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ABSTRACT
Continuous speech separation (CSS) is an arising task in
speech separation aiming at separating overlap-free targets
from a long, partially-overlapped recording. A straightfor-
ward extension of previously proposed sentence-level separa-
tion models to this task is to segment the long recording into
fixed-length blocks and perform separation on them indepen-
dently. However, such simple extension does not fully address
the cross-block dependencies and the separation performance
may not be satisfactory. In this paper, we focus on how the
block-level separation performance can be improved by ex-
ploring methods to utilize the cross-block information. Based
on the recently proposed dual-path RNN (DPRNN) architec-
ture, we investigate how DPRNN can help the block-level
separation by the interleaved intra- and inter-block modules.
Experiment results show that DPRNN is able to significantly
outperform the baseline block-level model in both offline and
block-online configurations under certain settings.

Index Terms— Continuous speech separation, long
recording speech separation, dual-path RNN

1. INTRODUCTION

The task of speech separation has long been an active research
topic for speech processing. The permutation problem of la-
bel assignment is one of the fundamental problem in the su-
pervised learning [1] for speech separation. Deep clustering
(DPCL) was proposed in [2] to tackle the label permutation
problem by using an affinity-based objective function, which
is invariant to the permutation of speakers. Following the
DPCL, the deep attractor net (DANet) [3, 4] enables end-to-
end training and improves the performance. Permutation in-
variant training (PIT) [5,6] is another effective yet simple way
to solve the label permutation problem. In the last five years,
the performance has been significantly advanced thanks to the
progress in neural-based speech separation [6–23].

Most existing systems consider the problem configura-
tion where a short, segmented mixture utterance containing at
least two sources is provided as the system input. However,
such configuration is often invalid in two aspects in real-world

applications. First, the assumption that the input mixture is
always well-segmented in short segments is unrealistic since
daily conversations are continuous and can last for a relatively
long time. Second, the assumption that there are at least two
speakers in the mixture is typically not true, as in scenarios
such as group meetings where the overlap ratio is in general
less than 30% [24], that there are often long segments with a
single speaker speaking. This means that in real-world com-
munications where the sessions can be long and the overlap
ratio can be small, existing systems need to be properly mod-
ified to match the new data distribution.

There are several possible ways to process long record-
ings. One straightforward approach would be to apply sepa-
ration approach to the whole recording. However, this would
require knowing the total number of speakers in the mixture
and using separation approach that can handle a potentially
large number of speakers. This is challenging for most neural-
network-based approaches. Iterative separation frameworks
have recently been proposed to address an arbitrary number
of speakers [25–27]. In [28], iterative separation has been
extended to long recording by using a block-online process-
ing and making use of speaker embeddings estimated from
previous blocks to connect local processing blocks of a same
speaker. This separation scheme is realized using an iterative
extraction approach [25,26] combined with target speaker ex-
traction capabilities [29,30]. Although this approach can han-
dle an arbitrary number of speakers, the computational com-
plexity might significantly increase when the total numbers
of active speakers in the recording is high. Moreover, when
there are rapid speaker changes within a short period, the bias
information might be inaccurate and the number of extraction
iterations might be large. Recently, the continuous separa-
tion scheme (CSS) [31, 32] proposed to handle long record-
ings by splitting them into fixed-length blocks and perform
block-level separation independently. After the block-level
separation finishes, the outputs from different blocks are con-
catenated, or stitched, into long output streams where each
stream only contains non-overlapping speech. By using short
enough blocks, given the overlapping characteristics of real
recordings, it is reasonable to assume the number of speak-
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Fig. 1. A typical pipeline for continuous speech separation systems. The segmentation step splits the long recording into short
blocks. The separation step performs separation on the blocks. The stitching step concatenates the block-level separation
outputs to long streams which only contains nonoverlapped targets.

ers to be less than 2 or 3, and thus the existing sentence-level
separation systems trained for a small number of overlapping
speakers can be applied. Diarization performed on the sep-
arated output can handle the speaker counting and associa-
tion problem. However, though shown effective for practical
datasets [32, 33], CSS perform separation on a block-level,
and does not utilize the cross-block dependencies and thus
may have limited separation performance. For example, the
speaker activity information can be helpful in deciding the
number of active sources in adjacent blocks - one separation
output from a single-speaker block should be a silent signal,
and such silent signal can further be utilized by the next block
for both speaker activity detection and separation.

