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Abstract— Complex machine learning (ML) inference algo-
rithms like recurrent neural networks (RNNs) use standard
functions from math libraries like exponentiation, sigmoid, tanh,
and reciprocal of square root. Although prior work on secure 2-
party inference provides specialized protocols for convolutional
neural networks (CNNs), existing secure implementations of
these math operators rely on generic 2-party computation (2PC)
protocols that suffer from high communication. We provide new
specialized 2PC protocols for math functions that crucially rely
on lookup-tables and mixed-bitwidths to address this perfor-
mance overhead; our protocols for math functions communicate
up to 423× less data than prior work. Some of the mixed bitwidth
operations used by our math implementations are (zero and
signed) extensions, different forms of truncations, multiplication
of operands of mixed-bitwidths, and digit decomposition (a
generalization of bit decomposition to larger digits). For each
of these primitive operations, we construct specialized 2PC
protocols that are more communication efficient than generic
2PC, and can be of independent interest. Furthermore, our math
implementations are numerically precise, which ensures that the
secure implementations preserve model accuracy of cleartext. We
build on top of our novel protocols to build SIRNN, a library
for end-to-end secure 2-party DNN inference, that provides the
first secure implementations of an RNN operating on time series
sensor data, an RNN operating on speech data, and a state-
of-the-art ML architecture that combines CNNs and RNNs for
identifying all heads present in images. Our evaluation shows that
SIRNN achieves up to three orders of magnitude of performance
improvement when compared to inference of these models using
an existing state-of-the-art 2PC framework.

Index Terms—privacy-preserving machine learning; secure
two-party computation; recurrent neural networks; math func-
tions; mixed-bitwidths; secure inference

I. INTRODUCTION

In the problem of secure inference, there are two parties:
a server that holds a proprietary machine learning (ML)
model and a client that holds a private input. The goal is
for the client to learn the prediction that the model provides
on the input, with the server learning nothing about the
client’s input and the client learning nothing about the server’s
model beyond what can be deduced from the prediction itself.
Theoretically, this problem can be solved by generic secure
2-party computation (2PC) [49], [115]. Recently, this area
has made great strides with the works of [5], [10], [17]–[20],
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[25], [27], [32], [35], [37], [39], [47], [58], [64], [69], [73],
[83], [90]–[92], [99]–[102], [110] that have made it possible
to run secure inference on deep neural networks (DNNs).
Frameworks for secure inference like nGraph-HE [18], [19],
MP2ML [17], CrypTFlow [73], [99], and SecureQ8 [37]
go one step further and can automatically compile models
trained in TensorFlow/PyTorch/ONNX to 2-party or 3-party
computation protocols secure against semi-honest adversaries.

While such systems cover the secure inference of
some famous Convolutional Neural Networks (CNNs) (e.g.
ResNet [56], DenseNet [61] and MobileNet [105]) that ex-
clusively use simple non-linear functions such as ReLU and
Maxpool, other important architectures such as Recurrent
Neural Networks (RNNs) or architectures that combine RNNs
and CNNs [104] use math functions, such as exponentiation,
reciprocal square root, sigmoid and tanh, extensively. These
RNN-based architectures are the models of choice when deal-
ing with sequential or time series data like speech [36], [59],
[112]. Hence, for widespread adoption of secure inference,
especially in the RNN application domains, a robust support
for math functions is of paramount importance.

We focus on 2-party inference secure against semi-honest
adversaries1. In this setting, works that implement math func-
tions fall into three categories. First, works that develop
general purpose math libraries [9], [66] using high-degree
polynomials. Second, works that use boolean circuits to im-
plement math functions [102]. Third, works that use ad hoc
piecewise linear approximations [83] that require developer
intervention for each dataset and each model to balance
accuracy and latency, an unacceptable ask in the context of
automated frameworks for secure inference. All of these three
approaches rely on 2PC protocols from [41], [66], [115] and
suffer from huge performance overheads.

In this work, we design math functionalities that are both
provably precise and efficiently realizable via novel 2PC
protocols that we have developed. The performance of all
2PC implementations depend critically on the bitwidth. While
prior works use a uniform bitwidth for the whole inference,
our math functionalities use non-uniform (or mixed) bitwidths:

1We relegate comparisons with works that need additional parties for
security, e.g., 3-party computation (3PC) to Section VII.



they operate in low bitwidths and go to high bitwidths only
when necessary. Hence, we have developed new protocols that
enable switching between bitwidths and operating on values
of differing bitwidths. Our 2PC protocols for math functional-
ities have upto 423× lower communication than prior works
(Section VI-A). We have implemented these in SIRNN2, a
library for end-to-end DNN inference, and evaluated on RNN-
based models. While we focus on math functions occuring in
RNNs, our recipe for designing math functionalities is general
and can be used in other contexts. Furthermore, our math
functionalities and non-uniform bitwidth protocols can also
be used in non-RNN contexts and are of independent interest.

