4.5 Transformations using IR . 55
4.5.1 F-IR Recap . 55
4.5.2 Integration into Region DAG . 55
4.5.3 Transformations . 57

4.6 Cost Model . 58
4.7 Related Work . 60
4.8 Experimental Evaluation . 61
4.9 Summary . 67

5 Froid: Optimization of Imperative Programs in a Relational Database 69
5.1 Introduction . 69
5.2 Background . 71

5.2.1 Scalar UDF Example . 71
5.2.2 UDF Evaluation in SQL Server . 71
5.2.3 Drawbacks in UDF Evaluation . 73
5.2.4 Prior Approaches . 74

5.3 The Froid Framework . 75
5.3.1 Intuition . 75
5.3.2 The APPLY operator . 75
5.3.3 Overview of Approach . 76
5.3.4 Supported UDFs and queries . 76

5.4 UDF Algebrization . 78
5.4.1 Construction of Regions . 78
5.4.2 Relational Expressions for Regions 78
5.4.3 Combining expressions using APPLY 81
5.4.4 Correctness and Semantics Preservation 82

5.5 Substitution and Optimization . 82
5.6 Compiler Optimizations . 84

5.6.1 Dynamic Slicing . 84
5.6.2 Constant Folding and Propagation . 86
5.6.3 Dead Code Elimination . 86

5.7 Design and Implementation . 87
5.7.1 Cost-based Substitution . 87

iv

5.7.2 Imposing Constraints . 87
5.7.3 Supporting additional languages . 88
5.7.4 Implementation Details . 88

5.8 Evaluation . 89
5.8.1 Applicability of Froid . 89
5.8.2 Performance improvements . 90
5.8.3 Resource consumption . 94

5.9 Real-World UDF Examples . 95
5.10 Natively compiled UDFs . 99
5.11 TPC-H Queries with UDFs . 100

5.11.1 Scalar UDF Definitions . 100
5.11.2 TPC-H Queries Rewritten using UDFs 106

5.12 Related Work . 109
5.13 Summary . 110

6 Other Applications of Static Analysis 111
6.1 Rewriting ORDER BY Queries . 111

6.1.1 Introduction . 111
6.1.2 Background: Data Flow Analysis . 113
6.1.3 Data Flow Equations for Live Order Analysis 113
6.1.4 Algorithm for Program Rewriting . 115
6.1.5 Summary . 118

6.2 Test Data Generation for Database Applications 118
6.2.1 Introduction . 119
6.2.2 Query Extraction . 121
6.2.3 Test Data and Unit Test Generation 124
6.2.4 Related Work . 125
6.2.5 Experiments . 126
6.2.6 Summary . 126

7 Conclusions and Future Work 127
7.1 Conclusions . 127
7.2 Future Work . 128

7.2.1 Program transformations for ORM Applications 128
7.2.2 Cost-based program transformations 129
7.2.3 Optimization of User Defined Functions 129
7.2.4 Compiling Over-specified Data Structures 129
7.2.5 Optimizing Interactions between Web Services and Clients 130

A Translating Imperative Code to SQL 139
A.1 Proof Sketch for Loop to Fold Translation . 139
A.2 D-IR Construction . 139

A.2.1 Simple Statement . 140
A.2.2 Basic Block . 140
A.2.3 Sequential Region . 140
A.2.4 Conditional Region . 140
A.2.5 Loop Region . 141
A.2.6 Functions . 141

v

List of Figures

1.1 Interaction between the application and the database in a typical JDBC applica-
tion (image source: [83]) . 2

1.2 Interaction between the application and the database in a typical ORM application 2
1.3 Distribution of data processing logic in ORM applications 3
1.4 Distribution of data processing logic in programs using database abstractions . 3

2.1 Code with opportunities for loop fission transformation (source: [85]) 8
2.2 DBridge Architecture (image source: [26]) . 9
2.3 Transformed program for Figure 2.1 after loop fission [56]. Figure reproduced

from [85]. 9
2.4 Imperative program implementing join (source: [33]) 12
2.5 Program from Figure 2.4 rewritten using SQL query (source: [33]) 12
2.6 A program accessing the database (source: [31]) 13
2.7 Partition of program from Figure 2.6 (source: [31]) 14
2.8 Query with a scalar UDF (source: [99]) . 15
2.9 Decorrelated form of query from Figure 2.8 (source: [99]) 15
2.10 Summary of Prior Work . 16

3.1 System Overview . 19
3.2 Code for highest score calculation . 20
3.3 Walk-through of equivalent SQL derivation 21
3.4 Types of regions . 22
3.5 D-IR construction for a simple code fragment 24
3.6 Demonstration of preconditions for translation into F-IR 29
3.7 Cursor loop with nested scalar queries . 35
3.8 Optimized query for data access in Figure 3.7 35
3.9 Selection . 40
3.10 Join . 41
3.11 Aggregation . 42
3.12 Comparison With Existing Techniques . 42

4.1 COBRA Illustration . 46
4.2 Hibernate object-relation mapping specification 47
4.3 Alternative implementations of the same program 48
4.4 Representing alternative query rewrites using the AND-OR DAG 49
4.5 Program regions for program P0 from Figure 4.3a 51
4.6 Representing alternative programs using the Region DAG 53
4.7 Program M0: Aggregations inside a loop . 55
4.8 F-IR representation for the loop in Figure 4.7 56
4.9 Region DAG for Figure 4.7 after transforming to F-IR 56

vii

4.10 F-IR Transformation Rules (T1 to T5 are from Chapter 3) 57
4.11 Cost parameters . 58
4.12 Performance of alternative implementations of Figure 4.3a – Slow remote net-

work, varying Orders . 62
4.13 Performance of alternative implementations of Figure 4.3a – Fast local network,

varying Orders . 62
4.14 Performance of alternative implementations of Figure 4.3a – Slow remote net-

work, varying Customers . 63
4.15 Cases for cost based based optimization in real world application (pattern id,

description, number of cases) . 64
4.16 Performance benefits due to COBRA . 64
4.17 Code fragments for cost based rewriting . 65

5.1 Example T-SQL User defined functions . 72
5.2 Query plan for the query in Section 5.2.1 . 73
5.3 Simple UDF that reads a variable multiple times 74
5.4 Overview of the Froid framework . 76
5.5 Relational expression for UDF total price . 81
5.6 Plan for inlined UDF total price of Figure 5.1 83
5.7 Compiler optimizations as relational transformations 85
5.8 Varying the number of UDF invocations . 90
5.9 Elapsed time for Compilation and execution (using cold plan cache) 91
5.10 TPC-H queries using UDFs . 92
5.11 Improvement for UDFs in workload W1 . 92
5.12 Improvement for UDFs in workload W2 . 93
5.13 Example for Section 5.8.2 . 93
5.14 CPU time comparison . 94
5.15 Example for I/O measurements . 95

6.1 Custom sorting of ordered query results . 112
6.2 CFG for the function getCustomerPayments from Figure 6.1 116
6.3 Rewritten program after removing unused ordering from Figure 6.1 118
6.4 Motivating example for automatic test data generation 120
6.5 Test data generation architecture . 121
6.6 Intermediate representation for extracting query information 121
6.7 Walk-through of IR construction . 122
6.8 User interaction on test results . 125
6.9 Characteristics of synthetic programs . 126

viii

Chapter 1

Introduction

Enterprise applications typically rely on a persistence backend to store user and application
data [98]. Relational databases, along with SQL, provide a simple interface for data definition
and manipulation, and are the standard choice of storage for a lot of such applications. Database
applications written using imperative languages like Java, C#, etc. access the database through
interfaces such as JDBC and object-relational mappers [21].

Traditionally, query execution calls to the database within the application program have
been treated as black boxes [85]. This also resulted in the optimization of such applications
independently on two fronts: (i) source code optimizations by the language compiler and (ii)
query optimization at the database. However, optimizing individual components does not ensure
the global optimum. Although the individual components are optimal, how they interact with
each other can lead to a large number of correctness, security and performance issues which
can go unnoticed during development time. Thus, we need a holistic view of the database and
application as a single unit to address these issues. Techniques for optimization of database
applications that span the application program and database have been referred to as holistic
optimization techniques [69].

1.1 Problem Overview and Motivation

The interaction between a typical application with embedded SQL queries and the database
is shown in Figure 1.1. The application submits a query, which is sent to the database. The
database optimizes and executes the query, and the results are returned to the application in
the form of a ResultSet. The query results are then used to perform other operations in the
application. This view of database applications presumes a clear separation of concerns between
the application program and the database:

• The database performs computations related to data processing including filtering, joins,
aggregation, and others.

• The application performs business related computations such as displaying information,
taking user input, page navigation, and others, leveraging the database for accessing rel-
evant data.

A relational database stores data in the form of tables and columns, whereas an applica-
tion program typically uses data in the form of objects. This is called an object-relational

1

Figure 1.1: Interaction between the application and the database in a typical JDBC application
(image source: [83])

impedance mismatch. Object-relational mapping (ORM) frameworks address this impedance
mismatch by allowing developers to access data stored in the database using object accesses,
without writing explicit SQL queries. The interaction between applications using such abstrac-
tions and the database is shown in Figure 1.2. Developers using these abstractions access data
simply using object accesses; the framework takes care of generating the required SQL queries,
and translating the results back into objects for use in the application. Examples of popular
ORM frameworks include Hibernate [60] for Java, Entity Framework [12] for .NET, Django
ORM [11] for Python, Active Record [13] for Ruby on Rails, and others.

An alternative approach to addressing the impedance mismatch is to make database relations
as first class citizens inside a programming language. The language provides a model of the
database, and custom operations that can be used to construct queries. The language compiler
takes care of translating the models and operations into their SQL counterparts. Examples of
such languages/libraries include SAP ABAP [14], Microsoft LINQ [15], etc. In essence, the
frameworks, languages and libraries discussed above provide an abstraction of the relational

Figure 1.2: Interaction between the application and the database in a typical ORM application

2

List getUnfinishedProjects() {
List unfinishedP = new ArrayList<Project>();

List projects = loadAll(Project.class);

//loadAll() internally uses SQL to fetch all rows of the table Project

for (Project project : projects){
if (!(project.getIsFinished()))

unfinishedP.add(project);

}
return unfinishedP;

}
(a) Program using Hibernate ORM

List getUnfinishedProjects() {
List unfinishedP = executeQuery(

"SELECT *

FROM Project

WHERE isFinished <> 1");

return unfinishedP;

}
(b) Program from Figure 1.3a rewritten to use SQL

Figure 1.3: Distribution of data processing logic in ORM applications

model of the database. The use of database abstraction frameworks in database applications has
been increasing. Chen et al. [28] note that in a recent survey, 67.5% of Java developers use the
Hibernate ORM framework to access the database.

In applications using ORM frameworks (or other abstractions), data processing gets dis-
tributed across the database and the application program. Developers of ORM applications tend
to express complex queries using simple queries (generated by ORM) coupled with imperative
code. For example, consider Figures 1.3 and 1.4. Figures 1.3a and 1.4a both use constructs
provided by the database abstraction framework to read rows of a table into an intermediate
collection and filter using an if inside a loop. Further, Figure 1.4a performs aggregation after
filtering. These frameworks enable modularity and code reuse, and help developers without

SELECT * INTO TABLE gt doc FROM ekko.

LOOP AT gt doc INTO lwa vbfa

IF lwa vbfa-matnr EQ 5.

lwa qty = lwa qty + lwa vbfa-rfmng.

ENDIF.

ENDLOOP.
(a) An ABAP program

SELECT SUM(rfmng)

FROM gt doc

WHERE matnr = 5
(b) SQL query for Figure 1.4a

Figure 1.4: Distribution of data processing logic in programs using database abstractions

3

SQL expertise to develop applications that need to access a relational database, hence they are
popular.

However, the abstraction provided by ORMs comes at the cost of performance issues due
to multiple network round trips, transfer of unused data, and other inefficiencies [118, 28]. For
example, in Figure 1.3a, only a fraction of the rows fetched are used, and in Figure 1.4a the rows
fetched are used to compute a single aggregate value (lwa qty). This problem can be alleviated
by using an SQL query; for example, the program in Figure 1.3a can be rewritten using an SQL
query as shown in Figure 1.3b, to fetch only the required rows. There is a need for extending
holistic optimization techniques beyond optimization of applications that use JDBC/SQL, to fix
such inefficiencies in applications that use database abstractions.

In this thesis, we develop techniques to optimize database programs where the data pro-
cessing logic is distributed across the application program and the database executing SQL.
There has been prior work in this area [33, 114, 84] (only the most relevant work is men-
tioned here, refer Chapter 2 for a detailed survey of prior work). However, either the appli-
cability of these approaches [114] is limited, or the approach [33] is resource intensive, and
the approaches [33, 114, 84] may not perform the best rewrite due to the limitations of using
heuristics. In our work, we develop practical solutions to this problem that provide have wide
applicability, significant performance benefits, and choose the best rewrite.

Similar to database applications, user defined functions (UDFs) inside databases contain a
mix of imperative constructs and SQL queries. Techniques developed for optimizing database
applications can be used to optimize UDFs as well. Optimization of UDFs has been explored in
the past [99]; however the approach in [99] is intrusive to the database optimizer, hence unviable
for integration into commercial database systems. In our work, we improve on the work of [99]
and propose a light-weight approach to UDF optimization that is amenable for easy integration
into the optimizer.

1.2 Summary of Contributions

The key contributions of this thesis are summarized below.

1. We propose techniques based on static program analysis to identify relational operations
such as selections, projections, joins, aggregations, etc. performed in imperative code
and automatically rewrite the program to use SQL queries for these operations. The SQL
queries can significantly improve program performance by reducing (a) the number of
queries (fewer network round trips), (b) amount of data transferred from the database to
the application, and (c) overall program execution time.

We propose techniques based on program regions [73] (i.e., structured fragments of a pro-
gram such as straight line code, if-else, loops, etc.), which provide a hierarchical division
of the program into smaller parts that combine to form larger parts, enabling us to handle
complex control flow. We propose a bottom up recursive algorithm on program regions to
construct an algebraic representation (named fold intermediate representation, or F-IR)
for representing loops in imperative code that iterate over query results. We formalize
a set of preconditions expressed in terms of inter-statement read/write dependencies that
determine whether or not a program can be translated to SQL. Multiple simple transfor-
mations, the correctness of each of which is easy to prove, operate in tandem to simplify
F-IR expressions to eliminate loops. The transformed expression is amenable for transla-
tion into SQL, using which the program is rewritten.

4

2. We present the COBRA framework for cost-based rewriting of database applications. Our
framework addresses gaps in existing approaches, which are based on heuristics, which
in turn can lead to sub-optimal rewrites. Given a program containing database accesses,
and a set of transformations on the program, our framework systematically explores the
space of possible rewrites and chooses the best rewrite.

Our techniques use the notion of program regions [74] to represent a program alge-
braically, and extend the Volcano/Cascades [52, 54] framework for cost-based transfor-
mations of algebraic expressions, to rewrite programs. Our techniques bring the bene-
fits of Volcano/Cascades such as handling cycles in transformations, representing a large
number of alternative rewrites efficiently, etc. to program transformations. The cost based
choice is driven by a proposed cost model that estimates the cost of a program containing
imperative statements and queries; our cost model is able to consult the database opti-
mizer for estimates related to costs and cardinalities of queries.

3. We develop the Froid framework for optimization of imperative code in a relational
database, by inlining user defined function (UDF) invocations in queries. Such inlining
provides up to order of magnitude performance improvements by enabling set oriented
execution of UDFs, which are otherwise evaluated iteratively once per each row in the
calling query.

To this end, we propose techniques for constructing algebraic representations of scalar T-
SQL user defined functions in the Microsoft SQL Server database, building on our work
from translating imperative code to SQL. We evaluate alternative strategies for UDF in-
lining at different stages of query optimization and present our learnings. Our techniques
are also able to provide some compiler optimizations such as dead code elimination and
dynamic slicing to UDFs in relational databases.

4. The static analysis techniques that we developed for optimizing database applications
and UDFs can also be used for extracting useful information about queries embedded in
imperative code. We have extended our techniques to perform other optimizations as well
as test data generation for embedded queries in database applications, as outlined below:

• Developers of database applications often use ORDER BY queries, which are ex-
pensive. We propose techniques based on data flow analysis to identify whether the
order of query results is not used in the program, and develop transformations to
rewrite queries and collections to remove the unnecessary ordering, for improved
performance.

• We propose techniques to generate test data for imperative programs containing
SQL queries. The XData [24] system developed at IIT Bombay generates test data
for automatic grading of SQL queries. Our techniques use static analysis to extract
queries and relevant conditions from database applications containing embedded
SQL queries, and use XData to generate test data for queries, as well as unit tests
for functions containing queries, to assess the correctness of these queries.

1.3 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, we survey existing approaches for holistic
optimization of database applications. Techniques for translating imperative code to SQL are
detailed in Chapter 3. We discuss the COBRA framework for cost-based transformations in

5

Chapter 4. Chapter 5 elaborates on the Froid framework for optimizing UDFs. In Chapter 6, we
discuss other applications for static analysis of database applications. We conclude the thesis in
Chapter 7 with a few directions for future work.

6

Chapter 2

Literature Survey

In his 1979 paper describing the Theseus database programming language [97], Shopiro noted
that the majority of uses of a database are by specialized application programs rather than by
interactive queries. One of the design goals of Theseus was to facilitate research in automatic
program optimization. Hardikar et al. [58] proposed techniques for automatically generating
COBOL data processing reports and test data based on user specifications. As early as 1992,
Lieuwen et al. [67] have argued about the need for extending compilers to include database-
style optimizations. Although databases have evolved since [97, 58, 67], queries embedded in
database applications are widely used in a large variety of applications, thus global (holistic)
program optimization assumes particular significance, apart from optimization of individual
queries.

Over the last decade, there have been many interesting developments in optimizing database
applications. Techniques from database query optimization, program analysis and program
synthesis have been adopted to solve various problems in the area of holistic optimization. We
now survey early approaches and then discuss the major developments in holistic optimization
of database applications.

2.1 Early Approaches

Dasgupta et al. [36] presented a static analysis framework for analyzing database applications
that use ADO.NET to automatically identify various security, correctness and performance
problems in the database application. This framework provides a common infrastructure to in-
corporate database awareness into the existing compilers. Since the framework is very generic,
many analysis and optimization tasks can be incorporated into it.

Manjhi et al. [69] proposed the MERGING transformation to identify patterns in the code
where the application first issues a query to get multiple values and then for each value, issues
another database query using a loop. They then replace this with a single join query. Although
loops containing query execution statements are promising targets for optimization in database
applications [85], techniques in [69] do not handle conditional branches like if-else, which
limits the applicability of their techniques. Further, loops in database applications often iterate
over program collections, so the precondition that the looped values should be results from a
previous query is quite restrictive.

7

int sum = 0;

stmt = con.prepareStatement("SELECT COUNT(partkey) FROM part WHERE p

category=?");

while(!categoryList.isEmpty()) {
category = categoryList.removeFirst();

stmt.setInt(1, category);

ResultSet rs = stmt.executeQuery();

int count = rs.getInt(count);

sum += count;

}

Figure 2.1: Code with opportunities for loop fission transformation (source: [85])

2.2 Recent Approaches

We discuss recent developments in this area, classified according to the type of techniques used.

2.2.1 Batching of Query Results

Techniques for batching of query results aim to reduce the number of query invocations by
combining multiple queries into a single call to the database. Consider the program shown in
Figure 2.1, which counts the number of parts in a category including all of its sub-categories
in the hierarchy. For this, it issues queries synchronously and iteratively, thus incurring a large
latency due to multiple network round trips.

Rewriting Procedures for Batched Bindings

Batching transformations proposed by Guravannavar et al. [56] replace iterative invocations of
a query using a single invocation of its batched query using loop fission transformations. The
transformations proposed in [56] are part of the DBridge system [26], which is a program trans-
formation system for programs containing embedded queries. We briefly describe the DBridge
system before discussing techniques for batching from [56].

DBridge

The DBridge system [26, 43] developed at IIT Bombay uses techniques from static program
analysis and program transformations to rewrite programs containing embedded SQL queries,
for optimized data access. DBridge focuses on rewriting Java programs that use the JDBC or
Hibernate [60] frameworks for accessing a relational database. Since DBridge performs trans-
formations on bytecode, any program that can be compiled into bytecode can also be optimized
using the DBridge system. The techniques involved are generic, however, and can be used for
rewriting programs that use other languages/data access APIs.

The architecture of DBridge is shown in Figure 2.2. DBridge is a source (.java/.class) to
source (.java/.class) rewrite system. It leverages the Soot [102] Java optimization framework,
which provides structures such as the control flow graph for implementing data flow analyses
and a convenient intermediate representation for transformations called Jimple. Using these
structures, DBridge performs multiple transformations on the Jimple code. The modified Jimple
code is finally decompiled into the target program.

8

Code (Jimple)
Intermediate

Source Java
File

Dataflow
Analysis

Def−Use

Information

DDG

Construction

Dependence
Graph

Modified
Jimple CodeDecompile

File

Target Java

Parsing and
Conversion to
Interm Rep

 Rules

Apply Trans

Figure 2.2: DBridge Architecture (image source: [26])

Figure 2.3: Transformed program for Figure 2.1 after loop fission [56]. Figure reproduced
from [85].

The main transformations in DBridge are1 batching transformations [84] and prefetch-
ing [87] transformations; we discuss batching in this section, and prefetching in Section 2.2.2.

Batching using Loop Fission

Loop fission transformations focus on identifying query execution statements within a loop and
rewriting the queries along with the loop after splitting it, in order to minimize latency due to
iterative queries. The loop split and transformation happens systematically using a series of
program transformation rules. Each of these rules identifies a program pattern and, provided
certain preconditions are satisfied, replaces it with an equivalent program. The loop in the pro-
gram from Figure 2.1 can be rewritten using loop fission as shown in Figure 2.3. The techniques
batching [56] and asynchronous query submission [84] both employ loop fission.

In Figure 2.3 (Batching mode), the first loop adds all the queries to a batch, which is then
executed using the stmt.executeBatch() statement to fetch a single result for all invocations
of the query across all iterations of the first loop. In Figure 2.3, the batched query would be as
follows:

SELECT pb.category, le.c1

FROM pbatch pb OUTER APPLY

1The contributions of this thesis have been incorporated into the DBridge system, so the discussion on DBridge
will be limited to approaches prior to the work described in this thesis.

9

(SELECT COUNT(partkey) AS c1)

FROM part WHERE category = pb.category) le

where pb is a temporary table in which parameter bindings are materialized.
The second loop uses the results of the batched query, and the results for each iteration are

identified by using a loop context that was created when creating the batch.

Sloth

The Sloth [32] system aims to reduce latency in database applications by collecting batches of
queries and executing them together. Unlike the batching approach of Guravannavar et al. [56],
Sloth performs batching at program runtime. Sloth determines the set of queries to be batched
by using lazy evaluation, as follows. Query invocations simply register a query for execution
and the query is added to the next batch of queries to be sent to the database. Computations in-
volving the results of a query are deferred until the results are critical (such as for displaying on
the console), at which point the collected batch of queries is sent to the database for execution.

Batching queries using this technique reduces the number of network roundtrips and also
allows the database to optimize and execute multiple queries together, using techniques for
multi query optimization [90].

2.2.2 Prefetching Query Results

Prefetching is another technique that helps reduce the latency due to remote database calls by
inserting asynchronous requests for query results, even before program execution has reached
the query call location. Ramachandra and Chavan et al. [87, 84, 27] propose two techniques for
prefetching query results in database applications.

Asynchronous Query Submission

Asynchronous query submission aims to minimize the latency due to iterative queries by over-
lapping query execution and program execution. Asynchronous query submission also uses
loop fission, and the user facing API is the same as in batching transformations (refer Figure 2.3
(Asynchronous mode)).

However, in asynchronous submission, when the query is added to a batch using the state-
ment stmt.addBatch(ctx), the query is asynchronously submitted to the database using a
separate thread. The first loop is thus responsible for initiating the query execution for all
parameters, and the addBatch call returns with a handle. As the results of each query are avail-
able, they are cached at the client. In the second loop, when the query results are actually used,
the results are retrieved from the cache using the handle obtained earlier. In case some query
results are still unavailable in the cache at the time of use in the second loop, the application
then falls back to a synchronous block until the results are available.

Hybrid Approaches to Batching

Since the API for batching and asynchronous query submission is the same, a hybrid approach
of asynchronous batching [84] has also been proposed. In this approach, a certain number of
parameter bindings (which may be determined dynamically at runtime) are batched, and the
batched query is executed asynchronously. This approach has the advantage of making the

10

first result available sooner than in batching, while reducing the number of asynchronous query
invocations. Another important contribution of [84] is an algorithm for reordering statements
within a loop to eliminate loop carried flow dependencies; this increases the applicability of
these techniques.

2.2.3 Prefetching Query Results at the Earliest Program Point

Ramachandra et al. [87] propose a technique for prefetching results of queries ahead of their
actual execution in the program. The technique is called query anticipability analysis, and is
based on the data flow framework anticipable expressions analysis [65]. Query anticipability
analysis determines the earliest program point at which a prefetch instruction for a query can
be inserted, without any prefetches being wasted. Intuitively, this is the earliest point in the
program where:

• The values of all parameters that are used in a query are available.

• It is guaranteed from the program’s control flow that the actual query statement is exe-
cuted whenever the prefetch statement is executed.

For a formal description of the techniques, refer [87]. Note that although asynchronous
query submission also achieves prefetching for queries within loops, techniques in [87] gen-
eralize it to prefetch results for queries at any point in the program, including interprocedural
prefetching, i.e., inserting prefetch requests across procedure calls.

2.2.4 Pushing Computation to the Database

Cheung et al. [31, 33] propose two techniques for optimizing database applications by pushing
computation to the database. They are described below.

Query By Synthesis

Query By Synthesis (QBS) [33] is a tool that extracts SQL from fragments of imperative code
that use query results. Cheung et al. [33] note that the widespread usage of object-relational
mapping (ORM) libraries in applications to interact with databases, “often leads to poor per-
formance as modularity concerns encourage developers to implement relational operations in
application code. Such an implementation does not allow the application to take advantage
of the optimized implementations that databases provide”. It would be useful to identify such
relational logic embedded in imperative code and transform it into SQL queries. The authors
present a system (QBS) based on query synthesis that achieves this goal. For example, the
program in Figure 2.4 can be rewritten Figure 2.5 by extracting an SQL query.

QBS uses program synthesis technology for extracting queries. The authors define a theory
of ordered relations, which is similar to relational algebra but uses ordered lists rather than
multisets. Reasoning with ordered lists is important because ORM frameworks use an ordered
list interface for persistent data. QBS works in two steps:

1. Analyze the input code and come up with templates for the annotations (annotations are
algebraic representations of the variables in the code) in the theory of ordered relations.
For example, a nested loop could be modeled as a join, an if condition could be modeled
as a selection condition, etc.

11

List<User> getRoleUser() {
List<User> listUsers = new ArrayList<User>();

List<User> users = this.userDao.getUsers();

List<Role> roles = this.roleDao.getRoles();

for (User u: users) {
for (Role r: roles) {
if (u.roleId().equals(r.roleId())){
User userok = u;

listUsers.add(userok);

}}}
return listUsers;

}

Figure 2.4: Imperative program implementing join (source: [33])

List<User> getRoleUser() {
List<User> listUsers = db.executeQuery(

"SELECT u

FROM users u, roles r

WHERE u.roleId = r.roleId

ORDER BY u.roleId, r.roleId");

return listUsers;

}

Figure 2.5: Program from Figure 2.4 rewritten using SQL query (source: [33])

2. Formulate equations for post conditions and loop invariants using these templates, in
the predicate logic derived from the theory of ordered relations. The authors use the
Sketch [101] constraint based synthesis system to solve these equations, to obtain the
solution for the annotations. The resulting expressions for variables are then translated to
SQL for program rewriting.

Pyxis

Pyxis is a tool that partitions a database application program so that a part of the program can
be pushed to run at the server. Data transfer between the database and the application program
leads to multiple network round trips. Pyxis [31] aims to fix this problem by identifying parts
of the program that can be run at the database itself, so as to minimize the number data transfers
and control flow transfers between the application and the database.

For example, the program fragment in Figure 2.6 is partitioned as shown in Figure 2.7 where
APP denotes code that runs at the application, and DB denotes code that runs at the database. The
functions sendAPP, sendDB, and sendNative facilitate data exchange between the application
to the database (marked using the comment //exchange in Figure 2.7).

In Pyxis, the data and control flow dependencies between statements in the original program
are encoded in the form of a graph with statements being nodes and dependencies being edges.
The edges have a weight that denotes the cost incurred if the two statements are on different
partitions. The partitioning decision is modeled as an integer programming problem, with the
goal to minimize the cost incurred due to partitioning. For further details, refer [31]. Although
Pyxis can automatically identify the partitions, the database server may need to be equipped
with additional software to be able to run the partitioned application code, leading to additional

12

class Order {
int id;

double[] realCosts;

double totalCost;

Order(int id) {
this.id = id;

}
void placeOrder(int cid, double dct) {
totalCost = 0;

computeTotalCost(dct);

updateAccount(cid, totalCost);

}
void computeTotalCost(double dct) {
int i = 0;

double[] costs = getCosts();

realCosts = new double[costs.length];

for (itemCost : costs) {
double realCost;

realCost = itemCost * dct;

totalCost += realCost;

realCosts[i++] = realCost;

insertNewLineItem(id, realCost);

}
}
}

Figure 2.6: A program accessing the database (source: [31])

maintenance concerns.

2.2.5 Optimizing Transactions in Database Applications

Yan et al. [116] proposed techniques that leverage application semantics to improve the per-
formance of transactions in OLTP applications. The idea behind their techniques is that some
queries in a transaction require locking of the same tuples as other concurrently executing trans-
actions (determined by profiling), so such queries should be issued at the end of the transaction.
To this end, they propose techniques to reorder statements within a transaction to minimize lock
contention, while preserving the application semantics.

2.2.6 Optimizing User Defined Functions in Databases

Decorrelation of nested sub-queries has been studied well in databases [66, 37, 93, 49, 42].
In particular, the Apply operator introduced by Galindo-Legaria et al. [42] explicitly models
sub-query execution as the evaluation of a parameterized expression for each row in the outer
query. Transformation rules replace the Apply operator with standard relational operations, thus
achieving sub-query decorrelation.

Simhadri et al. [99] propose extensions to the Apply operator and transformation rules to
decorrelate user defined function (UDF) invocations within a query. For example, the query

13

class Order {
:APP: int id;

:APP: double[] realCosts;

:DB: double totalCost;

Order(int id) {
:APP: this.id = id;

:APP: sendAPP(this); //exchange

}
void placeOrder(int cid, double dct) {
:APP: totalCost = 0;

:APP: sendDB(this); //exchange

:APP: computeTotalCost(dct);

:APP: updateAccount(cid, totalCost);

}
void computeTotalCost(double dct) {
int i; double[] costs;

:APP: costs = getCosts();

:APP: realCosts = new double[costs.length];

:APP: sendAPP(this); //exchange

:APP: sendNative(realCosts, costs); //exchange

:APP: i = 0;

for (:DB: itemCost : costs) {
:DB: double realCost;

:DB: realCost = itemCost * dct;

:DB: totalCost += realCost;

:DB: sendDB(this); //exchange

:DB: realCosts[i++] = realCost;

:DB: sendNative(realCosts); //exchange

:DB: insertNewLineItem(id, realCost);

}
}
}

Figure 2.7: Partition of program from Figure 2.6 (source: [31])

with UDF invocation in Figure 2.8 is rewritten using the techniques in [99] to Figure 2.9. The
rewritten query allows the database engine to execute the code inside the UDF in a set-oriented
manner instead of iterative invocation as in the original query.

The extensions model imperative constructs used in UDF invocations, such as formal to ac-
tual parameter mappings, assignment statements, and branching (if-else) statements. Although
the techniques proposed in [99] are widely applicable and provide significant performance ben-
efits, they require intrusive changes to the database query optimizer due to the introduction of
new operators and transformation rules, which may be undesirable in commercial databases.

2.2.7 Optimizations for ORM Applications

A few approaches have been developed for optimization of applications that use object-relational
mapping (ORM) frameworks. The Query By Synthesis system [33] has been discussed earlier
in Section 2.2.4. Here, we discuss other approaches. The goal of these approaches is to use

14

create function service level(int ckey) returns char(10) as

begin

float totalbusiness; string level;

SELECT SUM(totalprice) INTO :totalbusiness

FROM orders WHERE custkey=:ckey;

if (totalbusiness > 1000000)

level = Platinum;

else if (totalbusiness > 500000)

level = Gold;

else

level = Regular;

return level;

end

Query: SELECT custkey, service level(custkey) FROM customer;

Figure 2.8: Query with a scalar UDF (source: [99])

program analysis to identify performance anti-patterns in ORM applications, which can help
developers to write more performant ORM code.

ORM Application Maintenance and Caching

The work by Chen et al. [28] focuses on issues pertaining to the maintenance and performance
of applications that use object-relational mapping [21] (ORM) frameworks. Their work contains
a mix of empirical studies performed on enterprise and open source applications, and a set of
tools to aid development of efficient ORM code. Their contributions are summarized below.

• Chen et al. identify that ORMs cannot completely abstract away data access in terms
of objects and ORM code is scattered across the application. Changes to ORM code
are frequent and the most common case of changes to ORM code is due to security and
performance reasons. However, traditional programming language compilers are unaware
of ORM syntax and semantics, hence these issues go unnoticed.

• They develop a framework to automatically detect ORM performance anti-patterns. The
framework is able to rank the anti-patterns based on their potential impact on application
performance.

• They build a tool called CacheOptimizer that can suggest the best cache configuration
for database mapped classes in the application. CacheOptimizer uses web application

SELECT c.custkey, CASE e.totalbusiness > 1000000: Platinum

CASE e.totalbusiness > 500000: Gold

DEFAULT: Regular

FROM customer c LEFT OUTER JOIN e ON c.custkey=e.custkey;

where e stands for the query:
SELECT custkey, SUM(totalprice) AS totalbusiness

FROM orders GROUP BY custkey;

Figure 2.9: Decorrelated form of query from Figure 2.8 (source: [99])

15

Approach Benefits Static (Program Rewrit-
ing)

Runtime

Batching Reduce #queries, disk
IO sharing

Loop fission [56] Lazy evalua-
tion [32]

Prefetching Overlap program and
query execution

Query anticipability analy-
sis [87]

Adaptive batch-
ing [84]

Pushing
computation
to DB

Reduced data transfer Query by synthesis [33],
Automatic program parti-
tioning [31]

Statement re-
ordering

Dependency removal Loop fission [27], Optimiz-
ing transactions [116]

ORM Appli-
cation Analy-
sis

Aid programmers ORM Maintenance and
caching [28], Analysis of
performance bugs [117]

Figure 2.10: Summary of Prior Work

logs to infer the workload characteristics and data access patterns and automatically adds
appropriate cache configurations to the application.

Analysis of Performance Bugs in ORM Applications

The Hyperloop project [10] focuses on detecting and solving performance problems in web
applications that use ORM frameworks. Yang et al. [118] surveyed 12 open source Ruby on
Rails ORM applications and identify various causes for performance inefficiencies in ORM
applications including retrieval of unused fields, missing indexes at the database, unnecessary
computation involving query results, and others. Subsequently, they developed a tool [119] for
automatically fixing some of these inefficiencies.

2.3 Summary

In this chapter, we have surveyed various techniques for optimizing database applications, with
a focus on major developments in this area over the past decade. The techniques are summarized
in Figure 2.10, categorized according to the approach and whether the techniques used are
static/runtime techniques. We observe that holistic optimization of database applications has
received a lot of attention and techniques from multiple disciplines have been adopted to solve
a number of interesting problems. Research in recent years indicates the increasing use of
ORM frameworks, and motivates the need for a database aware compiler for optimizing ORM
applications in addition to applications that use explicit SQL queries.

16

Chapter 3

Translating Imperative Code to SQL

Database applications perform poorly due to inefficient data access caused by iterative queries
and transfer of unused data. These inefficiencies are particularly prevalent in applications that
use object-relational mapping (ORM) frameworks. In this chapter we present an approach to
this problem, based on extracting a concise algebraic representation of (parts of) an application,
which may include imperative code as well as SQL queries. The algebraic representation can
then be translated into SQL to improve application performance, by reducing the volume of
data transferred, as well as reducing latency by minimizing the number of network round trips.

Our techniques can be used for performing optimizations of database applications that tech-
niques proposed earlier cannot perform. The algebraic representations can also be used for
other purposes such as extracting equivalent queries for keyword search on form results. Our
experiments indicate that the techniques we present are widely applicable to real world database
applications, in terms of successfully extracting algebraic representations of application behav-
ior, as well as in terms of providing performance benefits when used for optimization. The
contents of this chapter have been published in [44].

3.1 Introduction

Database applications are written using a mix of declarative SQL queries and imperative code
written in languages such as Java. Techniques that optimize across the declarative and imper-
ative parts of a database application are referred to as holistic optimization techniques. Such
holistic techniques, which exploit program analysis and rewriting in conjunction with query
rewriting, can perform optimizations that are beyond the scope of a database query optimizer or
an optimizing compiler for the imperative language.

In this chapter, we present a novel holistic optimization technique which derives algebraic
representations, or expressions, for program variables in database applications. The algebraic
representation (D-IR) captures the effect of multiple program statements on a variable as a single
expression. D-IR is then translated into a functional representation (F-IR) based on relational
algebra and fold. Various transformation rules are presented to optimize F-IR, which is then
translated into SQL. Our techniques have multiple applications, listed below.

17

Optimization of database applications

Our techniques allow many operations performed in imperative code in database backed ap-
plications to be translated to SQL queries making use of selections, joins, projections, and
aggregate operations. Our techniques can detect when conditional execution, nested loops, and
collection of results into an aggregate variable can be translated into SQL, reducing data transfer
and even the number of queries executed.