A recently proposed neural network architecture, the dual-
path RNN (DPRNN) [34], tried to address the long-sequence
modeling problem by using interleaved RNN layers in differ-
ent time scales. DPRNN splits a long sequence into shorter,
fixed-length blocks and applies intra- and inter-block RNNs
to perform local- and global-processing iteratively. Such seg-
mentation allows each of the RNNs to only receive a small
number of time steps in the entire sequence, and alleviates
the optimization difficulty during training. It is easy to find
that the segmentation applied in DPRNN is identical to the
segmentation of long recording in the local-level separation
systems described above, and the inter-block RNN is a good
candidate for modeling the cross-block dependencies.

In this paper, we investigate how DPRNN can be applied
in the CSS problem to help improve the block-level sepa-
ration performance. Instead of modeling the recording in
time-domain as with the original DPRNN, we use a conven-
tional time-frequency (T-F) masking framework with a longer
short-time Fourier transform (STFT) window size for the con-
sideration of computational complexity and memory usage.
We use the same configuration in DPRNN where a Local-
RNN is used for intra-block processing, a GlobalRNN is used
to capture the inter-block information, and the two RNNs

are applied in an interleaved way for a larger model capac-
ity. We also explore the block-online configuration where
the inter-block RNN is unidirectional instead of bidirectional,
which allows the system to be deployed into real-time appli-
cations such as real-time meeting transcription systems. Note
that a similar approach has been proposed in a very recent
work [35], however the initial experiments in [35] only con-
sidered a maximum number of two active speakers in the en-
tire recording that consists of close talk utterances, and per-
formed recording-level training with aligned output permuta-
tions across all the blocks. Here we consider the more real-
istic case where the number of active speakers in the record-
ings can be large. Moreover, we focus on block-level training
and do not assume the same output permutations in differ-
ent blocks. Experiment results show that the DPRNN archi-
tecture is able to significantly improve the separation perfor-
mance compared with the block-level baselines in both offline
and block-online configurations, proving the effectiveness of
DPRNN in the task of CSS.

The rest of the paper is organized as follows. Section 2
introduces the problem definition of the CSS and the configu-
ration of the baseline models. Section 3 describes the DPRNN
architecture for CSS. Section 4 presents the detailed experi-
ment setups. The results are analyzed and discussed in Sec-
tion 5. Section 6 concludes the paper.

2. CONTINUOUS SPEECH SEPARATION:
PROBLEM AND BASELINE

Figure 1 shows the overall pipeline for a conventional con-
tinuous speech separation (CSS) system. It typically contains
three steps: segmentation, separation, and stitching. The seg-
mentation step splits the long recording into blocks, and the
adjacent blocks typically contain an overlapped region. The
separation step applies any separation system to the blocks
and generates separated outputs. The stitching step concate-
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Fig. 2. Model design for the DPRNN architecture. After segmentation on the long input spectrogram, a linear bottleneck layer
is first applied to transform the feature dimension. The transformed feature is then passed to the LocalRNN layer for intra-block
processing, and then the output is passed to the GlobalRNN layer for inter-block processing. The procedure is repeated for
multiple stacks, and the output from the last stack is sent to a output layer with ReLU activation to generate the T-F masks for
the two targets.

nates the adjacent outputs based on any similarity measure
on the overlapped regions, and generates long output streams
within which the target sources are all nonoverlapping.