A. Results in detail

New approximations for math functions. In this paper,
we provide provably precise functionalities, i.e. cleartext
implementations, for exponentiation, sigmoid, tanh, and
reciprocal of square root, that have been designed to
minimize cryptographic overheads. Exponentiation is used
in RBF kernels [55], sigmoid and tanh in RNNs with
LSTM [59] and GRU [36] cells, and reciprocal square root
in L2Normalization, where a vector u is scaled down to
a unit vector by multiplying each entry of u by 1√

uTu
. In a

sharp departure from prior work in 2PC, our functionalities
follow the well-known paradigm of using lookup tables (LUT)
to get a good initial approximation of the math function
followed by an iterative algorithm such as Goldschmidt’s
iterations [50] to improve upon this approximation. We
take inspiration from embedded systems [51], [63], [72],
[113] where the goal of minimizing memory consumption
has led to efficient low-bitwidth implementations based
on fixed-point arithmetic. Our functionalities manipulate
variables with different bitwidths to maintain precision while
using minimal bitwidths. Furthermore, we formally verify
that our functionalities provide precision guarantees similar
to those provided by standard math libraries (Section V-D).

Novel 2PC Protocols. We provide efficient protocols for
bitwidth switching (both extensions and truncations) and
operating on values with differing bitwidths so that our
secure implementations mimic the behavior of the cleartext
math functionalities that operate on non-uniform minimal
bitwidths. As a baseline, another option is to use existing
2PC protocols that work with a uniform bitwidth (for all
values) that is large enough to accommodate all intermediate
values, i.e., avoids integer overflows. Similar to prior
works, this would force us to work over much larger rings
such as Z264 . Since the complexity of secure protocols
grows proportionally with the bitwidth used, our use of
non-uniform bitwidth leads to much more communication
efficient protocols than the naı̈ve approach of uniform
bitwidth. We consider 4 main building blocks to achieve
this: (a) Extension - to increase bitwidths, (b) Truncation
- to decrease bitwidths (and precision), (c) Multiplication

2Read as “siren”, SIRNN stands for Secure Inference for RNNs.

- to multiply an m and n bit integer into an (m + n)-bit
output to avoid overflows (this product is later truncated
to have the right bitwidth required for further operations),
and (d) Digit decomposition - to extract relevant substrings
(that we call digits) of the input bitstring using which table
lookups are performed. Moreover, the fixed-point cleartext
code of our benchmarks also uses non-uniform bitwidths in
linear layers such as matrix multiplications and convolutions,
and we use our protocols for efficient realizations of the same.

Secure Inference Library. We have implemented our pro-
tocols for math functions in a new library, called SIRNN3,
for DNN inference. We evaluate SIRNN on three state-of-the-
art models that use fixed-point arithmetic with non-uniform
bitwidths [72]. Two of the models, one for the standard
Google-30 dataset and the other for sports training, use an
RNN architecture that provides accurate analysis of time series
data [74]. For the Google-30 dataset, the task is to recognize
commands like “Yes” and “No” from speech data, whereas
the sports training model provides performance feedback to a
sportsperson from sensor readings. To the best of our knowl-
edge, this is the first empirical evaluation of secure inference of
RNNs on time series inputs like speech and sensor readings.
While it is possible to perform this inference using generic
2PC protocols, the overheads are intractable. To evaluate this
quantitatively, we implemented our benchmarks using the
state-of-the-art ABY [41] framework and this baseline is three
orders of magnitude worse in latency and communication.

Our third model uses an architecture that combines RNNs
and CNNs for the task of finding human heads in images [104].
This model uses the reciprocal square root function that is not
supported by any of the prior works on secure inference. Ad-
ditionally, it makes roughly 3 million calls to sigmoid and tanh
each. In contrast, prior works on secure inference evaluated on
models with less than 3000 calls to sigmoid/tanh [83], [102].
SIRNN can run the Heads model securely in under 7 minutes.
To summarize, we make three key contributions:

1) We provide cryptographically friendly new approxima-
tions to math functions exponential, sigmoid, tanh and re-
ciprocal square root that are provably precise (Section V).

2) We provide novel 2PC protocols for non-uniform
bitwidths (Section IV) that realize these math function-
alities efficiently (up to 423× lower communication than
prior work, Section VI-A).

3) We implement these secure implementations in the library
SIRNN that provides the first secure inference of RNNs
on speech and time series sensor data and a model
that combines RNNs and CNNs. SIRNN outperforms
state-of-the-art by three orders of magnitude in size of
benchmarks (given by number of calls to math functions),
latency and communication (Section VI-C). Furthermore,
because of the high numerical precision of our math
implementations, SIRNN has no loss in model accuracy.