There has been recent work by Cheung et al. [33] to transform parts of application logic into
SQL queries, with a focus on database applications using Hibernate [60]. They rely on program
synthesis technology, which is very resource intensive. Our techniques, on the other hand,
rely on static program analysis, which is cheaper. For all programs that our techniques could
successfully optimize, our techniques extracted equivalent SQL in much less time than [33],
as shown by our experiments. Radoi et al. [82] proposed techniques for translating imperative
code into MapReduce programs. While we use a functional representation which is similar to
theirs, our goal is to infer SQL queries, so the techniques we propose are different. A detailed
comparison with [33, 82], and other techniques for finding equivalent SQL queries, is given in
Section 3.6.

Enhancing applicability of existing techniques

When the results of one query do not directly feed as parameters to another query, batching
[56] is unable to combine these two queries into a single query. Techniques in this chapter
resolve assignments to intermediate variables and allow query parameters to be expressed in
terms of program inputs or results of other queries. This enhances the applicability of [56, 84]
by combining related queries.

Keyword Search

Keyword search systems such as [41] accept a manually extracted set of queries for each form,
along with mappings of form parameters to query parameters as input. Our algebraic represen-
tations can be used to automate extraction of equivalent SQL queries for keyword search.

Contributions

The key novel contributions of this chapter are as follows:

1. We present (in Section 3.3) a DAG based intermediate representation (D-IR) for applica-
tion code, that expresses the value of a variable at a point in the program as an expression
in terms of values available at an earlier point in the program. D-IR represents straight
line and conditionally evaluated code algebraically, while loops have a non algebraic rep-
resentation (only cursor loops are considered). We present techniques for deriving D-IR
representations for program variables. Our techniques are based on program regions (re-
fer Section 3.3.1), and can be applied to complex programs that include function calls.

2. We show (in Section 3.4) how to translate D-IR for cursor loops into a functional rep-
resentation which uses fold along with relational algebra (we call it fold intermediate
representation, or F-IR). F-IR is a convenient declarative representation for imperative
code.

18

Figure 3.1: System Overview

3. We present (in Section 3.5) transformation rules for F-IR, which help us in moving com-
putation out of cursor loops and generating equivalent SQL queries. We then describe (in
Section 3.5.2) how to rewrite the source program to use equivalent SQL. Our techniques
are able to extract equivalent SQL partially for some variables that are amenable to al-
gebraic analysis, while leaving other parts of code intact. Our techniques can translate
many instances of nested loops, where inner loop computes aggregation for each value of
outer loop, into a GROUP BY query, which earlier techniques cannot do.

4. Our techniques have been implemented in the DBridge [26] tool for static analysis and
program transformations, to analyze and optimize Java programs that use JDBC or Hi-
bernate. (The techniques themselves are not specific to any language or API.).

5. We present (in Section 3.7) an experimental evaluation of the proposed techniques on real
world applications, which show the applicability of our techniques and their impact on
application performance.

Section 3.2 presents an overview of our approach. We discuss related work in Section 3.6,
and summarize the chapter in Section 3.8.

3.2 Overview

An overview of our system is given in Figure 3.1. Given the source program (fragment), we
first construct our DAG-based intermediate representation (which we call D-IR) for program
variables. D-IR serves two purposes: (i) it resolves intermediate variable assignments, so the
value of each variable at any program point is expressed in terms of values of variables at the
beginning of the program, and (ii) it provides a semantic representation of the program.

For a variable whose computation we wish to optimize, its D-IR is translated into a func-
tional representation using fold and relational algebra (F-IR), provided the required precon-
ditions are met. The motivations behind translation of D-IR into F-IR are twofold: (i) F-IR
provides a convenient declarative representation of the imperative program which is easy to
translate into SQL. (ii) Transformations on F-IR are easy to describe and reason about, as F-IR
uses higher order functions, which have well established properties. This makes it easy to prove
correctness of transformation rules.

19

boards = executeQuery("from Board as b where b.rnd id = 1");

scoreMax = 0;

for (t : boards) {
p1 = t.getP1();

p2 = t.getP2();

p3 = t.getP3();

p4 = t.getP4();

score = Math.max(p1, p2);

score = Math.max(score, p3);

score = Math.max(score, p4);

if(score > scoreMax)

scoreMax = score;

}

Figure 3.2: Code for highest score calculation

Rule based transformations are applied on the F-IR to push computation into the relational
algebra query where possible; when no more transformations can be done, the rewritten F-IR
representation is translated into SQL. The original program is then rewritten to derive the value
of that particular variable, using the extracted equivalent SQL. Parts of the original program
which are now rendered redundant/unused are removed. Translation of imperative code into
SQL can greatly reduce the number of queries executed, and the amount of data transferred
from the database, as compared to the original program.

Consider the code fragment shown in Figure 3.2, which is extracted from an open source
gaming tournament software [71]1. Variable types have not been displayed in this code, for
ease of presentation (we will stick to this practice throughout the chapter). It is part of a ranking
page generator which tries to find the highest score across all tables in a round of the game
Mahjong, where there are four players per table. The original code also finds the player who
has the highest score along with the score itself, for each round. Section 3.5.4 discusses how to
generate equivalent SQL for such cases.

The optimized SQL for the scoreMax is shown in Figure 3.3(d)2. Parts (a), (b) and (c) show
the various intermediate stages from the source code to optimized SQL, each of which will be
described in detail in future sections. In parts (b) and (c), max is a function which returns the
greatest of two elements.

The discussion in this chapter targets loops that iterate over a collection, which we call
cursor loops. If the iterated collection can be inferred (directly or indirectly) as equivalent to
the result of a database query, we use the query to represent the collection. Otherwise, it is
possible to create a temporary table at the database with the contents of the collection, and use a
query (Q) on the temporary table to represent the collection. For simplicity, in this chapter, we
focus on the former case. For the latter case, we assume that Q is available. We omit details.

Furthermore, our discussion focuses on aggregates/collections built inside cursor loops. In
addition to building aggregates/collections, another common use of cursor loops is to print val-
ues as they are computed in the loop. In such cases, we preprocess the program to replace output

1Some changes have been made from the actual code for ease of presentation: (i) queries are made explicit and
(ii) schema of the class Board has been simplified. Also, we use an abstract syntax for queries, which uses the
pseudo function executeQuery that takes an SQL/HQL query, executes it and returns the result set/list of objects.
“?”s represent place holders for query parameters to be substituted in the corresponding order. Our implementation
uses the actual source code.

2We illustrate using the GREATEST function of PostgreSQL. Translation into other dialects is possible using
similar functions, or using CASE..WHEN construct.

20

Figure 3.3: Walk-through of equivalent SQL derivation

statements with appends to a (global) string (which can be treated as an ordered collection), and
print its contents at the end of the program. The preprocessed program is then optimized using
our techniques. We defer details to Section 3.5.4.

Query execution calls are usually enclosed within exception handling code. Our imple-
mentation conservatively considers code that lies within a try-catch block, so that exception
handling behavior is not altered due to optimizations. We also assume that loops do not contain
unconditional exit statements like break, although certain cases of loop exit can be handling by
some more engineering effort. Our experiments show that despite these restrictions, techniques
presented in this chapter have wide applicability. Inferring equivalent SQL across multiple
try-catch blocks is part of future work.

3.3 DAG Based IR

The goal of the first intermediate representation we use is to represent the values of program
variables as algebraic expressions. We chose a DAG representation to allow sharing of com-
mon sub-expressions between multiple expressions. We refer to our DAG-based intermediate
representation as D-IR. DAG representation for basic blocks has been used in various code
optimization techniques in traditional compilers [17]. We extend it to construct DAG represen-
tations for other program regions (Section 3.3.3).

In this section, we first present a background on program regions. We then discuss our D-IR
representation and describe an algorithm for D-IR construction.

3.3.1 Background

A Control Flow Graph (CFG) is a directed graph in which nodes correspond to basic blocks
in the program and edges correspond to control flow [17]. There are two specially designated

21

Figure 3.4: Types of regions

nodes: the Start node, through which control enters into the graph, and the End node, through
which all control flow leaves. Additionally, for each node n, Entry(n) and Exit(n) represent
the program points just before the execution of the first statement, and just after the execution
of the last statement of n. Directed edges represent control flow; sets pred(n) and succ(n)
denote the predecessors and successors of a node n respectively. The predecessor and successor
relationships are as defined below:

• succ(n): The successors set of node n in the CFG G is the set of all nodes n2 such that
there exists an edge from n to n2 in G. i.e.
succ(n) = {n2|n2 ∈ G and n→ n2}

• pred(n): The predecessors set of node n in the CFG G is the set of all nodes n2 such that
there exists an edge from n2 to n in G. i.e.
pred(n) = {n2|n2 ∈ G and n2→ n}

CFGs are usually built on intermediate representations such as Java bytecode. Our techniques
apply to any CFG; our implementation uses CFGs built on a representation called Jimple, pro-
vided by the Soot optimization framework [102].

Regions represent structured fragments of programs such as basic blocks, if-else blocks,
loops, functions etc. A region in a flow graph is a set of nodes that includes a header that
dominates all other nodes in the region, and has a single entry and exit. Regions are constructed
from the CFG using rules described in [59]. Alternatively, it is possible to use an abstract syntax
tree to identify program regions.

In our work, we handle four types of regions: basic block, sequential region, conditional
region, and loop region (see Figure 3.4). In Figure 3.4, R1, R2 and R3 represent constituent
regions of a parent region.

• Basic Block Region: A basic block represents a maximal group of consecutive statements
that are executed together with sequential control flow between them. By definition, basic
blocks cannot contain conditional constructs (if-else), loops or jumps of any sort. Regions
R1, R2, R3 and R4 in Figure 3.5(a) represent basic blocks.

• Sequential Region: Sequential regions are regions composed of two sub-regions with
sequential control flow between them (Figure 3.4(b)). In Figure 3.5(a), R6 is a sequential
region.

• Conditional Region: A conditional region is comprised of three sub-regions (Figure
3.4(a)). The first sub-region (R1) contains the condition. The second sub-region (R2) is
executed if the condition evaluates to true, otherwise the third sub-region (R3) is executed.

22

We refer to R1 as the “condition region”, R2 as the “true region” and R3 as the “false
region”. In Figure 3.5(a), R5 is a conditional region composed of the condition region
R2, true region R3 and false region R4.

• Loop Region: Loop regions are composed of two regions (loop header and loop body)
with a cycle, as shown in Figure 3.4(c). Control flow starts at the loop header which con-
tains the looping condition. If the condition evaluates to true, the loop body is executed,
and control returns to the loop header to re-evaluate the condition. This is repeated until
the condition becomes false, and then the loop exits.

By definition, regions compose other regions. We note that the program as a whole is also a
region.

3.3.2 D-IR

D-IR is an intermediate representation for imperative code which may also contain database
queries. It has two components: equivalent expression DAG (ee-DAG) and variable-expression
map (ve-Map). Each region in the program has an ee-DAG and its associated ve-Map. We
describe these data structures below.

ee-DAG

We define an equivalent expression DAG (ee-DAG) as a directed acyclic graph in which each
node represents an expression. An expression (i) is a constant, a variable or a query attribute
(base case) (ii) consists of an operator and its operands; each operand can in turn be an ex-
pression. The operator is connected to its operands through directed edges. Consider the code
sample shown in Figure 3.5(a). The ee-DAG for the program is shown in Figure 3.5(d). Circled
numerals denote pointers to another part of the ee-DAG (to avoid clutter).

Parameterized queries in the source program can be treated as parameterized expressions
in the multiset relational algebra. All relational algebraic operators (project (π), project (σ),
join (1) etc.) are available in ee-DAG. Note that in this chapter, π denotes projection without
duplicate elimination. We also include extended relational algebraic operators for aggregation
(γ), sorting (τ) and eliminating duplicates (δ) [112]3. Relational operators do not guarantee that
the order of input tuples is preserved in the output, unless explicitly sorted using τ . However, in
this chapter, we assume that for the operator π (projection without duplicate elimination), the
input ordering is preserved in the output.

All arithmetic operators (+,−, ∗, / etc.), and logical operators (¡, ¿, ==, AND, OR etc.), are
available in the ee-DAG. In addition, we introduce the following operators to enable represen-
tation of imperative code constructs:

• Conditional evaluation (“?”): Its semantics are similar to ternary operator or if-else in
imperative languages like Java/C.

• Cursor loop (Loop): The Loop operator represents computations inside cursor loops. It
accepts two operands.. The first operand is the relation or query result over which the
loop iterates. The second operand represents the loop body. Unlike other operators, the
Loop operator does not represent a single value. In this sense, the Loop operator is not

3Usage: GγAgg(E)(R) groups R on G and performs aggregations in Agg (G could be empty), τL(R) sorts R on L,
and δ (R) eliminates all duplicate rows from R.

23

Figure 3.5: D-IR construction for a simple code fragment

algebraic. The loop body is represented by enclosing it inside a dotted rectangle (refer
Figure 3.3(a)). Expressions inside this rectangle correspond to a single iteration of the
loop.

Since our implementation can take imperative programs with rich language features as in-
put, equivalent ee-DAG operators are necessary to model semantics of source program state-
ments. We chose Java programs to demonstrate the working of our tool, so equivalent ee-DAG
operators were created for the following Java constructs:

• String operations, addition/deletion of elements into/from collections (Array, List and
Set), getter and setter functions for object attributes

• Important library functions – for example, in Figure 3.2, our system understands that
Math.max is a function which returns the maximum of two numbers. This is modeled in
D-IR using the max operator. Adding support for more library functions is not hard, and
our ee-DAG can easily evolve as needed.

In our ee-DAG, an operator is represented as a node, and its operands are represented as
children of the operator node. For example, in Figure 3.5(c), the condition y - x > 0 is repre-
sented by the node rooted at >, and the operation y - x is represented by the node rooted at−.
Similarly, in Figure 3.3(c), the ee-DAG rooted at π represents the query π max(max(max(p1,p2),p3),p4)(Q).

ve-Map

The ve-Map is a key-value data structure where a key is the label of a program variable (v) and
its value is a pointer to a node e in the ee-DAG. The expression e when evaluated gives the
value of variable v, in terms of values available at the beginning of the region. We refer to this
ee-DAG expression as the equivalent ee-DAG expression (or simply the equivalent expression)
of the program variable. In the illustrations in this chapter, we denote ve-Map values (pointers)

24

with dotted arrows. Note that these dotted arrows are not part of the ee-DAG edges. The
ve-Map for the program in Figure 3.5(a) is shown in Figure 3.5(d). In this chapter, we skip
showing entries in the ve-Map for variables in which we are not interested (to make diagrams
more readable).

3.3.3 Algorithm for D-IR Construction

D-IR construction works on top of the region hierarchy. Construction of regions was discussed
in Section 3.3.1. We now outline a bottom up recursive algorithm for D-IR construction for a
region. Appendix A.2 describes the algorithm in full detail.

1. Construct D-IR (ee-DAG and ve-Map) for each constituent region (sub-region). All
leaves in the ee-DAG which are variables are marked as region inputs.

2. Merge D-IRs of sub-regions appropriately (depending on type of parent region) to obtain
D-IR for the parent region. The aim of merging is to replace region inputs with their
ee-DAG expressions, which are expressed terms of inputs to a preceding region.

In the illustrations in this chapter, region inputs are denoted by tagging them with a subscript 0,
for example, x0 and y0 in Figure 3.5(c).

The smallest sub-region in a program is a single statement. Thus, D-IR construction for a
program starts by constructing D-IR for simple statements, which are merged to get D-IR for
basic blocks, which are merged to get D-IR for other composite regions. This process halts
when the variable values are expressed in terms of inputs to the outermost region of interest.

We consider each simple source program statement as consisting of an expression (compris-
ing of an operator and its operands) whose value is assigned to an optional target variable. For
example, the statement sum = 5 + 10 consists of an addition operation involving the operator
+ and its operands 5 and 10, with sum as the target variable. A source language expression
is represented in D-IR using an equivalent ee-DAG operator and equivalent expressions for
operands as its children. Assignment is captured by adding an entry in ve-Map for the target
variable (or updating, if an entry already exists), with its value as the ee-DAG expression.

We now outline the steps for D-IR construction for each type of region.
For a sequential region R comprising of regions R1 and R2 such that R2 follows R1, the ee-

DAG for R is obtained by replacing each leaf variable (region input) in the ee-DAG of R2, with
the ee-DAG of the variable from R1. For a conditional region R comprising of a condition c,
true region R1 and false region R2, the ee-DAG for each variable in R is obtained by creating a
conditional evaluation node (“?”) with its three children as c, ee-DAG of variable from R1 and
ee-DAG of variable from R2. For a loop region, the ee-DAG is obtained by creating a “Loop”
parent node with its two children as the looping query and the loop body. Two ve-Maps are
merged by creating a union of entries from both ve-Maps. In case of duplicate keys, entries
from the following region are retained.

Consider the code sample shown in Figure 3.5(a). Figures 3.5(b), (c) and (d) show the step
by step construction of D-IR for the program. In Figure 3.5(c), the variables x and y are leaves,
so they are marked as region inputs (by tagging them with a subscript 0). These are resolved
to constants in Figure 3.5(d), while merging with the preceding basic block R1. Note that in
the final D-IR (Figure 3.5(d)), all intermediate variable references have been resolved to inputs
at the beginning of the program. In order to efficiently check the existence of a node in the
ee-DAG, a composite id – comprising of id’s of its operator and operands – is assigned to each
node, and a hash table is used for searching.

25

User defined functions/procedures are also handled by our techniques. D-IR is separately
constructed for a user defined function/procedure. It is then merged with the preceding region at
the caller location, by considering them to form a sequential region, taking into account actual
to formal parameter mapping. We defer details to Appendix A.2.

3.4 F-IR Representation

As we have described in Section 3.3.3, D-IR gives an algebraic representation for computations
in sequential and conditional regions. However, the Loop operator used to represent cursor
loops in D-IR is not algebraic. We now describe our second intermediate representation, which
we call the fold intermediate representation (F-IR). F-IR combines D-IR and fold function to
enable algebraic/functional representation of cursor loops. F-IR abstracts away details about
imperative logic while still retaining the result ordering, unlike relational algebra. This allows
easy translation from cursor loops to F-IR. Our transformation rules then operate on F-IR (Sec-
tion 3.5). There has been earlier work on using fold to represent loops [82].

We use the following textual notation to represent a dag/tree. In general, ∆ represents an ee-
DAG, and e represents an expression tree. We write op[c1,c2, . . .] to describe an expression with
root node as op, and c1,c2, . . . as its children. Angular brackets 〈〉 denote a parameter. Thus,
op[c,〈p〉] denotes that the second child of op is a parameter p. Similarly, we use e〈p1〉,〈p2〉,... to
denote an expression, where values of some operands in the expression are given by parameters
p1, p2 etc. A parameterized expression (say, f〈p1〉,〈p2〉) can be treated as a function taking param-
eters (p1 and p2). These parameters are substituted when the expression is evaluated with actual
values. Parentheses are used to denote invocation of a function or a parameterized expression
with actual values, for example, f(v1,v2) denotes a call to function f with parameter values v1
and v2, and e(v) denotes evaluating the parameterized expression e〈p〉 by substituting p with v.

3.4.1 Fold

The fold function is a higher order function i.e., a function which can take other functions as
parameters and can return functions as return values. fold takes 3 arguments: a folding function
f, an identity element (id) and a recursive data structure on which fold is to be applied. The
function fold is similar to reduce in the map-reduce terminology, and the two functions are
referred to synonymously in some contexts. However, there are important differences [47] that
allow fold to represent computations in loops on ordered collections that cannot be represented
by reduce.

In the context of lists, the fold function processes each element in an input list and combines
the results into a single return value. The list elements can be processed from first to last, or
last to first, depending on whether it is a left fold (foldl), or right fold (foldr). In this chapter, by
fold, we mean foldl. foldl is more suitable for representing computations on lists in imperative
programs, as the elements are usually processed from first to last. fold on lists is defined recur-
sively, as follows:
fold [f, id, []] = id
fold [f, id, [a1]] = f(id, a1)
fold [f, id, [a1, ..,an+1]] = f(fold [f, id, [a1, ..,an]], an+1)

Note that [and] are used both to denote lists, and to enclose arguments to the higher order
function fold. (In the latter case, we could have used parentheses in place of [], or omitted them
altogether, as is customary in the functional programming community, but we use [] to improve

26

readability of our transformation rules.) For example, fold [+, 0, [1,2,3,4,5]] evaluates to
((((0 + 1) + 2) + 3) + 4) + 5 = 15.

The definition of fold can be easily extended to operate on results of queries, which are or-
dered/unordered collections, instead of lists.

We extend ee-DAG to allow the use of a fold operator. We refer to D-IR extended with fold
operator as F-IR. The fold operator takes three arguments, corresponding to each argument of a
fold function. Note that the first argument can be a parameterized expression, which is treated
as a function. Input queries are expressed using extended relational algebra. For example, the
ee-DAG rooted at fold in Figure 3.3(c) is written as

fold [max, 0, Q′]
where max is the binary maximum function, and Q′ denotes

π max(max(max(p1,p2),p3),p4)(σrnd id=1(Board)) .

3.4.2 Converting Loops to Fold

In this section, we describe how to use fold to precisely represent cursor loops, in F-IR. Equiv-
alent SQL cannot be extracted for collections other than those constructed from query results
(directly or indirectly), so we focus on cursor loops. Our system currently supports the follow-
ing aggregations inside cursor loops: set/multiset insertion (insert), appending to list (append)
or scalar aggregation (min, max, sum).

Before we present the algorithm for D-IR to F-IR translation, we describe a few terms
commonly used in program analysis.

• A loop carried flow dependency (lcfd) is said to exist between two statements S1 and S2
in a loop, if S2 follows S1 in the control flow, and S2 writes to a location which is read
by S1 in a future iteration. An external dependency is said to exist between S1 and S2
if both the statements access the same external location (file, database etc.), and at least
one of S1 or S2 writes to the external location. For the purpose of dependence analysis,
we conservatively treat the entire database/file as a single location. This is required since
writes to a relation may trigger updates on another relation. Also, reading/writing an
element in a collection is treated as accessing the entire collection.

• A data dependence graph(DDG) [75] of a program is a directed multi-graph in which
program statements are nodes, and the edges represent data dependencies between the
statements. Directions and labels on edges identify the direction and type of dependence,
respectively.

• A program slice S = slice(P,n,v) is defined [105] as the subset (S) of all statements and
control predicates of the program P that directly or indirectly affect the value of a vari-
able v at the program point n. For example, in Figure 3.6(a), let the program point at
the end of line 7 be l7. Let P37 represent the loop, which contains lines 3 to 7. Then,
slice(P37, l7,agg) = {S3,S4}. Similarly, slice(P37, l7,dummyVal) = {S3,S4,S6}.

• Dead code [38] refers to code whose results are not used in any other computation. It
may be transitive, i.e., identifying a part of the code as dead may reveal more dead code.

The algorithm for constructing F-IR for a region is given in Algorithm 1. Given a program
region R, the algorithm recursively constructs F-IR for each sub-region, before constructing F-
IR for the parent region. The algorithm first constructs D-IR for a region and then translates
the D-IR expression for each variable into F-IR, provided the preconditions are satisfied. If the

27

Algorithm 1 Construct F-IR for a Region
Input: A program region (R)
Output: F-IR for R

1: procedure CONSTRUCTFIR(R)
2: ∆← D-IR for R . Obtained using the algorithm from Section 3.3.3
3: M← ve-Map for R

4: for each sub-region C of R do
5: CONSTRUCTFIR(C) . Recursive call
6: end for

7: if R is not a cursor loop region then
8: return
9: else . Contains a loop represented using the D-IR Loop operator

10: LOOPTOFOLD(R, ∆, M) . Updates ∆ and M
11: end if
12: end procedure

13: procedure LOOPTOFOLD(R, ∆, M)
14: V ← all variables updated in R

15: for each variable v ∈V do
16: l← program point at the end of R
17: S← slice(R, l, v)
18: DS← part of the data dependence graph for R that contains only statements from S
19: Sacc← all statements from S that write to v

. See description of algorithm for details of l, slice, DS, and Sacc

20: if CHECKPRECONDITIONS(DS, Sacc) then
21: Loop[Q, expr]← M.lookup(v)
22: v0← initial value of v at the beginning of the loop
23: expr′← PARAMETERIZEQUERYREFS(expr) . See description of algorithm for details
24: foldExpr← fold [expr′, v0, Q]

25: ∆.add(foldExpr)
26: M.put(v, foldExpr)
27: Replace pointers to v in ∆ with pointers to foldExpr

28: Insert statement sfold: v = foldExpr at the end of R
29: UPDATEDDG(R) . See description of algorithm for details
30: end if
31: end for
32: end procedure

33: function CHECKPRECONDITIONS(G, S) . G: data dependence graph, S: set of statements
34: P1: There should be a cycle of dependencies containing S and an lcfd edge E.
35: P2: There should be no other lcfd edge apart from E and an lcfd edge due to the update of the

loop cursor variable.
36: P3: There should be no external dependencies.
37: if P1 and P2 and P3 hold then
38: return true
39: else
40: return false
41: end if
42: end function

28

Figure 3.6: Demonstration of preconditions for translation into F-IR

preconditions fail for a variable, the algorithm simply proceeds to attempt F-IR translation for
other variables.

The function PARAMETERIZEQUERYREFS (line 23) takes as input an expression expr,
which is a child of a Loop operator and may contain references to the query Q over which
the loop iterates. It then replaces each reference to attributes of Q in expr with reference to a
corresponding attribute of a tuple parameter variable t, where t has the same schema as the re-
sult of Q. The statement “v= foldExpr” (labeled sfold) is a stub. The goal is to translate foldExpr
into SQL. However, for the purpose of dependence analysis, we treat foldExpr as an algebraic
expression.

Let Sdead denote the set of all statements which are rendered dead, due to insertion of sfold.
The actual decision of whether to use equivalent SQL (and remove Sdead) or not, happens af-
ter F-IR transformations on foldExpr (Section 3.5.1). However, dependences due to Sdead may
cause preconditions to fail in an enclosing region. The procedure UPDATEDDG (line 29) re-
constructs the DDG for R by incorporating newly generated/dead code to the region statements
in each iteration of the loop inside LOOPTOFOLD. For example, statements in Sdead are ig-
nored, and sfold is included to update the DDG. The updated DDG may then be used in the next
iteration of the loop.

Theorem 1: Given a cursor loop region R, the value of a variable v after termination of the loop
is equivalent to the result of foldExpr for v obtained by LOOPTOFOLD(R), when executed on
the same input.
A proof sketch for this theorem is given in Appendix A.1.

Consider the code sample shown in Figure 3.6(a). Figure 3.6(b) shows that the loop body
slice for agg at the end of the loop satisfies the preconditions for translation into F-IR. The F-IR
representation for agg is given as: fold [f, 0, Q] where f〈v〉,〈t〉 =+ [v, t.x].

The slice for dummyVal, as shown in Figure 3.6(c) violates P2, due to the presence of an
additional lcfd edge from S4 to itself. Thus, the ee-DAG for dummyVal cannot be translated into
F-IR. We note that although our preconditions disallow an F-IR representation for dummyVal,
in general, it is possible to represent dummyVal as a fold, where the folding function aggregates

29

a pair of values (agg and dummyVal). However, SQL translation of dummyVal is not possible
(without using a custom aggregation function), as it is dependent on agg. In Section 3.5.4, we
describe how some cases of dependent aggregations can be handled.

Note that min, max aggregations are typically represented in a loop using the following
structure:
if expr OP v then v = expr, where OP is one of <, >, <=, >=. This structure is translated
into v = OP1(v,expr) where OP1 is max for >, >=, and min for <, <=. If the program uses
v OP expr, then it can easily be translated to the form expr OP v before applying the above
translation. Translation into F-IR is done after applying the above translation.

3.5 F-IR Transformations

In this section, we present a number of transformations on F-IR representation. Our transfor-
mations are expressed as equivalence rules. Each rule has an input F-IR which can be replaced
by an equivalent output F-IR by applying the rule. The aim of our transformations is to ob-
tain an optimized F-IR from the given F-IR. By optimized F-IR, we mean an F-IR which when
translated into SQL, reduces the number of queries and/or data transferred as compared to the
original F-IR.

3.5.1 Transformation Rules

We now present transformation rules. Many of these rules specify a pattern for the relational
algebra input to fold. The actual input may not directly match this pattern. However, standard
relational algebra transformations can be used to bring the input query to the required structure
to apply transformations.

Rule T1 (Simplification): If append denotes the list append operator, insert denotes the set in-
sertion operator, and δ denotes the duplicate elimination operator,
fold[append, [], Q] = Q (Rule T1.1)
fold[insert, {}, Q] = δ (Q) (Rule T1.2)

Rule T2 (Predicate push):
If f〈v〉,〈t〉 = ?[pred(t), g], then
fold [f, id, πL(τZ(Q))]
≡ fold [g, id, πL(τZ(σpred(Q)))]

where pred(t) is a predicate expression parameterized only on attributes of tuple t, and τ is the
relational sort operator (Section 3.3.2). Z can be empty, which signifies absence of ordering on
Q.

The selection predicate pred is obtained from pred(t) by replacing references to attributes of
t with corresponding attributes of Q. We will use the terms pred(t) and pred in similar contexts
in other transformation rules, without describing them again.

Rule T3 (Push scalar functions into the query):
If f〈v〉,〈t〉 = g(v, h(t.A)), then
fold [f, id, πA(Q)]
≡ fold [g, id,πh(A)(Q)]

30

This rule can easily be extended to the case when h operates on more than one attribute of tuple t.

Rule T4 (Join identification)
(Rule T4.1 – list append):
If f〈v〉,〈t〉 = fold [append, v,πL(τZ2(σpred(t)(Q2)))],
then fold [f, [], τZ1(Q1)]
≡ πL(τZ1,Q1.K,Z2(Q1 1pred Q2))

provided Q1 has a unique key K, where append is the list append operator. Z2 can be empty.
This rule is the same as the join identification rule used by Cheung et al. [33], but the output

should be sorted on (Z1,Q1.K,Z2), and not just (Z1,Z2).
For insertion into a set, the result ordering does not matter, but duplicates should be eliminated.
Thus, the rule can be given as follows.

(Rule T4.2 – set insertion):
If f〈v〉,〈t〉 = fold [insert, v, πL(τZ2(σpred(t)(Q2)))], then
fold [f, {}, τZ1(Q1)] ≡ δ (πL(Q1 1pred Q2))

Z1 and Z2 can be empty. In the case of multiset insert, duplicate elimination is not required, so
the RHS would simply be πL(Q1 1pred Q2) (Rule T4.3).

Rule T5 (Aggregations)
(Rule T5.1 – entire relation):
fold[op, id, πA(Q)] ≡ γop agg(A)(Q)

where op agg is the relational aggregation operator corresponding to the binary operator op, id
is the identity element for op. For op=+, op agg = sum; for op = max, op agg = max; for op
= min, op agg = min. Note that we overloaded max to represent both binary and aggregation
operators.

(Rule T5.2 – group by):
If f〈v〉,〈t〉 = append[v, (t.B,γop agg(A)(σpred(t)(Q2)))],
then fold [f, [], Q1] ≡
πQ1.B, op agg(Q2.A)(Q1.∗γop agg(Q2.A) (Q1 ./pred Q2))

provided the order of Q1 is not deterministic, and Q1 has a key. This rule can be extended easily
to handle insert in the place of append.

Note that the above transformation works with standard SQL semantics for aggregates in-
volving NULL values. The general case that Q1 may not have a key, and may be ordered can
be handled using extensions to techniques for decorrelation of aggregate queries [49]. In rules
T5.1 and T5.2, the initial variable value (second argument) passed to fold was the identity ele-
ment for the folding function. In Section 3.5.4, we discuss transformation rule T6 that enables
us to handle the case when the above assumption does not hold.

Rule 5.2 is used to translate a common implementation of group by in imperative code,
where there are two nested cursor loops, the outer loop defines the groups, and the inner loop
performs aggregation of rows in the group, and appends the aggregated result to a result list.
Section 3.5.4 describes how to handle another common case where, in addition to the aggregated
value, a tuple of values from the row containing the aggregated value is returned (for example,
one may want the name of a student who scored the highest marks in a test, along with his/her
marks).

We present some more transformation rules which are used in our implementation, in Sec-
tion 3.5.4. Similar to database query optimizer rules, more transformations can be added to

31

exploit other opportunities for inferring relational operations performed in imperative code.

3.5.2 Generating and Using Equivalent SQL

After a program has been translated into F-IR, we use a top down traversal of its regions to
rewrite the program to use equivalent SQL, by processing the parent region first, and then its
sub-regions, as follows.

For a region R, we consider each statement (sfold) “v = foldExpr” that is directly inside
R (inserted during F-IR translation), and apply transformations (Section 3.5.1) on foldExpr.
Let transExpr denote the resultant F-IR obtained after all transformations have been applied. If
transExpr does not contain any folds (i.e., it is a relational algebra expression), and all functions
in transExpr have equivalent SQL functions, then translation of transExpr into SQL is straight
forward. In some cases, if the folding function does not have an equivalent SQL aggregate
function, it is possible to use a custom aggregation function (either as a user defined function
inside the database, or as a stored procedure defined in the application source language, if the
database allows it). In other cases, SQL translation fails.

If an SQL query (Q) could be obtained from transExpr, we replace the stub sfold with the
statement (ssql) “v = executeQuery(Q)”4. Parts of region R which are now rendered dead due
to ssql are removed by dead code elimination. If SQL translation for transExpr fails, then the
assignment “v = foldExpr” is removed. The original code for v remains intact. Thus, our
techniques are able to partially extract SQL for as many variables as possible. This is an im-
provement over existing techniques [33], which attempt to translate an entire program fragment
into SQL without considering slices for specific variables. Consequently, although our tech-
niques currently do not support SQL translation of update operations, we are able to extract
SQL partially for read-only queries that may be interspersed with update queries, as long as the
updates do not introduce any critical dependencies for SQL translation.

Replacing the original source with SQL generated from transformed F-IR is most often a
good idea. However, from an optimization view point, the decision to replace should be taken
in a cost based manner, in general, as discussed in the next section.

3.5.3 Application of Transformation Rules

In our implementation, we apply transformation rules in the left to right direction. Our trans-
formation rules match the LHS for a syntactic pattern, and replace it with the RHS. We assume
that translation into SQL is always beneficial.

In case multiple transformation rules are applicable for a given program fragment, we
choose any one of the applicable rules and proceed. In the current set of rules (T1 through
T7), a transformation from LHS to RHS does not destroy any syntactic patterns in the LHS,
which are amenable for transformation by other rules. So, the order of application of the com-
peting rules does not matter. Thus, the rule set is confluent. It can be verified that our current
set of rules always push computation from the folding function into the query, and not in the
other direction. Thus, infinite derivations are not possible, and neither are cyclic derivations.
Thus, our current rule set always terminates. However, addition of new transformation rules
may result in cycles.

Translation into SQL may not be beneficial for all programs. For example, consider the
code sample from Figure 3.6(a). Our techniques will extract a separate query for the aggregated

4executeQuery is a short form notation described earlier in footnote 1

32

variable agg, but the entire data still has to be fetched to print other information with rich
formatting. In this case, the cost of an additional query will outweigh the benefit of pushing
aggregation into the database.

For this particular case, a simple heuristic can be used to decide whether or not to do the
transformation: transform only if equivalent SQL could be extracted for all variables inside
the loop that use query results. However, in general, a cost based exploration of the space of
possible rewrites of the program is necessary, to choose the best possible rewrite. We discuss
our approach to a cost based rewriting in Chapter 4. This approach uses a top down search
algorithm using an AND-OR DAG, based on the Volcano/Cascades query optimizer [52, 54].

3.5.4 Extensions

In this section, we present extensions to the F-IR representation and some more transformations
that we have used in our implementation.

Dependent Aggregations

In database applications, especially in reporting contexts, it is a common requirement to return
a tuple of values from the row containing the aggregated value, along with the value itself.
Specifically, if the aggregating function is max or min, this is an argmax/ argmin on a column
for all rows in the relation. For example, one may want the name of a student who scored the
highest marks in a test, along with his/her marks.

However, our techniques, described thus far, disallow conversion of D-IR to F-IR in the
above case, because the tuple of row attributes to be returned depends on the aggregated value
(causing a loop carried flow dependence, refer Section 3.4). To address this common case, we
add two new operators to F-IR:

• tuple: The tuple operator simply represents a tuple of expressions. It has n > 1 chil-
dren, each of which is an expression in D-IR. The expressions may have common sub-
expressions, which are shared. The output of a tuple operator is the n-tuple of outputs of
each of its children.

• project: Intuitively, the project operator performs the reverse operation of tuple. It takes
as input a tuple expression and an index i, and projects the i’th individual expression
from tuple. In this chapter, we represent the index i along with the project operator. For
example, project0 projects the first expression from its child tuple.

We now relax the precondition from Section 3.4 for converting loops to fold, as follows.
If a variable v is being aggregated in a cursor loop, and another variable w has a loop carried
dependence due to v, then the values of v and w after the loop can be represented in F-IR, using
a folding function which returns a tuple (v′,w′). This allows us to obtain an F-IR from D-IR,
which can then be transformed to optimized F-IR, to extract optimized SQL.

In general, this fold can then be translated into SQL using user defined aggregates5. How-
ever, for the special case of argmax, we can obtain an equivalent SQL query using any of several
techniques such as sub-query, a combination of ORDER BY and LIMIT, or using a construct
like SQLs RANK if the SQL dialect supports it. We omit details.

5Most databases today allow users to define user defined aggregates that can return a tuple.

33

Fold with non-id

Consider an F-IR expression fold[f, x, Q]. In some cases, the initial value passed to fold (x) may
not be the identity element of the folding function (f). This limits the applicability of some of
our transformation rules which assume that x must be the identity element for f. The following
transformation rule allows fold to be expressed in terms of the identity element (id) for f.

Rule T6
If f is associative and x 6= id,
then
fold [f,x, Q] ≡ f [x, fold [f, id, Q]]

Examples of associative functions include +, max, min, append etc.