To formally describe the three steps, the input mixture is
denoted by w ∈ RM×T where M denotes the number of mi-
crophones and T denotes the total length. In this paper we
consider the single-channel scenario where M = 1. In T-F
masking systems, the magnitude spectrogram W ∈ RF×L is
calculated by the STFT on w, where F denotes the number
of frequency bins and L denotes the number of frames. The
segmentation step splits W into B blocks Db ∈ RF×K , b =
1, . . . B, with block size K and block hop size P , resulting
in a 3-D tensor T = [D1, . . . ,DB ] ∈ RF×K×B . The sep-
aration step generates C outputs from each of the blocks,
denoted by Ob ∈ RF×K×C , b = 1, . . . B, where C is typ-
ically assumed fixed. Given the assumption that the over-
lap ratio in real-world meetings is small and the number of
overlapped speakers is typically less than three, C can be
set to 2 to satisfy the requirement. This assumption also al-
lows us to bypass the problem of separating too many sources
in the entire recording, as in real-world meetings the total
number of active speakers can be more than 10 and asking
the model to generate so many outputs may cause troubles
in both model complexity and optimization. The stitching
step merges the outputs from adjacent blocks by comparing
the similarities of the overlapped regions between the former
block outputs and all permutations of the latter block outputs.
The overlapped regions of the adjacent blocks are averaged,
similar to the overlap-and-add processing. The final time-
domain outputs after the inverse STFT operation are denoted

as SOc ∈ RM×T , c = 1, 2, where each output only contains
separated, nonoverlapping speech signals.

3. DPRNN FOR CONTINUOUS SPEECH
SEPARATION USING LONG CONTEXT

DPRNN can be easily applied to the CSS problem. A
DPRNN layer contains an intra-block RNN and an inter-
block RNN, where the intra-block RNN, which we refer to
as the LocalRNN, is applied on each of the blocks indepen-
dently, and the inter-block RNN, which we refer to as the
GlobalRNN, receives the outputs from the LocalRNNs and
perform cross-block processing. Multiple DPRNN layers
can be stacked to increase the depth of the entire network.
Figure 2 shows the flowchart of the DPRNN architecture.

We follow the original model design of DPRNN. Before
the first DPRNN layer, a bottleneck fully-connected (FC)
layer is applied on the segmented blocks Db and maps them
to D̂b ∈ RN×K , where N is the dimension of bottleneck
feature. This operation is mainly for consideration on the
computational complexity. The transformed spectrograms
are then fed into the LocalRNN for intra-block processing:

Eb = fl(D̂b) (1)

where Eb ∈ RH×K is the output of the LocalRNN and fl(·)
is the mapping function defined by the LocalRNN, H is the
hidden dimension of RNN. The output Eb ∈ RH×K is then
passed to another FC layer to generate Êb ∈ RN×K , which
matches the feature dimension of D̂b, and a residual connec-



tion is added between D̂b and the layer-normalized (LN) out-
put Êb:

Lb = D̂b + LN(Êb) (2)

where Lb ∈ RN×K is the final output of the LocalRNN. All
outputs from all the blocks form another 3-D tensor L =
[L1, . . . ,LB ] ∈ RN×K×B , and the GlobalRNN is applied
on L across the third (block index) dimension. By rewriting
L into Lk = L[:, k, :] ∈ RN×B , k = 1, . . . ,K, the transform
of GlobalRNN can be written as:

Qk = fg(Lk) (3)

where Qk ∈ RH×B is the output of the GlobalRNN and fg(·)
is the mapping function defined by the GlobalRNN. Similarly,
a FC layer is applied on Qk to generate Q̂k that matches the
dimension of Lk, and LN is applied before the residual con-
nection:

Gk = L̂k + LN(Q̂k) (4)

where Gk ∈ RN×B is the final output of the GlobalRNN,
and can be fed into the next DPRNN layer for further pro-
cessing. The output of the last DPRNN layer, denoted by
Ĝ ∈ RN×K×B , is passed to a FC layer with ReLU activa-
tion to generate two T-F masks for each block M1

b ,M
2
b ∈

RF×K , b = 1, . . . , B. The masks are then applied to Db to
generate the spectrograms of the separated outputs S1

b ,S
2
b ∈

RF×K .
Since we focus on the block-level separation performance

during training, we optimize the model by calculating the
signal-quality measures between the block-level outputs and
references. Note that this implies that the output permutation
in different blocks can be different. A commonly-used train-
ing objective in many recent systems is the scale-invariant
signal-to-distortion ratio (SI-SDR) [36]. However, as there
are many single-speaker blocks in the long recordings and SI-
SDR cannot take an all-zero signal as the reference, we use
the signal-to-noise ratio (SNR) as our training objective:

SNR(s, ŝ) = 10 log10
‖ŝ‖2

‖ŝ− s‖2
(5)

where s, ŝ are the estimated and reference waveforms, re-
spectively. SNR has been used as the training objective in
sentence-level reverberant separation tasks and has shown at
least on par performance as SI-SDR [37].