3Implementation is available at https://github.com/mpc-msri/EzPC.

https://github.com/mpc-msri/EzPC


int16[2][2] W = ... ; int16[2] x = ...;
int16[2][2] U; int32[2] V; int32[2][2] T; int32[2] S;
U[0][0] = W[0][0]-x[0]; U[0][1] = W[0][1]-x[1]; , ...
T[0][0] = U[0][0]*U[0][0], ...
V[0] = ((T[0][0] >> 12) + (T[0][1] >> 12), ...
S[0] = exp(-V[0], 32, 12, 32, 30), ...
return sign(S[0] - S[1])

Fig. 1: Fixed-point code for SVM with RBF kernel

The rest of the paper is organized as follows. We first pro-
vide a motivating example and an overview of our technical re-
sults in Section II. After discussing the necessary background
in Section III, we provide our novel protocols in Section IV.
The math functionalities are discussed in Section V with
their formal verification in Section V-D. Section VI provides
our evaluation on microbenchmarks, i.e., math functions in
isolation (Table I & Table II), DNNs used by prior work
that use math functions (Table III), and our RNN-based
benchmarks (Table IV). Finally, we discuss other related work
in Section VII.

II. OVERVIEW

We now present an overview of our approximations for
math functions and the building block protocols required
to realize them. We begin with a motivating example of an
inference task that crucially uses math functions; this will
help us highlight concepts such as scale and bitwidth changes.

Motivating example. Support vector machines (SVMs)
are one of the most widely used classical ML algorithms.
While prior work on secure inference has used SVMs with
polynomial kernels [76], [80], [87], [98] (that helps SVMs
perform classification in exponentially large dimensions), the
more powerful and hence widely used Radial Basis Function
(RBF) kernels (that operate on infinite dimensions) [55]
crucially relies on computing exponentiations, i.e., ex, x < 0.
No prior work on secure 2PC inference supports RBF.

Consider the simple task of predicting rain using a feature
vector x ∈ R2, where x[0] and x[1] are temperature and
humidity respectively, and the output is yes (y = −1) or no
(y = 1). An SVM with RBF model infers the result using

sign

(
k∑
i=1

cie
−γ2||Wi−x||2

)

where the vectors Wi ∈ R2 are part of the model and
ci ∈ {−1, 1}. Here, ||Wi − x||2 is the square of the L2 norm
or the Euclidean distance between Wi and x. Let k = 2,
γ = 1, c0 = 1 and c1 = −1.

Scales and bitwidths. Since 2PC is much more efficient
over integers than floating-point [29], [73], automated float-
to-fixed converters [14], [24], [51], [72], [89], [94] can be
used to express this model as computation over integers
using fixed-point arithmetic. In fixed-point arithmetic,
r ∈ R is (approximately) represented using an `-bit integer

br ·2sc mod 2`, where ` is the bitwidth and s ∈ Z is the scale.
Hence, fixed-point integer a with scale s denotes a

2s ∈ R.
Consider the fixed-point code for our example given in Fig-

ure 1 generated by a float-to-fixed converter. The code stores
the input x and the model parameters W as 16-bit integers
with scale 12 (scale 12 is a common setting used in several
prior works on secure inference [73], [92], [99]). To compute
the inference result, it first computes Ui = Wi−x where U has
scale 12 using standard integer subtraction. Next, it computes
T = U�U , where � is pointwise multiplication. Since U has
16-bit entries, to avoid integer overflows, the entries of T must
be 32-bits wide. Standard integer multiplication accumulates
the scale and hence entries in T have a scale of 24. Thus, the
code right shifts the entries of T by 12 to bring the scale back
to 12 and accumulate them in Vi = ||Wi − x||2. Next, it calls
exponentiation on negative inputs of bitwidth 32 and scale 12
and produces the result S with bitwidth 32 and scale 30. The
final result is the sign of c0S[0] + c1S[1]. SIRNN incurs less
than 30KB of communication to run this code.

Observe that the fixed-point code in Figure 1 frequently
changes bitwidths and scales with each operation. As we
describe in Figure 3 (Section V), our math functionality
for exponential would require multiplying two 32-bit values
to compute an intermediate 64-bit result. Now, if we had
to implement Figure 1 using existing 2PC protocols, we
would be forced to use uniform bitwidth of at least 64 for
all variables. In particular, the bitwidths of x,W,U, T, V, S
will all be 64 instead of 16 or 32. More generally, the
requirement of a high bitwidth even in one operation,
coupled with the requirement of uniform bitwidths, raises
the bitwidths of all variables and operations throughout an
inference task, resulting in a communication blowup. In
contrast SIRNN provides novel protocols for these low-level
operations of switching bitwidth and scale and multiplying
values of small bitwidth into large bitwidth. Ensuring
that bitwidths used in secure code mimic the bitwidths
used in low-bitwidth cleartext code, is the key factor in
low communication complexity of our secure math functions.