Outer Apply

Before we present Rule T7, we describe the outer apply construct. The outer apply con-
struct [49], which we denote by Q1 OApply Q2(t), accepts two arguments: an outer query
(Q1), and an inner query (or expression) which is parameterized on the outer query (Q2(t)). For
each row in Q1, OApply evaluates Q2(t) with appropriate values substituted for the parameters,
and returns a union of all the results. If the result of Q2(t) is empty for a row, the row is returned
with NULL values substituted for the fields obtained from Q2(t).

The outer apply syntax that we use in this chapter is of SQL Server. It is equivalent to the
left outer join version of the lateral construct in SQL. We now present Rule T7, which is used
to extract a query for a common pattern in database applications, when the data is organized as
a star schema. An example is given in Figure 3.7.
Rule T7 (Outer Apply):

If f〈v〉,〈t〉 = append[v, g(πs
L1
(Q2(t)),πs

L2
(Q3(t)))]

then fold[f, [], τZ1(Q1)] ≡
πg(L1,L2)(τZ1((Q1 OApply Q′2)OApply Q′3))

where πs represents scalar projection (single row), and Q2(t), Q3(t) are parameterized queries.
Q′2 and Q′3 are obtained from Q2(t) and Q3(t) respectively by replacing references to attributes
of t with reference to corresponding attributes of Q1. This rule can also be used for set insertion,
in place of append.

Exists/Not exists

So far, the focus of our discussion was to extract equivalent SQL from cursor loops that build
the value of an aggregate/collection. However, in some cases, a single boolean value is (condi-
tionally) assigned to a variable (v) inside the cursor loop. A common example is checking for
existence of a tuple in a table.

If the initial value of v is false, and value assigned to v in the loop is true, then we translate
the loop to a fold with the folding function as logical OR. If the initial value and assigned value
are reversed, the folding function is a logical AND. Our implementation contains transformation
rules to infer EXISTS and NOT EXISTS queries from the F-IR.

Sometimes, the loop can have an early exit, i.e., it may return/break immediately after a
value is assigned once. Currently, we do not handle early exits. However, if the only com-
putation inside the loop is the boolean value assignment, the return/break can potentially be
removed, and equivalent SQL can be extracted using our techniques. We omit details.

34

ResultSet rs = fetchJobApplicants(); //Q1

while(rs.next()) {
String id = rs.getString("applicantId");

String applnMode = rs.getString("applnMode");

fetchAndPrintPersonalDetails(id); Q2

fetchAndPrintCommittee1Feedback(id); //Q3

fetchAndPrintCommittee2Feedback(id); //Q4

if(applnMode = "online")

fetchAndPrintEducationalQualifs(id); //Q5

}

Figure 3.7: Cursor loop with nested scalar queries

((((Q1

outer apply Q2 on Q1.applicantId = Q2.applicantId)

outer apply Q3 on Q1.applicantId=Q3.applicantId)

outer apply Q4 on Q1.applicantId=Q4.applicantId)

outer apply Q5 on Q1.applicantId=Q5.applicantId

and Q1.applnMode = ’online’)

Figure 3.8: Optimized query for data access in Figure 3.7

Handling Output Ordering

It is not uncommon to find cases in database applications, that avoid intermediate collections
by printing values as they are computed, in loops. In such cases, we preprocess the program to
replace output statements with appends to a (global) string (which can be treated as an ordered
collection), and print its contents at the end of the program. The preprocessed program is then
optimized using our techniques.

When all output statements are present in the same level of loop nesting, this is straight
forward. We now discuss optimization of database applications in the case where output state-
ments may be distributed across different nesting levels of multiply nested loops. This approach
can also be used for collection variables, when there is an ordering requirement on the contents
of a collection.

Consider the sample program shown in Figure 3.7. This code is extracted from an admin-
istrative portal in production use at our organization. It fetches a list of job applicants (Q1),
and for each applicant, it (conditionally) fetches and prints further information about the appli-
cant using parameterized scalar queries (Q2, Q3, Q4, and Q5). We note that this is a frequent
occurrence when data is organized as a star schema.

Although batching and prefetching techniques are applicable to this program, benefit due to
batching is limited because of the overhead of creating four parameter tables, while prefetching
is unable to chain queries Q1 and Q5, since parameters from Q1 feed into Q5 through the con-
dition applnMode == "online". However, using techniques described in this chapter (Rule
T7), a single SQL query can be extracted to fetch the required data for this code sample. The
query is shown in Figure 3.8. As all the queries inside the cursor loop of Q1 in Figure 3.7 are
scalar queries, Rule T7 is applicable. The source program is rewritten to refer to corresponding
attributes from the extracted query, instead of attributes from the original queries (Q1 to Q5).

If some queries inside the cursor loop can return multiple rows, then combining them using

35

the apply construct can result in cross products of the results of the sub-queries. This would be
very inefficient, and not preserve ordering. In such cases, it is still possible to retrieve the data
with proper ordering using techniques borrowed from [29]. Implementation of these techniques
is part of future work. We note that batching and prefetching techniques may be applicable to
such programs, even if our techniques are not applicable.

3.5.5 Limitations

Our techniques focus on optimization of programs that iterate over a query result, perform-
ing actions that can be translated into SQL. Our system cannot handle cases where there are
language constructs that cannot be represented in F-IR, like custom comparators, type based
selection, retrieving the i’th element in a list etc. Expanding F-IR to address some of these
cases is an area of future work. We note, however, that other parts of the program may still be
amenable to optimization.

There are complex F-IR expressions that cannot be translated into SQL. One such example
where the order of print statements needs to be preserved is discussed in Section 3.5.4. Often,
data structures in imperative programs are over-specified (for example, using a list in place of
a set). Respecting such over-specification sometimes makes our transformation rules inapplica-
ble. Techniques for “weakening” the data structures (for example, using a set instead of a list),
which we shall discuss in Chapter 6, can be used to improve the applicability of our rules in
such cases.

3.6 Related Work

We now briefly discuss and contrast our work with some of the related work in the area of
holistic optimization of database applications.

Wiederman et al. [114] propose a source-to-source transformation technique that transforms
an object oriented program with transparent persistence into an equivalent one with explicit
queries. There has also been recent work on inferring SQL queries from procedural code using
program synthesis by Cheung et al. [33]. Their approach generates possible equivalent SQL
queries and uses the Sketch framework [101] to check for equivalence. This approach is quite
powerful, but, as evidenced by their results, can be quite expensive. While Cheung et al. iden-
tify continuous code fragments which can be replaced by an SQL query, our techniques can also
transform intermittent fragments of code into SQL, thus enhancing their applicability. Cheung
et al. developed a Theory of Ordered Relations (TOR) as an intermediate representation to
express loop invariants and post conditions before converting to SQL. The intermediate repre-
sentation we use (F-IR), on the other hand, does not need a new algebra, and makes use of fold
and existing operators from extended relational algebra. Zhang et al. [120] propose techniques
to infer queries, using the output table and database schema information by treating the source
code (query) that generated the result as a black box. However, with this approach, guaran-
tees for correctness of the query cannot be given for all inputs, since test inputs may not be
exhaustive.

Recently, Radoi et al. [82] have proposed an approach for automatic translation of sequential
array-based code into a parallel MapReduce framework. They use a functional intermediate
representation (IR) and present rewrite rules that enable parallelism and translate the IR into
Scala MapReduce code. Although their IR is similar to our F-IR based representation, their
goals are quite different from ours. Our transformation rules are designed with the aim of

36

inferring relational operations from the IR such as projections, filters, joins and aggregates,
while they focus on enabling parallelism and extracting map and reduce operations. Another
point to note is that the work of Radoi et al. is suited purely for batch processing programs,
while our work, in addition, considers application code where data access is interspersed with
presentation (UI) logic, such as Web and mobile applications.

Iu et al. [61] propose a syntax (JQS) through which certain complex SQL queries can be
expressed using normal (imperative) Java constructs. Similarly, Giorgidze et al. [51] present a
Haskell library which allows developers to express database queries using Haskell constructs.
Such constructs are then translated into SQL for execution at the database. However, an impor-
tant difference of our techniques from [61] and [51] is that our techniques automatically infer
which parts of imperative code can be pushed into the database. In contrast, [61] and [51] re-
quire developers to provide this information, in a syntax that uses source language constructs.
Some of the techniques of Cheney et al. [29], for translating XQuery to SQL, could be useful
for handling print statements as discussed in Section 3.5.4. However, their goals and techniques
are otherwise very different from ours.

Shi et al. [95] propose the UniAD system to unify execution of imperative code and queries
at a single execution engine. They target only ad-hoc data processing tasks with small data
sets, and use a custom database engine, hence they cannot leverage the query optimization
capabilities of popular database systems.

Simhadri et al. [99] proposed techniques to algebrize imperative constructs in user defined
functions (UDFs). Their aim was to extract a single relational algebra expression for the en-
tire UDF body. Our techniques are applicable over a much richer set of imperative constructs
including objects and collections.

Guravannavar et al. [56] proposed program analysis and transformation methods to exploit
set oriented query execution to improve performance of iterative execution of parameterized
queries. Ramachandra et al. [87] proposed a technique to prefetch query results across function
calls. As discussed in Section 3.1, our techniques can be used in conjunction with the techniques
of [56, 84, 87], to further enhance application performance.

3.7 Experimental Evaluation

Our implementation is in Java. We used the Soot framework [102] for program analysis, and we
incorporated a region based analysis framework in Soot. Our framework builds a hierarchical
region tree over the CFG, and provides the infrastructure for traversing through regions, as well
as merging the results of our analysis across regions.

For evaluation, we used our tool on code samples adapted from four real world applications
namely, Wilos [115] – an orchestration software, Matoso [71] – a ranking software for Mahjong
tournaments, AcadPortal and JobPortal – two real world applications in production use at IIT
Bombay; and two benchmark applications namely, RuBiS [92] – a bidding system modeled
after ebay.com, and RuBBoS [91] – a bulletin board like slashdot.org. Our experiments were
run on a machine with 8GB RAM with Intel Core i7-3770, 3.40GHz CPU running Ubuntu
Linux, with MySQL 5.5 database server. The client was on the same machine.

We use EqSQL to refer to techniques in this chapter, and QBS to denote techniques by
Cheung et al. [33].

37

3.7.1 Applicability

The techniques presented in this chapter can be used with any language and data access API.
We have implemented our techniques for database backed applications written in Java. Our
implementation supports applications using Hibernate for database access.

Experiment 1 (Comparison with other approaches with similar goals [33])

Cheung et al. [33] reported the applicability of their techniques for code samples extracted from
Wilos, an open source application that uses Hibernate. We tested our implementation on the
same code samples. The results are shown in Table 3.1. The values in these columns denote the
time taken for equivalent SQL extraction in cases where the system succeeded. The numbers
for QBS have been taken from [33]. “–” denotes that a particular code sample could not be
optimized due to limitations in the techniques. Xdenotes that the code fragment can be handled
by the techniques we propose, although they are not handled by our current implementation.

While QBS could automatically extract equivalent SQL in 21/33 cases, our system suc-
ceeded in 17/33 cases, although there are 7 further cases which can be handled by our tech-
niques, but are not handled by our current implementation; we are working on extending our
implementation to handle such cases. In 6 of the cases where our current implementation is able
to extract equivalent SQL, QBS fails.

Techniques in [33] and those presented in this chapter do not handle database updates. How-
ever, while [33] entirely rejects code fragments involving database updates, our tool partially
optimizes such code fragments by keeping update statements intact, and extracting equivalent
SQL for other variables in the code fragment (refer Section 3.4.2 for details). Similar to [33],
our techniques fail for code samples 5 and 7 that contain polymorphic type comparison and
selection using custom comparator, which are not handled in EqSQL.

Experiment 2 (Comparison with [56, 84, 87])

Our techniques can perform optimizations, which existing holistic optimization techniques like
batching [56], prefetching of queries [87], and hybrid techniques [84] cannot perform.

Batching is applicable only when there is parameterized iterative query invocation from a
loop. If the loop iterates over a query result, batching is able to extract a join query. In addition
to the above case, EqSQL can identify more optimization opportunities for pushing selections,
projections and aggregations into the database. We examined all code samples from Wilos
listed in Table 3.1, and identified that batching is applicable in 7/33 cases, whereas EqSQL is
applicable in 24/33 cases. In 4 cases where both batching and EqSQL are applicable, EqSQL
will perform better or same as batching. This is because, in addition to extracting a join query,
EqSQL also pushes selections and projections into the database, unlike batching. However,
while techniques in this chapter are applicable only on cursor loops, batching can handle while
loops also, using loop split transformations. It is possible to extend our techniques, to be used
in conjunction with loop split transformations.

Prefetching is possible in all cases we examined. However, prefetching by itself does not
push any computation from imperative code into SQL, so data transfer is not reduced, although
a hybrid technique described in [84] can combine batching and prefetching.

38

Sl. File (Line No.) QBS EqSQL
1 ActivityService (401) – < 1
2 ActivityService (328) – < 1
3 Guidance Service (140) – < 1
4 Guidance Service (154) – < 1
5 ProjectService (266) – –
6 ProjectService (297) 19 < 1
7 ProjectService (338) – –
8 ProjectService (394) 21 < 2
9 ProjectService (410) 39 < 1
10 ProjectService (248) 150 < 1
11 AffectedtoDao (13) 72 < 2
12 ConcreteActivityDao (139) – –
13 ConcreteActivityService (133) – X
14 ConcreteRoleAffectationService (55) 310 X
15 ConcreteRoleDescriptorService (181) 290 –
16 ConcreteWorkBreakdownElementService(55) – –
17 ConcreteWorkProductDescriptorService(236) 284 –
18 IterationService (103) – < 1
19 LoginService (103) 125 < 2
20 LoginService (83) 164 < 2
21 ParticipantBean (1079) 31 < 2
22 ParticipantBean (681) 121 –
23 ParticipantService (146) 281 X
24 ParticipantService (119 301 < 2
25 ParticipantService (266) 260 –
26 PhaseService (98) – < 2
27 ProcessBean (248) 82 < 2
28 ProcessManagerBean (243) 50 < 2
29 RoleDao (15) – –
30 RoleService (15) 150 X
31 WilosUserBean (717) 23 X
32 WorkProductsExpTableBean (990) 52 X
33 WorkProductsExpTableBean (974) 50 X

Table 3.1: Comparison of time taken (s) by QBS (128GB RAM, 32 cores) and EqSQL (8GB
RAM, 8 cores) for SQL extraction

Experiment 3 (Extraction of equivalent SQL for keyword search systems)

As mentioned in Section 3.1, keyword search systems for form interfaces require an SQL query,
which would retrieve exactly the data printed by the form interface. The form can contain im-
perative code along with SQL queries. This was done manually in [41]. In this set of exper-
iments, our goal was to evaluate whether our techniques can automatically extract equivalent
SQL queries from servlets. One difference from the earlier cases is that in keyword search
systems, ordering of data is not relevant.

We have analyzed the source code of three applications. The fraction of servlets where
all queries were extracted by our tool was 17/17 for RuBiS, 16/16 for RuBBoS and 58/79 for

39

10 100 1k 10k 100k
1

10

100

1k

459

198

Number of projects

Original
Rewritten

Pr
og

.e
xe

cu
tio

n
tim

e(
m

s,
lo

g
sc

al
e)

(a) Time

10 100 1k 10k 100k
100

1k

10k

100k

1m

10m 6.2m
2.4m

Number of projects

Original
RewrittenD

at
a

(b
yt

es
tr

an
sf

er
re

d,
lo

g
sc

al
e)

(b) Data

Figure 3.9: Selection

AcadPortal. The benchmarks RuBiS and RuBBoS are simple servlet based applications with
SQL queries. Our implementation was able to derive all the queries and dependences for these
applications. The JobPortal application is much more complex. The cases where we were not
able to derive queries were mainly due to limitations in our implementation such as the presence
of operations which are not yet supported.

We have compared the output of our tool with manually extracted queries on the AcadPortal
application and found that in about 20% of the cases, the manually extracted query was less
precise than that extracted automatically by our tool, as the manual queries fetched more data
than what is printed by the form interface.

Approaches for batching and prefetching are not suitable for this purpose. QBS can be used,
but we are unable to give a comparison as we do not have access to their source code.

3.7.2 Performance Impact

In this section, we first compare our tool with QBS [33] based on time taken for optimization.
We do not have the queries generated by QBS, so we could not directly compare the queries
generated by our tool and QBS. However, we manually verified that for each of these cases, (i)
queries generated by our system are correct, (ii) whenever a code fragment could entirely be
translated into SQL, our system succeeded in doing so.

Experiment 4 (Comparison of optimization time with QBS)

As shown in Table 3.1, for the code samples that we could successfully optimize, our techniques
extract equivalent SQL in much less time than those of [33], even when run on a less powerful
machine. The significant difference in time is because QBS relies on synthesis technology,
which is resource intensive, while our system uses static program analysis, which is much
cheaper. The next three experiments present the impact of our transformations on applications
using Hibernate, in terms of execution time and network data transfer.

40

10 100 1k 10k 100k
1

10

100

1k

10k 9.4k

982

Number of projects

Original
Rewritten

Pr
og

.e
xe

cu
tio

n
tim

e(
m

s,
lo

g
sc

al
e)

(a) Time

10 100 1k 10k 100k
1k

10k

100k

1m

10m

100m

Number of projects

Original
RewrittenD

at
a

(b
yt

es
tr

an
sf

er
re

d,
lo

g
sc

al
e)

(b) Data

Figure 3.10: Join

Experiment 5 (Selection)

We use code based on sample #6 from Table 3.1 which computes the list of unfinished projects,
where all tuples are fetched, and filtered inside Java code. Our tool optimizes it to fetch only
the required tuples by pushing the predicate into the query. The results, shown in Figure 3.9,
indicate that the transformed code not only runs faster, but also transfers less data compared to
the original code. We used 20% selectivity for the query in this experiment. The performance
gain achieved is larger/smaller as the selectivity of the query is less/more.

Experiment 6 (Join)

We consider code based on sample #30 from Table 3.1 (slightly simplified to be handled by
our current implementation). This code computes a join of two tables WilosUser and Role

(ratio of sizes 40:1), and projects the WilosUser entity, along with the role name from Role.
The original code fetches all rows of both tables, and combines them using nested loops in
the application, based on a condition. It is rewritten using our transformations, into a join
query. The results are shown in Figure 3.10. The transformed code performs faster than the
original code, as the database engine is allowed to choose the best join plan. However, the
amount of data transferred (11.2m in the original program vs 13.9m in the rewritten program)
is marginally more in the transformed code, because attributes of Role get replicated for each
row of WilosUser.

Experiment 7 (Aggregation)

We consider the code sample from Figure 3.2 which is based on a ranking page generator from
Matoso. The results are shown in Figure 3.11. The data transferred for the optimized query is
constant, as only the single result value is transferred in all cases. In contrast, data transfer for
the original query increases linearly with increase in table size.

41

10 100 1k 10k 100k
1

10

100

1k 764

31

Number of projects

Original
Rewritten

Pr
og

.e
xe

cu
tio

n
tim

e(
m

s,
lo

g
sc

al
e)

(a) Time

10 100 1k 10k 100k
100

1k

10k

100k

1m

10m

100m

10.2m

307

Number of projects

Original
Rewritten

D
at

a
(b

yt
es

tr
an

sf
er

re
d,

lo
g

sc
al

e)

(b) Data

Figure 3.11: Aggregation

 1

 10

 100

 1000

 10000

10 100 500 1000

T
im

e
 (

in
 m

s
e
c
;
lo

g
 s

c
a
le

)

Number of iterations

Original
Batch

Prefetch
EqSQL

Figure 3.12: Comparison With Existing Techniques

Experiment 8 (Comparison with batching [56] and prefetching [87])

We extracted a code sample from the JobPortal application where there is opportunity for opti-
mization by all three techniques, namely prefetching, batching and equivalent SQL extraction.
This code fetches all relevant applicants for a job based on a search criteria. It then iterates
over the results of the above query, and (conditionally) executes multiple scalar queries to fetch
relevant information about that particular applicant. The pseudocode for this sample is shown in
Figure 3.7 of Section 3.5.4. The results are shown in Figure 3.12. In the figure, Batch refers to
optimizations using techniques described in [56], Prefetch refers to techniques in [87]. Though
existing techniques do lead to improved performance, they are limited in their applicability, as
discussed in Section 3.5.4. EqSQL enhances performance by upto two orders of magnitude
compared to the original program, and upto one order of magnitude compared to other opti-
mizations.

42

3.8 Summary

In this chapter, we have described novel techniques based on program regions, to translate
imperative code to SQL. We presented algorithms to translate the source program into an alge-
braic/functional intermediate representation (F-IR) that uses fold and extended relational alge-
bra to represent cursor loops. Transformation rules on F-IR identify relational operations per-
formed in imperative code, and translate them into equivalent SQL. Our experiments show that
techniques in this paper are widely applicable and useful in real world applications, and provide
performance improvements that existing approaches cannot provide, on many programs. Apart
from addressing the limitations mentioned in Section 3.5.5, future work includes extracting
equivalent SQL for database update operations performed in imperative code.

43

Chapter 4

Cobra: A Framework for Cost-based

Rewriting of Database Applications

Database applications are typically written using a mixture of imperative languages and declar-
ative frameworks for data processing. Application logic gets distributed across the declarative
and imperative parts of a program. Often, there is more than one way to implement the same
program, whose efficiency may depend on a number of parameters. In this chapter, we propose
a framework that automatically generates all equivalent alternatives of a given program using a
given set of program transformations, and chooses the least cost alternative. We use the concept
of program regions as an algebraic abstraction of a program and extend the Volcano/Cascades
framework for optimization of algebraic expressions, to optimize programs. We illustrate the
use of our framework for optimizing database applications. We show through experimental
results, that our framework has wide applicability in real world applications and provides sig-
nificant performance benefits. The contents of this chapter have been published in [45].

4.1 Introduction

Database applications are typically written using a mixture of imperative languages such as
Java for business logic, and declarative frameworks for data processing. Examples of such
frameworks include SQL (JDBC) with Java, object-relational mappers (ORMs), large scale
data processing frameworks such as Apache Spark, and Python data science libraries (example:
pandas), among others. These frameworks provide high level operators/library functions for
expressing common data processing operations, and contain efficient implementations of these
functions.

However, in many applications, data processing operations are often (partially) implemented
in imperative code. The reasons for this include modularity, limited framework expertise of the
developer, need for custom operations that cannot be expressed in the declarative framework,
etc. Consequently, data processing is distributed across the imperative and declarative parts of
the application. Often, there is more than one way to implement the same program, and the best
approach may be chosen depending on a number of parameters.

This raises an interesting question for an optimizing compiler for data processing applica-
tions. Given an application program, is it possible to generate semantically equivalent alterna-
tives of the program using program transformations, and choose the program with the least cost

45

Figure 4.1: COBRA Illustration

depending on the context? In this chapter we propose the COBRA1 framework to achieve this,
as illustrated in Figure 4.1.

There has been work on rewriting data processing programs for improved performance us-
ing program transformations [33, 27, 84, 82]. However, existing techniques fail to consider all
possible alternatives for cost based rewriting. They either apply the proposed transformations
in a specific order [27], or carefully craft the transformation rules so that the rule set is conflu-
ent and terminating (such as the transformation rules we proposed in Chapter 3). This is not
a viable solution for all rule sets, especially as the number/complexity of rules increases. A
brute force solution is to keep applying all possible transformations as long as any one of them
is applicable; however, this may cause the transformation process to never terminate, in case
of cyclic transformation rules. For example, in their work on translating imperative code to
map-reduce [82], Radoi et al. state that their transformation rules are neither confluent nor ter-
minating, and use a heuristic driven by a cost function to guide the search for possible rewrites.
However, such an approach in general has the disadvantage of missing out on useful rewrites
that are not considered by the heuristic.

A similar problem has been solved for the purpose of query optimization in databases.
Graefe et al. proposed the Volcano/Cascades framework [54, 52], which uses an AND-OR
DAG representation (details in Section 4.3) to enumerate all alternative rewrites for a given
SQL query (relational algebra expression) generated using transformation rules, and to choose
the best query (plan) by searching through the space of possible rewrites. Although designed
for query optimization, the Volcano/Cascades framework can be used with any algebra.

Such a framework can be used with program transformations based on expressions, as de-
scribed in [104]. Examples of such transformations include many peephole optimizations such
as constant folding, strength reduction, etc. However, transformations proposed for optimizing
data processing applications typically involve rewriting conditional statements, loops, func-
tions, or even the entire program. Such transformations involving larger program units are not
amenable for direct integration into an algebraic framework like Volcano/Cascades.

In this chapter, we identify that program regions [74], which we used for transformations
in Chapter 3, provide a natural abstraction for dividing an imperative program into parts, which
can then be optimized individually and collectively using an extension of the Volcano/Cascades
framework. Program regions are structured fragments of a program such as straight line code,
if-else, loops, functions, etc. (details in Section 4.3). Our framework, COBRA, represents a
program as an AND-OR DAG using program regions. Program transformations add alternatives
to this AND-OR DAG. COBRA can be used for cost-based transformations in any program with
well-defined program regions. However, in this chapter, we restrict our attention to the use of

1Acronym formed from COst Based Rewriting of (database) Applications.

46

@Entity @Table(name=‘‘orders’’)

class Order{
@Column(name=‘‘o id");

int o id;

@ManyToOne(targetEntity = Customer.class)

@JoinColumn(name=‘‘customer sk")

Customer customer;

. . .
}

Figure 4.2: Hibernate object-relation mapping specification

COBRA for optimizing database applications.
Our contributions in this chapter are as follows:

• We describe the AND-OR DAG representation of an imperative program with regions,
and discuss how the alternatives generated using program transformations are represented
using the AND-OR DAG (Section 4.4).

• We illustrate the use of our framework for optimizing database applications using pro-
gram transformations from Chapter 3 and other transformations from earlier work [87].

• We present a cost model (Section 4.6) to estimate the cost of database application pro-
grams, with a focus on cost of query execution statements and loops over query results.

• We built the COBRA optimizer by incorporating our techniques into a system that im-
plements the Volcano/Cascades framework. We present an experimental evaluation (Sec-
tion 4.8) of COBRA on a real world application, to show the applicability of our techniques
and their impact on application performance.

We present a motivating example in Section 4.2, and discuss the necessary background in
Section 4.3. We discuss related work in Section 4.7, and summarize the chapter in Section 4.9.

4.2 Motivating Example

The COBRA framework can be used for optimizing programs using a variety of data access
methods such as JDBC, web services, object relational mappers (ORM) etc. In this section
we discuss an example program that uses the Hibernate ORM [60], to motivate the need for
COBRA.

Object relational mapping frameworks such as Hibernate enable access to the database using
the same language as the application [33] without writing explicit SQL queries. The framework
automatically generates relevant queries from object accesses and translates query results into
objects, based on a specified mapping between database tables and application classes.

For example consider Figure 4.2, which shows a schema definition in the Hibernate ORM.
The class Order is mapped to the database table orders. When Order objects are retrieved,
the framework implicitly creates a query on orders, and populates the attributes of Order. The
relationship from table orders to table customers (mapped by class Customer) is expressed as
an attribute of Order.

Objects (rows) retrieved from the database are cached upon first access using their id (pri-
mary key). Thereafter, these objects can be accessed inside the application without having

47

1 processOrders(result) {
2 result = {}; //empty collection

3 for(o : loadAll(Order.class)){
4 cust = o.customer; // requires a separate query

5 val = myFunc(o.o id, cust.c birth year, ...);

6 result.add(val);

7 }
8 }

(a) P0: Program using Hibernate ORM

1 processOrders(result) {
2 result = {};

3 joinRes = executeQuery(‘‘select * from orders o join

customer c on o.o customer sk = c.c customer sk’’);

4 for(r : joinRes){
5 val = myFunc(r.o id, r.c birth year, ...);

6 result.add(val);

7 }
8 }

(b) P1: P0 rewritten to use Hibernate SQL query API

1 processOrders(result) {
2 result = {};
3 customers = loadAll(Customer.class);

4 Utils.cacheByColumn(customers,‘c customer sk’);

// refer footnote 3

5 for(o : loadAll(Orders.class);){
6 cust = Utils.lookupCache(o.o customer sk);

7 val = myFunc(o.o id, cust.c birth year, ...);

8 result.add(val);

9 }
10 }

(c) P2: P0 rewritten to use prefetching

Figure 4.3: Alternative implementations of the same program

to query the database again. Hibernate supports lazy loading, i.e., fetching an attribute of an
object only when the attribute is accessed; this facilitates fetching information from a related
table (such as customer in Order) only when needed. Most ORMs also allow users to express
complex queries using SQL or object based query languages.

ORMs are widely used in OLTP applications [33], and their use in reporting applications
is not uncommon [62]. Inefficiencies due to the usage of ORM frameworks are also well
known [28], and have been addressed by earlier optimization techniques such as techniques
in [33] and our techniques from Chapter 3 (refer related work, Section 4.7).

Figure 4.3a shows a sample program using the Hibernate ORM that processes a list of
orders, along with customer related information. The program uses an ORM API (loadAll) to
fetch all Orders objects, and then processes each order inside a loop. However, for each order,
the framework generates a separate query to fetch the related customer information, which
resides in another table. This causes a lot of network round trips, leading to poor performance.
This issue is known as the N+1 select problem in ORMs [28].

To avoid this problem, a join query is usually suggested to fetch the required data, while

48

1

1 C

A B

(a) Initial Query

ABC

1

AB C

1

A B

(b) DAG representation of query

ABC

1 1

AB C

1 1

A B

(c) Expanded DAG after applying
commutativity

Figure 4.4: Representing alternative query rewrites using the AND-OR DAG

restricting the number of queries to one. This is shown in program P1 in Figure 4.3b2. P1
follows the general rule of thumb where data processing is pushed into the database as much as
possible, thus allowing the database to use clever execution plans to minimize query execution
time.

The join query shown in P1 may lead to duplication of the customers rows in the join result
(as each customer typically places multiple orders). For small data sizes or a few rows when the
orders fetched are filtered using a selection, this duplication may not have a significant impact.
However, for higher cardinalities, the join result may be large and transferring the results over a
slow remote network from the database to the application may incur significant latency. In such
cases, an equivalent program P2 shown in Figure 4.3c3 may be faster, provided the tables orders
and customers fit in the application server memory. This is because P2 fetches individual tables
and performs a join at the application, thus avoiding transfer of a large amount of data over the
network.

Current approaches for rewriting ORM applications with SQL, such as our techniques from
Chapter 3 and those proposed in [33], apply transformations with the sole aim of pushing
data processing to the database; thus, they transform P0 to P1. Other transformations, such
as prefetching query results [87] may be used to transform P0 to P2. However, neither P1 nor
P2 is the best choice in all situations. Using COBRA, all alternatives such as P1, P2, and oth-
ers can be generated using program transformations, and the best program can be chosen in a
cost-based manner.

4.3 Background

In this section, we give a background of (a) the AND-OR DAG representation for cost based
query optimization in the Volcano/Cascades framework, and (b) program regions.

2We use a pseudo function executeQuery that takes a query, executes it and returns the results as a collection of
objects. Also, variable types have not been displayed for ease of presentation. Our implementation uses the actual
source code.

3The pseudo function cacheByColumn caches a query result collection based on the value of a given column
as key, and lookupCache fetches a value from the cache using a given key. Cache may be in the form a simple
hashmap or use caching frameworks such as Memcache or EhCache, which are used by many applications for
client side query result caching. ORM frameworks such as Hibernate provide caching implicitly.

49

4.3.1 Volcano/Cascades AND-OR DAG

Our discussion of AND-OR DAGs is based on [90]. An AND-OR DAG is a directed acyclic
graph where each node in the graph is classified as one of two types: an AND node, or an OR
node. The children of an OR-node can only be AND-nodes, and vice versa. In the case of
relational algebra expressions (queries), AND nodes represent operators, and OR nodes repre-
sent relations. For example, consider the join query (A 1 B) 1 C, which is shown as a tree in
Figure 4.4a. The AND-OR DAG representation for this query is shown in Figure 4.4b.

The Volcano framework for optimization of algebraic expressions is based on equivalence
rules. This framework allows the optimizer implementor to specify transformation rules that
state the equivalence of two algebraic expressions; examples of such rules include join commu-
tativity (A 1 B↔ B 1 A) and join associativity ((A 1 B) 1 C↔ A 1 (B 1 C)), in the case of
query optimization. Transformation rules are applied on an expression; while new expressions
are added, the old ones are retained in the AND-OR DAG.

Each OR-node can have multiple children representing alternative ways of computing the
same result, while each AND-node represents the root operator of a tree that computes the re-
sult. For the query (A 1 B) 1 C, the AND-OR DAG after applying commutativity is shown
in Figure 4.4c. The alternatives added are shown using a dotted line connecting the OR node
to the root operator of the new expression. Thus, we obtain the following alternatives for the
root OR node: (A 1 B) 1 C, (B 1 A) 1 C, C 1 (A 1 B), and C 1 (B 1 A). Note that the com-
mutativity transformation is cyclic. The Volcano/Cascades framework has efficient techniques
for identifying duplicates, so the transformation process will terminate even in the presence of
cyclic transformations.

Each operator in the DAG may be implemented using one of a few alternatives. For example,
a join operator may be implemented using a hash join, indexed nested loops join, or a merge
join. This adds further alternatives to the AND-OR DAG (not shown in Figure 4.4). The cost
of any node in the AND-OR DAG is calculated using cost of child nodes, as shown in the table
below.

Node type Cost formula
OR node Minimum of cost of each child (base case: single relation)
AND node Cost of operator + Sum of costs of children

The plan corresponding to the least cost at the root node of the AND-OR DAG is the optimized
plan.

In the case of query optimization, the cost assigned to a particular node depends on factors
such as the number of rows in the relation, the type of the operator and its implementation,
presence of indexes etc. We skip further details of costing for query optimization and refer the
reader to [54, 52].

4.3.2 Program regions

We have discussed program regions in Chapter 3. Here, we present a brief recap. A region
is any structured fragment in a program with a single entry and single exit [57]. Examples of
regions include a single statement (basic block region), if-else (conditional region), loop (loop
region), etc. A sequence of two or more regions is called a sequential region4. Regions can
contain other regions, so they present a hierarchical view of the program. The contained region

4Some approaches consider a basic block region as a sequence of statements. In this chapter, we consider each
statement as a basic block, and treat a sequence of statements as a sequential region consisting of basic blocks. In

50

Regions naming convention: Pi.Tm−n denotes a region of type T in program Pi that
starts at line m and ends at line n.

Basic block (B) – P0.B2, P0.B3, P0.B4, P0.B5, P0.B6
Sequential region (S) – P0.S4−6, P0.S2−7
Loop region (L) – P0.L3−7

Figure 4.5: Program regions for program P0 from Figure 4.3a

is called a sub-region and the containing region is called the parent region. The outermost
region represents the entire program.

For example consider Figure 4.5, which replicates the program P0 from Figure 4.3a with
program regions shown alongside the code (note the naming convention for regions). The out-
ermost region in Figure 4.5 is a sequential region P0.S2−7, which consists of basic block P0.B2
followed by a loop region P0.L3−7. The loop region in turn is composed of a basic block P0.B3
and a sequential region P0.S4−6, and so on (breakup of P0.S4−6 into its basic blocks is not
shown).

Exceptions may violate the normal control flow in a region. Currently, our techniques do
not preserve exception behavior in the program; handling this is part of future work.

4.4 AND-OR DAG Representation of Programs

The Volcano/Cascades framework is well suited for optimizing algebraic expressions, which
combine a set of input values using operators to produce an output value. Transformations on an
expression generate alternative expressions to compute the same result. The availability of sub-
expressions (parts) of an expression is key to Volcano/Cascades, as alternatives for an expression
are generated by combining alternatives for sub-expressions (OR nodes) using operators (AND
nodes).

However, adapting an algebraic framework such as Volcano/Cascades for optimizing imper-
ative programs is not straight forward. Apart from computing expressions, imperative programs
can modify the program stack/heap and contain operations that have side effects (such as writ-
ing to a console). Further, real world programs contain complex control and data flow (due to
branching, loops, exceptions etc.).

In this section, we argue that program regions provide a natural abstraction for parts of
an imperative program. We then discuss the representation of program alternatives using an
AND-OR DAG that we call the Region DAG.

our implementation, we use an intermediate representation of bytecode [102], where each statement is represented
using a three-address code [17].

51

4.4.1 Region as a State Transition

An imperative program can be considered as a specification for transition from one state to
another. For example, the function processOrders from program P0 (Figure 4.3a) specifies the
following transition: by the end of processOrders, variable result contains the join of orders
and customers with myFunc applied on each tuple. Alternative implementations of the program
(such as P1 and P2 from Figure 4.3) are alternative ways to perform the same transition.

The same argument can be extended to regions. Consider the loop body from program P0
(lines 4 to 6), which is a sequential region. The transition specified by this region is: by the end
of the region, the contents of the collection result at the beginning of the region are appended
with another element obtained by processing the current tuple. The loop body from program P2
(lines 6 to 8) performs the same computation, however instead of fetching customer information
using a separate query as in P0, P2 fetches it from cache.

We now formally define a program/program region as a transition, as follows.

R : X0→ X1 (4.1)

where R is a region, X0 is the state at the beginning of R and X1 is the state at the end of R. We
call X0 the input state, and X1 the output state. Since the entire program is also a region, the
same definition extends to a program as well.

Our framework is agnostic to the definition of a state. For example, in our discussion above,
we used the values of program variables (such as result) to represent a state. If an application
writes to the console, the contents of the console could be included in the definition of state. In
general, other definitions may be considered depending on the program transformations used.

For a single statement (basic block), the transition from the input state X0 to the output state
X1 involves only the states X0 and X1. For regions that may contain other regions, the transition
may involve multiple intermediate states: (X0→ Xa1→ . . .→ Xan→ X1) where Xa1 . . .Xan are
results of transitions in sub-regions. The output state of one sub-region feeds as the input state
to another sub-region according to the control flow in program.

Our definition of a program region as a transition allows regions to be identified as parts
of a program performing local computations that together combine to form the entire program,
similar to sub-expressions in an algebraic expression. In this chapter, we use the term “compu-
tation in a region R” to refer to the transition from an input state to an output state specified by
a region R.