For the optional stitching step, the stitching can be applied
on either the output spectrograms or waveforms. Empirically
we find that using the output spectrograms leads to a better
stitching accuracy than the waveforms.

4. EXPERIMENT DETAILS

4.1. Data simulation

We simulate a noisy reverberant dataset for all our experi-
ments. We randomly generate 3000 and 300 rooms for train-

ing and development, respectively. The sample rate for all
recordings is 16 kHz. The length and width of the rooms are
randomly sampled between 5 and 12 meters, and the height
is randomly sampled between 2.5 and 4.5 meters. A micro-
phone is randomly placed in the room, and its location is con-
strained to be within 2 meters of the room center. The height
of the microphone is randomly sampled between 0.4 and 1.2
meters. We randomly sample 10 candidate speaker locations
with the constraint that the locations are at least 0.5 meters
away from the room walls, and the height of the speakers are
between 1 and 2 meters. The reverberation time is uniformly
sampled between 0.1 and 0.5 seconds. Each of the room con-
figuration is used for 3 times, where 3-5 speakers from the
LibriSpeech corpus [38] are randomly sampled and placed at
randomly sampled locations from the 10 candidate speaker
locations. Multiple sentences are sampled from the selected
speakers and mixed at a uniformly sampled overlap ratio be-
tween between 30% and 60%. A simulated Gaussian noise
signal is then added to the mixture at a random SNR of 0 to
20 dB. The total length of the mixture is 90 seconds. This
leads to a total of 9000 training recordings and 900 develop-
ment recordings.

To further evaluate the generalization ability of the models
with respect to the recording length, we simulate three extra
test sets containing 2, 5, and 8 speakers with duration of 60
seconds, 150 seconds, and 240 seconds, respectively. The
overlap ratio of these test sets is all 30%.

4.2. Model configurations

For feature extraction, we use a 512-point STFT and 256-
point hop size in STFT to extract the spectrograms. The
block size K in the segmentation step is selected from
{50, 100, 200}, corresponding to {0.8, 1.6, 3.2} seconds,
respectively, to investigate the effect of the block size on the
separation performance. The baseline model we use applies
a deep RNN architecture where we stack multiple Local-
RNN layers. The LocalRNNs in DPRNN models are all
bidirectional LSTM (BLSTM) layers with 512 hidden units
in each direction. For the offline configuration in DPRNN,
the configuration of GlobalRNN is identical as that of the
LocalRNN, while for block-online configuration the Global-
RNN is a unidirectional LSTM with 512 hidden units. All
DPRNN models contain 2 LocalRNNs and 2 GlobalRNNs
which are interleaved with each other. The LocalRNNs in the
small baseline models are also bidirectional LSTM (BLSTM)
layers with 512 hidden units in each direction, while in large
baseline models they contain 768 hidden units in each di-
rection. This is to match the total model sizes of the large
baseline and DPRNN models for a fair comparison. All
baseline models contain 2 LocalRNNs.

We use the PaderTorch1 framework as the toolkit for the
experiments. The Adam optimizer [39] is used with the initial

1https://github.com/fgnt/padertorch



Table 1. Pre-stitching SNR (dB) on blocks with different overlap ratios for different models.

Models Model size
(M)

Block size
(seconds) Block-online Overlap ratio (%)

0 0-25 25-50 50-75 75-100
Local 7.0

3.2

Yes 16.8 8.8 9.6 8.5 7.8
Local 13.6 Yes 16.8 8.6 9.4 8.5 7.7
Global 13.9 No 17.0 8.3 9.7 8.7 8.0
Global 10.4 Yes 16.9 8.6 9.8 8.7 8.0
Local 7.0

1.6

Yes 17.1 8.5 9.1 9.1 7.9
Local 13.6 Yes 17.1 8.4 9.1 9.1 8.0
Global 13.9 No 17.2 8.3 9.6 9.7 8.4
Global 10.4 Yes 17.1 8.3 9.4 9.6 8.3
Local 7.0

0.8

Yes 16.1 8.0 8.3 8.5 7.8
Local 13.6 Yes 16.1 8.0 8.2 8.4 7.6
Global 13.9 No 16.2 7.9 8.4 8.9 8.4
Global 10.4 Yes 16.2 7.8 8.2 8.8 8.4

learning rate of 0.001. The learning rate is decayed by 0.95
for every two epochs. We train all the models for 100 epochs
with batch size of 2. Note that each sample in the batch con-
tains a single long recording, which further contains B blocks
of length K.