Next we give an overview of our approximations for math
functions followed by building blocks for our protocols.

A. Our approximations for math functions

Our math functionalities are designed keeping cryptographic
costs in mind. We first use lookup tables (LUT) to get a
good initial approximation of the math functions and then
run an iterative algorithm such as Goldschmidt’s iterations
to improve upon this approximation. Larger LUTs lead to
more precise results. However, the communication of secure
protocol for LUTs grows linearly with size of LUT. Hence, we
need to strike a balance to obtain implementations that are both
precise and communication efficient. Thus, for exponentiation
for negative inputs, we break the input bitstring x into smaller
d-length substrings (via digit decomposition) that are used
to index multiple 2d-sized LUTs. The looked up values are
multiplied into high bit intermediate results which are then
truncated to match the specified output bitwidth and scale.



Sigmoid and tanh reduce to exponentiating negative values
and reciprocating values between 1 and 2. For the latter, Ito et
al. [63] provide a method for initial approximation of recip-
rocal using an LUT. After obtaining an initial approximation
with ` bit entries and ` − 2 bits of fractional part, we iterate
using standard Goldschmidt’s method. To make these itera-
tions communication efficient, we run them using fixed-point
arithmetic with non-uniform bit-widths. Our implementation
for reciprocal square root is similar but requires additional
work to shift the initial input to be between 1 and 2 using the
most significant non-zero bit (MSNZB).

B. 2PC protocols in SIRNN

The 2PC protocols in SIRNN are based on 4 building blocks:
(a) Extension; (b) Truncation; (c) Multiplication; and (d) Digit
decomposition. Our protocols mimic the low bitwidths used
by cleartext fixed-point code, and work over power-of-2 rings,
i.e. Z2` . Let λ = 128 be the computational security parameter.

a) Extension: This is used to lift values from smaller
ring Z2m to larger ring Z2n (i.e. m < n). Although ex-
tension has been considered in honest majority three-party
computation [67], there are no specialized 2PC protocols for
it. A natural baseline, however, is provided by Yao’s garbled
circuits4 (GC) [115], which requires around λ(4m+ 2n) bits
of communication to reconstruct and re-share. In contrast, our
protocol requires around λm bits of communication, that is
roughly 6× better than GC.

b) Truncation: This operation is used to reduce scale
and is often used after multiplication. We require 4 kinds of
truncation operations for `-bit values by s bits: logical and
arithmetic right shifts (that preserve the bitwidth), truncate-
and-reduce (outputs the truncated value in Z2`−s ), and division
by 2s. State-of-the-art protocol for arithmetic right shift (ARS)
was given by [99] with communication roughly λ(`+ s) that
can also be used for logical right shift and truncate-and-reduce.
We give a new protocol for logical/arithmetic right shift with
communication ≈ λ`, i.e., independent of λs. Moreover, most
of our math functionalities require only truncate-and-reduce
that decreases both scale and bitwidth. We show how to
achieve this in only ≈ λ(s+1) bits of communication. Finally,
our fixed-point benchmarks also require a division by power-
of-2 operation that is different from ARS for negative x and
outputs dx/2se. Our protocol for this division requires roughly
4.5× less communication than GC.

c) Multiplication: We consider the functionality for mul-
tiplying an m-bit integer with an n-bit integer to produce an
` = (m + n)-bit output. This choice of ` ensures that there
are no overflows. A similar functionality has been considered
in the 3-party setting [67] that extends both operands to `
bits and then invokes existing multiplication protocols over
` bits. This approach can be used in 2PC setting as well
using our optimized protocols for extension (that are 6× better
than GC). We provide an alternate protocol that requires 1.5×

4Depth optimized GMW [49] has higher communication than GC for our
functionalities.

less communication than the naı̈ve approach of extend-then-
multiply.

d) Digit Decomposition: This splits an `-bit value into
c = `/d digits of d-bits. It can be realized using GC with
communication λ(6`− 2c− 2) bits. We propose an optimized
protocol that requires communication of ≈ λ(c − 1)(d + 2)
bits, that is, roughly 5× lower than GC. We build on digit
decomposition for an efficient protocol for MSNZB required
to realize the functionality for reciprocal square root.

III. PRELIMINARIES

A. Math functions and ULP errors

The math functions have irrational outputs which are impos-
sible to represent exactly in finite number of bits. When using
a finite-bit representation, like floating-point or fixed-point, the
most precise implementation is the one that generates correctly
rounded results, i.e., the output of the implementation is a
representable number that is closest to the ideal R result.
However, because of Table maker’s dilemma, such implemen-
tations are computationally very expensive [45]. Consequently,
standard math libraries like GNU’s or Intel’s libm don’t
return the correctly rounded results.