4.4.2 Region AND-OR DAG

Region AND-OR DAG, or simply Region DAG, is an AND-OR DAG that can represent var-
ious alternative, but equivalent programs. Given a program with regions, the program and its
alternatives can be represented using the Region DAG as follows.

Step 1: Region tree

Firstly, we identify regions in the program, as described in Section 4.3.2. The hierarchy of
regions in a program can be represented as a tree, which we call the region tree. The region tree
for the regions in Figure 4.5 is shown in Figure 4.6a.

52

seq (P0.S2−7)

P0.B2 loop (P0.L3−7)

P0.B3 P0.S4−6

seq

...

(a) Region tree

P0.S2−7

seq

P0.B2 P0.L3−7

loop

P0.B3 P0.S4−6

(b) Initial Region DAG

P0.S2−7

seq

P0.B2 P0.L3−7

loop

P0.B3 P0.S4−6

seq
(1)

P1.B3 P1.L4−7

loop

P1.B4 P1.S5−6

seq
(2)

P2.S3−4 P2.L5−9

loop(3)

P2.S6−8

(c) Expanded Region DAG

Figure 4.6: Representing alternative programs using the Region DAG

The leaves of a region tree are basic block regions. Intermediate nodes are operators that
specify how results of sub-regions should be combined to form the parent region. A sequential
region is formed using the seq operator, a conditional region is formed using the cond operator,
a loop region using the loop operator, and so on. Child nodes are ordered left to right according
to the starting line of the corresponding region in the program. In Figure 4.6a, we mention the
label of the parent region in parentheses along with the operator. The region tree in COBRA is
analogous to the query expression tree in Volcano/Cascades (Figure 4.4a).

Step 2: Initial Region DAG

The next step is to translate the region tree into an AND-OR DAG, which we call the initial
Region DAG. The initial Region DAG for the region tree from Figure 4.6a is shown in Fig-
ure 4.6b. Operator nodes in the region tree are represented as AND nodes, and leaf nodes and
intermediate results are represented using OR nodes. The initial Region DAG is analogous to
the DAG representation of a query in Volcano/Cascades (Figure 4.4b).

An OR node in the Region DAG represents all alternative ways to perform the computation
in a particular region. An AND node represents operators to combine sub-regions into the
parent region. The initial Region DAG contains a single alternative for each region, which
is the original program. For example, Figure 4.6b represents the following alternative for the
region P0.S2−7: perform the computation in the basic block P0.B2 and then the loop P0.L3−7,
sequentially. Similarly, the loop region has a single alternative. Other alternatives may be
generated by program transformations.

53

Step 3: Program transformations

Program transformations rewrite a program/region to perform the same computation in differ-
ent ways. In our work, we assume that we are provided with transformations that preserve
the equivalence of the original and rewritten programs on any valid input state. COBRA then
represents these alternative programs efficiently using Region DAG for cost based rewriting.
Our framework does not infer equivalence of programs or of transformations. It is up to the
transformation writer to verify the correctness of transformations. In this chapter, we use the
transformations from Chapter 3 and [87], with some extensions. We discuss them in Section 4.5.

In a Region DAG, the rewritten program/region is represented as an alternative under the
OR node for that particular region. This may create new nodes in the Region DAG. If a node
for a region in the rewritten program already exists in the Region DAG, it is reused (leverag-
ing techniques in Volcano/Cascades for detecting duplicates and merging nodes). We call the
Region DAG after adding alternatives from program transformations as the expanded Region
DAG, analogous to the expanded query DAG in Volcano/Cascades (refer Figure 4.4c).

For example, program transformations such as SQL translation (refer Chapter 3) and prefetch-
ing [87] identify iterative query invocation inside a loop region in P0, and rewrite the loop as
shown in P1 and P2 respectively (refer Figure 4.3). They are represented in the Region DAG as
shown in Figure 4.6c. Figure 4.6c shows three alternatives to perform the computation in the
loop region P0.L3−7. The newly added alternatives (nodes labeled 1 and 2) are both sequential
regions containing a loop region within, and achieve the same result as the original loop region.
The loop operator from P2 (node labeled 3) shares a basic block (P0.B3) with the loop region
from P0. The loop headers P2.B5 and P0.B3 are the same region and the latter already exists in
the Region DAG, so it is reused.

In summary, there are three alternatives for the root node P0.S2−7, corresponding to the
programs P0, P1, and P2. Note that the AND-OR DAG structure allows the node P0.B2 to be
represented only once, although it is part of all three programs corresponding to alternatives for
P0.L3−7.

Representing alternative programs in a Region DAG is not dependent on an intermediate
representation or the program transformations used. Given a program/region and its rewritten
version, COBRA can represent both the original and transformed programs using the Region
DAG. This is a key improvement of our representation over Peggy [104]. Peggy aims to rep-
resent multiple optimized versions of a program, for the purpose of eliminating the need for
ordering compiler optimizations. Representation of programs in Peggy is tied to a specific in-
termediate representation (IR), which may be provided by the user. Program transformations
must be expressed in this IR. COBRA on the other hand, does not necessitate the use of an IR,
and the transformation process can be unknown to the framework. We present further compari-
son of our work with Peggy in Section 4.7.

Nevertheless, COBRA supports representing programs using an IR and expressing transfor-
mations on the IR. We discuss one such IR for database applications next, in Section 4.5. In
fact, since the original program is represented intact in the Region DAG, it is possible to use
multiple IRs simultaneously, each of which may target a specific set of transformations.

Program regions are essential to representing alternatives using the Region DAG. Limita-
tions in the construction of program regions (discussed in Section 4.3.2) hinder the applicability
of COBRA. For example, in a try-catch block, control may enter the catch block from any state-
ment in the try block, so it does not conform to the region patterns that we identify. We refer to
such fragments with complex control flow as unstructured regions. Another example of an un-
structured region is an if-else with a complex predicate (combination of two or more predicates
using AND (&&) or OR (||)), which is broken down into simpler predicates by the compiler

54

1 mySum(){
2 sum = 0;

3 cSum = new Map(); //creates a new empty map

4 for(t : executeQuery(‘‘select month, sale amt

from sales order by month’’)){
5 sum = sum + t.sale amt;

6 cSum.put(month, sum);

7 }

8 print(sum);

9 print(cSum);

10 }

Figure 4.7: Program M0: Aggregations inside a loop

thereby resulting in complex control flow.
Alternatively, these unstructured regions may still be identified using a syntactic represen-

tation of the program such as an abstract syntax tree (AST). Unstructured regions may have
structured regions within them. For example, a try block may contain an if-else statement. In
such cases, the unstructured region can be encapsulated into a black box, and alternatives can
be represented for other parts of the program nested within, and outside the unstructured region.
We omit details.

4.5 Transformations using IR

In this section, we discuss the representation of alternative implementations of a program ob-
tained using F-IR transformations from Chapter 3, and prefetching transformations from earlier
work [87].

4.5.1 F-IR Recap

In Chapter 3, we proposed a DAG based intermediate representation named F-IR (fold inter-
mediate representation) for imperative code that may also contain database queries. F-IR is
based on program regions, and has been used to express program transformations for rewrit-
ing database applications by pushing relational operations such as selections, projections, joins,
and aggregations that are implemented in imperative code to the database using SQL. The list
of F-IR transformations used in this chapter are summarized in Figure 4.105.

Consider the program shown in Figure 4.7, which computes two aggregates – sum and
cumulative sum (cSum) – using a loop over query results. The F-IR representation for the loop
from Figure 4.7 is shown in Figure 4.8.

4.5.2 Integration into Region DAG

As we mentioned earlier in Section 4.5, F-IR is based on regions, and F-IR expressions represent
values of program variables at the end of a region in terms of values available at the beginning

5Note that prefetching transformation from earlier work [87] has also been expressed as an F-IR transforma-
tions.

55

fold

tupletuple Q

+

map put 0 {}

<sum> Q.sale amt <cSum> Q.month

Q: select month, sale amt from sales order by month

Figure 4.8: F-IR representation for the loop in Figure 4.7

M0.S2−9

seq

M0.S2−3 M0.L4−7 M0.S8−9

loop seq(1)

M0.B4 M0.S5−6

assign assign

sum cSum

project0 project1

fold(3)

executeQuery (2)

Q′

Q′: select sum(sale amt) from sales
The fold expression (node 3) is as shown in Figure 4.8

Figure 4.9: Region DAG for Figure 4.7 after transforming to F-IR

of a region. Thus, an F-IR expression also specifies a transition from an input state to an output
state in a region, where the input and output states consist of values of all program variables
that are live at the beginning and at the end of the region, respectively.

We model the construction of an F-IR expression for a region as a program transformation
that takes a region as input and gives the equivalent F-IR expression as output. If the precondi-
tions for F-IR representation (refer Chapter 3) are satisfied, the F-IR expression is constructed
and added as an alternative to the corresponding region. If the preconditions fail, no F-IR ex-
pressions are added, but other program transformations can still be applied on the Region DAG.

Figure 4.9 shows the Region DAG for program M0 from Figure 4.7. The program consists of
a sequential region (M0.S2−9) containing a loop region within (M0.L3−6). The F-IR expression
from Figure 4.8 is used to add an alternative (node 1) to the loop region. Using the fold expres-
sion for the loop, we first extract the individual variable values using project, assign them to the
appropriate variables, combine the assignments using a seq operator, and add the alternative to
the OR node corresponding to the loop.

56

Rule Definition Description
T1 fold(insert, {}, Q) = Q Fold removal (insert: set insertion function)
T2 fold(?(pred, g), id, Q)≡ fold(g, id,σpred(Q)) Predicate push into query (pred: predicate;

g: some function; ?: conditional execution
(if) operator)

T3 fold(g(v, h(Q.A)), id, Q) ≡
fold(g, id,πh(A)(Q))

Push scalar functions into query (g,h: func-
tions; A: column in Q)

T4 fold(fold(insert, id, σpred(Q2)), {}, Q1) ≡
Q1 1pred Q2

Join identification (pred: a predicate; insert:
set insertion function)

T5 fold(op, id, πA(Q))≡ γop agg(A)(Q) Aggregation (op: a binary operation like +,
scalar max; op agg: corresponding relational
aggregation operation like sum, max)

N1 fold(f(v,executeQuery(σR.A=Q.B(R))), id,Q) ≡
seq(prefetch(R,A), fold(f(v, lookup(Q.B)), id,Q))

Prefetching (prefetch: fetch query result and
cache by column locally. cacheByColumn,
lookup: Refer footnote 3).

N2 fold(g, id,σpred(Q))≡ fold(?(pred,g), id,Q) Reverse of T2

Figure 4.10: F-IR Transformation Rules (T1 to T5 are from Chapter 3)

4.5.3 Transformations

Transformations on F-IR expressions add further alternatives to the Region DAG. In Chapter 3,
we proposed F-IR transformations with the aim of translating imperative code into SQL. These
transformations are summarized in Figure 4.10 (T1 to T5)6. (There are other transformation
rules in Chapter 3, all of which are included in our implementation.) Prefetching is widely
used in enterprise settings to mitigate the cost of multiple invocations of the same query. To
enable prefetching, in this chapter, we propose transformations N1 and N2 (Figure 4.10) based
on earlier work on prefetching [87]. Rule N1 transforms iterative lookup queries inside a loop
into a prefetch7 followed by local cache lookups. Rule N2 transforms a selection query into a
query without selection followed by a local filter. Note that rule N1 uses a combination of F-IR
operators as well as operators for combining regions (such as seq, loop and cond).

We use Rule T5 to extract an SQL query for sum. This is added as an alternative (node 2)
to the OR corresponding to the expression for sum. Similarly, alternative expressions for cSum
are added after applying other transformations. Using the cost model described in Section 4.6,
COBRA can identify that the alternative with node 2 incurs an extra query execution cost, in
addition to the loop computation represented by fold. After the least cost program is found,
the F-IR representation is translated into imperative code. We refer the reader to Chapter 3 for
details on generating imperative code from F-IR.

6γ is the relational aggregation operator. Here, we present abridged versions of the rules, for the sake of
brevity. For complete details of these transformations including ordering, duplicates, and variations of each rule,
refer Chapter 3.

7In our current implementation, N1 prefetches an entire relation and all subsequent lookups are performed
locally. This can be extended to prefetch queries that result only in a part of the relation.

57

Term Definition
CNRT Network round trip time between the client (where the program is run-

ning) and the database.
CF

Q Time taken by the database since receiving the query to send out the
first row in the result.

CL
Q Time taken by the database since receiving the query to send out the last

row in the result.
NQ Cardinality of the result set for Q, i.e., the number of rows in the result

after executing Q.
Srow(Q) Size in bytes of a single row in the result set for Q.

BW Network bandwidth (bytes/sec)
AFQ Amortization factor – estimated number of invocations of Q.
CY Cost of a program operator node in the Region DAG
CZ Cost of executing one imperative program statement (other than query

execution statement)

Figure 4.11: Cost parameters

4.6 Cost Model

In this section, we discuss how to estimate the cost of a program represented using the Region
DAG, and how to find the best alternative from many possible alternatives. We will restrict our
attention to cost estimation for individual nodes in the Region DAG; the idea for cost based
search in the Region DAG is similar to that in the Volcano/Cascades AND-OR DAG (refer
Section 4.3.1).

In our work we focus on optimizing programs for data access. Figure 4.11 describes the
parameters we consider for cost estimation. We use a parameter amortization factor (AFQ) that
estimates the number of invocations of a query Q, to allocate the prefetching cost across each
invocation.

Determining whether or not a relation should be prefetched is non trivial, as this may af-
fect the cost of other nodes included in a plan. This problem is similar to the multi-query
optimization problem, which aims to calculate the best cost and plan for a query considering
materialization [90] (in our case, caching). Currently in our framework, we decide to prefetch a
query if (a) it is explicitly marked for prefetching as the result of a transformation (such as N1
from Figure 4.10), or (b) an entire relation is fetched without any filters/grouping. AF may be
tuned individually for various queries depending on the particular application’s workload.

We note however, that using prefetching, the first access to the query may have signifi-
cantly higher latency compared to the original program, as typically a large number of rows
are prefetched using a single query. This can be mitigated by prefetching asynchronously, and
dynamically deciding to prefetch only after a certain number of accesses to minimize the over-
head of prefetching. This is similar to the classical ski-rental problem [63] and has been applied
earlier in the context of join optimizations in parallel data management systems [25]. Extending
COBRA to adapt heuristics from [90] to efficiently handle alternatives generated due to caching
is part of future work, and dynamic approaches for prefetching are part of future work.

Currently, we calculate cost only in terms of the time taken to execute the program. Our

58

cost model can be extended to include other parameters such as CPU cost, memory usage etc.,
if needed. Using the parameters from the table above, the cost of various nodes in the AND-OR
DAG is estimated as follows.

Query execution

The cost of execution of a query Q is defined as follows:
CQ = CNRT + CF

Q + max(NQ*Srow(Q)/BW, CL
Q−CF

Q)

Prefetch

The cost of prefetching a relation using a query Q is defined as follows:
Cprefetch(Q) = CQ/AFQ

Basic block node

A basic block node in the Region DAG contains imperative code. The cost of the basic block is
the sum of the cost of each statement (CZ) in the basic block. CZ can be tuned according to the
particular application.

Region operator node

Region operator nodes are rooted at the operators seq, cond, or loop. Their cost is calculated as
follows:
Cseq = sum of cost of each child.
Ccond = p * Ctrue + (1-p) * Cfalse + Cp
where p is the probability that the condition evaluates to true, Cp is the cost of evaluating the
condition, and Ctrue and Cfalse are the costs of the sub regions corresponding to p evaluating to
true and false respectively. If the condition is in terms of a query result attribute, our framework
estimates the value of p using database statistics. Otherwise, a value of 0.5 is used.
Cloop: If the loop is over the results of a query Q, then it may be represented using a fold
expression, whose cost is calculated as follows:

Cfold = NQ * C f + CDb(Q)

where C f is the cost of the fold aggregation function.
If the number of iterations is known (loop is over the results of a query, or over a collection)

but the loop cannot be represented using fold, then the cost is calculated as K * Cbody, where
Cbody is the cost of the loop body, and K is the number of loop iterations. If the number of
iterations cannot be known (such as in a generic while loop), we use an approximation for the
number of loop iterations, which can be tuned according to the application.

Other F-IR operators

We assign a static cost CY for evaluating any other F-IR operator. CY can be tuned according to
the particular application.

59

4.7 Related Work

In this section, we survey related work on various fronts.

Program transformations for database applications

In earlier work [26], techniques for optimizing database applications using static program anal-
ysis have been proposed as part of the DBridge system. Various program transformations such
as batching, asynchronous query submission and prefetching [87, 84] have been incorporated
in DBridge. DBridge also contains transformations for rewriting Hibernate applications using
SQL for improved performance (Chapter 3); the QBS system [33] also addresses the same prob-
lem. However, existing approaches assume that such transformations are always beneficial. In
contrast, our framework allows a cost-based choice of whether or not to perform a transforma-
tion, and to choose the least cost alternative from more than one possible rewrites.

Note that unlike earlier techniques in DBridge, the focus of this chapter is not on the program
transformations themselves; rather we focus on representing various alternatives produced by
one or more transformations of imperative code and choosing the least cost alternative. Our
implementation of COBRA uses DBridge as a sub-system for generating alternative programs
by applying these transformations. In general, COBRA can be used independent of DBridge
with any set of program transformations.

There has been work on automatically rewriting programs with embedded queries for evolv-
ing schemas, using program transformations that are derived from schema modifications [96].
The transformations we considered in our work instead focus on rewriting queries for a fixed
schema, by pushing computation from imperative code into SQL. However, COBRA can be
used for cost based rewriting of applications using transformations from [96].

Enumeration and application of transformations

The Peggy compiler optimization framework [104] facilitates the application of transformations
(compiler optimizations) in any order. It uses a data structure called PEG that operates similar
to the Volcano/Cascades AND-OR DAG. However, there are significant differences from our
framework.

Peggy is aimed at compiler optimizations and works on expressions. Our framework is
aimed at transformations on larger program units such as regions or even an entire program in
addition to transformations on expressions, and can support multiple IRs unlike Peggy (as dis-
cussed in Section 4.4). COBRA also improves upon Peggy in terms of program cost estimation.
The cost model in Peggy is primitive, especially as the cost of a loop is calculated as a function
of its nesting level and a predetermined constant number of iterations. Such a cost model is
inadequate for database applications as query execution statements and loops over query results
take the bulk of program execution time. A more sophisticated cost model that can use the
database and network statistics, such as the one described in this chapter, is desired.

Pushing computation to the database

The Pyxis [31] system automatically partitions database applications so that a part of the ap-
plication code runs on a co-located JVM at the database server, and another part at the client.

60

In contrast to Pyxis, COBRA generates complete and equivalent programs using program trans-
formations on the original program, and does not require any special software at the database
server.

LINQ to SQL

A number of language integrated querying frameworks similar to LINQ [15] allow developers to
express relational database queries using the same language as the application, and later trans-
late these queries into SQL [15, 55]. Our techniques focus on automatically identifying parts
of imperative code that can be pushed into SQL, whereas [55] require developers to completely
specify these queries, albeit in a syntax that uses source language constructs.

4.8 Experimental Evaluation

In this section, we present an evaluation of the COBRA framework for cost based rewriting of
database applications. We implemented COBRA by extending the PyroJ optimizer [90], which
is based on Volcano/Cascades. COBRA leverages the region based analysis framework and
program transformations from the DBridge system (refer [87] and Chapter 3) for optimizing
database applications. DBridge internally uses the Soot framework [102] for static analysis.

For our experiments, we used two machines: a server that runs the database (16GB RAM
with Intel Core i7-3770, 3.40GHz CPU running MySQL 5.7 on Windows 10), and a client that
runs the application programs (8GB RAM with Intel Core i5-6300 2.4GHz CPU running Win-
dows 10, around 4GB RAM was available to the application program). The numbers reported
in the experiments are averaged over five runs of the program.

Our experiments aim to evaluate the following: (a) applicability of COBRA and our cost
model and (b) performance benefits due to cost based rewriting. Our experiments use real
world and synthetic code samples that use the Hibernate ORM.

In Experiments 1, 2, and 3, we evaluate the performance of program P0 and its alternatives
P1 and P2 (which were shown in Figure 4.3), along with the choice suggested by COBRA. We
implemented P0 using the Hibernate ORM, and used transformation rule N1 and a variation of
transformation rule T5 (refer Section 4.5.2) to generate P2 and P1 respectively, from P0. The size
of each row in Order and Customer has been chosen according to the TPC-DS [3] benchmark
specification.

We ran the programs under varying network conditions and cardinalities of the tables Order
and Customer. We connected the client and server directly with an Ethernet cable, and simulated
variations in the network using a network simulator [2]. We used the following conditions: slow
remote network (bandwidth: 500kbps, latency: 250ms (taken from [19])) and fast local network
(bandwidth: 6gbps, round trip time: 0.5ms).

For estimating the cost of generated alternatives using our cost model, we focused on data
transfer costs and number of loop iterations (size of query result set). The cost of executing any
other instruction apart from a query execution statement in the imperative program (Cz from
Section 4.6) was set to 30ns, after profiling the applications to estimate the same. We set the
amortization factor to 1 (for experiments 1, 2 and 3). We consulted the database query optimizer
to get an estimate of query execution times, based on past executions of the queries. The cost
metrics we used were provided to our system as a cost catalog file.

61

100 1k 10k 100k 1m
1

10

100

1k

10k

3467
6047

No. of Orders rows (log scale)

Hibernate(P0)
SQL Query(P1)
Prefetching(P2)
COBRAPr

og
.e

xe
cu

tio
n

tim
e(

s,
lo

g
sc

al
e)

Figure 4.12: Performance of alternative implementations of Figure 4.3a – Slow remote network,
varying Orders

100 1k 10k 100k 1m
0.1

1

10 12
16

No. of Orders rows (log scale)

Hibernate(P0)
SQL Query(P1)
Prefetching(P2)
COBRA

Pr
og

.e
xe

cu
tio

n
tim

e(
s,

lo
g

sc
al

e)

Figure 4.13: Performance of alternative implementations of Figure 4.3a – Fast local network,
varying Orders

Experiment 1

We first ran the programs using a slow remote network. We fixed the number of rows in Cus-
tomer to 73,000 and varied the number of Order rows from 100 to 1 million. Figure 4.12 shows
the actual running times of these programs, and the choice suggested by COBRA. At lower
number of Order rows, COBRA chose the program using SQL query API (P1), as the other two
alternatives incur high latency. Program P0 suffers from large number of network round trips
due to iterative queries, and P2 prefetches a relatively large amount of Customer data. However,
as the number of Order rows approaches the number of Customer rows, program P1 causes
increasing duplication of Customer data in the join result. At this point, COBRA switched to
program P2. The performance of prefetching (P2) does not vary much for lower cardinalities
as the bulk of the time is spent on fetching the larger relation (Customer) data. In each case,
COBRA correctly identified the least cost alternative.

62

10 100 1k 10k 100k
10

100

30

300

No. of Customers rows (log scale)

Hibernate(P0)
SQL Query(P1)
Prefetching(P2)
COBRA

Pr
og

.e
xe

cu
tio

n
tim

e(
s,

lo
g

sc
al

e)

Figure 4.14: Performance of alternative implementations of Figure 4.3a – Slow remote network,
varying Customers

Experiment 2

We use the same cardinalities as in Experiment 1, but use a fast local network. Again, COBRA

estimated P1 to be the least cost alternative until the number of Order rows approaches the num-
ber of Customer rows, and switched to P2 after that. This is reflected in the running times of
these programs, as shown in Figure 4.13. Although P2 performs better than P1 at high cardi-
nality of Order in both Figure 4.13 and Figure 4.12, the performance difference is much more
significant in a slow remote network (3467s vs 6047s) than in a fast local network (12s vs 16s).
Note that the performance of SQL query (P1) and Hibernate (P0) is comparable at high cardinal-
ities in fast local network. This can be understood as follows. The overhead of a network round
trip is very small in a fast local network. Hibernate program internally caches each Customer
row once fetched, so the latency is minimized after all Customer rows have been fetched using
individual queries.

Experiment 3

In this experiment, we use a slow remote network, fix the number of Order at 10,000 and vary
the number of Customer rows. As the results from Figure 4.14 indicate, the time taken by
P1 is nearly constant (as the size of the join result does not vary with increasing number of
Customer rows). However, the time taken by P2 increases with the number of Customer rows as
P2 prefetches the entire Customer table. This demonstrates that unlike Figures 4.13 and 4.12, it
is not necessary that P1 performs better at lower cardinalities, and P2 performs better at higher
cardinalities. COBRA correctly chose the least cost program in each case based on its cost
model.

Experiment 4

In this experiment, we used a real world open source application, Wilos [115], which uses
the Hibernate ORM framework. By manual examination of the Wilos source code, we identi-
fied 32 code samples where cost based transformations are applicable. These samples can be
broadly classified into six categories. Figure 4.15 lists for each category, the cost based choice
of transformations and the number of cases identified. Details of each code fragment are listed

63

Id Description of cost based choice #
A Nested loops with intermittent updates: Inner loop can be translated to

SQL for better performance vs overall performance may degrade due to
iterative queries

3

B Multiple aggregations inside loop: Faster aggregation/fetch only result
by translation to SQL vs multiple queries (NRT) instead of one

2

C Nested loops join: Better join algo. at the database and fetch (large)
result of SQL join vs Cache tables at application and join locally

9

D Function that is called inside a loop can be rewritten using SQL: overall
performance may degrade due to iterative queries if caller loop cannot
be translated

7

E Collection filtered differently across different calls of a recursive func-
tion: Multiple point look up queries vs prefetch whole table once and
filter from cache

9

F Different parts of a collection are used across different callee functions:
Multiple select/project queries to fetch only required data vs prefetch
all data with one query

2

Figure 4.15: Cases for cost based based optimization in real world application (pattern id,
description, number of cases)

in Figure 4.17.
We ran COBRA on a representative sample from each category. We used a data generator to

generate test data based on the application schema, with the size of the largest relation(s) as 1
million. In particular, the following setup was used: fast local network, many to one mapping
ratio 10:1, selectivity of any predicate used 20%. Since we do not know the Wilos application
characteristics to estimate the amortization factor, we evaluated COBRA with three different
amortization factors (AF=1, AF=50, and AF=∞) in the cost model. The results for AF=50 and
AF=∞ were only marginally different, so for clarity, we only show the results for AF=1 and
AF=50, in Figure 4.16.

The x-axis in Figure 4.16 shows the program identified by its pattern ID, and the y-axis
shows the fraction of the actual execution time taken by a rewritten program in comparison
to that of the original program. We plot the following bars for each program. Original – the

3.9s 0.9s 6087s 0.6s 1.9s 2.1s

Original

42.5s

Heuristic

P A P B P C P D P E P F

0.2

0.4

0.6

0.8

1

1.2

1.4

Program ID

COBRA(AF=50)
COBRA(AF=1)

Fr
ac

tio
n

of
or

ig
.p

ro
g.

tim
e

Figure 4.16: Performance benefits due to COBRA

64

Sl.No. Pattern ID File Name (Line Number)
1 A ProjectService (1139)
2 TaskDescriptorService (198)
3 ConcreteWorkBreakdownElementService (144)
4 B IterationService (139)
5 PhaseService (185)
6 C ConcreteRoleAffectationService (60)
7 ConcreteTaskDescriptorService (312)
8 ConcreteTaskDescriptorService (1276)
9 ConcreteTaskDescriptorService (1302)
10 ConcreteWorkBreakdownElementService (63)
11 ConcreteWorkProductDescriptorService (445)
12 ParticipantService (129)
13 RoleService (15)
14 ActivityService (407)
15 D IterationService (293)
16 PhaseService (307)
17 ActivityService (229)
18 RoleDescriptorService (276)
19 TaskDescriptorService (140)
20 TaskDescriptorService (142)
21 WorkProductDescriptorService (310)
22 E ProjectService (346)
23 ProjectService (567)
24 ProjectService (647)
25 ProjectService(704)
26 ProcessService (1212)
27 ProcessService (1253)
28 ProcessService (1593)
29 ProcessService (1631)
30 ProcessService (1740)
31 F ProcessService (406)
32 ProcessService (921)

Figure 4.17: Code fragments for cost based rewriting

original program, Heuristic – program rewritten using the heuristic: push as much computation
as possible into SQL query (using transformations from Chapter 3), then prefetch the query
results at the earliest program point, COBRA(AF=50) – program rewritten using COBRA with
AF=50, and COBRA(AF=1) – program rewritten using COBRA with AF=1. The actual time in
seconds for Original is shown above the bar. We use transformation rules proposed by earlier
techniques (listed in Figure 4.10).

The results from Figure 4.16 suggest that performance benefits due to COBRA are signifi-
cant. In the examples considered for this experiment, programs rewritten using COBRA gave up
to 95% improvement over the heuristic optimized program, when the cost was computed using
AF=50. Even with AF=1, COBRA outperforms the original and heuristic optimized programs
in some cases like A, as COBRA’s calculated iterative query invocations to be costlier and chose
the prefetch alternative (refer Figure 4.15 pattern A). In cases B, C, and D, COBRA chose the
same plan with AF=1 as well as AF=50, hence the bars are identical. Note that in each case,
the program rewritten using COBRA (with AF=1 or 50) always performs at least as well as the
original/heuristic optimized program.

65

We now compare the plans (program implementations) chosen by the heuristic optimizer
and COBRA. Remember that the heuristic optimizer pushes as much computation as possible
into SQL. For programs that could entirely be translated into SQL (programs C and D in our
workload), COBRA chose full SQL translation - same as the heuristic optimizer. For other
programs where only a part of the program could be translated to SQL, COBRA differs from the
heuristic optimizer.

For instance, in program A (nested loops with intermittent updates), the heuristic optimizer
chose to translate the inner loop (which performs a filter) to SQL, whereas the outer loop could
not be translated due to presence of updates. COBRA instead, chose to prefetch the inner loop
query without the filter, thus eliminating iterative queries. Program B contained two aggre-
gations inside a loop on a query result - a scalar count, and a collection that accessed all the
rows in the query result. While the heuristic optimizer translated the count computation into
an additional SQL aggregate query, COBRA chose the original program with a single query.
Programs E and F originally each contained SQL queries with a where clause, where the pred-
icate differed. While this was deemed optimal by the heuristic optimizer, COBRA rewrote the
queries without the where clause (similar to program A) to leverage multiple accesses to the
same relation and employed prefetching.

COBRA Optimization Time

The time taken for program optimization using COBRA is usually not a concern, as the program
is optimized once for a particular environment and run multiple times. However, we note that
in our experiments, the time taken for optimization was very small (<1s) for all programs.

Threats to validity

Our evaluation uses programs that use the Hibernate ORM as part of the Spring framework [103].
Spring automatically takes care of transaction semantics based on annotations that specify
which functions are to be executed within a transaction. Each sample that we considered in
our evaluation runs under a single transaction (as is typical of a service function in Spring),
so cache invalidation across transactions is not a problem. Further, Hibernate contains built
in cache management for database mapped objects. In general for other database application
programs, optimizing across transactions may not preserve the program semantics and/or affect
the amortization factor due to stale caches. Identifying such cases automatically using program
analysis is part of future work.

The values of parameters in our cost model have been tuned with respect to the Wilos appli-
cation, which we used in our evaluation. However, in some cases, there was some deviation of
the estimated program execution cost from the actual cost. We observed that this is due to mul-
tiple factors including (a) parameters not considered in the cost model (example: Hibernate’s
cost of constructing mapped objects from the result set), (b) fluctuating values of parameters
(example: the utilized bandwidth is a fraction of the maximum bandwidth and varies across dif-
ferent query results), etc. Although our cost model correctly predicted the least cost alternative
in all the evaluated samples despite these limitations, a more refined cost model may be desired
in general.

66

4.9 Summary

In this chapter, we proposed a framework for generating various alternatives of a program us-
ing program transformations, and choosing the least cost alternative in a cost based manner.
We identify that program regions provide a natural abstraction for optimization of imperative
programs, and extend the Volcano/Cascades framework for optimizing algebraic expressions,
to optimize programs with regions. Our experiments show that techniques in this chapter are
widely applicable in real world applications with embedded data access, and provide significant
performance improvements.

Our cost based search in this chapter assumes that the cost of a node in the AND-OR DAG
is determined locally, i.e., using the costs of the operator and/or its children. However, the cost
of a particular node may sometimes depend on other nodes in the AND-OR DAG apart from
its children. For example, due to side effects such as caching, multiple nodes can access re-
sults from the cache without incurring further execution costs for the same expression after it
is first computed. In our current implementation, we cache all query results (which are typi-
cally small in ORM applications) in memory and reuse them, thus incurring the cost of a query
only once. In general, this is similar to the problem of multi-query optimization with materi-
alization. Greedy heuristics for multi-query optimization proposed in [90] can be adapted to
efficiently handle alternatives generated due to caching of multiple queries with large results.
Implementing this in COBRA is an area of future work.

67

Chapter 5

Froid: Optimization of Imperative

Programs in a Relational Database

For decades, RDBMSs have supported declarative SQL as well as imperative functions and pro-
cedures as ways for users to express data processing tasks. While the evaluation of declarative
SQL has received a lot of attention resulting in highly sophisticated techniques, the evaluation
of imperative programs has remained naı̈ve and highly inefficient. Imperative programs offer
several benefits over SQL and hence are often preferred and widely used. But unfortunately,
their abysmal performance discourages, and even prohibits their use in many situations. We
address this important problem that has hitherto received little attention.

We present Froid, an extensible framework for optimizing imperative programs in relational
databases. Froid’s novel approach automatically transforms entire User Defined Functions
(UDFs) into relational algebraic expressions, and embeds them into the calling SQL query.
This form is now amenable to cost-based optimization and results in efficient, set-oriented,
parallel plans as opposed to inefficient, iterative, serial execution of UDFs. Froid’s approach
additionally brings the benefits of many compiler optimizations to UDFs with no additional
implementation effort. We describe the design of Froid and present our experimental evalua-
tion that demonstrates performance improvements of up to multiple orders of magnitude on real
workloads. The contents of this chapter have been published as a collaborative work1 in [86].

5.1 Introduction

SQL is arguably one of the key reasons for the popularity of relational databases today. SQL’s
declarative way of expressing intent has on one hand provided high-level abstractions for data
processing, while on the other hand, has enabled the growth of sophisticated query evaluation
techniques and highly efficient ways to process data.

Despite the expressive power of declarative SQL, almost all RDBMSs support procedural
extensions that allow users to write programs in various languages (such as Transact-SQL, C#,
Java and R) using imperative constructs such as variable assignments, conditional branching,
and loops. These extensions are quite widely used. For instance, we note that there are of the

1This is joint work done during an internship with Microsoft Gray Systems Lab, Madison. My contribution
was to build an end-to-end prototype for inlining multi-statement scalar UDFs using the idea of program regions,
and perform an experimental evaluation on real customer workloads.

69

order of tens of millions of Transact-SQL (T-SQL) UDFs in use today in the Microsoft Azure
SQL Database service, with billions of daily invocations.

UDFs and procedures offer many advantages over standard SQL. (a) They are an elegant
way to achieve modularity and code reuse across SQL queries, (b) some computations (such as
complex business rules and ML algorithms) are easier to express in imperative form, (c) they
allow users to express intent using a mix of simple SQL and imperative code, as opposed to
complex SQL queries, thereby improving readability and maintainability.These benefits are not
limited to RDBMSs, as evidenced by the fact that BigData systems (Hive, Spark, etc.) support
UDFs as well.

Unfortunately, the above benefits come at a huge performance penalty, due to the fact that
UDFs are evaluated in a highly inefficient manner. It is a known fact amongst practitioners
that UDFs are “evil” when it comes to performance considerations [109, 88]. In fact, users are
advised by experts to avoid UDFs for performance reasons. The internet is replete with articles
and discussions that call out the performance overheads of UDFs [108, 110, 111, 78, 79]. This
is true for all popular RDBMSs, commercial and open source.

UDFs encourage good programming practices and provide a powerful abstraction, and
hence are very attractive to users. But the poor performance of UDFs due to naı̈ve execution
strategies discourages their use. The root cause of poor performance of UDFs can be attributed
to what is known as the ‘impedance mismatch’ between two distinct programming paradigms
at play – the declarative paradigm of SQL, and the imperative paradigm of procedural code.
Reconciling this mismatch is crucial in order to address this problem, and forms the crux of this
chapter.

We present Froid, an extensible optimization framework for imperative code in relational
databases. The goal of Froid is to enable developers to use the abstractions of UDFs and proce-
dures without compromising on performance. Froid achieves this goal using a novel technique
to automatically convert imperative programs into equivalent relational algebraic forms when-
ever possible. Froid models blocks of imperative code as relational expressions, and systemat-
ically combines them into a single expression using the Apply [49] operator, thereby enabling
the query optimizer to choose efficient set-oriented, parallel query plans.

Further, we demonstrate how Froid’s relational algebraic transformations can be used to
arrive at the same result as that of applying compiler optimizations (such as dead code elimina-
tion, program slicing and constant folding) to imperative code. Although Froid’s current focus
is T-SQL UDFs, the underlying technique is language-agnostic, and therefore extending it to
other imperative languages is quite straightforward, as we show in this chapter.

There have been some recent works that aim to convert fragments of database application
code into SQL in order to improve performance, such as the techniques from Chapter3 and those
from [33]. However, to the best of our knowledge, Froid is the first framework that can optimize
imperative programs in a relational database by transforming them into relational expressions.
While Froid is built into Microsoft SQL Server, its underlying techniques can be integrated into
any RDBMS.

We make the following contributions in this chapter.

1. We describe the unique challenges in optimization of imperative code executing in rela-
tional databases, and analyze the reasons for their abysmal performance.

2. We describe the novel techniques underlying Froid, an extensible framework to optimize
UDFs in Microsoft SQL Server. We show how Froid integrates with the query processing
lifecycle and leverages existing sub-query optimization techniques to transform ineffi-
cient, iterative, serial UDF execution strategies into highly efficient, set-oriented, parallel
plans.