4.3. Evaluation

We evaluate the models in both pre-stitching and post-
stitching measures. The pre-stitching evaluation directly
calculates the block-level SNR scores between the outputs
and references. In this case, we report the results for different
overlap ratios independently. The post-stitching evaluation
stitches the outputs from all the blocks into recording-level
streams, and segments the streams by oracle segmentation
information (i.e. onset and offset information for each sen-
tence). The segmented streams are then compared with the
segmented reference signals.

5. RESULTS AND DISCUSSIONS

We start with the experiment results on the pre-stitching eval-
uation. Table 1 presents the SNR scores on the baseline (Lo-
cal) and DPRNN (Global) models. We first notice that the
performance of the models on the single-speaker blocks (0
overlap ratio) and low-overlap-ratio blocks (0-25% overlap
ratio) are all comparable, and it indicates that cross-block in-
formation is not really necessary when the speaker activation
is already sparse within a block. The performance of Global
models are consistently better in high-overlap-ratio blocks.
Note that although the overall overlap ratio in real-world long
recordings can be small, e.g. below 30%, such segmenta-
tion on the recordings will always lead to blocks with very
high overlap ratios. As the block size decreases, the number
of single-speaker blocks and high-overlap-ratio blocks will
increase, thus the performance improvement on such high-

overlap-ratio blocks is important. Moreover, the results of the
block-online configurations of the Global models are always
on par or better than the offline configurations across all set-
tings and overlap conditions. This shows that the block-online
DPRNN model is a good option for streaming separation ap-
plications which require a lower system latency. We also ob-
serve that increasing the model size of the Local models does
not lead to a better performance. The reason behind this ob-
servation it yet to explore, but one possible explanation is that
increasing the depth of the model might be more beneficial
than increasing the width. We leave this topic as the future
work.

We then consider the effect of stitching and perform
post-stitching evaluation. Table 2 provides the results on the
matched development set (3-5 speakers, 90-second long) and
unmatched extra test sets (2, 5, 8 speakers, 60, 150, 240-
second long, respectively). Note that following the existing
evaluation pipeline in PaderTorch, we use signal-to-distortion
ratio (SDR) in the mir eval toolbox as the metric [40]. For the
matched development set, we observe that the Global models
are always better than the Local models especially when the
block size becomes smaller. The performance of the Global
models are consistent across 3.2 and 1.6-second long blocks,
while the performance of Local models has an obvious degra-
dation. This shows that the cross-block modeling module is
able to assist the stitching step to achieve a higher accuracy.
For the unmatched test set, we first find that the performance
of the Local models are on par or better than the Global
models on the 3.2-second long blocks. It indicates that when
the block size is long enough, block-level separation systems
can already achieve a satisfactory performance. When the
block size decreases, the Global models become better than
the Local models, and the improvement is significant in 0.8-
second long blocks. As the block-online configuration of the
Global models achieves on par performance as the offline
configuration, we can conclude that the block-online DPRNN



Table 2. Post-stitching SDR (dB) for different models.

Models Model size
(M)

Block size
(seconds) Block-online Number of speakers

3-5 2 5 8
Local 7.0

3.2

Yes 11.3 14.0 13.0 12.9
Local 13.6 Yes 11.2 13.9 13.0 12.7
Global 13.9 No 11.3 14.1 12.8 12.4
Global 10.4 Yes 11.4 14.3 12.9 12.0
Local 7.0

1.6

Yes 10.8 13.6 12.7 12.5
Local 13.6 Yes 10.8 13.6 12.6 12.4
Global 13.9 No 11.4 14.0 12.9 12.2
Global 10.4 Yes 11.2 13.8 12.7 11.8
Local 7.0

0.8

Yes 8.9 11.5 10.6 10.3
Local 13.6 Yes 8.8 11.5 10.3 9.9
Global 13.9 No 10.1 12.7 11.5 10.8
Global 10.4 Yes 9.7 12.3 11.2 10.5

models are better designs especially in applications where a
low system latency is required.