ULP error. The deviation between the finite-bit output and
the exact result can be quantified in three ways: absolute error,
relative error, and “units in last place” or ULPs. The former
two have serious issues and the “most natural way to measure
rounding error is in ulps” [48]; standard math libraries use
ULPs to report the precision of their implementations [4],
[111]. To see why this is the case, observe that if r is a
very small real number, then the absolute error between r
and r′ = 2r, i.e., |r − r′| = |r|, is small as well. Hence,
a low absolute error can be achieved even when every bit
of the output is incorrect. Relative error, given by | r−r

′

r |,
remedies this situation and r′ = 2r leads to high relative errors
irrespective of the magnitude of r. However, the relative error
is undefined for r = 0. ULP errors have the nice property that
they are always well-defined and don’t grow or shrink with
the magnitude of r. At a high level, the ULP error5 between
an exact real result r and the library output a is the number of
representable numbers between a and r [79], [106]. We show
an example in Figure 2.

Intel’s SVML [4] has ULP error below 4 and MKL [111]
guarantees ULP error below 1. It is important for the ULP
error to be low for reusability of the library implementations
as a low error gives the developers an assurance that the
library is producing precise results inasmuch as the underlying
representation permits.

B. Threat Model

We consider 2-party computation secure against a static
semi-honest adversary running in probabilistic polynomial
time. That is, we consider a computationally bounded adver-
sary A that corrupts one of the parties at the beginning of the
protocol execution, follows the protocol specification, but tries

5See [48] for the formal definition of ULPs.



Fig. 2: The computed result exp(x) is in error of 3 ULPs
from the mathematically exact result ex. Dots denote the
representable numbers.

to learn additional information about the honest party’s input.
We argue security using the simulation paradigm [26], [49],
[81]. For any function f to be computed, consider following
two interactions: a real interaction where P0 and P1 interact
using the protocol specification in the presence of A and the
environment Z and the ideal interaction where P0, P1 send
their inputs to the trusted functionality F that computes f
and sends the outputs to the parties. We argue that for every
real adversary A, there is an ideal adversary S such that no
environment Z interacting externally with the adversaries can
distinguish between real and ideal interactions. Our protocols
invoke several sub-protocols and for ease of exposition we
describe them using the hybrid model, which is the same as
a real interaction except that the sub-protocol executions are
replaced with calls to the corresponding trusted functionalities
– protocol invoking F is said to be in the F-hybrid model.

C. Notation

Let λ be computational security parameter. Uppercase
L,M,N denote 2`, 2m, 2n, respectively. [k] refers to the set
{0, . . . , k − 1}. 1{b} denotes the indicator function that is
1 when b is true, and 0 otherwise. We use the natural one-
to-one correspondence between {0, 1}` and ZL. Consider the
lossless lifting operators ζ` that maps an element of ring ZL
to Z and ζ`,m for m > ` that maps an element of ring
ZL to ZM . For brevity, we suppress these operations when
their unambiguous use can be deduced from the context. For
an element x ∈ ZL, int(x) and uint(x) refer to the signed
and unsigned values in Z respectively, where the signed case
corresponds to the 2’s complement representation. uint(x) is
defined as ζ`(x) and int(x) = uint(x) −MSB(x) · L, where
MSB(x) = 1{x > 2`−1} is the most significant bit. For
x, y ∈ ZL, wrap(x, y, L) is 1 if x + y > L over Z and 0
otherwise. Finally, consider the operator ∗m : Z × Z → ZM
where x ∗m y = x · y mod M . When one or both inputs are
from some integer ring ZL, we use uint() and int() to map
the element to Z.

Fixed-Point Representation. We encode real numbers as
elements in ZL using their fixed-point representation. Fixed-
point representation in ZL defines 2 variables, ` and s, where `
is the bitwidth, s is the resolution (or, fractional part bitwidth)
referred to as the scale and ` − s is the bitwidth for the
integer part. A real number x ∈ R is encoded into its fixed-
point representation x̂ ∈ ZL with bitwidth ` and scale s as
x̂ = Fix (x, `, s) = bx·2sc mod L. The reverse mappings from
fixed-point representation to reals are urt(`,s)(a) = uint(a)/2s

for unsigned numbers and srt(`,s)(a) = int(a)/2s for signed
numbers, where division is over R.