70

3. We show how several compiler optimizations such as dead code elimination, dynamic
slicing, constant propagation and folding can be expressed as relational algebraic trans-
formations and simplifications that arrive at the same end result. Thereby, Froid brings
these additional benefits to UDFs with no extra effort.

4. We discuss the design and implementation of Froid, and present an experimental eval-
uation on several real world customer workloads, showing significant benefits in both
performance and resource utilization.

The rest of the chapter is organized as follows. Section 5.2 gives the background. Sections 5.3,
5.4, 5.5 and 5.6 describe Froid and its techniques. Design details are discussed in Section 5.7
followed by an evaluation in Section 5.8. We discuss related work in Section 5.12 and summa-
rize the chapter in Section 5.13.

5.2 Background

In this section, we provide some background regarding the way imperative code is currently
evaluated in Microsoft SQL Server and analyze the reasons for their poor performance. SQL
Server primarily supports imperative code in two forms: UDFs and Stored Procedures (SPs).
UDFs cannot modify the database state whereas SPs can. UDFs and SPs can be implemented
in either T-SQL or Common Language Runtime (CLR). T-SQL expands on the SQL standard
to include imperative constructs, various utility functions, etc. CLR integration allows UDFs
and SPs to be written in any .NET framework language such as C# [34]. UDFs can be further
classified into two types. Functions that return a single value are referred to as scalar UDFs,
and those that return a set of rows are referred to as Table Valued Functions (TVFs). SQL
Server also supports inline TVFs, which are single-statement TVFs analogous to parameterized
views [48]. In this chapter we focus primarily on Scalar T-SQL UDFs. Extensions to support
other imperative languages are discussed in Section 5.7.3.

5.2.1 Scalar UDF Example

In SQL Server, UDFs are created using the CREATE FUNCTION statement [48] as shown in
Figure 5.1. The function total price accepts a customer key, and returns the total price of all the
orders made by that customer. It computes the price in the preferred currency of the customer by
looking up the currency code from the customer prefs table and performs currency conversion
if necessary. It calls another UDF xchg rate, that retrieves the exchange rate between the two
currencies. Finally it converts the price to a string, appends the currency code and returns it.
Consider a simple query that invokes this UDF.

select c name, dbo.total price(c custkey)
from customer;

For each customer, the above query displays the name, and the total price of all orders made
by that customer. We will use this simple query and the UDFs in Figure 5.1 as an example to
illustrate our techniques in this chapter.

5.2.2 UDF Evaluation in SQL Server

We now describe the life cycle of an SQL query that includes a UDF. At the outset we note that
this is a simplified description with a focus on how UDFs are evaluated currently. We refer the

71

create function total_price(@key int)
returns char(50) as
begin

declare @price float, @rate float;
declare @pref_currency char(3);
declare @default_currency char(3) = 'USD';

select @price = sum(o_totalprice) from orders
where o_custkey = @key;

select @pref_currency = currency
from customer_prefs
where custkey = @key;

if(@pref_currency <> @default_currency)
begin

select @rate =
xchg_rate(@default_currency,@pref_currency);

set @price = @price * @rate;
end
return str(@price) + @pref_currency;

end

create function xchg_rate(@from char(3), @to char(3))
returns float as
begin

return (select rate from dbo.xchg
where from_cur = @from and to_cur = @to);

end

1
2
3

4

5

6

7

8

9

1

Sequential region Conditional region

Figure 5.1: Example T-SQL User defined functions

reader to [39, 18, 49] for details.

Parsing, Binding and Normalization: The query first goes through syntactic validation, and is
parsed into a tree representation. This tree undergoes binding, which includes validating refer-
enced objects and loading metadata. Type derivation, view substitution and optimizations such
as constant folding are also performed. Then, the tree is normalized, wherein most common
forms of subqueries are turned into some join variant. A scalar UDF that appears in a query
is parsed and bound as a UDF operator. The parameters and return type are validated, and
metadata is loaded. The UDF definition is not analyzed at this stage.

Cost-based Optimization: Once the query is parsed and normalized, the query optimizer per-
forms cost-based optimization based on cardinality and cost estimates. Execution alternatives
are generated using transformation rules, and the plan with the cheapest estimated cost is se-
lected for execution. SQL Server’s cost-based optimizer follows the design of the Volcano
optimizer [53]. SQL Server reuses query plans for queries and UDFs by caching chosen plans.
A cache entry for a UDF can be thought of as an array of plans, one for each statement in the
UDF.

Execution: The execution engine is responsible for executing the chosen plan efficiently. Re-
lational query execution invokes a scalar evaluation sub-system for predicates and scalar com-
putations, including scalar UDFs [42]. The plan for the simple query in Section 5.2.1 is shown
in Figure 5.2. For every tuple that is emitted by the Table Scan operator, the execution engine
calls into the scalar evaluation sub-system to evaluate the scalar UDF total price.

At this point, the execution context switches to the UDF. Now, the UDF can be thought of as
a batch of statements submitted to the engine If the UDF contains SQL queries (e.g. lines 4 and

72

Figure 5.2: Query plan for the query in Section 5.2.1
5 of Figure 5.1), the scalar subsystem makes a recursive call back to the relational execution
engine. Once the current invocation of the UDF completes, the context switches back to the
calling query, and the UDF is invoked for the next tuple – this process repeats. During the first
invocation of the UDF, each statement goes through compilation, and the plan for the UDF is
cached. During subsequent invocations, the cached plan for the UDF is used.

5.2.3 Drawbacks in UDF Evaluation

We now enumerate the main causes for poor performance of UDFs. While we describe the
reasons in the context of UDFs in SQL Server, they are mostly true for other RDBMSs as well,
though the finer details may vary.

Iterative invocation: UDFs are invoked in an iterative manner, once per qualifying tuple. This
incurs additional costs of repeated context switching due to function invocation, and mutual
recursion between the scalar evaluation sub-system and relational execution. Especially, UDFs
that execute SQL queries in their body (which is common in real workloads) are severely af-
fected.

These iterative plans can be highly inefficient, since queries within the function body are
executed multiple times, once for each invocation. This can be thought of as a nested loops
join along with expensive context switches and overheads. As a consequence, the number of
invocations of a UDF in a query has a huge impact on its performance. The query optimizer is
rendered helpless here, since it does not look inside UDF definitions.

Lack of costing: Query optimizers treat UDFs as inexpensive black-box operations. During
optimization, only relational operators are costed, while scalar operators are not. Prior to the
introduction of scalar UDFs, other scalar operators were generally cheap and did not require
costing. A small CPU cost added for a scalar operation was enough. This inadvertent simpli-
fication is a crucial cause of bad plan choices in cases where scalar operations are arbitrarily
expensive, which is often true for scalar UDFs.

Interpreted execution: As described in Section 5.2.2, UDFs are evaluated as a batch of state-
ments that are executed sequentially. In other words, UDFs are interpreted statement-by-
statement.

Note that each statement itself is compiled, and the compiled plan is cached. Although this
caching strategy saves some time as it avoids recompilations, each statement executes in iso-
lation. No cross-statement optimizations are carried out, unlike in compiled languages. Tech-
niques such as dead code elimination, constant propagation, folding, etc. have the potential to
improve performance of imperative programs significantly. Naı̈ve evaluation without exploiting
such techniques is bound to impact performance.

Limitation on parallelism: Currently, SQL Server does not use intra-query parallelism in
queries that invoke UDFs. Methods can be designed to mitigate this limitation, but they intro-
duce additional challenges, such as picking the right degree of parallelism for each invocation

73

create function toyUDF

returns float as

begin

declare @a float, @b float, @c float, @d float;

select @a = sum(amt) from orders;

set @b = @a + 100;

set @c = @a * 1.1;

set @d = c - b;

return @d;

end

Figure 5.3: Simple UDF that reads a variable multiple times

of the UDF.
For instance, consider a UDF that invokes other SQL queries, such as the one in Figure 5.1.

Each such query may itself use parallelism, and therefore, the optimizer has no way of knowing
how to share threads across them, unless it looks into the UDF and decides the degree of paral-
lelism for each query within (which could potentially change from one invocation to another).
With nested and recursive UDFs, this issue becomes even more difficult to manage.

5.2.4 Prior Approaches

Before we discuss the Froid framework, we present the shortcomings of other approaches that
we have considered, to motivate Froid’s approach. Simhadri et al. [100] describe a technique to
decorrelate queries in UDFs using extensions to the Apply operator [49, 42]. Froid’s approach
partly borrows its intuition from this work, but there are some key differences. First, Froid does
not require any new operators or operator extensions unlike the approach of [100]. Second,
their transformation rules are designed to be a part of a cost based optimizer. Froid, in contrast
is designed as a precursor to query optimization. Third, they do not address vital issues such as
handling multiple return statements and avoiding redundant computation of predicate expres-
sions, which are found to be quite common in real workloads. In Froid, we improve on the work
of [100] to address these problems.

In Chapter 3, we presented techniques for extracting algebraic representations for impera-
tive code containing embedded queries. We prototyped these techniques to extract algebraic
representations (F-IR) for UDFs, with the goal of inlining. However, we found that for some
UDFs, the F-IR generated was huge and complex due to duplication of expressions. For exam-
ple, consider the UDF toyUDF in Figure 5.3, which assigns the result of a query to a variable a
and reads a multiple times.

Algebrizing toyUDF using techniques from Chapter 3 results in the following expression
(shown as SQL):

((select sum(amt) from orders) * 1.1) -

((select sum(amt) from orders) + 100)

Note that the expression for a is repeated twice in the expression for the UDF resulting in
repeated execution of the corresponding query, whereas in the original UDF, the query for a
is evaluated only once. Our experience showed that with even moderately large UDFs, such
duplication can make the resulting expression for the UDF undesirably large, rendering the
query optimizer to fall back to sub-optimal evaluation strategies. In Froid, we use the concept
of regions similar to techniques from Chapter 3, and construct algebraic expressions to minimize
the size of input to the optimizer.

74

5.3 The Froid Framework

As mentioned earlier, Froid is an extensible, language-agnostic optimization framework for
imperative programs in RDBMSs. The novel techniques behind Froid are able to overcome
all the limitations described above. We now describe the intuition and high level overview of
Froid. Then, with the help of an example, we walk through the process of optimizing UDFs in
Sections 5.4 and 5.5.

5.3.1 Intuition

Queries that invoke UDFs, such as the one in Section 5.2.1 can be thought of as queries with
complex sub-queries. In nested sub-queries, the inner query is just another SQL query (with
or without correlation). UDFs on the other hand, use a mix of imperative language constructs
and SQL, and hence are more complex. A key observation that we make here is that iterative
execution of UDFs is similar to correlated evaluation of nested sub-queries.

Optimization of sub-queries has received a lot of attention in the database literature and
industry (see Section 5.12 for details). In fact, many of the popular RDBMSs are able to trans-
form correlated sub-queries into joins, thereby enabling the choice of set-oriented plans instead
of iterative evaluation of sub-queries.

Given these observations, the intuition behind Froid can be succinctly stated as follows. If
the entire body of an imperative UDF can be expressed as a single relational expression R, then
any query that invokes this UDF can be transformed into a query with R as a nested sub-query
in place of the UDF. We term this semantics-preserving transformation as unnesting or inlining
of the UDF into the calling query.

Once we perform this transformation, we can leverage existing sub-query optimization tech-
niques to get better plans for queries with UDFs. This transformation forms the crux of Froid.
Note that although we use the term inlining to denote this transformation, it is fundamentally
different compared to inlining in imperative programming languages.

5.3.2 The APPLY operator

Froid makes use of the Apply operator while building a relational expression for UDFs. Specif-
ically, it is used to combine multiple relational expressions into a single expression. The Apply
operator (A) was originally designed to model correlated execution of sub-queries algebraically
in SQL Server [49, 42]. It accepts a relational input R and a parameterized relational expression
E(r). For each row r ∈ R, it evaluates E(r) and emits tuples as a join between r and E(r). More
formally, it is defined as follows [49]:

R A ⊗ E =
⋃
r∈R

({r}⊗E(r))

where ⊗, known as the join type, is either cross product, left outer-join, left semijoin or left an-
tijoin. SQL Server’s query optimizer has a suite of transformation rules for sub-query decorre-
lation, which remove the Apply operator and enable the use of set-oriented relational operations
whenever possible. Details with examples can be found in [49, 42, 100].

75

SQL Query with UDF calls

Parsing

FROID

UDF Algebrization

Parse UDF definition

Construct UDF Regions

Regions to relational
expressions

Combine expressions
using Apply operator

Substitute UDF expression
(as sub-query) in Query tree

Continue with
substituted
expression

Query tree

Binding

UDF operator
encountered

…
Bound

Query tree

Figure 5.4: Overview of the Froid framework

5.3.3 Overview of Approach

For a UDF with a single RETURN statement in its body, such as the function xchg rate in
Figure 5.1, the transformation is straightforward. The body of such a UDF is already a single
relational expression, and therefore it can be substituted easily into the calling context, like view
substitution.

Expressing the body of a multi-statement UDF (such as the function total price in Fig-
ure 5.1) as a single relational expression is a non-trivial task. Multi-statement UDFs typically
use imperative constructs such as variable declarations, assignments, conditional branching, and
loops. Froid models individual imperative constructs as relational expressions and systemati-
cally combines them to form one expression.

Figure 5.4 depicts the high-level approach of Froid, consisting of two phases: UDF alge-
brization followed by substitution. As a part of binding, the query tree is traversed and each
node is bound, as described in Section 5.2.2. During binding, if a UDF operator is encountered,
the control is transferred to Froid, and UDF algebrization is initiated. UDF algebrization in-
volves parsing the statements of the UDF and constructing an equivalent relational expression
for the entire UDF body (described in Section 5.4). This resulting expression is then substituted,
or embedded in the query tree of the calling query in place of the UDF operator (described in
Section 5.5). This query tree with the substituted UDF expression is bound using the regular
binding process. If references to other (nested) UDF operators are encountered, the same pro-
cess is repeated. This transformation finally results in a bound query tree, which forms the input
to normalization and optimization.

5.3.4 Supported UDFs and queries

Froid currently supports the following imperative constructs in scalar UDFs.

• DECLARE, SET: Variable declaration and assignments.
• SELECT: SQL query with multiple variable assignments.
• IF/ELSE: Branching with arbitrary levels of nesting.
• RETURN: Single or multiple return statements.
• UDF: Nested/recursive function calls.

76

Im
pe

ra
tiv

e
St

at
em

en
t(

T-
SQ

L
)

R
el

at
io

na
le

xp
re

ss
io

n
(T

-S
Q

L
)

D
E

C
L

A
R

E
{@

va
r

da
ta

ty
pe

[=
ex

pr
]}
[,
..
.n
];

SE
L

E
C

T
{e

xp
r|

nu
ll

A
S

va
r}
[,
..
.n
];

SE
T
{@

va
r
=

ex
pr
}[
,.
..

n]
;

SE
L

E
C

T
{e

xp
r

A
S

va
r}
[,
..
.n
];

SE
L

E
C

T
{@

va
r1

=
pr

j
ex

pr
1}
[,
..
.n
]

FR
O

M
sq

l
ex

pr
;

{S
E

L
E

C
T

pr
j

ex
pr

1
A

S
va

r1
FR

O
M

sq
l

ex
pr
};

[,
..
.n
]

IF
(p

re
d

ex
pr
)
{t

st
m

t;
[.
..

n]
}

E
L

SE
{f

st
m

t;
[,
..
.n
]}

SE
L

E
C

T
C

A
SE

W
H

E
N

pr
ed

ex
pr

T
H

E
N

1
E

L
SE

0
E

N
D

A
S

pr
ed

va
l;

{S
E

L
E

C
T

C
A

SE
W

H
E

N
pr

ed
va

l=
1

T
H

E
N

t
st

m
tE

L
SE

f
st

m
t;
}[
..
.n
]

R
E

T
U

R
N

ex
pr

;
SE

L
E

C
T

ex
pr

A
S

re
tu

rn
V

al
;

Ta
bl

e
5.

1:
R

el
at

io
na

la
lg

eb
ra

ic
ex

pr
es

si
on

s
fo

ri
m

pe
ra

tiv
e

st
at

em
en

ts
(u

si
ng

st
an

da
rd

T-
SQ

L
no

ta
tio

n
fr

om
[1

07
])

77

• Others: Relational operations such as EXISTS, ISNULL.

Table 5.1 (column 1) shows the supported constructs more formally. In Table 5.1, @var and
@var1 denote variable names, expr is any valid T-SQL expression including a scalar subquery;
pr j expr represents a projected column/expression; sql expr is any SQL query; pred expr is a
boolean expression; t stmt and f stmt are T-SQL statements [107].

Froid’s techniques do not impose any limitations on the size or depths of UDFs and com-
plexity of queries that invoke them. The only precondition for our transformations is that the
UDF has to use the supported constructs. However, in practice, there are certain special cases
where we partially restrict the application of our transformations; they are discussed in Sec-
tion 5.7.2.

5.4 UDF Algebrization

We now describe the first phase of Froid in detail. The goal here is to build a single relational
expression which is semantically equivalent to the UDF. This involves transforming imperative
constructs into equivalent relational expressions and combining them in a way that strictly ad-
heres to the procedural intent of the UDF. UDF algebrization consists of the following three
steps.

5.4.1 Construction of Regions

First, each statement in the UDF is parsed and the body of the UDF is divided into a hierarchy
of program regions. We have discussed program regions in Chapter 3. Here, we present a brief
recap. A region is any structured fragment in a program with a single entry and single exit [57].
Examples of regions include a single statement (basic block region), if-else (conditional region),
loop (loop region), etc. A sequence of two or more regions is called a sequential region2.
Regions by definition contain other regions; the UDF as a whole is also a region.

Function total price of Figure 5.1 is a sequential region R0 (lines 1-9). It is in turn composed
of three consecutive sub-regions denoted R1, R2 and R3. R1 is a sequential region (lines 1-5),
R2 is a conditional region (lines 6-8), and R3 is a sequential region (line 9) as indicated in
Figure 5.1. Regions can be constructed in a single pass over the UDF body.

5.4.2 Relational Expressions for Regions

Once regions are constructed, the next step is to construct a relational expression for each region.

Imperative statements to relational expressions

Froid first constructs relational expressions for individual imperative statements, and then com-
bines them to form a single expression for a region. These constructions make use of the
ConstantScan and ComputeScalar operators in SQL Server [68]. The ConstantScan operator
introduces one row with no column. A ComputeScalar, typically used after a ConstantScan,
adds computed columns to the row.

2Some approaches consider a basic block region as a sequence of statements. In this chapter, we consider each
statement as a basic block, and treat a sequence of statements as a sequential region consisting of basic blocks.

78

Variable declarations and assignments: The T-SQL constructs DECLARE, SET and SE-
LECT fall under this category. These statements are converted into relational equivalents by
modeling them as projections of computed columns in relational algebra as shown in Table 5.1
(rows 1, 2, 3). For example, consider line 3 of Figure 5.1:

set @default currency = ‘USD’;
This is represented in relational form as

select ‘USD’ as default currency.
Observe that program variables are transformed into attributes projected by the relational ex-

pression. The RHS of the assignment could be any scalar expression including a scalar valued
SQL query (when the SELECT construct is used). In this case, we construct a ScalarSubQuery
instead of ComputeScalar. For example, the assignment statement in line 4 of Figure 5.1 is
represented in relational form as

select(select sum(o totalprice) from orders
where o custkey = @key) as price .

Variable declarations without initial assignments are considered as assignments to null or
the default values of the corresponding data types. Note that the DECLARE and SELECT
constructs can assign to one or more variables in a single statement, but Froid handles them as
multiple assignment statements. Modeling them as multiple assignment statements might lead
to RHS expressions being repeated. However, common sub-expression elimination can remove
such duplication in most cases.

Conditional statements: A conditional statement is typically specified using the IF-ELSE T-
SQL construct. It consists of a predicate, a true block, and a false block. This can be algebrized
using SQL Server’s CASE construct as given in Table 5.1 (row 4). The switch-case imperative
construct is also internally expressed as the IF-ELSE construct, and behaves similarly. Consider
the following example:

if(@total > 1000)
set @val = ‘high’;

else
set @val = ‘low’;

The above statement is represented in relational form as
select(case when total > 1000 then ‘high’

else ‘low’ end) as val.
This approach works for simple cases. For complex and nested conditional blocks, this ap-

proach may lead to redundant computations of the predicate thereby violating the procedural
intent of the UDF. Re-evaluating a predicate multiple times not only goes against our princi-
ple of adherence to intent, but it might also hurt performance if the predicate is expensive to
evaluate. Froid addresses this by assigning the value of the predicate evaluation to an implicit
boolean variable (shown as pred val in row 4 of Table 5.1). Subsequently, whenever necessary,
it uses the CASE expression to check the value of this implicit boolean variable.

Return statements: Return statements denote the end of function execution and provide the
value that needs to be returned from the function. Note that a UDF may have multiple return
statements, one per code path. Froid models return statements as assignments to an implicit
variable called returnVal (shown in row 5 of Table 5.1) followed by an unconditional jump
to the end of the UDF. This unconditional jump means that no statement should be evaluated
once the returnVal has been assigned a valid return value (note that null could also be a valid
return value). Froid implicitly declares the variable returnVal at the first occurrence of a return
statement. Any subsequent occurrence of a return statement is treated as an assignment to
returnVal.

79

Region Write-sets (Derived table schema)
R1 DT1 (price float, rate float,

default currency char(3),
pref currency char(3))

R2 DT2 (price float, rate float)
R3 DT3 (returnVal char(50))

Table 5.2: Derived tables for regions in function total price.

Froid models unconditional jumps using the probe and pass-through functionality of the
Apply operator [42]. The probe is used to denote whether returnVal has been assigned, and the
pass-through predicate ensures that subsequent operations are executed only if it has not yet
been assigned.

Although unconditional jumps could be modeled without using probe and pass-through,
there are disadvantages to that approach. First, it increases the size and complexity of the
resulting expression. This is because all successor regions of a return statement would need to
be wrapped within a case expression. Second, the introduction of case expressions hinders the
applicability of scalar expression folding and simplification. As we shall describe in Section 5.6,
Froid brings optimizations such as constant folding and constant propagation to UDFs. The
applicability of these optimizations would be restricted by the use of case expressions to model
unconditional jumps.

Function invocations: Functions may invoke other functions, and may be recursive as well.
Froid can unnest such nested function calls to achieve more gains. When a function invocation
statement is encountered during UDF algebrization, Froid simply retains the UDF operator
as the relational expression for that function. As part of the normal binding process in SQL
Server, Froid is again invoked for the nested function, thereby inlining it as well. Some special
cases with deeply nested/recursive functions, where we choose not to optimize are discussed in
Section 5.7.2.

Others: Relational operations such as EXISTS, NOT EXISTS, ISNULL etc. can appear in
imperative constructs such as the predicate of an IF-ELSE block. Froid simply uses the cor-
responding relational operators in these cases. In addition to the above constructs, we have
prototyped algebrization of cursor loops. However, from our analysis of many real world work-
loads, we found that scalar UDFs with loops are quite rare (see Section 5.8). Therefore, we
have currently disabled support for loops and may enable it in future.

Derived table representation

We now show how expressions for individual statements are combined into a single expression
for a region using derived tables. A derived table is a statement-local temporary table created
by a subquery. Derived tables can be aliased and referenced just like normal tables. Froid
constructs the expression of each region as a derived table as follows.

Every statement in an imperative program has a ‘Read-Set’ and a ‘Write-Set’, representing
sets of variables that are read from and written to within that statement respectively. Similarly,
every region R can be seen as a compound statement that has a Read-Set and a Write-Set.
Informally, the Read-Set of region R is the union of the Read-Sets of all statements within R.
The Write-Set of R is the union of the Write-Sets of all statements within R.

A relational expression that captures the semantics of a region R has to expose the Write-Set
of R to its subsequent regions. This is because the variables written to in region R would be
read/modified in subsequent regions of the UDF. The Write-Set of region R is therefore used to

80

select DT3.returnVal from
(select 'USD' as default_currency,
(select sum(o_totalprice) from orders

where o_custkey = @key) as price,
(select currency from customer_prefs

where custkey = @key) as pref_currency) DT1
outer apply
(select

case when DT1.pref_currency <> DT1.default_currency
then DT1.price * xchg_rate(DT1.default_currency,

DT1.pref_currency)
else DT1.price end as price) DT2

outer apply
(select str(DT2.price) + DT1.pref_currency

as returnVal) DT3

R1

R2

R3

Figure 5.5: Relational expression for UDF total price

define the schema of the relational expression for R. The schema is defined by treating every
variable in the Write-Set of R as an attribute. The implicit variable returnVal appears in the
Write-Set of all regions that have a RETURN statement.

The Write-Sets of all the regions in function total price of Figure 5.1 are given in Table 5.2.
Using the schema, along with the relational expressions for each statement, we can construct a
relational expression for the entire region R. A single ConstantScan followed by ComputeScalar
operators, one per variable, results in a derived table with a single tuple. This derived table
represents the values of all variables written to in R. The derived table aliases for regions R1,
R2 and R3 are shown as DT1, DT2, and DT3 in Table 5.2.

5.4.3 Combining expressions using APPLY

Once we have a relational expression per region, we now proceed to create a single expression
for the entire function. The relational expression for a region R uses attributes from its prior
regions, and exposes its attributes to subsequent regions. Therefore, we need a mechanism to
connect variable definitions to their uses and (re-)definitions.

Froid makes use of the relational Apply operator to systematically combine region expres-
sions. The derived tables of each region are combined depending upon the type of the parent
region. For a region R, we denote the corresponding relational expression as E(R). For the
total price function in Figure 5.1, E(R1) = DT 1,E(R2) = DT 2,E(R3) = DT 3.

Figure 5.5 shows the relational expression for the entire UDF. The dashed boxes in Fig-
ure 5.5 indicate relational expressions for individual regions R1, R2 and R3. Note that Froid’s
transformations are performed on the relational query tree structure and not at the SQL language
layer. Figure 5.5 shows an SQL representation for ease of presentation.

The relational expression for a sequential region such as R0 is constructed using a sequence
of Apply operators between its consecutive sub-regions i.e.,

E(R0) = (E(R1) A o E(R2)) A o E(R3)

The SQL form of this equation can be seen in Figure 5.5. The Apply operators make the values
in DT1 available for use in DT2, the values in DT1 and DT2 available for DT3, and so on.
We use the outer join type for these Apply operators (A o). In the presence of multiple return

81

statements, we make use of Apply with probe (which internally uses left semijoin) and pass-
through (outer join) [42].

Consider the variable @pref currency as an example. It is first computed in R1, and hence
is an attribute of the derived table DT1 (as shown in Figure 5.5). R2 uses this variable, but
does not modify it. Therefore @pref currency is not in the schema of DT2. All the uses of
@pref currency in R2 now refer to it as DT1.pref currency. R3 also uses @pref currency but
does not modify it. The value of @pref currency that R3 uses comes from R1. Therefore R3
also makes use of DT1.pref currency in its computation of returnVal.

Observe that the expression in Figure 5.5 has no reference to the intermediate variable
@rate. As a simplification, we generate expressions for variables only when they are first
assigned a value, and we expose only those variables that are live at the end of the region (i.e.,
used subsequently). The @rate variable gets eliminated due to these simplifications. Finally,
observe that the only attribute exposed by R0 (the entire function) is the returnVal attribute.
This expression shown in Figure 5.5, is a relational expression that returns a value equal to the
return value of the function total price.

5.4.4 Correctness and Semantics Preservation

We now reason about the correctness of our transformations, and describe how they preserve the
procedural semantics of UDFs. As described earlier, Froid first constructs equivalent relational
expressions for individual imperative statements (Section 5.4.2). The correctness of these in-
dividual transformations directly follows from the semantics of the imperative construct being
modeled, and the definition of the relational operations used to model it. The updated values
of variables due to assignments are captured using derived tables consisting of a single tuple of
values.

Once individual statements (and regions) are modeled as single-tuple relations (Section 5.4.2),
performing an Apply operation between these relations results in a single-tuple relation, by def-
inition. By defining derived table aliases for these single-tuple relations and using the appro-
priate aliases, we ensure that all the data dependencies are preserved. The relational Apply
operator is composable, allowing us to build up more complex expressions using previously
built expressions, while maintaining correctness.

In order to strictly adhere to the procedural intent of the UDF, Froid ensures that any com-
putation in the relational equivalent of the UDF occurs only if that computation would have
occurred in the procedural version of the UDF. This is achieved by (a) using the probe and
pass-through extensions of the Apply operator to ensure that unconditional jumps are respected,
(b) avoiding re-evaluation of predicates by assigning their results into implicit variables, and (c)
using CASE expressions to model conditional statements.

5.5 Substitution and Optimization

Once we build a single expression for a UDF, the high-level approach to embed this expression
into the calling query is similar to view substitution, typically done during binding. Froid
replaces the scalar UDF operator in the calling query with the newly constructed relational
expression as a scalar sub-query. The parameters of the UDF (if any) form the correlating
parameters for the scalar sub-query. At substitution time, references to formal parameters in the
function are replaced by actual parameters from the calling query. SQL Server has sophisticated
optimization techniques for subqueries [49], which can be then leveraged. In fact, SQL Server

82

Fi
gu

re
5.

6:
Pl

an
fo

ri
nl

in
ed

U
D

F
to

ta
l

pr
ic

e
of

Fi
gu

re
5.

1

83

never chooses to do correlated evaluation for scalar valued sub-queries [42]. The plan (with
Froid enabled) for the query in Section 5.2.1 is given in Figure 5.6. Although this plan is quite
complex compared to the simple plan in Figure 5.2, it is significantly better. From the plan, we
observe that the optimizer has (a) inferred the joins between customer, orders, customer prefs
and xchg – all of which were implicit, (b) inferred the appropriate group by operations and (c)
parallelized the entire plan.

Froid overcomes all the four limitations in UDF evaluation enumerated in Section 5.2.3.
First, the optimizer now decorrelates the scalar sub-query and chooses set-oriented plans avoid-
ing iterative execution. Second, expensive operations inside the UDF are now visible to the
optimizer, and are hence costed. Third, the UDF is no longer interpreted since it is now a sin-
gle relational expression. Fourth, the limitation on parallelism no longer holds since the entire
query including the UDF is now in the same execution context.

In a commercial database with a large user base such as SQL Server, making intrusive
changes to the query optimizer can have unexpected repercussions and can be extremely risky.
One of the key advantages of Froid’s approach is that it requires no changes to the query opti-
mizer. It leverages existing query optimization rules and techniques by transforming the imper-
ative program into a form that the query optimizer already understands.

5.6 Compiler Optimizations

Froid’s approach not only overcomes current drawbacks in UDF evaluation, but also adds a
bonus: with no additional implementation effort, it brings to UDFs the benefits of several op-
timizations done by an imperative language compiler. In this section, we point out how some
common optimization techniques for imperative code can be expressed as relational algebraic
transformations and simplifications. Due to this, Froid is able to achieve these additional ben-
efits by leveraging existing sophisticated query optimization techniques present in Microsoft
SQL Server.

Using a simple example, Figure 5.7 illustrates the working of Froid’s transformations in
contrast with compiler optimizations3. The function getVal (Figure 5.7(a)) sets the value of
variable @val based on a predicate. Starting with this UDF, a few common optimizations done
by an imperative language compiler are shown in Figure 5.7(b) in three steps. Starting from the
same input UDF, Figure 5.7(c) shows the output of Froid’s algebrization. Then, Figure 5.7(d)
shows relational algebraic transformations such as projection-pushdown and apply-removal that
Froid uses, to arrive at the same result as the compiler optimizations in Figure 5.7(b).

5.6.1 Dynamic Slicing

Dynamic slicing is a program slicing technique that makes use of information about a particular
execution of a program. A dynamic slice for a program contains a subset of program state-
ments that will be visited in a particular execution of the program [64, 75]. For a particular
invocation of the UDF in Figure 5.7(a), only one of its conditional branches is taken. For ex-
ample, the dynamic slice for getVal(5000) is given in Figure 5.7(b)(i). As we can observe from
Figure 5.7(d), Froid achieves slicing by evaluating the predicate (@x > 1000) at compile time
and removing the case expression. In such cases where one or more parameters to a UDF are

3Note that in Figure 5.7, for ease of presentation, parts (c) and (d) are shown in SQL; these are actually
transformations on the relational query tree representation.

84

c
r
e
a
t
e

f
u
n
c
t
i
o
n

g
e
t
V
a
l
(
@
x

i
n
t
)

r
e
t
u
r
n
s
c
h
a
r
(
1
0
)

a
s

b
e
g
i
n

d
e
c
l
a
r
e

@
v
a
l
c
h
a
r
(
1
0
)
;

i
f
(
@
x

>

1
0
0
0
)

s
e
t
@
v
a
l

=
'
h
i
g
h
'
;

e
l
s
e

s
e
t

@
v
a
l

=
'
l
o
w
'
;

r
e
t
u
r
n
@
v
a
l
+

'

v
a
l
u
e
'
;

e
n
d

b
e
g
i
n

d
e
c
l
a
r
e
@
v
a
l
c
h
a
r
(
1
0
)
;

s
e
t
@
v
a
l
=
'
h
i
g
h
'
;

r
e
t
u
r
n
@
v
a
l
+

'

v
a
l
u
e
’
;

e
n
d

(a
)

In
p

u
t

U
D

F

(i
)

D
yn

am
ic

 s
lic

in
g

fo
r
g
e
t
V
a
l
(
5
0
0
0
)

b
e
g
i
n

r
e
t
u
r
n
'
h
i
g
h

v
a
l
u
e
'
;

e
n
d

b
e
g
i
n

d
e
c
l
a
r
e
@
v
a
l
c
h
a
r
(
1
0
)
;

s
e
t
@
v
a
l
=
'
h
i
g
h
'
;

r
e
t
u
r
n
'
h
i
g
h

v
a
l
u
e
’
;

e
n
d

(i
i)

 C
o

n
st

an
t

p
ro

p
ag

at
io

n
 &

 f
o

ld
in

g
(i

ii)
 D

ea
d

 c
o

d
e

el
im

in
at

io
n

s
e
l
e
c
t
r
e
t
u
r
n
V
a
l
f
r
o
m

(
s
e
l
e
c
t
c
a
s
e

w
h
e
n
@
x

>

1
0
0
0

t
h
e
n
'
h
i
g
h
'
e
l
s
e

'
l
o
w
'
e
n
d

a
s
v
a
l
)

D
T
1

o
u
t
e
r

a
p
p
l
y

(
s
e
l
e
c
t
D
T
1
.
v
a
l

+

'

v
a
l
u
e
'

a
s
r
e
t
u
r
n
V
a
l
)

D
T
2

(b
)

C
o

m
m

o
n

 o
p

ti
m

iz
at

io
n

s
d

o
n

e
b

y
an

 im
p

er
at

iv
e

la
n

gu
ag

e
co

m
p

ile
r

(c
)

O
u

tp
u

t
o

f
FR

O
ID

’s
 A

lg
eb

ri
za

ti
o

n

s
e
l
e
c
t
r
e
t
u
r
n
V
a
l
f
r
o
m

(
s
e
l
e
c
t
'
h
i
g
h
'
a
s
v
a
l
)

D
T
1

o
u
t
e
r

a
p
p
l
y

(
s
e
l
e
c
t
D
T
1
.
v
a
l

+

'

v
a
l
u
e
'

a
s
r
e
t
u
r
n
V
a
l
)

D
T
2

s
e
l
e
c
t
r
e
t
u
r
n
V
a
l
f
r
o
m

(
s
e
l
e
c
t
'
h
i
g
h

v
a
l
u
e
'

a
s
r
e
t
u
r
n
V
a
l
)

D
T
1

s
e
l
e
c
t
'
h
i
g
h

v
a
l
u
e
'
;

(d
)

H
o

w
 F

R
O

ID
 a

ch
ie

ve
s

th
e

sa
m

e
 e

n
d

 r
e

su
lt

 a
s

Fi
gu

re
 5

(b
)

u
si

n
g

re
la

ti
o

n
al

 a
lg

eb
ra

ic
 t

ra
n

sf
o

rm
at

io
n

s

Fi
gu

re
5.

7:
C

om
pi

le
ro

pt
im

iz
at

io
ns

as
re

la
tio

na
lt

ra
ns

fo
rm

at
io

ns

85

compile time constants, Froid simplifies the expression to use the relevant slice of the UDF by
using techniques such as projection pushdown and scalar expression simplification.

5.6.2 Constant Folding and Propagation

Constant folding and constant propagation are related optimizations used by modern compil-
ers [17, 64]. Constant folding is the process of recognizing and evaluating constant expressions
at compile time. Constant propagation is the process of substituting the values of known con-
stants in expressions at compile time.

SQL Server already performs constant folding within the scope of a single statement. How-
ever, since it does not perform cross-statement optimizations, constant propagation is not pos-
sible. This leads to re-evaluation of many expressions for every invocation of the UDF. Froid
enables both constant propagation and folding for UDFs with no additional effort. Since the
entire UDF is now a single relational expression, SQL Server’s existing scalar simplification
mechanisms simplify the expression. Figure 5.7(d) shows how the expression is simplified by
evaluating both the predicate (@x > 1000) and then the string concatenation operation (‘high’
+ ‘ value’) at compile time, after propagating the constant ‘high’.

5.6.3 Dead Code Elimination

Lines of code that do not affect the result of a program are called dead code. Dead code includes
code that can never be executed (unreachable code), and code that only affects dead variables
(assigned, but never read). As an example, suppose the following line of code was present in
function total price (Figure 5.1) between lines 3 and 4:

select @t=count(*) from orders where o custkey=@key
The above line of code assigns the result of a query to a variable that is never used, and

hence it is dead code. In our experiments, we found many occurrences of dead code. As
UDFs evolve and grow more complex, it becomes hard for developers to keep track of unused
variables and code. Dead code can also be formed as a consequence of other optimizations.
Dead code elimination is a technique to remove such code during compilation [17]. Since
UDFs are interpreted, most forms of dead code elimination are not possible.