Another observation on the 8-speaker recordings is that
the performance of the Global models are worse than the Lo-
cal models in both 3.2 and 1.6-second long blocks. One pos-
sible explanation is that as the Global models only received
up to 5 speakers during training, the models may not be able
to properly capture the cross-block dependencies with more
speakers. The Local models do not have such issue and have
a consistent performance. Moreover, the speaker activation
in 8-speaker recordings might be sparser, e.g. each speaker
may only contain two or three sentences, which makes the
model hard to generalize. More experiments are necessary to
correctly identify the problem.

On the other hand, the absolute performance of both Lo-
cal and Global models becomes much worse for 0.8-second
block size across all datasets. One reason for this observa-
tion is that as the stitching step relies on the overlapped re-
gions between adjacent blocks, a small block size contains a
short overlapped region and may make the stitching inaccu-
rate. This problem can be alleviated by adjusting the length
of the overlapped regions in adjacent blocks or by using the
post-stitching outputs as the system outputs for optimization,
and we also leave it as future work.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the problem of continuous
speech separation (CSS) where multiple speakers needed
to be separated from a long recording instead of a single
sentence. Existing sentence-level separation systems can be
directly applied to the CSS problem by segmenting the long
recording into shorter blocks and performing separation on
the blocks in parallel, however such pipeline cannot utilize the
cross-block dependencies which can be helpful on improving
the performance. Based on the recent progress on dual-path

RNN (DPRNN) architecture for long-sequence modeling,
we explored how DPRNN can be applied in the CSS prob-
lem to better make use of the inter-block information. We
conducted experiments on simulated noisy reverberant sep-
aration datasets with various configurations, and the results
showed that the DPRNN models were able to outperform the
block-level baseline models in both offline and block-online
configurations. The improvements were significant on small
block sizes, indicating that DPRNN is especially suitable for
applications where a small system latency is required.

Future works can be done in multiple aspects. From the
model design perspective, a more complicated design, as the
ones in [35], can be evaluated on the same datasets. Differ-
ent choices on the STFT window size can also be explored,
and time-domain processing is also a nature extension of the
current time-frequency domain processing pipeline. From the
parameter setting perspective, how to enable larger models to
achieve better performance is an important topic. From the
recording-level processing perspective, incorporate stitching
into the training pipeline to improve the stitching accuracy is
also interesting.
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[24] Özgür Çetin and Elizabeth Shriberg, “Analysis of overlaps in
meetings by dialog factors, hot spots, speakers, and collection
site: Insights for automatic speech recognition,” in Ninth inter-
national conference on spoken language processing, 2006.

[25] Keisuke Kinoshita, Lukas Drude, Marc Delcroix, and Tomo-
hiro Nakatani, “Listening to each speaker one by one with
recurrent selective hearing networks,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 5064–5068.

[26] Naoya Takahashi, Sudarsanam Parthasaarathy, Nabarun
Goswami, and Yuki Mitsufuji, “Recursive speech separation
for unknown number of speakers,” Interspeech 2019, pp.
1348–1352, 2019.

[27] Jing Shi, Xuankai Chang, Pengcheng Guo, Shinji Watanabe,
Yusuke Fujita, Jiaming Xu, Bo Xu, and Lei Xie, “Sequence
to multi-sequence learning via conditional chain mapping for
mixture signals,” arXiv preprint arXiv:2006.14150, 2020.



[28] Thilo von Neumann, Keisuke Kinoshita, Marc Delcroix, Shoko
Araki, Tomohiro Nakatani, and Reinhold Haeb-Umbach, “All-
neural online source separation, counting, and diarization for
meeting analysis,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2019 IEEE International Conference on. IEEE,
2019, pp. 91–95.

[29] Marc Delcroix, Katerina Zmolikova, Keisuke Kinoshita, At-
sunori Ogawa, and Tomohiro Nakatani, “Single channel tar-
get speaker extraction and recognition with speaker beam,” in
2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5554–5558.
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