D. Cryptographic Primitives

Secret Sharing. We use 2-out-of-2 additive secret sharing
schemes over different power-of-2 rings [16], [107]. For
x ∈ ZL, we denote its shares by 〈x〉` = (〈x〉`0, 〈x〉`1) such
that x = 〈x〉`0 + 〈x〉`1 mod L and Pb holds 〈x〉`b for b ∈ {0, 1}.
When ` = 1, i.e., over Z2, we use 〈x〉B to denote boolean
shares. In our protocols, we write “P0 & P1 hold 〈x〉`.” to
denote that Pb holds 〈x〉`b for b ∈ {0, 1}.
Oblivious Transfer. Consider 2-party functionality 1-out-of-k
oblivious transfer (OT) denoted by

(
k
1

)
-OT`, where one party

is the sender with k `-bit messages x0, . . . , xk−1 ∈ {0, 1}`
and the other party is the receiver with an index j ∈ [k]. The
receiver learns xj as the output, and the sender learns nothing.
We realize this functionality using the OT extension protocol
from [70], which optimizes and generalizes the protocol from
[62]. Additionally, we use the 1-out-of-2 correlated OT (COT)
functionality

(
2
1

)
-COT`, which is defined as follows: sender

inputs a correlation x ∈ ZL, receiver inputs a choice bit
j ∈ {0, 1}, and the functionality outputs a random element
r ∈ ZL to the sender and −r + j · x to the receiver. We
instantiate this functionality with the COT protocol from [11].
Excluding the one-time setup cost for the base OTs,

(
k
1

)
-OT`

and
(
2
1

)
-COT` require 2λ+k` and λ+` bits of communication,

respectively, and execute in 2 rounds6. For the special case of
k = 2,

(
2
1

)
-OT` requires λ+ 2` bits of communication [11].

E. 2PC Functionalities

For a 2-party functionality F , we say that “P0 & P1 invoke
F(x, y) to learn 〈z〉`” to mean that P0 with input x and P1

with input y invoke F and learn arithmetic shares of z over
ZL, i.e., P0 gets 〈z〉`0 and P1 gets 〈z〉`1. We write “F(〈x〉`)”
to mean that F takes 〈x〉`0 from P0 and 〈x〉`1 from P1. In our
protocols, we use the following 2-party functionalities.

Millionaires’/Wrap: The `-bit Millionaires’ functionality,
F`Mill takes as input x ∈ {0, 1}` from P0 and y ∈ {0, 1}`
from P1 and returns 〈z〉B such that z = 1{x < y}. The `-
bit wrap functionality, F`Wrap on same inputs returns 〈z〉B
such that z = wrap(x, y, L). Note that F`Wrap(x, y) =

F`Mill(L − 1 − x, y). Recently, [99] gave an efficient
protocol for F`Mill with communication less than7 λ`+14`
bits with log ` rounds.
AND: The functionality FAND takes as input (〈x〉B , 〈y〉B)
and returns 〈x∧y〉B . FAND can be realized using Beaver
bit-triples [15] and [99] gave a protocol for FAND with
λ+ 20 or 148 bits8 of total communication.

6Recently, MOTION [23] gave a COT protocol with similar communication
and overall 2 rounds. However, their protocol requires only a single round
of communication assuming precomputed ROT correlations. The total round
complexity of some of our protocols can benefit from this COT.

7For ease of exposition, we use this rough upper bound to compute an
upper bound of communication of most of our protocols.

8The best known communication for FAND is 138 bits [42], however, its
implementation isn’t available.



Boolean to Arithmetic (B2A): The `-bit B2A functionality,
F`B2A, takes boolean shares 〈x〉B and outputs arithmetic
shares of the same value, i.e., 〈x〉`. We use the COT based
protocol from [99] with communication λ+ ` bits.
Multiplexer (MUX): The `-bit MUX functionality, F`MUX,
takes as input 〈x〉B and 〈y〉` and outputs 〈z〉` such that
z = y if x = 1 and 0 otherwise. We provide an optimized
protocol that reduces communication from 2(λ+2`) [99]
to 2(λ+ `) (see Appendix A).
Lookup Table (LUT): The LUT functionality for table
T with M entries of n-bits each, FT,m,nLUT takes as
input 〈x〉m and outputs 〈z〉n such that z = T [x]. It
can be realized using a single call to

(
M
1

)
-OTn with

communication 2λ+Mn bits [42].

IV. BUILDING BLOCK PROTOCOLS

In this section, we describe our building block protocols
that we combine later to obtain protocols for math library
functions in Section V. Our protocols extensively use the
existing 2PC functionalities described in Section III-E. In
addition, they invoke the functionality F`Wrap&All1s that takes
as input x ∈ {0, 1}` from P0 and y ∈ {0, 1}` from P1

and outputs (〈w〉B ||〈e〉B) such that w = wrap(x, y, L) and
e = 1{(x+ y mod L) = L− 1}. We show that this function-
ality can be realized with nearly the same cost as F`Wrap by
making a white-box use of the protocol for F`Mill from [99]
(Appendix B). The resulting protocol has log ` rounds and
at most λ` + 14` bits of communication. Below we describe
our protocols for extension, truncation, multiplication, digit
decomposition and MSB-to-wrap optimization that applies
extensively to our math functionalities.