Now let us consider how Froid handles this. Since the variable @t is in the Write-Set of
R1, it appears as an attribute of DT1. However, since it is never used, there will be no reference
to DT1.t in the final expression. Since there is an explicit projection on the returnVal attribute,
DT1.t is like an attribute of a table that is not present in the final projection list of a query. Such
attributes are aggressively removed by the optimizer using projection pushdown. Thereby, the
entire sub-expression corresponding to the variable @t gets pruned out, eliminating it from the
final expression.

In summary, we showed how Froid uses relational transformations to arrive at the same
end result as that of applying compiler optimizations on imperative code. One might argue
that compiler optimizations could be implemented for UDFs without using Froid’s approach.
However, that would only be a partial solution since it does not address inefficiencies due to
iterative UDF invocation and serial plans.

We conclude this section by highlighting two other aspects. First, the semantics of the Apply
operator allows the query optimizer to move and reuse operations as necessary, while preserv-
ing correlation dependencies. This achieves the outcome of dependency-preserving statement
reorderings and common sub-expression elimination [17], often used by optimizing compilers.

86

Second, due to the way Froid is designed, these techniques are automatically applied across
nested function invocations, resulting in increased benefits due to interprocedural optimization.

5.7 Design and Implementation

In this section, we discuss key design choices, trade-offs, and implementation details of the
Froid framework.

5.7.1 Cost-based Substitution

One of the first questions we faced while designing Froid was to decide whether inlining of
UDFs should be a cost-based decision. The answer to this question influences the choice of
whether substitution should be performed during Query Optimization (QO) or during binding.

If inlining has to be a cost-based decision, it has to be performed during QO. If not, it
can be done during binding. There are trade-offs to both these design alternatives. One of
the main advantages to doing this during binding is that it is non-intrusive – the QO and other
phases of query processing require no modifications. On the other hand, inlining during query
optimization has the advantage of considering the algebrized UDF as an alternative, and making
a cost-based decision of whether to substitute or not.

In Froid, we chose to perform inlining during binding due to these reasons: (a) Our exper-
iments on real workloads showed that the inlined version performs better in almost all cases
(see Section 5.8), questioning the need for cost-based substitution. (b) It is non-intrusive, re-
quiring no changes to the query optimizer – this is an important consideration for a commercial
database system, (c) Certain optimizations such as constant folding are performed during bind-
ing. Inlining during QO would require re-triggering these mechanisms explicitly, which is not
desirable.

5.7.2 Imposing Constraints

Although Froid improves performance in most cases, there are extreme cases where it might not
be a good idea. Algebrization can increase the size and complexity of the resulting query (see
Section 5.8.1). From our experiments, we found that transforming a UDF with thousands of
lines of code may not always be desirable as it could lead to a query tree with tens of thousands
of operators. Additionally, note that the query invoking the UDF might itself be complex as well
(see Section 5.8.2). Optimizing such a huge input tree makes the job of the query optimizer very
hard. The space of alternatives to consider would increase significantly.

To mitigate this problem, we have implemented a set of algebraic transformations that sim-
plify the query tree reducing its size when possible. However, in some cases, the query tree
may remain huge even after simplification. This has an impact on optimization time, and also
on the quality of the plan chosen. Therefore, one of the constraints we imposed on Froid is to
restrict the size of algebrized query tree. In turn, this restricts the size of UDFs that are alge-
brized by Froid. Based on our experiments, we found that except for a few extreme cases (see
Section 5.8.2), imposing this constraint still resulted in significant performance gains.

Nested and Recursive functions: Froid’s transformations can result in deep and complex trees
(in the case of deeply nested function calls), or never terminate at all (in the case of recursive
UDFs), if it is not managed appropriately. Froid overcomes this problem by controlling the

87

inlining depth based on the size of the algebrized tree. This allows algebrization of deeper
nestings of smaller UDFs and shallow nestings of larger UDFs. Note that if there is a deep
nesting of large UDFs (or recursive UDFs), algebrizing a few levels might still leave UDFs
in the query. This still is highly beneficial in terms of reducing function call overheads and
enabling the choice of set-oriented plans, but it does not overcome the limitation on parallelism
(Section 5.2.3).

5.7.3 Supporting additional languages

Relational databases allow UDFs and procedures to be written in imperative languages other
than procedural SQL, such as C#, Java, R and Python. Although the specific syntax varies
across languages, they all provide constructs for common imperative operations such as vari-
able declarations, assignments and conditional branching. Froid is an extensible framework,
designed in a way that makes it straightforward to incrementally add support for more lan-
guages and imperative constructs.

Froid models each imperative construct as a class that encapsulates the logic for algebriza-
tion of that construct. Therefore, adding support for additional languages only requires (a)
plugging in a parser for that language and (b) providing a language-specific implementation for
each supported construct. The framework itself is agnostic to the language, and hence remains
unchanged. As long as the UDF is written using supported constructs, Froid will be able to
algebrize them as described in this chapter.

Note that while translating from a different language into SQL, data type semantics need
to be taken into account to ensure correctness. Data type semantics vary across languages, and
translating to SQL might lead to loss of precision, and sometimes different results.

5.7.4 Implementation Details

We now briefly discuss some special cases and other implementation details.
Security and Permissions Consider a user that does not have execute permissions on the UDF,
but has select permissions on the referenced tables. Such a user will be able to run an inlined
query (since it no longer references the UDF), even though it should be disallowed. To mitigate
this issue, Froid enlists the UDF for permission checks, even if it was inlined. Conversely, a user
may have execute permission on the UDF, but no select permissions on the referenced tables.
In this case, by inlining, that user is unable to run the query even though it should be allowed.
Froid handles this similar to the way view permissions are handled.

Plan cache implications: Consider a case where a user with administrative privileges runs a
query involving this UDF, and consequently the inlined plan is now cached. Subsequently, if
a user without UDF execute permissions but with select permissions on the underlying tables
runs the same query, the cached plan will run successfully, even though it should not. Another
implication is related to managing metadata version changes and cache invalidation. Consider
the case as described above, where an inlined plan is cached. Now, if the user alters or drops
the UDF, the UDF is changed or no longer available. Therefore, any query that referred to this
UDF should be removed from the plan cache. Both these issues are solved by enlisting the UDF
in schema and permission checks, even if it was algebrized.

Type casting and conversions: SQL Server performs implicit type conversions and casts in
many cases when the datatypes of parameters and return expressions are different from the

88

Workload W1 W2
Total # of scalar UDFs 178 93

UDFs optimizeable by Froid 151 (85%) 86 (92.5%)
UDF lines of code (avg,min,max) (21,6,113) (26,7,169)

Table 5.3: Applicability of Froid on two customer workloads

declared types. In order to preserve the semantics as before, Froid explicitly inserts appropriate
type casts for actual parameters and the return value.

Non-deterministic intrinsics: UDFs may invoke certain non-deterministic functions such as
GETDATE(). Inlining such UDFs might violate the user’s intent since it may invoke the intrinsic
function once-per-query instead of once-per-tuple. Therefore, we disable transforming such
UDFs.

5.8 Evaluation

We now present some results of our evaluation of Froid on several workloads and configurations.
Froid is implemented in SQL Server 2017 in about 1.5k lines of code. For our experiments, SQL
Server 2017 with Froid was run on Windows Server 2012(R2). The machine was equipped with
Intel Xeon X5650 2.66 Ghz CPU (2 processors, 6 cores each), 96 GB of RAM and SSD-backed
storage.

5.8.1 Applicability of Froid

We have analyzed several customer workloads from Azure SQL Database to measure the appli-
cability of Froid with its currently supported constructs. We are primarily interested in databases
that make good use of UDFs and hence, we considered the top 100 databases in decreasing or-
der of the number of UDFs present in them. Cumulatively, these 100 databases had 85329
scalar UDFs, out of which Froid was able to handle 51047 (59.8%). The UDFs that could not
be transformed contained constructs not supported by Froid. We also found that there are 10526
customer databases with more than 50 UDFs each, where Froid can inline more than 70% of
the UDFs. The sizes of these UDFs range from a single line to 1000s of lines of code. These
numbers clearly demonstrate the wide applicability of Froid.

In order to give an idea of the kinds of UDFs that are in these proprietary workloads, we have
included a set of UDFs in Section 5.9. These UDFs have been modified to preserve anonymity,
while retaining program structure. We have randomly chosen two customer workloads (referred
to as W1 and W2) for deeper study and performance analysis. The UDFs have been used with no
modifications, and there were no workload-specific techniques added to Froid. As summarized
in Table 5.3, Froid is able to transform a large fraction of UDFs in these workloads (85% and
92.5%). As described in Section 5.7, UDF algebrization results in larger query trees as input
to query optimization. The largest case in W2 resulted in more than 300 imperative statements
being transformed into a single expression, having more than 7000 nodes. Note that this is prior
to optimizations described in Section 5.6. This illustrates the complexity of UDFs handled by
Froid.

89

0.01

0.1

1

10

100

1000

10000

10 100 1K 10K 100K

Ti
m

e
ta

ke
n

 (
se

cs
),

 L
o

g
Sc

al
e

Cardinality of table (No. of UDF invocations)

Froid OFF Froid ON (DOP: 1) Froid ON

(DOP:12)

Figure 5.8: Varying the number of UDF invocations

5.8.2 Performance improvements

We now present a performance evaluation of Froid on workloads W1 and W2. Since our primary
focus is to measure the performance of UDF evaluation, the queries that invoke UDFs are kept
simple so that UDF execution forms their main component. Evaluation of complex queries with
UDFs is considered in Section 5.8.2.

Number of UDF invocations

The number of times a UDF is invoked as part of a query has a significant impact on the overall
query performance. In order to compare the relationship between the number of UDF invoca-
tions and the corresponding performance gains, we consider a function F1 (which in turn calls
another function F2). F1 and F2 are functions adapted from workload W1, and their definitions
are given in Section 5.9. We use a simple query to invoke this UDF, of the form

select dbo.F1(T.a, T.b) from T
Since the UDF is invoked for every tuple in T, we can control the number of UDF invocations
by varying the cardinality of T. Figure 5.8 shows the results of this experiment conducted with
a warm cache. The x-axis denotes the cardinality of table T (and hence the number of UDF
invocations), and the y-axis shows the time taken in seconds, in log scale. Note that in this
experiment, the time shown in the y-axis does not include query compilation time, since the
query plans were already present in the cache.

We vary the cardinality of T from 10 to 100000. With Froid disabled, we observe that the
time taken grows with cardinality (the solid line in Figure 5.8). With Froid enabled, we see an
improvement of one to three orders of magnitude (the dashed line). The advantages start to be
noticeable right from a cardinality of 10.

Impact of parallelism

As described in this chapter, Froid brings the benefits of set-oriented plans, compiler optimiza-
tions, and parallelism to UDFs. In order to isolate the impact of parallelism from the rest of

90

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o

m
p

ila
ti

o
n

 +
 E

xe
cu

ti
o

n
 t

im
e

(s
ec

s)

15 UDFs from workload W2
Froid OFF Froid ON

Figure 5.9: Elapsed time for Compilation and execution (using cold plan cache)

the optimizations (since enabling parallelism is a by-product of Froid’s transformations), we
conducted experiments where we enabled Froid but limited the Degree Of Parallelism (DOP).
The dotted line in Figure 5.8 shows a result of this experiment. It includes all the optimizations
of Froid, but forces the DOP to 1 using a query hint. For this particular UDF, SQL Server
switches to a parallel plan when the cardinality of the table is greater than 10000 (indicated
by the dashed line). The key observation we make here is that even without parallelism, Froid
achieves improvements up to two orders of magnitude.

Compile time overhead

Since Froid is invoked during query compilation, there could be an increase in compilation time.
This increase is not a concern as it is offset by the performance gains achieved. To quantify this,
we measured the total elapsed time including compilation and execution by clearing the plan
cache before running queries. This keeps the buffer pool warm, but the plan cache cold. The
results of this experiment on 15 randomly chosen UDFs (sorted in descending order of elapsed
time) of workload W2 are shown in Figure 5.9. The y-axis shows total elapsed time which
includes compilation and execution. We observe gains of more than an order of magnitude for
all these UDFs. Note that the compilation time of each of these UDFs is less than 10 seconds.

Complex Analytical Queries With UDFs

In the above experiments, we kept the queries simple so that the UDF forms the main com-
ponent. To evaluate Froid in situations where the queries invoking UDFs are complex, we
considered TPC-H [106] queries, and looked for opportunities where parts of queries could be
expressed using scalar UDFs. We extracted several UDFs and then modified the queries to use
these UDFs. The UDF definitions and rewritten queries are given in Section 5.11. Figure 5.10
shows the results on a 10GB TPC-H dataset with warm cache for 6 randomly chosen queries.
For each query, we show the time taken for (a) the original query (without UDFs), (b) the
rewritten query with UDFs (with Froid OFF), and (c) the rewritten query with Froid ON.

Observe that for all queries, Froid leads to improvements of multiple orders of magnitude
(compare (b) vs. (c)). We also see that in most cases, there is no overhead to using UDFs when
Froid is enabled (see (a) vs. (c)). These improvements are the outcome of all the optimizations

91

0.1

1

10

100

1000

10000

100000

Q5 Q9 Q11 Q12 Q14 Q22

Ex
ec

u
ti

o
n

 t
im

e
(s

ec
s)

,
Lo

g
sc

al
e

Original With UDFs, Froid OFF With UDFs, Froid ON

Figure 5.10: TPC-H queries using UDFs

0.1

1

10

100

1000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Fa
ct

o
r

o
f

im
p

ro
ve

m
en

t
(L

o
g

sc
al

e)

Figure 5.11: Improvement for UDFs in workload W1

that are enabled by Froid. For some queries (eg. Q5, Q14), there is a small overhead when
compared with original queries. There are also cases (eg. Q11, Q22) where Froid does slightly
better than the original. An analysis of query plans revealed that these are due to slight variations
in the chosen plan as a result of Froid’s transformations. The details of plan analysis are beyond
the scope of this chapter.

Factor of improvement

We now consider the overall performance gains achieved due to Froid on workloads W1 and W2
(row store), shown in Figures 5.11 and 5.12. The size of table T was fixed at 100,000 rows, and
queries were run with warm cache (averaged over 3 runs). In these figures, UDFs are plotted
along the x-axis, ordered by the observed improvement with Froid (in descending order). The
y-axis shows the factor of improvement (in log scale). We observe improvements in the range
of 5x-1000x across both workloads. In total, there were 5 UDFs that showed no improvement
or performed slightly worse due to Froid. One of the main reasons for this was the presence of
complex recursive functions. These can be handled by appropriately tuning the constraints as
described in Section 5.7.2. UDFs that invoke expensive TVFs was another reason. Since our
implementation currently does not handle TVFs, such UDFs do not benefit from Froid.

92

0.1

1

10

100

1000

1 11 21 31 41 51 61 71

Fa
ct

o
r

o
f

im
p

ro
ve

m
en

t
(L

o
g

sc
al

e)

Figure 5.12: Improvement for UDFs in workload W2

create function discount_price(@price float, @disc float)
returns int as
begin

return convert(int, @price * @disc);
end

select o_orderkey, c_name
from orders left outer join customer on o_custkey = c_custkey
where discount_price(o_totalprice, 0.1) > 50000;

Query:

Figure 5.13: Example for Section 5.8.2

Columnstore indexes

We now present the results of our experiments on column stores. Column-stores achieve bet-
ter performance because of high compression rates, smaller memory footprint, and batch ex-
ecution [35]. However, encapsulating aggregations and certain other operations inside a UDF
prevents the optimizer from using batch mode for those operations. Froid brings the benefits
of batch mode execution to UDFs. Consider a simple example based on the TPC-H schema as
shown in Figure 5.13. The results of running this on a TPC-H 1GB database with a cold cache
are shown in Table 5.4.

For this example, without Froid, using a clustered columnstore index (CCI) led to about
20% improvement in performance over row store. With Froid, however, we get about 5x im-
provement in performance by using column store over row store. Along with other reasons, the
fact that the predicate and discount computation can now happen in batch mode contributes to
the performance gains.

Configuration Froid OFF Froid ON
Row store 24241 ms 822 ms

Column store 19153 ms 155 ms

Table 5.4: Benefits of Froid on row and column stores (total elapsed time with cold cache) for
the example in Figure 5.13 .

93

Configuration Froid OFF Froid ON
Query and UDF interpreted 41729 ms 2056 ms

Interpreted query, native UDF 27376 ms NA
Native query, native UDF 9230 ms 2005 ms

Table 5.5: Benefits of Froid with native compilation (total elapsed time with warm cache) for
the UDF in [88].

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P

U
 T

im
e

(s
ec

s)
,

Lo
g

sc
al

e

15 UDFs from Workload W2 Froid OFF Froid ON

Figure 5.14: CPU time comparison

Natively compiled queries and UDFs

Hekaton, the memory-optimized OLTP engine in SQL Server performs native compilation of
procedures [40], which allows more efficient query execution than interpreted T-SQL [76]. Due
to its non-intrusive design, Froid seamlessly integrates with Hekaton and provides additional
benefits. For this experiment, we considered the UDFs (dbo.FarePerMile) used in an MSDN
article about native compilation [88] (the UDFs are reproduced in Section 5.10). We considered
a memory optimized table with 3.5 million rows and 25 columns, with a CCI. The results of
this experiment are shown in Table 5.5.

First, in the classic mode of interpreted T-SQL, we see a 20x improvement due to Froid.
Next, we natively compiled the UDF, but ran the query in interpreted mode. This results in
a 1.5x improvement compared to the fully interpreted mode with Froid disabled. Froid is not
applicable here since a compiled module cannot be algebrized.

Finally, we natively compiled both the UDF and the query, and ran it with and without
Froid enabled. With Froid disabled, we see the full benefits of native compilation over inter-
preted mode, with a 4.5x improvement. With Froid enabled, we get the combined benefits of
algebrization and native compilation. Froid first inlines the UDF, and then the resulting query
is natively compiled, giving an additional 4.6x improvement over native compilation. Although
native compilation makes UDFs faster, the benefits are limited as the query still invokes the
UDF for each tuple. Froid removes this fundamental limitation and hence combining Froid
with native compilation leads to more gains.

5.8.3 Resource consumption

In addition to significant performance gains, our techniques offer an additional advantage – they
significantly reduce the resources consumed by such queries. The reduction in CPU time due

94

create function total_price(@key int) returns varchar(100) as
begin
declare @price float;
select @price = sum(o_totalprice) from orders where o_custkey = @key
return convert(varchar(20), @price) + 'USD';

end

Query: select c_custkey, total_price(c_custkey) from customer

Figure 5.15: Example for I/O measurements

to Froid is shown in Figure 5.14. We show the results for a randomly chosen subset of UDFs
from workload W2; the results were similar across all the workloads we evaluated. Observe
that Froid reduces the CPU time by 1-3 orders of magnitude for all UDFs. This reduction is due
to elimination of expensive context-switches (see Section 5.2.2), and also due to optimizations
such as set-oriented evaluation, folding and slicing.

Due to the above-mentioned reasons, Froid also reduces I/O costs. The I/O metric is de-
pendent upon the nature of operations in the UDF. For UDFs that perform data access, our
transformations will lead to reductions in logical reads as it avoids repetition of data access for
every invocation of the UDF. Consider a simple UDF such as the one in Figure 5.15. With Froid,
the query requires about 3300 logical reads, whereas without Froid, it issued close to 5 million
logical reads on a 1GB TPC-H dataset with cold cache. Such improvements lead to significant
cost savings for our customers, especially for users of cloud databases, since they are billed for
resources they consume.

5.9 Real-World UDF Examples

In this section, we provide some examples adapted from real world UDFs. They give an idea
of the kinds of UDFs that are commonly encountered in practice. These have been modified to
preserve anonymity, while retaining program structure. All the UDFs given in this section are
inlineable by Froid. As it can be seen, Froid can handle a fairly large class of UDFs encountered
in practice.

create function dbo.F1(@p1 int, @p2 int)

returns bit as

begin

if EXISTS

(SELECT 1 FROM View1 WHERE col1 = 0

AND col2 = @p1

AND ((col2 = 2) OR (col3 = 2))

AND dbo.F2(col4,@p2,0)=1 AND dbo.F2(col5,@p2,0)=1

AND dbo.F2(col6,@p2,0)=1 AND dbo.F2(col7,@p2,0)=1

AND dbo.F2(col8,@p2,0)=1 AND dbo.F2(col9,@p2,0)=1

AND dbo.F2(col10,@p2,0)=1 AND dbo.F2(col11,@p2,0)=1

AND dbo.F2(col12,@p2,0)=1 AND dbo.F2(col13,@p2,0)=1

AND dbo.F2(col14,@p2,0)=1 AND dbo.F2(col15,@p2,0)=1)

95

return 1

return 0

end

create function dbo.F2(@p1 int,@p2 int, @flag1 int = 0)

returns bit AS

begin

DECLARE @Flag bit

IF @flag1=0 BEGIN

IF EXISTS (SELECT 1 FROM Table1

WHERE col1=@p1 AND col2=@p2)

OR @p1 Is Null

SET @Flag= 1

ELSE SET @Flag= 0

END

ELSE BEGIN

IF EXISTS (SELECT 1 FROM Table1 T1

INNER JOIN Table2 T2

ON T1.col1=T2.col2

WHERE T2.col2=@p1 AND T1.col2=@p2)

OR @p1 Is Null

SET @Flag= 1

ELSE SET @Flag= 0

END

return @Flag

end

create function dbo.DayOfWeek(@d datetime) returns int as

begin

return (DATEPART(dw, @d) + @@DATEFIRST -1) % 7

end

create function dbo.BeginOfHour(@d datetime)

returns datetime as

begin

declare @DayBeginUTC datetime

set @DayBeginUTC = convert(datetime, convert(nvarchar, @d, 112))

return dateadd(hh, datepart(hh, @d), @DayBeginUTC)

end

96

create function BeginOfMonth(@d datetime) returns datetime as

begin

declare @DayUserLocal datetime, @DayFirst datetime

set @DayUserLocal = dbo.UTCToLocalTime(@d)

declare @m = datepart(mm, @DayUserLocal)

set @DayFirst = dbo.FirstDayOfMonth(@DayUserLocal, @m)

return dbo.LocalTimeToUTC(@DayFirst)

end

CREATE FUNCTION dbo.RptBracket(@MyDiff int, @NDays int)

RETURNS nvarchar(10) AS

BEGIN

if(@MyDiff >= 5*@NDays)

begin

RETURN (Cast(5 * @NDays as nvarchar(5)) + N’+’)

end

RETURN (Cast(Floor(@MyDiff / @NDays) * @NDays as nvarchar(5))

+ N’ - ’

+ Cast(Floor(@MyDiff / @NDays + 1) * @NDays - 1 as nvarchar(5)))

END

create function dbo.FirstDayOfMonth (@d datetime, @Month int)

returns datetime as

begin

declare @Result datetime

set @Result = dateadd(day, 1 - datepart(day, @d), @d)

if datepart(month, @Result) <> datepart(month, @d)

set @Result = NULL

declare @mdiff int = @Month - datepart(mm, @Result);

set @Result = dateadd(mm, @mdiff, @Result)

return (convert(datetime, convert(nvarchar, @Result, 112)))

end

create function dbo.VersionAsFloat(@v nvarchar(96))

returns float as

begin

if @v is null return null

declare @first int, @second int;

declare @major nvarchar(6), @minor nvarchar(10);

97

set @first = charindex(’.’, @v, 0);

if @first = 0

return CONVERT(float, @v);

set @major = SUBSTRING(@v, 0, @first);

set @second = charindex(’.’, @v, @first + 1);

if @second = 0

set @minor=SUBSTRING(@v, @first+1, len(@v)-@first)

else

set @minor=SUBSTRING(@v, @first+1, @second-@first-1);

set @minor = CAST(CAST(@minor AS int) AS varchar);

return CONVERT(float, @major + ’.’ + @minor);

end

create function dbo.fn_FindBusinessGuid()

returns uniqueidentifier as

begin

declare @userGuid uniqueidentifier

declare @businessguid uniqueidentifier

if (is_member(’SomeRole’) | is_member(’SomeGroup’)) = 1

begin

select @userGuid = cast(context_info() as uniqueidentifier)

if @userGuid is not null

begin

select @businessguid = s.col4

from T1 s

where s.col1 = @userGuid

return @businessguid

end

end

select @businessguid = s.col3

from T1 s

where s.col1 = SUSER_SNAME()

return @businessguid

end

98

create function dbo.fn_FindUserGuid()

returns uniqueidentifier as

begin

declare @userGuid uniqueidentifier

if (is_member(’AppReaderRole’) | is_member(’db_owner’)) = 1

begin

select @userGuid = cast(context_info() as uniqueidentifier)

end

if @userGuid is null

begin

select @userGuid = s.SystemUserId

from SystemUserBase s

where s.DomainName = SUSER_SNAME()

end

return @userGuid

end

5.10 Natively compiled UDFs

These UDFs are borrowed from an MSDN article [88] about the benefits of Hekaton. As men-
tioned earlier, Hekaton, the memory-optimized OLTP engine in SQL Server performs native
compilation of procedures [40], which allows faster data access and more efficient query ex-
ecution than interpreted T-SQL [76]. We have used the following UDFs along with Froid, to
measure the additional benefits that we achieve using our techniques.

Here is the simple UDF in T-SQL interpreted form:

CREATE FUNCTION dbo.FarePerMile (@Fare MONEY, @Miles INT)

RETURNS MONEY

WITH SCHEMABINDING

AS

BEGIN

DECLARE @retVal MONEY = (@Fare / @Miles);

RETURN @retVal;

END;

Here is the simple UDF written as a native compiled version:

CREATE FUNCTION dbo.FarePerMile_native (@Fare money, @Miles int)

RETURNS MONEY

WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER

99

AS

BEGIN ATOMIC

WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = Nus_english)

DECLARE @retVal money = (@Fare / @Miles)

RETURN @retVal

END

5.11 TPC-H Queries with UDFs

In this section, we first show some scalar UDFs extracted from TPC-H queries, and then show
the queries rewritten to use these scalar UDFs. Observe that there are some UDFs that are used
in multiple queries, highlighting the benefits of code reuse due to the use of UDFs. Without
Froid, these rewritten queries with UDFs exhibit poor performance as shown in Section 5.8.

5.11.1 Scalar UDF Definitions

create function dbo.discount_price(@extprice decimal(12,2),

@disc decimal(12,2))

returns decimal(12,2) as

begin

return @extprice*(1-@disc);

end

create function dbo.discount_taxprice(@extprice decimal(12,2),

@disc decimal(12,2),

@tax decimal(12,2))

returns decimal(12,2) as

begin

return dbo.discount_price(@extprice, @disc) * (1+@tax);

end

create function dbo.profit_amount(@extprice decimal(12,2),

@discount decimal(12,2),

@suppcost decimal(12,2),

@qty int)

returns decimal(12,2) as

begin

return @extprice*(1-@discount)-@suppcost*@qty;

end

100

create function dbo.isShippedBefore(@shipdate date,

@duration int,

@stdatechar varchar(10))

returns int as

begin

declare @stdate date = cast(@stdatechar as date);

declare @newdate date = dateadd(dd, @duration, @stdate);

if(@shipdate > @newdate)

return 0;

return 1;

end

create function dbo.checkDate(@d varchar(10),

@odate date,

@shipdate date)

returns int as

begin

if(@odate < @d AND @shipdate > @d)

return 1;

return 0;

end

create function dbo.q3conditions(@cmkt varchar(10),

@odate date,

@shipdate date)

returns int as

begin

declare @thedate varchar(10) = ’1995-03-15’;

if(@cmkt <> ’BUILDING’)

return 0;

if(dbo.checkDate(@thedate, @odate, @shipdate) = 0)

return 0;

if(dbo.isShippedBefore(@shipdate, 122, @thedate) = 0)

return 0;

return 1;

end

create function dbo.q5Conditions(@rname char(25),

@odate date)

returns int as

101

begin

declare @beginDatechar varchar(10) = ’1994-01-01’;

declare @beginDate date = cast(@beginDatechar as date);

declare @newdate date;

if(@rname <> ’ASIA’)

return 0;

if(@odate < @beginDate)

return 0;

set @newdate = DATEADD(YY, 1, @beginDate);

if(@odate >= @newdate)

return 0;

return 1;

end

create function dbo.q6conditions(@shipdate date,

@discount decimal(12,2),

@qty int)

returns int as

begin

declare @stdateChar varchar(10) = ’1994-01-01’;

declare @stdate date = cast(@stdateChar as date);

declare @newdate date = dateadd(yy, 1, @stdate);

if(@shipdate < @stdateChar)

return 0;

if(@shipdate >= @newdate)

return 0;

if(@qty >= 24)

return 0;

declare @val decimal(12,2) = 0.06;

declare @epsilon decimal(12,2) = 0.01;

declare @lowerbound decimal(12,2), @upperbound decimal(12,2);

set @lowerbound = @val - @epsilon;

set @upperbound = @val + @epsilon;

102

if(@discount >= @lowerbound AND @discount <= @upperbound)

return 1;

return 0;

end

create function dbo.q7conditions(@n1name varchar(25),

@n2name varchar(25),

@shipdate date)

returns int as

begin

if(@shipdate NOT BETWEEN ’1995-01-01’ AND ’1996-12-31’)

return 0;

if(@n1name = ’FRANCE’ AND @n2name = ’GERMANY’)

return 1;

else if(@n1name = ’GERMANY’ AND @n2name = ’FRANCE’)

return 1;

return 0;

end

create function dbo.q10conditions(@odate date, @retflag char(1))

returns int as

begin

declare @stdatechar varchar(10) = ’1993-10-01’;

declare @stdate date = cast(@stdatechar as date);

declare @newdate date = dateadd(mm, 3, @stdate);

if(@retflag <> ’R’)

return 0;

if(@odate >= @stdatechar AND @odate < @newdate)

return 1;

return 0;

end

create function dbo.total_value() returns decimal(12,2) as

begin

103

return (SELECT SUM(PS_SUPPLYCOST*PS_AVAILQTY) * 0.0001000000

FROM PARTSUPP, SUPPLIER, NATION

WHERE PS_SUPPKEY = S_SUPPKEY

AND S_NATIONKEY = N_NATIONKEY AND N_NAME = ’GERMANY’);

end

create function dbo.line_count(@oprio char(15), @mode varchar(4))

returns int as

begin

declare @val int = 0;

if(@mode = ’high’)

begin

if(@oprio = ’1-URGENT’ OR @oprio = ’2-HIGH’)

set @val = 1;

end

else if(@mode = ’low’)

begin

if(@oprio = ’1-URGENT’ AND @oprio = ’2-HIGH’)

set @val = 1;

end

return @val;

end

create function dbo.q12conditions(@shipmode char(10),

@commitdate date,

@receiptdate date,

@shipdate date)

returns int as

begin

if(@shipmode = ’MAIL’ OR @shipmode =’SHIP’)

begin

declare @stdatechar varchar(10) = ’1995-09-01’;

declare @stdate date = cast(@stdatechar as date);

declare @newdate date = dateadd(mm, 1, @stdate);

if(@receiptdate < ’1994-01-01’)

return 0;

if(@commitdate < @receiptdate AND @shipdate < @commitdate

AND @receiptdate < @newdate)

return 1;

104

end

return 0;

end

create function dbo.promo_disc(@ptype varchar(25),

@extprice decimal(12,2),

@disc decimal(12,2))

returns decimal(12,2) as

begin

declare @val decimal(12,2);

if(@ptype LIKE ’PROMO%%’)

set @val = dbo.discount_price(@extprice, @disc);

else

set @val = 0.0;

return @val;

end

create function dbo.q19conditions(@pcontainer char(10),

@lqty int,

@psize int,

@shipmode char(10),

@shipinst char(25),

@pbrand char(10))

returns int as

begin

declare @val int = 0;

if(@shipmode IN(’AIR’, ’AIR REG’)

AND @shipinst = ’DELIVER IN PERSON’)

begin

if(@pbrand = ’Brand#12’

AND @pcontainer

IN (’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’)

AND @lqty >= 1 AND @lqty <= 1 + 10

AND @psize BETWEEN 1 AND 5)

set @val = 1;

if(@pbrand = ’Brand#23’

AND @pcontainer

IN (’MED BAG’, ’MED BOX’, ’MED PKG’, ’MED PACK’)

105

AND @lqty >= 10 AND @lqty <= 10 + 10

AND @psize BETWEEN 1 AND 10)

set @val = 1;

if(@pbrand = ’Brand#34’

AND @pcontainer

IN (’LG CASE’, ’LG BOX’, ’LG PACK’, ’LG PKG’)

AND @lqty >= 20 AND @lqty <= 20 + 10

AND @psize BETWEEN 1 AND 15)

set @val = 1;

end

return @val

end

create function dbo.avg_actbal() returns decimal(12,2) as

begin

return (SELECT AVG(C_ACCTBAL) FROM CUSTOMER

WHERE C_ACCTBAL > 0.00

AND SUBSTRING(C_PHONE,1,2)

IN (’13’, ’31’, ’23’, ’29’, ’30’, ’18’, ’17’));

end

5.11.2 TPC-H Queries Rewritten using UDFs

-- Query 1

SELECT L_RETURNFLAG, L_LINESTATUS, SUM(L_QUANTITY) AS SUM_QTY,

SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE,

SUM(dbo.discount_price(L_EXTENDEDPRICE, L_DISCOUNT))

AS SUM_DISC_PRICE,

SUM(dbo.discount_taxprice(L_EXTENDEDPRICE, L_DISCOUNT, L_TAX))

AS SUM_CHARGE,

AVG(L_QUANTITY) AS AVG_QTY,

AVG(L_EXTENDEDPRICE) AS AVG_PRICE, AVG(L_DISCOUNT) AS AVG_DISC,

COUNT(*) AS COUNT_ORDER

FROM LINEITEM

WHERE dbo.isShippedBefore(L_SHIPDATE, -90, ’1998-12-01’) = 1

GROUP BY L_RETURNFLAG, L_LINESTATUS

ORDER BY L_RETURNFLAG,L_LINESTATUS

106

-- Query 3

SELECT TOP 10 L_ORDERKEY,

SUM(dbo.discount_price(L_EXTENDEDPRICE, L_DISCOUNT)) AS REVENUE,

O_ORDERDATE, O_SHIPPRIORITY

FROM CUSTOMER, ORDERS, LINEITEM

WHERE C_CUSTKEY = O_CUSTKEY AND L_ORDERKEY = O_ORDERKEY

AND dbo.q3conditions(C_MKTSEGMENT, O_ORDERDATE, L_SHIPDATE) = 1

GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY

ORDER BY REVENUE DESC, O_ORDERDATE

-- Query 5

SELECT N_NAME,

SUM(dbo.discount_price(L_EXTENDEDPRICE, L_DISCOUNT)) AS REVENUE

FROM CUSTOMER, ORDERS, LINEITEM, SUPPLIER, NATION, REGION

WHERE C_CUSTKEY = O_CUSTKEY AND L_ORDERKEY = O_ORDERKEY

AND L_SUPPKEY = S_SUPPKEY AND C_NATIONKEY = S_NATIONKEY

AND S_NATIONKEY = N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY

AND dbo.q5Conditions(R_NAME, O_ORDERDATE) = 1

GROUP BY N_NAME

ORDER BY REVENUE DESC

-- Query 6

SELECT SUM(L_EXTENDEDPRICE*L_DISCOUNT) AS REVENUE

FROM LINEITEM

WHERE dbo.q6conditions(L_SHIPDATE, L_DISCOUNT, L_QUANTITY) = 1;

-- Query 7

SELECT SUPP_NATION, CUST_NATION, L_YEAR, SUM(VOLUME) AS REVENUE

FROM (SELECT N1.N_NAME AS SUPP_NATION, N2.N_NAME AS CUST_NATION,

datepart(yy, L_SHIPDATE) AS L_YEAR,

L_EXTENDEDPRICE*(1-L_DISCOUNT) AS VOLUME

FROM SUPPLIER, LINEITEM, ORDERS, CUSTOMER, NATION N1, NATION N2

WHERE S_SUPPKEY = L_SUPPKEY AND O_ORDERKEY = L_ORDERKEY

AND C_CUSTKEY = O_CUSTKEY

AND S_NATIONKEY = N1.N_NATIONKEY

AND C_NATIONKEY = N2.N_NATIONKEY

AND dbo.q7conditions(N1.N_NAME, N2.N_NAME, L_SHIPDATE) = 1)

AS SHIPPING

GROUP BY SUPP_NATION, CUST_NATION, L_YEAR

ORDER BY SUPP_NATION, CUST_NATION, L_YEAR

107

-- Query 9

SELECT NATION, O_YEAR, SUM(AMOUNT) AS SUM_PROFIT

FROM (SELECT N_NAME AS NATION,

datepart(yy, O_ORDERDATE) AS O_YEAR,

dbo.profit_amount(L_EXTENDEDPRICE, L_DISCOUNT, PS_SUPPLYCOST, L_QUANTITY)

AS AMOUNT

FROM PART, SUPPLIER, LINEITEM, PARTSUPP, ORDERS, NATION

WHERE S_SUPPKEY = L_SUPPKEY AND PS_SUPPKEY= L_SUPPKEY

AND PS_PARTKEY = L_PARTKEY AND P_PARTKEY= L_PARTKEY

AND O_ORDERKEY = L_ORDERKEY AND S_NATIONKEY = N_NATIONKEY AND

P_NAME LIKE ’%%green%%’) AS PROFIT

GROUP BY NATION, O_YEAR

ORDER BY NATION, O_YEAR DESC

-- Query 10

SELECT TOP 20 C_CUSTKEY, C_NAME,

SUM(dbo.discount_price(L_EXTENDEDPRICE, L_DISCOUNT)) AS REVENUE,

C_ACCTBAL, N_NAME, C_ADDRESS, C_PHONE, C_COMMENT

FROM CUSTOMER, ORDERS, LINEITEM, NATION

WHERE C_CUSTKEY = O_CUSTKEY AND L_ORDERKEY = O_ORDERKEY AND

dbo.q10conditions(O_ORDERDATE, L_RETURNFLAG) = 1

AND C_NATIONKEY = N_NATIONKEY

GROUP BY C_CUSTKEY, C_NAME, C_ACCTBAL, C_PHONE,

N_NAME, C_ADDRESS, C_COMMENT

ORDER BY REVENUE DESC

-- Query 11

SELECT PS_PARTKEY, SUM(PS_SUPPLYCOST*PS_AVAILQTY) AS VALUE

FROM PARTSUPP, SUPPLIER, NATION

WHERE PS_SUPPKEY = S_SUPPKEY AND S_NATIONKEY = N_NATIONKEY

AND N_NAME = ’GERMANY’

GROUP BY PS_PARTKEY

HAVING SUM(PS_SUPPLYCOST*PS_AVAILQTY) > dbo.total_value()

ORDER BY VALUE DESC

-- Query 12

SELECT L_SHIPMODE,

SUM(dbo.line_count(O_ORDERPRIORITY, ’high’)) AS HIGH_LINE_COUNT,

SUM(dbo.line_count(O_ORDERPRIORITY, ’low’)) AS LOW_LINE_COUNT

FROM ORDERS, LINEITEM

108

WHERE O_ORDERKEY = L_ORDERKEY AND

dbo.q12conditions(L_SHIPMODE, L_COMMITDATE,

L_RECEIPTDATE, L_SHIPDATE) = 1

GROUP BY L_SHIPMODE

ORDER BY L_SHIPMODE

-- Query 14

SELECT 100.00 *

SUM(dbo.promo_disc(P_TYPE, L_EXTENDEDPRICE, L_DISCOUNT))

/ SUM(dbo.discount_price(L_EXTENDEDPRICE,L_DISCOUNT))

AS PROMO_REVENUE

FROM LINEITEM, PART

WHERE L_PARTKEY = P_PARTKEY AND L_SHIPDATE >= ’1995-09-01’

AND L_SHIPDATE < dateadd(mm, 1, ’1995-09-01’)

-- Query 19

SELECT SUM(dbo.discount_price(L_EXTENDEDPRICE, L_DISCOUNT))

AS REVENUE

FROM LINEITEM join PART on L_PARTKEY = P_PARTKEY

WHERE dbo.q19conditions(P_CONTAINER, L_QUANTITY, P_SIZE,

L_SHIPMODE, L_SHIPINSTRUCT, P_BRAND) = 1;

-- Query 22

SELECT CNTRYCODE,

COUNT(*) AS NUMCUST, SUM(C_ACCTBAL) AS TOTACCTBAL

FROM (SELECT SUBSTRING(C_PHONE,1,2) AS CNTRYCODE, C_ACCTBAL

FROM CUSTOMER WHERE SUBSTRING(C_PHONE,1,2)

IN (’13’, ’31’, ’23’, ’29’, ’30’, ’18’, ’17’)

AND C_ACCTBAL > dbo.avg_actbal()

AND NOT EXISTS (SELECT * FROM ORDERS

WHERE O_CUSTKEY = C_CUSTKEY)) AS CUSTSALE

GROUP BY CNTRYCODE

ORDER BY CNTRYCODE

5.12 Related Work

In Section 5.2.4, we discussed existing techniques (such as [99] and our techniques from Chap-
ter 3) that can be adapted for UDF inlining, and motivated the need for the approach we take in
Froid. In this section, we compare and contrast Froid with other related work.

109

Optimization of SQL queries containing sub-queries is well-studied. There have been sev-
eral techniques proposed over the years [66, 50, 93, 49, 37, 42, 77], and many RDBMSs can
optimize nested sub-queries. Complementarily, there has been a lot of work spanning multi-
ple decades, on optimization of imperative programs in the compilers community [17, 75, 64].
UDFs are similar to nested sub-queries, but contain imperative constructs. Hence, they lie in
the intersection of these two streams of work; however, they have received little attention from
either community.

Some databases perform sub-program inlining, which applies only to nested function calls [80].
This technique works by replacing the call to a function with the function body. Another tech-
nique is to cache function results [89], which is useful only when there are repeated UDF invo-
cations with identical parameter values. Unlike Froid, none of these techniques offer a complete
solution that addresses all drawbacks of UDF evaluation listed in Section 5.2.3.

There have been recent efforts that use programming languages techniques to optimize
database-backed applications. Cheung et al. [33] consider applications written using object-
relational mapping libraries and transforms fragments of code into SQL using Query-By-Synthesis
(QBS). The goals of QBS and Froid are similar, but the approaches are entirely different. QBS
is based on program synthesis, whereas Froid uses a program transformation based approach.
Although QBS is a powerful technique, it is limited in its scalability to large functions. We have
manually analyzed all code fragments used in [33] (given in Appendix A of [33]), and found
that none of those are larger than 100 lines of code. Even for these small code fragments, QBS
suffers from potentially very long optimization times due to the space-exploration involved.
They use a preset timeout of 10 mins in their experiments. Froid overcomes both these limita-
tions – it can handle UDFs with 1000s of statements, and can transform them in less than 10
seconds (see Section 5.8.2).

The StatusQuo system [30] includes (a) a program analysis that identifies blocks of im-
perative logic that can be translated to SQL and (b) a program partitioning method to move
application logic into imperative stored procedures. The SQL translation in StatusQuo uses
QBS[33] to extract equivalent SQL. The program partitioning is orthogonal to our work. Once
such partitioning is done, the resulting imperative procedures can be optimized using Froid.

5.13 Summary

While declarative SQL and procedural extensions are both supported by RDBMSs, their pri-
mary focus has been the efficient evaluation of declarative SQL. Although imperative UDFs
and procedures offer many advantages and are preferred by many users, their poor performance
is a major concern. Often, using UDFs is discouraged for this reason.

In this chapter, we address this important problem using novel techniques that automatically
transform imperative programs into relational expressions. This enables us to leverage sophis-
ticated query optimization techniques thereby resulting in efficient, set-oriented, parallel plans
for queries invoking UDFs. Froid, our extensible, language-agnostic optimization framework
built into Microsoft SQL Server, not only overcomes current drawbacks in UDF evaluation, but
also offers the benefits of many compiler optimization techniques with no additional effort. The
benefits of our framework are demonstrated by our evaluation on customer workloads, showing
significant gains. We believe that our work will enable and encourage the wider use of UDFs to
build modular, reusable and maintainable applications without compromising performance.

110

Chapter 6

Other Applications of Static Analysis

In this chapter, we present other applications of static analysis that we have explored, for opti-
mizing and testing data access in database applications.

6.1 Rewriting ORDER BY Queries

In this section, we propose a data flow analysis, which we call live order analysis, for rewriting
database applications and embedded queries to remove unnecessary ordering of query results1.
Often, database developers use predefined ORDER BY queries and ordered data structures
(such as a Java List) to store such query results, for computations that do not require the query
results to be ordered. This is particularly prevalent in applications using ORMs, as developers
typically use the ORM framework APIs along with a fixed set of well tuned queries for data
access.

Manually identifying by code inspection, whether the specified ordering is actually required,
and rewriting the application to use precise queries and data structures is non-trivial and error
prone. Live order analysis can automatically analyze the program along with queries and col-
lections used for storing query results, and identify whether or not a collection needs to be
ordered.

6.1.1 Introduction

Developers of database applications often use ORDER BY queries whose results are stored in
an ordered collection such as a list or a sorted set. This is typically the case in applications
using ORM frameworks where the framework automatically translates the ResultSet (returned
by the JDBC driver) into an ordered collection. However, the imposed order of elements in the
collection may not always be necessary. In such cases, it is preferable to use a query without
ORDER BY, which allows the database engine to potentially choose a cheaper plan that does
not require an ordering of the query results.

For example, consider the program shown in Fig. 6.1, which is adapted from Broadleaf [1],
a real world e-commerce application that is widely used. The function getCustomerPayments

1This is joint work with Pooja Agrawal. Pooja worked along with me on intra-procedural analysis. Later, we
significantly revised the presentation and extended the approach to enable inter-procedural analysis.

111

//File: CustomerVariableExpression.java

1 List getCustomerPayments() {
2 Customer customer = CustomerState.getCustomer();

3 List tmp = customerPaymentService.fetchPaymentsById(customer.getId());

4 List customerPayments = new ArrayList<Object>().addAll(tmp);

5 Collections.sort(customerPayments, new Comparator(){...});
6 return customerPayments;

7 }

//File: CustomerPaymentDaoImpl.java

8 List fetchPaymentsById(Long customerId) {
9 Query q = em.createQuery("SELECT * FROM CustomerPayment cp, Customer c

WHERE cp.customer id = c.customer id AND cp.customer id = :customerId

ORDER BY cp.id");

10 q.setParameter("customerId", customerId);

11 List res = q.getResultList();

12 return res;

13 }

Figure 6.1: Custom sorting of ordered query results

fetches the payments for a customer by calling the fetchPaymentsById function, and the pay-
ments are sorted using a custom comparator. Although the query used to retrieve the payments
from the database contains an ORDER BY cp.id clause, this ordering is irrelevant. Thus, the
query along with the data structures storing query results can be rewritten to remove unneces-
sary ordering, for potential benefits.

Manually identifying for each query, whether the order of query results (if any) is necessary
is tedious and impractical for large programs. Further, maintaining multiple versions of queries
with and without ordering is error prone, and the performance hit may not be evident when
testing with small datasets. In some cases, the queries are fine tuned by database administrators
(DBAs) and developers are discouraged from modifying the queries. For these reasons, devel-
opers prefer to write queries that can be reused in multiple places. In this section, we discuss
techniques that can automatically rewrite the program to use precise queries and data structures.
This allows developers to use queries and code that is easy to maintain, without compromising
on performance.

Given a program with embedded queries, our techniques identify collections that store query
results, and rewrite the queries and collections to remove unnecessary ordering. Such a rewrite
is non-trivial because real world programs contain complex control flow including branching,
loops, and function calls. We develop a program analysis, which we call live order analysis, that
can identify whether or not the ordering of elements in a collection is necessary in the program.
We focus on collections that store query results (directly or indirectly). Using the results of the
analysis, if we determine that the ordering is not necessary in an ordered collection (such as a
list), we automatically rewrite the program to use an unordered collection (such as a multiset).
The corresponding queries are also modified to remove ordering of results.

In the next section (Section 6.1.2), we present the necessary background on data flow anal-
ysis. We then formulate live order analysis (in Section 6.1.3) and discuss an algorithm (in
Section 6.1.4) to rewrite the program using the results of live order analysis.

112

6.1.2 Background: Data Flow Analysis

Data flow analysis is a program analysis technique that is used to derive information about the
run time behavior of a program [65]. Data flow analysis can be a forward analysis or a backward
analysis. In forward analysis, information is propagated along the direction of control flow in
the program. In a backward analysis, where information is propagated against the direction
of control flow in the program. The choice of forward or backward analysis depends on the
problem at hand. For example, strongly live variables analysis [65] is a data flow analysis that
derives information about whether the value of a particular variable at a location in the program
is used in the future. This requires identifying the uses of a variable at a program point, and
propagating the information to an earlier program point (backward analysis).

For a given program entity e, such as an assignment statement y = a + b, data flow analy-
sis involves two steps:

1. Discovering the effect of individual program statements on e (called local data flow anal-
ysis). This is expressed in terms of sets Genn and Killn for each node n in the CFG (CFG,
or control flow graph of a program has been described in Section 3.3.1). Genn denotes
the data flow information generated within node n. Killn denotes the information that
becomes invalid in node n.

For example, in strongly live variables analysis, the set Genn for the above statement will
contain the variables a and b as the values of a and b are read in the statement. The set
Killn will contain the variable y as it is (re-)assigned (thus the value of y from earlier in
the program is overwritten/killed). The values of Genn and Killn are computed once per
node, and remain unchanged.

2. Relating these effects across statements in the program (called global data flow analysis)
by propagating data flow information from one node to another. This is expressed in terms
of sets Inn and Outn, which represent the data flow information at Entry(n) and Exit(n)
respectively (Entry and Exit have been described in Section 3.3.1).

The specific definitions of sets Genn, Killn, Inn and Outn depend upon the analysis, and we
define them for our analysis in Section 6.1.3. The relationship between local and global data
flow information is captured by a system of data flow equations. The function that represents
the transformation of data flow values at a basic block2 is called as a flow function. The nodes
of the CFG are traversed and these equations are iteratively solved until the system stabilizes,
i.e., reaches a fix point. Data flow analysis captures all the necessary inter-statement data and
control dependencies about e through the sets Inn and Outn. The results of the analysis are then
used to infer information about e.

6.1.3 Data Flow Equations for Live Order Analysis

Our approach for live order analysis draws intuition from strongly live variables analysis.
Strongly live variables analysis identifies whether the value of a variable is used after a pro-
gram point; this analysis is typically used for dead code elimination as the variables that are
not live can be removed. Live order analysis identifies whether the order of a collection is used

2Some approaches consider a basic block region as a sequence of statements. In this chapter, we consider each
statement as a basic block, and treat a sequence of statements as consisting of multiple basic blocks with sequential
control flow between them. In our implementation, we use an intermediate representation of bytecode [102], where
each statement is represented using a three-address code [17].

113

after a program point. Our analysis differs from strongly live variable analysis in the following
aspects: (a) our goal is to rewrite the program using more precise queries and collections, not
dead code elimination (b) we compute and propagate data flow information for ordered collec-
tions as against variables. The scope of this analysis is intra-procedural i.e., we use this analysis
to find order liveness within a procedure. (We discuss extensions to our approach for handling
inter-procedural order liveness analysis in Section 6.1.4). We now formally define our analysis:

DEFINITION 1: The order of elements in a collection c is live at a program point p if at least
one path from p to End contains an ordered use of the elements in c, and the use is not preceded
by any statement that defines c or modifies the order of elements in c. �

Live order analysis is a data flow framework with ordered collections being the data flow
values (program entities of interest). All required data flow information for this analysis are
compactly represented using bit vectors, where each bit represents an ordered collection. For
an ordered collection c, we define local data flow information in terms of the sets Genn and
Killn as follows:

• Genn contains the collection c if n contains a use of c that respects the order of elements
in c. For example, if a statement n extracts the i’th element from a list c, then Genn for
that statement will contain c.

• Killn contains the collection c if n contains a definition of c or n modifies the order of
elements in c. For example, if a statement n sorts a collection c such as in line 4 of
Figure 6.1, then Killn for that statement will contain c.

In order to check whether a particular use of a collection c in a statement n respects the
order of elements in c, we examine the operations performed on c in n. Our analysis assumes
that every operation on a collection c respects the order of elements in c, except for the set
of operations that we explicitly identify as order irrelevant operations, which do not respect
the order of elements in a collection. Examples of order irrelevant operations include sort, set
insertion, scalar operations such as addition, etc. (Note that scalar operations are performed
on individual elements in a collection, which is an indirect use of the collection. We discuss
how we handle this in Section 6.1.4.) Similarly, we assume that every collection needs to be
ordered unless the analysis determines that it can be unordered. These conservative assumptions
ensure that our analysis does not incorrectly identify a collection as unordered in the presence
of unknown or custom operations and types.

Live order analysis requires propagation of information against the direction of control flow,
i.e., backward data flow analysis. The data flow information at Exit(n) is computed by merging
information at the Entry of all successors of n. The data flow equations for live order analysis
are:

Inn = (Outn−Killn)∪X

where X =

{
Genn if Outn 6= φ and Killn ⊆ Outn
φ otherwise (6.1)

Outn =
{

φ if n is the End node⋃
s∈succ(n) Ins otherwise (6.2)

Equation 6.1 defines Inn in terms of Outn, Genn and Killn. Outn is defined in Equation 6.2
by merging the In values of all successors of n using set union (∪) as the merge operator. OutEnd
is initialized to be φ as order of collections is not used at Exit(End). We use ∪ to capture the

114

notion that the order of a collection is live at Outn if it is used along any path from n to End.
Inn and Outn for all other nodes are initialized to φ (zeros).

6.1.4 Algorithm for Program Rewriting

We now discuss the algorithm to rewrite a program to remove unnecessary ordering, using the
results of live order analysis. In our approach, we assume that statements have no hidden side-
effects, i.e., all reads and writes performed by a statement are captured in Genn and Killn sets.
We also assume that there are no aliases or global variables except function return values that
may be used at the caller location. Our technique is summarized in Algorithm 2.

Algorithm 2 Remove Unnecessary Ordering
Input: A control flow graph (G)
Precondition: There should be no lcfd edge in G other than the ones due to accumulator vari-

ables
Output: G, modified to remove unnecessary ordering of query results

1: procedure REMOVEORDERING(G)
2: C← all ordered collections in G
3: Perform LiveOrderAnalysis on G w.r.t. C

4: candidates←{} . Set of <collection, node> pairs
5: for each collection c ∈C do
6: for each node n ∈ G do
7: if n defines c and c /∈ Outn then
8: candidates.add(<c, n>)
9: end if

10: end for
11: end for

12: REWRITEQUERIES(candidates) . Remove ORDER BY
13: MIGRATETYPES(candidates) . Change collection types
14: end procedure

Algorithm 2 accepts the CFG of a program as input and returns a modified CFG, where
unnecessary ordering of query results has been removed. The algorithm internally uses Live
Order Analysis (Section 6.1.3) to identify the collections whose order of elements is unused and
the program points where these collections are defined (i.e., assigned) as potential candidates
for rewriting. The procedure REWRITEQUERIES examines the candidates, and if the definition
of a candidate collection contains a query execution statement with an ORDER BY query, it
rewrites the query without ORDER BY. Further, the procedure MIGRATETYPES modifies the
type of collections storing results of the rewritten queries to an unordered type.

In the presence of loops, the use of a collection is indirect, as the collection is typically
accessed one element at a time. For a variable that is updated inside the loop (accumulator
variable), there may be a loop carried flow dependency (lcfd) due to read/write of the variable
across various iterations of the loop. The precondition in Algorithm 2 checks that there is no
other lcfd in the loop other than the ones due to accumulator variables. This ensures that any
operation on an individual element of a collection (such as within a single iteration of a loop)
can be treated as an operation on the entire collection itself. The preconditions are similar to the

115

Start

n2

n3

. . .

n6

End

Figure 6.2: CFG for the function getCustomerPayments from Figure 6.1
.

preconditions in the algorithm for converting loops to F-IR (Algorithm 1 from Section 3.4.2),
and can be checked using the data dependence graph (DDG) of the program.

The techniques presented in Algorithm 2 rewrite queries and collections within a single
method. In the case of nested function calls with the method, we modify the algorithm as fol-
lows (inter procedural analysis). Intuitively, we first compute order liveness information for the
caller, and use the information at each call site to compute order liveness in the corresponding
callee.

Let f be a function that contains other function invocations. (Step 0): Set root = f . (Step 1):
Let H = {h1,h2, ...} be functions that are called from within root (we assume there are no recur-
sive calls). Let L = {l1, l2, ...} denote locations within root where li is the call site of hi in root.
(Step 2): Perform live order analysis (lines 2-3 of Algorithm 2) on CFG(f). (Step 3): Then,
for each hi ∈ H run live order analysis using OutEnd(hi) = OutExit(li), where End(hi) denotes the
End node in the CFG of hi and Exit(li) denotes the program point immediately after li in root.
(Step 4): If hi contains other nested function calls within it, then set root = hi and go to step 1.
If not, go to step 4. (Step 4) Use the results of the analysis to rewrite the functions (lines 4-13
of Algorithm 2) by considering them in reverse topological order. Typically, a callee function
may be called from more than one different caller functions, so we modify a copy of the callee
to rewrite it, and modify the caller to invoke the rewritten function.

Example

We now illustrate the working of our algorithm using the example code from Figure 6.1. We
first consider the function getCustomerReports for live order analysis. The control flow graph
for getCustomerReports is a sequence of nodes, as shown in Figure 6.2. Each node ni in the
CFG denotes the statement on line i in the program.

We have two collections to be considered for live order analysis: tmp and customerPayments.
Consequently, the bit vector for our data flow analysis for the function contains two bits – {tmp,
customerPayments} – one for each of the above collections, respectively.

The values Genn and Killn for each node are computed first. Genn and Killn for Start and End
nodes are set as 00 as no computation happens in these nodes. The value OutEnd is initialized
as 01 as the order of the variable customerPayments is live after the end of the method by
virtue of being the function return value. Using these values, Outn and Inn values are computed
for all other nodes using the dataflow equations from Section 6.1.3. The results of performing
live order analysis for the function getCustomerPayments are shown in Table 6.1 (top). Since

116

Node Local Information Global Information
Iteration #1

Genn Killn Outn Inn

getCustomerPayments

End 00 00 01 01
n6 01 00 01 01
n5 00 01 01 00
n4 10 01 00 00
n3 00 10 00 00
n2 00 00 00 00

Start 00 00 00 00
fetchPaymentsById

End 0 0 0 0
n12 1 0 0 0
n11 0 1 0 0
n10 0 0 0 0
n9 0 0 0 0

Start 0 0 0 0

Table 6.1: Live order analysis for the program from Figure 6.1

there are no branches/loops, our analysis reaches the fixpoint after one iteration.

The highlighted bit (see Outn3 in Table 6.1) denotes that at the end of line 3 (where fetchPaymentsById
is called), the order liveness value for the collection tmp is 0, i.e., order is not live. We now use
this information to set the OutEnd bit corresponding to the return value of fetchPaymentsById
as 0, and compute order liveness for fetchPaymentsById. In this case, the bit vector contains
only one bit corresponding to the collection res. The results are shown towards the bottom of
Table 6.1.

Using the results of live order analysis, the following candidates are identified for rewriting
(refer Algorithm 2 for details) in fetchPaymentsById:

{ <res, n11>}
The rewritten function is shown in Figure 6.3. Note that the query has been modified to remove
the unused ORDER BY, and the type of collection res is migrated to a MultiSet instead of
a List3. The function signature has also been modified to rename the function and change its
return type. Similarly, the following candidates are identified in getCustomerPayments:

{ <tmp, n5>, <customerPayments, n6>}
The rewritten function is shown in Figure 6.3. The type of tmp has been migrated to MultiSet

based on the modified return type of the callee. In our current implementation, we conserva-
tively skip type migration for variables that are used for holding ordered collections at some
program points and unordered collections at other program points. For example, although live
order analysis determines that the variable customerPayments at line 4 in Figure 6.1 can be
unordered, the same variable is used to store ordered (sorted) elements in line 5 (this is identified
by live order analysis in the value of Outn5), so we skip type migration for customerPayments.

3The API for the object-relational mapping framework (JPA) used in the original program does not support
retrieving query results as a MultiSet. So, we use a custom function Utils.executeQuery that achieves this.

117

1 List getCustomerPayments() {
2 Customer customer = CustomerState.getCustomer();

3 MultiSet tmp = customerPaymentService.fetchPaymentsById unordered(customer.getId());

4 List customerPayments = new ArrayList<Object>().addAll(tmp);

5 Collections.sort(customerPayments, new Comparator(){...});
6 return customerPayments;

7 }

8 MultiSet fetchPaymentsById unordered(Long customerId) {
9 Query q = em.createQuery("SELECT * FROM CustomerPayment cp, Customer c

WHERE cp.customer id = c.customer id AND cp.customer id = :customerId");

10 q.setParameter("customerId", customerId);

11 MultiSet res = Utils.executeQuery(q);

12 return res;

13 }

Figure 6.3: Rewritten program after removing unused ordering from Figure 6.1

6.1.5 Summary

In this section, we presented live order analysis, which is a data flow analysis technique to
identify whether the order of elements in a collection in a program is necessary. Using live
order analysis, we presented an algorithm to rewrite queries in database applications to remove
unnecessary ORDER BY clause, along with collections that store the results of these queries.
Future work includes quantifying the applicability and potential performance benefits of our
techniques.

6.2 Test Data Generation for Database Applications

In this thesis so far, we have discussed techniques for optimizing data access in database ap-
plications, which may contain embedded queries. We argued that traditional approaches for
optimizing database applications, which treat queries/data access instructions as black boxes,
may not perform optimizations that a database aware compiler can perform. In this section, we
extend this argument to testing of database applications.

Conventionally, approaches for testing database applications have been classified into black
box and white box testing methods [22]. In black box testing approaches, test cases are gen-
erated independently of the database, and often act as a guide for programmers to develop an
application. White box testing methods (such as path coverage, statement testing etc.) aim to
test coverage of parts of a program; however, in the case of database applications, white box
approaches still treat embedded SQL queries as black boxes.

There has been work on test data generation for standalone SQL queries. The XData sys-
tem [24] for automatic grading of student queries generates test data to test the correctness of
a given (student) SQL query against a known correct (instructor) query. Given a correct query,
XData generates multiple test datasets that give different results on the correct query and a
potential incorrect query. Student queries are then checked for correctness against the gener-
ated test datasets. For further details on the techniques underlying XData, we refer the reader
to [94, 24].

In this section, we propose an approach for test data generation for embedded queries based

118

on program regions to identify queries in different paths of the program, and generate test data
for the queries and related program variables by leveraging the XData system. Our techniques
consider a large number of query mutations and can handle complex control flow, making them
suitable for test data generation for complex real world database applications. The contents of
this section have been published in [16].

6.2.1 Introduction

Testing of database applications containing embedded queries along with imperative code is
crucial to ensure the correctness of enterprise applications. Existing approaches for testing these
applications run the application to assert expected program behavior either by (i) loading a copy
of the actual data; this approach is fraught with privacy, security and maintenance concerns, or
(ii) loading a (developer/tester designed) sample dataset; however, manually designed datasets
may often miss some errors due to data that is not represented in the synthesized sample. In our
work, we propose a solution to this problem as follows:

• Automatically extract queries, query parameters, and conditions in each program path.

• Generate test data based on the extracted information, using the XData system.

• Create unit/functional test cases using the generated test data to test the correctness of
functions containing queries.

In this chapter, we will focus on extraction of queries and unit test generation and refer the
reader to [23] for details on test data generation.

Automatically extracting queries and related information from database application pro-
grams for test data generation is non-trivial due to the complexity of queries, the imperative
program, and their interaction. For example, consider the program shown in shown in Fig-
ure 6.4a, which adapted from a real world application that was in production use at our orga-
nization4. The function getNumVenues returns a list of buildings along with the number of
venues in the building that are at least of the given size. Using Figure 6.4a as an example, we
now discuss the challenges involved in query extraction:

1. Queries in database applications are intertwined with imperative code.

2. Queries may contain parameters, which could be program variables, expressions, user
inputs, or results of other queries. For example, in Figure 6.4a, the second parameter to
query q2 (line 17) is group id, which is obtained by executing query q1 (line 4).

3. Queries are determined dynamically based on the program path. For example, the same
variable q2 (line 19) may refer to different queries based on whether the if condition
(line 5) evaluated to true or false.

4. There is no specification for the correct query. In Figure 6.4a, in case a building has no
venues of the required size, instead of returning that building with count 0, the query
q2, which uses an inner join, omits that building altogether. This can be identified by
running the program against a dataset that is cleverly designed to make this distinction.
For example, with the database instance shown in Figure 6.4b, and with function inputs:
size = 10 and a user corresponding to group id = 3, the query will not list the Nilgiri

4In Figure 6.4a, we used pseudo code and made a few modifications to the original code for ease of presentation.
Our implementation uses the actual code.

119

(a) Function to find number of venues

(b) Database instances and results for size=10 and a user with group id=3

Figure 6.4: Motivating example for automatic test data generation

building which has no room of size at least 10. It is possible that the developer made an
error in the query or that this was indeed the intent of the developer.

In the rest of this chapter, we discuss our test data generation for programs with embedded
queries. Figure 6.5 summarizes our approach. Given an input program, the system first con-
structs an intermediate representation of the program, using which queries, parameters and path
conditions are extracted. This information is passed to XData for test data generation. Using
the generated test data and a user feedback system that records whether the function generates

120

Input Program

(Java + SQL)

IR Construction

Data Generation

(XData)

Unit Tests

Queries and

program constraints

Test data

Function Signatures

Figure 6.5: Test data generation architecture
.

Figure 6.6: Intermediate representation for extracting query information

the expected result on the generated data, unit tests are generated.
Our implementation focuses on Java programs using JDBC or Hibernate for database ac-

cess, but the techniques themselves are not tied to any programming language or data access
framework. The front-end to our test generation tool is a plugin for the IntelliJ IDEA IDE.
The plugin enables users to interact with our system through a simple graphical user interface.
Details of the plugin can be found in [16]. We now discuss each step in our approach, in detail.

6.2.2 Query Extraction

In this section, we discuss our techniques that use static program analysis to identify queries
and related information from a database application program. Real world programs can contain
complex control flow including branching and loops. In our approach, we use the concept
of program regions to systematically construct our IR for such complex programs. Program
regions for Figure 6.4a are shown alongside the code. For further details on regions, refer
Chapter 3.

Intermediate Representation (IR)

Our IR is based on the DAG based representation for database applications proposed in Chap-
ter 3. The IR from Chapter 3 is essentially a variable to expression map. The expression
represents the value of the variable at any point in the region/program in terms of the re-
gion/program inputs (intermediate assignments are bypassed). In this chapter, we use an array
of such variable-expression maps, one map for each alternative execution path in the program.
Each map is also annotated with a condition. The map is valid for the program execution path
in which the annotated condition evaluates to true.

Figure 6.6 shows a toy program and our intermediate representation for the program. There
are two paths in the program corresponding to the if and else branches respectively, so our IR
contains two maps – one for each path.

121

Figure 6.7: Walk-through of IR construction

IR Construction using Regions

The IR construction algorithm is similar to the D-IR construction algorithm from Chapter 3
(reproduced below):

• Construct D-IR (ee-DAG and ve-Map) for each constituent region (sub-region). All
leaves in the ee-DAG which are variables are marked as region inputs.

• Merge D-IRs of sub-regions appropriately (depending on type of parent region) to obtain
D-IR for the parent region. The aim of merging is to replace region inputs with their
ee-DAG expressions, which are expressed terms of inputs to a preceding region.

However, the aim in Chapter 3 was to build a single algebraic representation for the entire
program. In this chapter, our aim is to build an array of IRs, one for each path in the program.
So, we merge the sub-regions of a conditional region to obtain an array (size 2) of IRs – one
for the true sub-region, and another for the false sub-region. Each of these IRs is then merged
independently with regions that precede/follow the conditional region.

Figure 6.7 illustrates the IR construction for the program in Figure 6.4a. Each node in the
IR in Figure 6.7 is annotated with its corresponding region, as marked in the program from
Figure 6.4a. The first step is to construct IR for basic blocks. This is shown alongside Step 1
in Figure 6.7. Note that the IR for each basic block consists of a single variable to expression
map, and there are no conditions associated with the map. Merging the blocks B2 and B3
into conditional region C1 in step 2 gives us two maps, one corresponding to group id=0 and
the other corresponding to group id!=0. Merging the blocks B1, C1 and B4 in step 3 gives
us the final IR with maps and relevant conditions for each program execution path. Note that
our approach for IR construction also performs constant folding for dynamically constructed
queries.

122

Once we have the final IR, in step 4, we consider each path separately extract the queries and
the conditions for the path. The extracted queries and conditions are then passed to XData for
generating test data and unit tests to test each execution path. Note that for path 2 the group id
input of q2 depends on the result of query q1. We take this into account by expressing the
group id parameter in q2 in terms of the query q1.

Supported Program Constructs

Our system is able to extract queries and constraints from real world programs with complex
control flow. The program constructs handled by our system include:

• Arbitrary levels of if-else branching, interspersed with straight line code.

• Arbitrary levels of nested function calls without recursion.

• Reuse and reassignment of variables. The same variable may be used to construct and
execute multiple queries, at different program points. Our system is able to extract all
such queries.

• Multiple queries in the same program execution path.

• Chained queries, where the results of one query are used (directly or indirectly) to con-
struct another query.

• Constraints on query parameters and constraints on result set attributes.

• Loops: We only consider cursor loops with some restrictions, detailed below.

Restrictions on Loops

In general, the number of iterations in a loop is unknown at compile time. A special case of
loops that iterate over a query result set/collection, which are called cursor loops, are widely
used in database applications for iteratively processing query results. Our system supports test
data generation for programs containing cursor loops.

When the loop body does not contain any branching, all the paths in the loop are covered
by the following datasets: (i) empty dataset to cover the case with no iterations of the loop,
and (ii) other datasets to cover the loop body. If the loop body has branching and if the branch
conditions are all predicates of the current tuple or loop invariant variables only, we generate
SQL queries such that generated datasets would be sufficient to cover every path present inside
the loop at least once. For other cases of branching inside the loop body, the number of possible
paths is not bounded by the program size, and it may not be possible to determine the sequence
of paths using static program analysis techniques.

Applications using object-relational mappers (ORMs)

SQL queries are explicit in JDBC programs. However, in programs using ORMs (such as the
Hibernate ORM [60]) joins may also be implicitly realized by specifying associations between
attributes of mapped classes. DBridge is able to obtain explicit SQL queries in such cases (refer
Chapter 3), from which XData can generate datasets.

Consider the following code snippet extracted from Wilos, an open source orchestration
software.

123

for(Project p: getAllProjects())

if(!(p.isFinished()))

unfinP.add(p.getId());

The above code computes the set of projects whose status is marked as unfinished. The method
getAllProjects() internally uses Hibernate API calls to fetch the list of all projects. This
list is then filtered inside the application and a set of project id’s satisfying the condition are
returned.

Given such a program, our system first translates this program into an equivalent program
that uses SQL queries, using techniques from Chapter 3. Chapter 3 contains techniques for
translating relational operations such as projections, selections, joins and aggregations per-
formed using loops in imperative code into a query. For instance, the above program is trans-
lated as follows:

Query query = Utils.executeQuery

("SELECT id FROM Project WHERE isFinished <> 1");

The approach discussed earlier in this section (Section 6.2.2) can then be used to extract queries
and relevant constraints.

6.2.3 Test Data and Unit Test Generation

Once the SQL query and relevant constraints from the program are obtained, we use the XData
system [24, 94] for generating the test datasets. The datasets are designed to catch common
errors in SQL queries. The errors in queries are modeled as query mutations. A dataset that is
able to produce different results on the correct query and its mutant (thereby showing that the
mutant is not equivalent to the correct query) is said to kill the mutations.

The type of mutations considered include join type mutations (inner/outer), join condi-
tion mutations, selection condition mutations, aggregate operator mutations, group by attribute
mutations, mutations in string patterns, like clause mutations, distinct clause mutations, sub-
query connective mutations and set operator mutations, among others. XData generates several
datasets for each query. Each dataset is targeted to kill one or more mutations. In order to kill
a mutation we need to ensure that the dataset satisfies some constraints. XData encodes these
constraints along with database constraints in the CVC3 [20] solver. XData then uses the solver
to generate a dataset that satisfies the constraints.

In the case of testing applications with embedded queries, which is the focus of this chapter,
there may be additional constraints due to the program in addition to the constraints imposed by
the query. We appropriately encode any such program constraints into constraints that we pass
to the solver. We also pass the program input parameters to the solver to get back values that may
be used when invoking the program/interface for unit testing. For more details on modifications
to XData for the purpose of test data generation for database applications, refer [23].

User Interaction Console

We mentioned in Section 6.2.1 that in the case of real world database applications, there is no
specification of the correct query. In this section, we discuss a user feedback system to examine
the correctness of queries in a function using the generated datasets.

Once the datasets for queries in the program have been generated, for each function con-
taining queries, the generated datasets are loaded one at a time, the function is executed using
the generated database, parameter and function input values, and the result is displayed to the
user in the form of a user interaction window, as shown in Fig. 6.8. The window displays the

124

Figure 6.8: User interaction on test results

function name (getNumVenues), dataset id (DS1), generated function input parameter values
(user id:1234, size:10), and the generated dataset, along with the output of running the function
using these values. Note that there may be multiple datasets generated by XData for a single
query.

The user is asked to mark if the function’s output matches the expected output for the given
function inputs and the dataset. The user’s response (match/not match, shown as passed/failed in
Figure 6.8) is recorded and is used for asserting the result of the function in the corresponding
unit test that will be generated. Once all the datasets have been marked for a function, unit
tests are generated from a predefined template, using the function signature and details of the
database containing generated datasets and parameter values. These unit tests are added to the
test suite for use in future regression testing.

6.2.4 Related Work

Although mutation testing is a well known technique for testing applications in general, these
techniques do not consider queries embedded in the application. Pan et al. [81] and Emmi et
al. [46] focus on test data generation to ensure path coverage for database applications but do
not take into account testing of SQL queries. Qex [113] generates a test database for a database
application along with query parameters such that certain properties in the query results are
satisfied (e.g. the query result is non-empty). Our techniques, which are based on the XData
system, are able to consider a large space of mutations of queries, so the generated datasets can
catch more errors.

Marcozzi et al. [70] propose an approach for test data generation for database applications
written in an intermediate language (ImperDB) that models imperative program behaviors as
well as database interactions. However, compiling programs written in other languages into
ImperDB is not automated, hence the applicability of this approach is limited. Chan et al. [22]
propose an approach for white box testing of programs with embedded queries. They propose
techniques to translate SQL statements into imperative code, thereby exposing more paths to be

125

Description of control flow # programs
Straight line code only 9

if-else branching (no loops) 30
Loops (with branching in body) 7

Maximum number of paths (excluding loops) 4

Figure 6.9: Characteristics of synthetic programs

considered for white box testing of such programs. However, they do not consider generation of
test data, which is the focus of our system. Our approach can be used in conjunction with [22]
for enhanced coverage and correctness testing.

6.2.5 Experiments

We evaluated our test data generation system on real world and synthetic programs. We used a
JDBC program from a venue booking system earlier in use at IIT Bombay, and a Hibernate pro-
gram from an open source application (Wilos [115]). The real world programs both contained
simple if-else branching. We also considered 47 JDBC programs with simple and complex
control flow, which we created to test the correctness and capabilities of our system. The distri-
bution of control flow structures across the samples that we created is shown in Figure 6.9. Our
system successfully generated test data for queries in each path, for all cases. Expanding our
evaluation to include more real world programs is an area of future work.

6.2.6 Summary

We have described an approach based on program regions and mutation testing of queries to
generate test data for SQL queries embedded in imperative code. Using the generated test data
and a user feedback system, our techniques are able to generate unit/functional test cases for
functions containing queries. Our framework can be used to complement the existing test cases
so that both imperative code and database queries can be tested.