A. Zero Extension and Signed Extension
Zero and signed extension functions are used to extend

the bitwidths of unsigned and signed numbers, respectively.
More precisely, for an m-bit number x ∈ ZM , we define
zero extension (resp. signed extension) to n-bits (n > m) by
y = ZExt(x,m, n) ∈ ZN (resp. y = SExt(x,m, n) ∈ ZN ),
such that uint(y) = uint(x) (resp. int(y) = int(x)) holds. In
Algorithm 1, we describe our protocol for Fm,nZExt that takes as
input 〈x〉m and outputs 〈y〉n, where y = ZExt(x,m, n). This
protocol requires logm+ 2 rounds and less than λ(m+ 1) +
13m+ n bits of communication.

Correctness of our protocol can be argued as fol-
lows: By correctness of FmWrap and Fn−mB2A , it holds that
w = wrap(〈x〉m0 , 〈x〉m1 ,M) and y =

∑1
b=0(〈x〉mb − M ·

〈w〉n−mb ) mod N . Over Z, w = 〈w〉n−m0 + 〈w〉n−m1 − 2n−m ·
wrap(〈w〉n−m0 , 〈w〉n−m1 , 2n−m). Thus, M ∗n w = M ∗n
(〈w〉n−m0 +〈w〉n−m1 ). Also, over Z, x = 〈x〉m0 +〈x〉m1 −w ·M .
Hence, x mod N = y.

Our protocol for signed extension, i.e., Fm,nSExt , uses the
following equation over Z:

int(x) = x′ − 2m−1, for x′ = x+ 2m−1 mod M. (1)

This gives9 SExt(x,m, n) = ZExt(x′,m, n)− 2m−1.

9A similar relation was used in [44] for truncation.

Algorithm 1 Zero Extension, Πm,n
ZExt:

Input: P0 & P1 hold 〈x〉m.
Output: P0 & P1 get 〈y〉n for y = ZExt(x,m, n).

1: P0 & P1 invoke FmWrap(〈x〉m0 , 〈x〉m1 ) and learn 〈w〉B .
2: P0 & P1 invoke Fn−mB2A (〈w〉B) and learn 〈w〉n−m.
3: For b ∈ {0, 1}, Pb outputs 〈y〉nb = 〈x〉mb −M ∗n 〈w〉n−mb .

As a baseline, one can use garbled circuits (GC) to real-
ize zero and signed-extensions with communication cost of
λ(4m+2n−4) bits, i.e., roughly 6× the cost of our protocols.

B. Truncation

We consider four types of truncation operations for ring
ZL as follows: We denote the logical and arithmetic right-
shift operators by �L and �A, respectively, whose inputs
are outputs are in ZL. Next, we define TR(x, s) (Truncate &
Reduce x by s-bits) that takes inputs in ZL, drops the lower s-
bits from the bit-representation of x and outputs the truncated
value in smaller ring, Z2`−s . Additionally, our benchmarks also
require the C-style division (quotients are rounded towards 0)
where the divisor is a power-of-2.

Algorithm 2 Logical Right Shift, Π`,s
LRS:

Input: P0 & P1 hold 〈x〉`.
Output: P0 & P1 get 〈x�Ls〉`.

1: For b ∈ {0, 1}, Pb parses 〈x〉`b as an `-bit string ub||vb, where
ub ∈ {0, 1}`−s and vb ∈ {0, 1}s.

2: P0 & P1 invoke FsWrap(v0, v1) and learn 〈c〉B .
3: P0 & P1 invoke F`−sWrap&All1s(u0, u1) and learn 〈d〉B ||〈e〉B .
4: P0 & P1 invoke FAND(〈c〉B , 〈e〉B) and learn 〈t〉B .
5: For b ∈ {0, 1}, Pb sets 〈w〉Bb = 〈d〉Bb ⊕ 〈t〉Bb .
6: P0 & P1 invoke F`B2A(〈c〉B) and learn 〈c〉`.
7: P0 & P1 invoke FsB2A(〈w〉B) and learn 〈w〉s.
8: For b ∈ {0, 1}, Pb outputs ub − 2`−s ∗` 〈w〉sb + 〈c〉`b.

Logical Right Shift. In Algorithm 2, we describe our protocol
for F`,sLRS that takes as input 〈x〉` and outputs 〈x�Ls〉`. The
idea is as follows: Consider x ∈ ZL and 〈x〉`. Also, for b ∈
{0, 1}, let 〈x〉`b = ub||vb where ub ∈ {0, 1}`−s and vb ∈
{0, 1}s. Then, it can be shown that x�Ls = u0 + u1− 2`−s ·
wrap(〈x〉`0, 〈x〉`1, L)+wrap(v0, v1, 2

s) [21]. A simple protocol
for F`,sLRS computes shares of wrap terms over `-bits and s-
bits separately. We further optimize this protocol using the
following lemma (proof appears in Appendix C):

Lemma 1. Let x ∈ ZL, 〈x〉` be shares of x and for b ∈ {0, 1},
〈x〉`b = ub||vb, where ub ∈ {0, 1}`−s and vb ∈ {0, 1}s. Define
c = wrap(v0, v1, 2

s), d = wrap(u0, u1, 2
`−s), e = 1{u0 +

u1 mod 2`−s = 2`−s− 1} and w = wrap(〈x〉`0, 〈x〉`1, L), then
it holds that w = d⊕ (c ∧ e).