126

Chapter 7

Conclusions and Future Work

In this chapter, we present our conclusions for the techniques presented in this thesis, and then
identify interesting directions for future work.

7.1 Conclusions

In this thesis, we presented novel techniques for optimization of imperative programs with
embedded relational database accesses. Our techniques use static program analysis and program
transformations to rewrite programs for more efficient data access. In particular, we focused
on optimization of applications that use database abstractions, where data processing is split
between the database and the application program, leading to inefficient data access.

In Chapter 3, we have described techniques based on program regions, to translate impera-
tive code to SQL. We presented algorithms to translate the source program into an algebraic /
functional intermediate representation (F-IR) that uses fold and extended relational algebra to
represent cursor loops. Transformation rules on F-IR identify relational operations performed
in imperative code, and translate them into equivalent SQL. Our experiments show that tech-
niques in this chapter are widely applicable and useful in real world applications, and provide
performance improvements that existing approaches cannot provide, on many programs.

In Chapter 4, we proposed a framework for generating various alternatives of a program
using program transformations, and choosing the least cost alternative in a cost based manner.
We identify that program regions provide a natural abstraction for optimization of imperative
programs, and extend the Volcano/Cascades framework for optimizing algebraic expressions,
to optimize programs with regions. Our experimental evaluation on several real world applica-
tion programs demonstrates the applicability and performance improvements due to cost-based
rewriting.

In Chapter 5, we addressed the important problem of poor performance of UDFs in a rela-
tional database. We proposed techniques that automatically transform imperative programs into
relational expressions. This enables us to leverage sophisticated query optimization techniques
thereby resulting in efficient, set-oriented, parallel plans for queries invoking UDFs. Froid,
our extensible, language-agnostic optimization framework built into Microsoft SQL Server, not
only overcomes current drawbacks in UDF evaluation, but also offers the benefits of many
compiler optimization techniques with no additional effort. The benefits of our framework are
demonstrated by our evaluation on customer workloads, showing significant gains. We believe
that our work will enable and encourage the wider use of UDFs to build modular, reusable and

127

maintainable applications without compromising performance.
In Chapter 6, we discussed other applications of static analysis for optimizing and testing

data access in database applications. In Section 6.1, We developed a data flow analysis frame-
work called live order analysis to identify whether the order of elements in a collection is used
in the program. Using live order analysis, we proposed techniques to rewrite ORDER BY
queries and collections storing query results in database applications to remove unused order-
ing of query results. In Section 6.2, we have described a system that generates data to test SQL
queries embedded in application code. Our approach is based on path testing, and generates data
for queries and program variables so that each path in the program is covered at least once. Our
techniques are able to handle (a) complex control flow in imperative code including branching,
nested function calls, and cursor loops with some restrictions, and (b) complex queries includ-
ing sub-queries and chained queries, which earlier techniques are unable to handle. This makes
our system suitable for test data generation for real world applications.

Our implementation of the proposed techniques in Chapters 3, 4, and 6, focused on Java
programs that use the JDBC/Hibernate APIs for data access. Our techniques in Chapter 5 have
been discussed in the context of optimizing UDFs written in T-SQL. However, the techniques
themselves are language agnostic, and can be applied in general for optimization and testing
of programs/UDFs written using other languages and data access APIs. The program trans-
formation techniques presented in this thesis add to the repertoire of holistic optimizations for
database applications, and can be used independently or in conjunction with other techniques
for further benefits.

7.2 Future Work

Although a lot of work has been done in the area of holistic optimization of database applica-
tions, there are many interesting and important problems to be addressed yet. The approaches to
some of these problems can be extensions of the work presented in this thesis, and solutions for
others may need different techniques. In Chapters 3, 4, 5, and 6, we discussed future directions
and extensions to the work presented in the respective chapters. We now discuss more general
future directions to our work.

7.2.1 Program transformations for ORM Applications

ORMs aim to address an important problem – the object-relational impedance mismatch. How-
ever, object persistence is a complex topic [21]. Consequently, most ORM frameworks used
in real world applications are quite complex, with various components that address each sub-
problem in the paradigm mismatch such as data granularity, identity, associations between en-
tities, and others. The details of each of these components are often not well understood by
developers of ORM applications, justifiably so, owing to many intricacies. This provides many
opportunities for an optimizing compiler that is database and ORM aware to automatically
rewrite these programs for improved performance.

For example, caching of retrieved results plays an important role in ORM applications,
and most ORMs provide cache capabilities out of the box. Not only does an ORM cache
reduce access time by storing frequently accessed data locally, it also plays the role of a logical
database against which all data access statements in a transaction are executed, before they are
eventually flushed to the database. Existing techniques for optimizing ORM applications have
largely ignored the impact due to the ORM cache. There is a need to explore potential compile-

128

time and runtime techniques for optimizing ORM applications by understanding and modeling
the working of cache in ORMs along with database accesses.

A related problem is the optimization of data access in applications using object document
mappers (ODMs) for abstracting document store databases. Examples of ODMs include Mon-
goose [5] for Node.js [6], and Doctrine [4] for PHP [7]. Techniques for optimizing ORM
applications can be adapted and extended for optimization of ODM applications.

7.2.2 Cost-based program transformations

In this thesis, we described the COBRA framework with a focus on cost-based program trans-
formations for imperative programs with embedded data access. However, the framework can
be used for other cost-based transformations in general, with an appropriate cost model.

For instance, modern processors may contain CPUs with many cores, GPUs (which are now
being used increasingly for general purpose computing tasks), or a mix of CPUs and GPUs [72]
(heterogenous architectures). These processing units have different characteristics – GPUs are
more efficient for highly parallel tasks whereas CPUs perform better for sequential tasks. It
has also been noted in the context of map-reduce programs, that different phases of a single
application may be suitable for execution on CPU or GPU [72]. It will be interesting to explore
if the same argument can be extended to regions within a program, and rewrite program regions
in a cost-based manner using COBRA, to take advantage of the capabilities of the underlying
processor.

The availability of scientific computing libraries such as pandas [9] and NumPy [8] enables
research practitioners to program various data analysis tasks using these libraries. Often, the
data being analyzed is huge, and may be available in files instead of a database. The devel-
opers of these programs are typically not database experts, so the programs developed may
be functionally correct but may not necessarily provide the best performance. In such cases,
the COBRA optimizer can rewrite it using program transformations for significant performance
benefits, using cost estimates derived from sampling the input data.

7.2.3 Optimization of User Defined Functions

In this thesis, we have focused on optimization of scalar user defined functions without loops.
Loop fission and statement reordering transformations, which have been proposed earlier [84]
in the context of database application programs, can be used to isolate statements with cyclic
dependencies in a separate loop, and the other parts of the loop along with the rest of the UDF
can be inlined. Although this may not enable set-oriented execution of the UDF, it can provide
some benefit due to partial inlining and reducing the number of statements executed in each
iterative invocation of the UDF.

7.2.4 Compiling Over-specified Data Structures

The data flow analysis framework that we developed in this thesis – order liveness analysis – was
restricted to collections in programs that store query results, and the analysis focused on testing
the liveness of the order of elements in a collection. These techniques can be generalized to test
the liveness of over-specified properties of data structures. In that sense, order liveness analysis
is a special case where the data structures being analyzed are collections, and the property
considered is order of elements in a collection. Examples where such a general analysis is

129

applicable include use of arrays in place of lists, use of structures/classes with attributes instead
of maps with static keys, and others.

7.2.5 Optimizing Interactions between Web Services and Clients

Modern JavaScript engines in web browsers are quite powerful; web browsers are able to seam-
lessly run programs in other languages compiled to JavaScript, in-browser databases, analytics
tasks, and other heavy tasks that were earlier run on dedicated servers. Mobile phones hosting
applications that access web services are powered by multi-core processors. In this context,
program transformation techniques can be used to automatically partition web application pro-
grams to run partly on the web server and partly on the client to offload computation from the
web server, to improve its throughput. Alternatively, holistic optimization techniques such as
batching and prefetching proposed earlier can be adapted to automatically rewrite web applica-
tion programs to reduce perceived latency while loading web pages and results of web service
calls.

130

Bibliography

[1] Broadleaf commerce https://github.com/broadleafcommerce.

[2] Network Emulator Toolkit. https://blog.mrpol.nl/2010/01/14/

network-emulator-toolkit/.

[3] TPC-DS specification. http://www.tpc.org/.

[4] MongoDB Object Document Mapper, accessed Dec 11, 2018. https://www.

doctrine-project.org/projects/mongodb-odm.html.

[5] Mongoose ODM, accessed Dec 11, 2018. https://mongoosejs.com/.

[6] Node.js, accessed Dec 11, 2018. https://nodejs.org/en/.

[7] PHP: Hypertext Preprocessor, accessed Dec 11, 2018. http://www.php.net/.

[8] NumPy, accessed Dec 12, 2018. http://www.numpy.org.

[9] Python Data Analysis Library, accessed Dec 12, 2018. https://pandas.pydata.

org/.

[10] Hyperloop - Solving performance issues in your web application, accessed Dec 5, 2018.
https://hyperloop-rails.github.io/.

[11] Django - Models and Databases, accessed Dec 6, 2018. https://docs.

djangoproject.com/en/2.1/topics/db/.

[12] Entity Framework, accessed Dec 6, 2018. https://docs.microsoft.com/en-us/

ef/.

[13] Ruby on Rails - Active Record Basics, accessed Dec 6, 2018. https://guides.

rubyonrails.org/active_record_basics.html.

[14] ABAP Development, accessed Dec 9, 2018. https://www.sap.com/community/

topics/abap.html.

[15] Language Integrated Query (LINQ), accessed Dec 9, 2018. https://docs.

microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/.

[16] P. Agrawal, B. Chandra, K. V. Emani, N. Garg, and S. Sudarshan. Test data generation
for database applications. In 34th IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19, 2018, pages 1621–1624, 2018.

[17] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 2006.

131

https://blog.mrpol.nl/2010/01/14/network-emulator-toolkit/
https://blog.mrpol.nl/2010/01/14/network-emulator-toolkit/
http://www.tpc.org/
https://www.doctrine-project.org/projects/mongodb-odm.html
https://www.doctrine-project.org/projects/mongodb-odm.html
https://mongoosejs.com/
https://nodejs.org/en/
http://www.php.net/
http://www.numpy.org
https://pandas.pydata.org/
https://pandas.pydata.org/
https://hyperloop-rails.github.io/
https://docs.djangoproject.com/en/2.1/topics/db/
https://docs.djangoproject.com/en/2.1/topics/db/
https://docs.microsoft.com/en-us/ef/
https://docs.microsoft.com/en-us/ef/
https://guides.rubyonrails.org/active_record_basics.html
https://guides.rubyonrails.org/active_record_basics.html
https://www.sap.com/community/topics/abap.html
https://www.sap.com/community/topics/abap.html
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

[18] Query processing architecture guide, https://msdn.microsoft.com/en-
us/library/mt744587.aspx.

[19] AWS Network Latency Map https://datapath.io/resources/blog/

aws-network-latency-map/.

[20] C. Barrett and C. Tinelli. CVC3. In Computer Aided Verification (CAV), pages 298–302,
2007.

[21] C. Bauer, G. King, and G. Gregory. Java Persistance with Hibernate. Dreamtech Press,
2014.

[22] M.-Y. Chan and S.-C. Cheung. Testing database applications with sql semantics. In
CODAS, volume 99, pages 363–374, 1999.

[23] B. Chandra. Automatic Testing and Grading of SQL Queries. Ph.D. thesis, Indian Insti-
tute of Technology, Bombay, 2019.

[24] B. Chandra, B. Chawda, B. Kar, K. V. M. Reddy, S. Shah, and S. Sudarshan. Data
generation for testing and grading SQL queries. The VLDB Journal, 24(6), 2015.

[25] B. Chandra and S. Sudarshan. Runtime optimization of join location in parallel data
management systems. arXiv preprint arXiv:1703.01148, 2017.

[26] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan. DBridge: A program
rewrite tool for set-oriented query execution (demo). In ICDE, 2011.

[27] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan. Program transforma-
tions for asynchronous query submission. In ICDE, pages 375–386, 2011.

[28] T.-H. Chen. Improving the performance of database-centric applications through pro-
gram analysis. PhD thesis, Queen’s University, 2016.

[29] J. Cheney, S. Lindley, and P. Wadler. Query shredding: Efficient relational evaluation of
queries over nested multisets. In SIGMOD, pages 1027–1038, 2014.

[30] A. Cheung, O. Arden, S. Madden, A. Solar-Lezama, and A. C. Myers. Statusquo: Mak-
ing familiar abstractions perform using program analysis. In CIDR. www.cidrdb.org,
2013.

[31] A. Cheung, S. Madden, O. Arden, and A. C. Myers. Automatic partitioning of database
applications. Proc. VLDB Endow., 5(11):1471–1482, July 2012.

[32] A. Cheung, S. Madden, and A. Solar-Lezama. Sloth: Being lazy is a virtue (when issuing
database queries). ACM Transactions on Database Systems (TODS), 41(2):8, 2016.

[33] A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing database-backed applications
with query synthesis. In PLDI ’13, pages 3–14, 2013.

[34] CLR User-Defined Functions, https://msdn.microsoft.com/en-us/library/ms131077.aspx.

[35] Columnstore indexes guide, https://msdn.microsoft.com/en-us/library/gg492088.aspx.

[36] A. Dasgupta, V. Narasayya, and M. Syamala. A static analysis framework for database
applications. In ICDE ’09, pages 1403–1414, 2009.

132

https://datapath.io/resources/blog/aws-network-latency-map/
https://datapath.io/resources/blog/aws-network-latency-map/

[37] U. Dayal. Of Nests and Trees: A Unified approach to Processing Queries That Contain
Nested Subqueries, Aggregates, and Quantifiers. In VLDB, 1987.

[38] S. K. Debray, W. Evans, R. Muth, and B. De Sutter. Compiler techniques for code
compaction. ACM Trans. Program. Lang. Syst., 22(2):378–415, Mar. 2000.

[39] K. Delaney, B. Beuchemin, and C. Cunningham. Microsoft SQL Server 2012 Internals.
2013.

[40] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher, N. Verma,
and M. Zwilling. Hekaton: Sql server’s memory-optimized oltp engine. In ACM SIG-
MOD, SIGMOD ’13, 2013.

[41] C. Duda, G. Frey, D. Kossmann, and C. Zhou. Ajaxsearch: crawling, indexing and
searching web 2.0 applications. PVLDB, 1(2):1440–1443, 2008.

[42] M. Elhemali, C. A. Galindo-Legaria, T. Grabs, and M. M. Joshi. Execution Strategies
for SQL Subqueries. In ACM SIGMOD, 2007.

[43] K. V. Emani, T. Deshpande, K. Ramachandra, and S. Sudarshan. DBridge: Translating
Imperative Code to SQL. In SIGMOD ’17, pages 1663–1666.

[44] K. V. Emani, K. Ramachandra, S. Bhattacharya, and S. Sudarshan. Extracting Equivalent
SQL from Imperative Code in Database Applications. In SIGMOD ’16.

[45] K. V. Emani and S. Sudarshan. Cobra: A framework for cost-based rewriting of database
applications. In 34th IEEE International Conference on Data Engineering, ICDE 2018,
Paris, France, April 16-19, 2018, pages 689–700, 2018.

[46] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for database appli-
cations. In ISSTA, pages 151–162, 2007.

[47] Reduce vs foldleft. https://stackoverflow.com/a/25158790/1299738.

[48] Create Function (MSDN), https://msdn.microsoft.com/en-us/library/ms186755.aspx.

[49] C. A. Galindo-Legaria and M. Joshi. Orthogonal optimization of subqueries and aggre-
gation. In SIGMOD, pages 571–581, 2001.

[50] R. A. Ganski and H. K. T. Wong. Optimization of Nested SQL Queries Revisited. In
ACM SIGMOD, 1987.

[51] G. Giorgidze, T. Grust, T. Schreiber, and J. Weijers. Haskell boards the ferry. In IFL,
pages 1–18. Springer, 2011.

[52] G. Graefe. The Cascades Framework for Query Optimization. IEEE Data Eng. Bull.,
18(3):19–29, 1995.

[53] G. Graefe and W. McKenna. The Volcano Optimizer Generator: Extensibility and Effi-
cient Search. In Intl. Conf. on Data Engineering, 1993.

[54] G. Graefe and W. J. McKenna. The Volcano optimizer generator: Extensibility and
efficient search. In Data Engineering, pages 209–218. IEEE, 1993.

[55] T. Grust, J. Rittinger, and T. Schreiber. Avalanche-safe linq compilation. VLDB, 3(1-
2):162–172, 2010.

133

[56] R. Guravannavar and S. Sudarshan. Rewriting procedures for batched bindings. PVLDB,
1(1):1107–1123, 2008.

[57] M. W. Hall, B. R. Murphy, S. P. Amarasinghe, S.-W. Liao, and M. S. Lam. Interproce-
dural analysis for parallelization. In LCPC, pages 61–80, 1995.

[58] S. R. Hardikar and N. L. Sarda. Cobol program and test data generator. In Masters
Dissertation. IIT Bombay, 1984.

[59] M. S. Hecht and J. D. Ullman. Flow graph reducibility. In STOC, pages 238–250, 1972.

[60] Hibernate. http://www.hibernate.org.

[61] M.-Y. Iu, E. Cecchet, and W. Zwaenepoel. Jreq: Database queries in imperative lan-
guages. In Compiler Construction, volume 6011, pages 84–103. Springer, 2010.

[62] Jasper Reports with Hibernate
http://jasperreports.sourceforge.net/sample.reference/hibernate/.

[63] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy caching.
Algorithmica, 3(1-4):79–119, 1988.

[64] K. Kennedy and J. R. Allen. Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann Publishers Inc., 2002.

[65] U. Khedker, A. Sanyal, and B. Karkare. Data Flow Analysis: Theory and Practice. CRC
Press, Inc., 1st edition, 2009.

[66] W. Kim. On Optimizing an SQL-like Nested Query. In ACM Trans. on Database Systems,
Vol 7, No.3, 1982.

[67] D. F. Lieuwen and D. J. DeWitt. Optimizing loops in database programming languages.
In Proceedings of the Third International Workshop on Database Programming Lan-
guages, DBPL3, pages 287–305, San Francisco, CA, USA, 1992. Morgan Kaufmann
Publishers Inc.

[68] Logical and Physical Operators Reference, https://technet.microsoft.com/en-
us/library/ms191158(v=sql.105).aspx.

[69] A. Manjhi, C. Garrod, B. M. Maggs, T. C. Mowry, and A. Tomasic. Holistic query
transformations for dynamic web applications. In ICDE, pages 1175–1178, 2009.

[70] M. Marcozzi, W. Vanhoof, and J.-L. Hainaut. Test input generation for database pro-
grams using relational constraints. In Proceedings of the Fifth International Workshop
on Testing Database Systems, page 6. ACM, 2012.

[71] MAhjong TOurnament SOftware https://code.google.com/p/matoso/.

[72] S. Mittal and J. S. Vetter. A survey of cpu-gpu heterogeneous computing techniques.
ACM Computing Surveys (CSUR), 47(4):69, 2015.

[73] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

[74] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers Inc., 1997.

134

http://www.hibernate.org
https://code.google.com/p/matoso/

[75] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

[76] Natively compiled stored procedures, https://msdn.microsoft.com/en-
us/library/dn133184.aspx.

[77] T. Neumann and A. Kemper. Unnesting arbitrary queries. In BTW, 2015.

[78] Performance overhead of SQL user-defined functions,
http://glennpaulley.ca/conestoga/2015/07/performanceoverhead-of-sql-user-defined-
functions/.

[79] How Functions can Wreck Performance, http://www.oraclemagician.com/mag/magic9.pdf.

[80] Subprogram inlining in oracle, https://docs.oracle.com/cd/b28359 01/appdev.111/-
b28370/inline pragma.htm.

[81] K. Pan, X. Wu, and T. Xie. Generating program inputs for database application testing.
In ASE, pages 73–82, 2011.

[82] C. Radoi, S. J. Fink, R. Rabbah, and M. Sridharan. Translating imperative code to mapre-
duce. In OOPSLA, pages 909–927. ACM, 2014.

[83] K. Ramachandra. Holistic Optimization of Database Application. PhD thesis, Indian
Institute of Technology, Bombay, Department of Computer Sc. & Engg., 2014.

[84] K. Ramachandra, M. Chavan, R. Guravannavar, and S. Sudarshan. Program transforma-
tions for asynchronous and batched query submission. TKDE ‘15, 27(2):531–544.

[85] K. Ramachandra and R. Guravannavar. Database-aware program optimization via static
analysis. IEEE Data Eng. Bull., 37(1):60–69, 2014.

[86] K. Ramachandra, K. Park, K. V. Emani, A. Halverson, C. A. Galindo-Legaria, and
C. Cunningham. Froid: Optimization of Imperative Programs in a Relational Database.
PVLDB, 11(4):432–444, 2017.

[87] K. Ramachandra and S. Sudarshan. Holistic optimization by prefetching query results.
In SIGMOD, 2012.

[88] Soften the RBAR impact with Native Compiled UDFs,
https://blogs.msdn.microsoft.com/sqlcat/2016/02/17/soften-the-rbar-impact-with-
native-compiled-udfs-in-sql-server-2016.

[89] PL/SQL Function Result Cache, http://www.oracle.com/technetwork/issue-
archive/2010/10sep/o57plsql088600.html.

[90] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and Extensible Algorithms for
Multi Query Optimization. In SIGMOD, 2000.

[91] ObjectWeb Consortium. Rice University bulletin board system
http://jmob.objectweb.org/rubbos.html.

[92] ObjectWeb Consortium. Rice University bidding system http://rubis.objectweb.org/.

[93] P. Seshadri, H. Pirahesh, and T. C. Leung. Complex Query Decorrelation. In ICDE,
1996.

135

[94] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. P. Gupta, and D. Vira. Generating test
data for killing SQL mutants: A constraint-based approach. In ICDE, 2011.

[95] X. Shi, B. Cui, G. Dobbie, and B. C. Ooi. Towards unified ad-hoc data processing.
SIGMOD, pages 1263–1274, 2014.

[96] B. Shneiderman and G. Thomas. An architecture for automatic relational database sytem
conversion. ACM TODS 1982, 7(2):235–257.

[97] J. E. Shopiro. Theseus - a programming language for relational databeses. ACM Trans.
Database Syst., 4(4):493–517, Dec. 1979.

[98] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts. McGraw
Hill, 6th ed., 2010.

[99] V. Simhadri, K. Ramachandra, A. Chaitanya, R. Guravannavar, and S. Sudarshan. Decor-
relation of user defined function invocations in queries. In ICDE, pages 532–543, March
2014.

[100] V. Simhadri, K. Ramachandra, A. Chaitanya, R. Guravannavar, and S. Sudarshan. Decor-
relation of user defined function invocations in queries. In ICDE, pages 532–543, March
2014.

[101] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat. Combinatorial sketch-
ing for finite programs. ACM Sigplan Notices, 41(11):404–415, 2006.

[102] Soot: A Java Optimization Framework
http://www.sable.mcgill.ca/soot.

[103] Spring Framework. https://spring.io/.

[104] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: A new approach to
optimization. In POPL, pages 264–276, 2009.

[105] F. Tip. A survey of program slicing techniques. Technical report, 1994.

[106] TPC. TPC-H Benchmark Specification, 2005, http://www.tpc.org.

[107] Transact SQL
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/language-elements-
transact-sql.

[108] Performance overhead of sql user-defined functions,
http://glennpaulley.ca/conestoga/2015/07/performance-overhead-of-sql-user-defined-
functions.

[109] Tsql scalar functions are evil, http://sqlblogcasts.com/blogs/simons/archive/-
2008/11/03/tsql-scalar-functions-are-evil-.aspx.

[110] Scalar functions, inlining, and performance, http://sqlblog.com/blogs/adam machanic/archive/2006/-
08/04/scalar-functions-inlining-and-performance-an-entertaining-title-for-a-boring-
post.aspx.

[111] T-sql user-defined functions: the good, the bad, and the ugly,
http://sqlblog.com/blogs/hugo kornelis/archive/2012/05/20/t-sql-user-defined-
functions-the-good-the-bad-and-the-ugly-part-1.aspx.

136

http://www.sable.mcgill.ca/soot
https://spring.io/

[112] J. D. Ullman and J. Widom. A First Course in Database Systems. Pearson, 2007.

[113] M. Veanes, N. Tillmann, and J. de Halleux. Qex: Symbolic SQL query explorer. In
LPAR, pages 425–446, 2010.

[114] B. Wiedermann, A. Ibrahim, and W. R. Cook. Interprocedural query extraction for trans-
parent persistence. In OOPSLA, pages 19–36, 2008.

[115] Wilos Orchestration Software http://www.ohloh.net/p/6390.

[116] C. Yan and A. Cheung. Leveraging lock contention to improve oltp application perfor-
mance. Proceedings of the VLDB Endowment, 9(5):444–455, 2016.

[117] J. Yang, P. Subramaniam, S. Lu, C. Yan, and A. Cheung. Powerstation: Automatically
detecting and fixing inefficiencies of database-backed web applications in ide. In 26th
ACM Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE), 2018.

[118] J. Yang, C. Yan, P. Subramaniam, S. Lu, and A. Cheung. How not to structure your
database-backed web applications: a study of performance bugs in the wild. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE), pages 800–
810. IEEE, 2018.

[119] J. Yang, C. Yan, P. Subramaniam, S. Lu, and A. Cheung. Powerstation: automatically
detecting and fixing inefficiencies of database-backed web applications in ide. In FSE,
pages 884–887. ACM, 2018.

[120] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and D. Srivastava. Reverse engineering
complex join queries. In SIGMOD, pages 809–820, 2013.

137

http://www.ohloh.net/p/6390

Appendix A

Translating Imperative Code to SQL

A.1 Proof Sketch for Loop to Fold Translation

We now present a sketch of the proof of correctness for theorem 1. We reuse the terms from
Algorithm 1, without describing them here again.
Theorem 1: Given a cursor loop region R, the value of a variable v after termination of the loop
is equivalent to the result of foldExpr for v obtained by LOOPTOFOLD(R), when executed on
the same input.
Proof Sketch: The proof is given in two parts. Part (a) proves correctness in the case of a single
loop, and part (b) proves correctness in the presence of nested loops.
Part (a): Here, we prove that F-IR translation for a single variable in a cursor loop using fold
is correct. Since LOOPTOFOLD operates on one variable at a time, correctness for multiple
variables follows. We use induction on the number of iterations of the loop (i.e., the number of
rows in the result set, in order).

The base case is 0 rows (empty result set). For the inductive step, let Qk denote the top k
rows of query Q, vk denote the value of v after k iterations of the loop, and tk denote the k’th
record of Q. Assume correctness for k iterations. We refer to preconditions P1 and P2 to claim
that vk+1 depends only on vk and the current tuple (tk+1). Thus,
vk+1 = e′acc(vk, tk+1)

= e′acc(fold[e′acc, v0, Qk], tk+1)
= fold[e′acc, v0, Qk+1] /* defn of fold */

Hence, proved.
Part (b): The procedure CONSTRUCTFIR first translates all sub-regions for a given region into
F-IR, before translating the region itself. In the case of a loop, all inner loops, if any, are
translated into F-IR before translation is attempted for the loop. Thus, at any point of time, F-
IR translation happens only for a single loop, whose correctness was proved in Part (a). Hence,
correctness for nested loops follows.

A.2 D-IR Construction

In Section 3.3.3, we gave an outline of D-IR construction for various types of regions. We now
describe the algorithms for D-IR construction in detail.

139

A.2.1 Simple Statement

Let s be a simple source language statement, with op being the operator of the contained source
language expression, and n1, n2 etc. being its operands. The ee-DAG for s is a node with
the equivalent ee-DAG operator for op as the root, and equivalent ee-DAGs for n1, n2 etc., as
children. A ve-Map is created with a single entry, with key as the target variable, and value as a
pointer to the ee-DAG root.

A.2.2 Basic Block

A basic block is treated as a special case of a sequential region (which we describe next) with
each statement being a sub-region. Initially, the first two statements are merged to form a
sequential region, and the result is merged with the next statement repeatedly, until the entire
block results in a single region.

A.2.3 Sequential Region

Given two regions r1 and r2, with eeDag1 and eeDag2 being their corresponding ee-DAGs,
veMap1 and veMap2 being their corresponding ve-Maps, such that r1 and r2 (in order) form a
sequential region r, the ee-DAG and ve-Map for r are obtained using the following algorithm.

• For each leaf in eeDag2 that is a 0 subscripted variable (i.e., initial value), check and if
present, replace it with ee-DAG obtained from a lookup in veMap1 with the variable as
key.

• The ee-DAG for r is the single ee-DAG obtained after step 1. In case eeDag1 and eeDag2
are disjoint after step 1, we combine them into a single ee-DAG using the NOP operator.

• Create a new map that is a union of entries from veMap1 and veMap2. In case of duplicate
keys, the entry from veMap2 is retained. This map constitutes the ve-Map for r.

A.2.4 Conditional Region

Consider three regions rc, rt and rf that form a conditional region r, with rc containing the
condition c, rt being the true region, and rf being the false region, eeDag-t and eeDag-f being
the ee-DAGs, and veMap-t and veMap-f being the ve-Maps for rt and rf respectively, the ee-
DAG and ve-Map for r are obtained using the following algorithm.

• Create a new ee-DAG and ve-Map for r.

• For each non local variable v modified inside r, create a conditional evaluation expression
with c as the condition, expression for v in eeDag-t as its true operand, and expression for
v in eeDag-f as its false operand (obtained by looking up in respective ve-Maps). Add
this node to the ee-DAG of r.

• If there is no entry for v in one of veMap1 or veMap2, then use its value at the beginning
of the region (v0).

• After creating the conditional evaluation expression, make an entry in the ve-Map of r
with v as the key and a pointer to the conditional evaluation expression as its value.

140

A.2.5 Loop Region

The ee-DAG for a loop region can be created as follows:

• Create a Loop node with the looping query and the loop body as its two children.

• For each variable v that is a key in the ve-Map of the loop body and is also live at the
program point immediately after the loop, add an entry (v, ND) to the ve-Map of the loop
region.

Here, ND stands for not yet determined. Uses of v after the loop region will point to ND
temporarily, until an expression for v over all iterations of the loop is obtained.

A.2.6 Functions

We classify functions into the following categories.
Library functions: Library functions that have an equivalent ee-DAG operator are represented
using that operator. If there is so such operator, then D-IR construction fails for the target
variable (v) of that statement, and target variables of statements which read the value of v after
this assignment.
User defined functions: For a user defined function, we use the following approach:

1. Create the IR separately for the function. Let e denote the ee-DAG expression for the
return value of the function. If an unknown statement is encountered inside the function,
fail. Formal parameters are region inputs, so their initial values are denoted by appending
a 0 subscript to the variable name.

2. If the above step succeeds, merge the function with its preceding region at the caller
location, by considering them to form a sequential region. We update the value of the
target variable (which is assigned the return value of the function, if any) in the ve-Map
of the caller region to point to e. Formal parameters are mapped to actual parameters and
resolved during the merge.

User defined procedures: User defined procedures, in addition to returning a value, can also
modify the input parameters such that the change in their values is reflected at the caller location.
They can be handled similar to functions, with the following additional step.

3. Remove all entries for local variables in the ve-Map for the procedure. Now, merge the
procedure with its preceding region at the caller location, by considering them to form a
sequential region (as described in Section A.2.3).

141

Publications based on this work

1. K. Venkatesh Emani, Karthik Ramachandra, Subhro Bhattacharya and S. Sudarshan, Ex-
tracting Equivalent SQL From Imperative Code in Database Applications, ACM Special
Interest Group on Management of Data (SIGMOD) 2016.

2. K. Venkatesh Emani, Tejas Deshpande, Karthik Ramachandra and S. Sudarshan, DBridge:
Translating Imperative Code to SQL, ACM Special Interest Group on Management of
Data (SIGMOD) 2017 (Demo paper).

3. Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani, Alan Halverson, Cesar
Galindo-Legaria and Conor Cunningham, Froid: Optimization of Imperative Programs
in a Relational Database, Proceedings of the VLDB Endowment (PVLDB) 2017.

4. K. Venkatesh Emani and S. Sudarshan, Cobra: A Framework for Cost Based Rewriting
of Database Applications, IEEE International Conference on Data Engineering (ICDE)
2018.

5. Pooja Agrawal, Bikash Chandra, K. Venkatesh Emani, Neha Garg and S. Sudarshan,
Test Data Generation for Database Applications, IEEE International Conference on Data
Engineering (ICDE) 2018 (Demo paper).

143

Acknowledgments

I am extremely grateful to have Prof. Sudarshan as my advisor. This Ph.D. would not have been
possible without his vision and guidance. His commitment to our work and constant support
kept me motivated, and inspired me to keep striving to cross the occasional hurdles. Working
with him has been a great learning experience, both professionally and personally.

I thank Prof. Uday Khedker, Prof. Amitabha Sanyal, and Prof. Krithi Ramamritham for
their regular feedback and valuable suggestions at various stages of my research. I thank Karthik
Ramachandra, who has been a mentor, friend and collaborator throughout my Ph.D. Thanks to
Bikash for being a collaborator and travel companion for all the conferences that we attended
together. I thank Ravindra Guravannavar and Prasanna Kumar for their inputs and our many
discussions. It was a pleasure working with the graduate students at Infolab, especially Subhro,
Tarun, Tejas, Mohit, Neha and Pooja; you made the lab a fun place to work in. Many thanks to
the CSE department staff, especially Vijay, Sunanda and Rupali for their help in all administra-
tive tasks.

My mother Indira and father Satyanarayana Murthy, both teachers, have been instrumental
in motivating me towards academics, and I thank them for supporting my decision to return to
university after a gap. I thank my wife Kaivalya for her unwavering support and encouragement,
and for accommodating my work priorities in this endeavor. My brother Siva has been my
constant companion and I am grateful for him. I thank my cousins for their support and the
many wonderful times that kept me buoyed in this journey. I thank my uncles Dr. Ravikrishna
Chebolu and Dr. Kameswara Rao Emani for inspiring me at various stages in my life to pursue
a Ph.D. My in-laws have been very supportive and encouraging of my academic commitments,
and I thank them for it.

I have been fortunate to find good friends who shared the ups and downs of Ph.D. along
with me. I am grateful to Vrinda and Om for having my back through everything in the last
five years. I thank Anshuj, Bharath, Chandra Prakash, Durgesh, Ramya, Saketh and Sridhar
for all the fun times and great memories we have shared over the years. I would also like to
express my gratitude to my colleagues at Flipkart – Ramakrishna, Neha, Ankur and Swagat –
for encouraging me in my decision to pursue higher education.

I thank TCS for supporting me with a Ph.D. fellowship, and SIGMOD for the travel grant
to attend and present at SIGMOD 2016.

K. Venkatesh Emani

145

	Abstract
	List of Figures
	Introduction
	Problem Overview and Motivation
	Summary of Contributions
	Organization of the Thesis

	Literature Survey
	Early Approaches
	Recent Approaches
	Batching of Query Results
	Prefetching Query Results
	Prefetching Query Results at the Earliest Program Point
	Pushing Computation to the Database
	Optimizing Transactions in Database Applications
	Optimizing User Defined Functions in Databases
	Optimizations for ORM Applications

	Summary

	Translating Imperative Code to SQL
	Introduction
	Overview
	DAG Based IR
	Background
	D-IR
	Algorithm for D-IR Construction

	F-IR Representation
	Fold
	Converting Loops to Fold

	F-IR Transformations
	Transformation Rules
	Generating and Using Equivalent SQL
	Application of Transformation Rules
	Extensions
	Limitations

	Related Work
	Experimental Evaluation
	Applicability
	Performance Impact

	Summary

	Cobra: A Framework for Cost-based Rewriting of Database Applications
	Introduction
	Motivating Example
	Background
	Volcano/Cascades AND-OR DAG
	Program regions

	AND-OR DAG Representation of Programs
	Region as a State Transition
	Region AND-OR DAG

	Transformations using IR
	F-IR Recap
	Integration into Region DAG
	Transformations

	Cost Model
	Related Work
	Experimental Evaluation
	Summary

	Froid: Optimization of Imperative Programs in a Relational Database
	Introduction
	Background
	Scalar UDF Example
	UDF Evaluation in SQL Server
	Drawbacks in UDF Evaluation
	Prior Approaches

	The Froid Framework
	Intuition
	The APPLY operator
	Overview of Approach
	Supported UDFs and queries

	UDF Algebrization
	Construction of Regions
	Relational Expressions for Regions
	Combining expressions using APPLY
	Correctness and Semantics Preservation

	Substitution and Optimization
	Compiler Optimizations
	Dynamic Slicing
	Constant Folding and Propagation
	Dead Code Elimination

	Design and Implementation
	Cost-based Substitution
	Imposing Constraints
	Supporting additional languages
	Implementation Details

	Evaluation
	Applicability of Froid
	Performance improvements
	Resource consumption

	Real-World UDF Examples
	Natively compiled UDFs
	TPC-H Queries with UDFs
	Scalar UDF Definitions
	TPC-H Queries Rewritten using UDFs

	Related Work
	Summary

	Other Applications of Static Analysis
	Rewriting ORDER BY Queries
	Introduction
	Background: Data Flow Analysis
	Data Flow Equations for Live Order Analysis
	Algorithm for Program Rewriting
	Summary

	Test Data Generation for Database Applications
	Introduction
	Query Extraction
	Test Data and Unit Test Generation
	Related Work
	Experiments
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work
	Program transformations for ORM Applications
	Cost-based program transformations
	Optimization of User Defined Functions
	Compiling Over-specified Data Structures
	Optimizing Interactions between Web Services and Clients

	Translating Imperative Code to SQL
	Proof Sketch for Loop to Fold Translation
	D-IR Construction
	Simple Statement
	Basic Block
	Sequential Region
	Conditional Region
	Loop Region
	Functions