Using this lemma, our protocol only uses wrap computations
over ` − s and s bits and a call to FAND functionality. As
another optimization, while invoking FB2A on shares of w,
we go to arithmetic shares over Z2s (and not ZL). Overall
communication cost is less than λ(`+ 3) + 15`+ s+ 20 and



rounds required are log `+ 3.

Arithmetic Right Shift. Our protocol for F`,sARS that outputs
〈x�As〉` builds upon F`,sLRS using the relation [44]:
x�As = x′�Ls − 2`−s−1, where x′ = x + 2`−1. Hence, it
has the same cost as Π`,s

LRS. Prior state-of-the-art protocol for
arithmetic right shift is from CrypTFlow2 [99] that runs in
log `+2 rounds with communication λ(`+s+2)+19`+14s
bits. Note that unlike our protocol, its communication grows
multiplicatively in λ with both ` and s.

Truncate and Reduce. Many of our protocols can benefit
from truncate and reduce to the smaller ring over
logical/arithmetic right shift operations that output shares
in the original ring. At a high level, our protocol for
F`,sTR that outputs 〈TR(x, s)〉`−s is as follows: Using the
above notation, TR(x, s) = u0 + u1 + wrap(v0, v1, 2

s).
Hence, we can skip the computation of shares of w,
i.e., steps 3–7 can be skipped. Overall communication is
λ(s + 1) + ` + 13s bits. The best solution using prior
techniques is: TR(x, s) = (x�As) mod 2`−s, which would
incur the same cost as the state-of-the-art ARS protocol [99],
i.e., λ(`+ s+ 2) + 19`+ 14s bits.

Division by power-of-2. In addition to arithmetic right shift,
the fixed-point code for ML benchmarks require C-style di-
vision by power-of-2 to preserve model accuracy. Consider
the functionality F`,sDivPow2 that takes 〈x〉` as input and outputs
〈z〉` such that z = dint(x)/2se mod L for z < 0 and
z = bint(x)/2sc mod L for z > 0. We give an overview of
our protocol in Appendix C that requires roughly λ(`+2s+4)
bits of communication. To the best of our knowledge, no
prior work explicitly builds a protocol for this functionality.
A garbled circuits implementation, costs λ(8`+ 2s− 6) bits.

C. Multiplication with non-uniform bitwidths

Our machine learning models as well as math library
functions (see Section V) use multiplication operation with
operands of different bit-widths that outputs a value in the
larger ring. Below, we describe these functions and their
protocols for both the unsigned and the signed case.

Unsigned Multiplication with non-uniform bitwidths. Consider
the functionality Fm,nUMult that takes 〈x〉m and 〈y〉n as input and
returns 〈z〉`, where z = x ∗` y, for ` = m + n. In contrast,
all prior works on secure inference [64], [83], [90], [92], [99],
[102], use m = n = `. A naı̈ve way to realize this functionality
is to first extend both the inputs to `-bits and then use standard
multiplication, i.e., multiply Fm,`ZExt(〈x〉m) and Fn,`ZExt(〈y〉n)
using existing protocols for uniform bit-widths. We give a
new custom protocol for multiplying values of non-uniform
bitwidths that beats this naı̈ve approach by roughly 1.5×. Our
protocol builds on the functionality Fm,nCrossTerm : ZM × ZN →
ZL × ZL that is defined as Fm,nCrossTerm(x, y) = 〈z〉`, where
z = x ∗` y. We describe our protocol for Fm,nCrossTerm in
Appendix D1 that carefully uses

(
2
1

)
-COT (to minimize overall

Algorithm 3 Unsigned Multiplication, Πm,n
UMult:

Input: P0 & P1 hold 〈x〉m and 〈y〉n.
Output: P0 & P1 get 〈z〉`, where z = x ∗` y and ` = m+ n.

1: For b ∈ {0, 1}, let xb = 〈x〉mb and yb = 〈y〉nb .
2: P0 and P1 invoke the following functionalities.
3: Fm,nCrossTerm(x0, y1) and learn 〈c〉`.
4: Fn,mCrossTerm(y0, x1) and learn 〈d〉`.
5: FmWrap(x0, x1) to learn 〈wx〉B .
6: FnWrap(y0, y1) to learn 〈wy〉B .
7: FmMUX(〈wy〉B , 〈x〉m) to learn 〈g〉m.
8: FnMUX(〈wx〉B , 〈y〉n) to learn 〈h〉n.
9: Pb outputs xb ∗` yb+ 〈c〉`b+ 〈d〉`b−N ∗` 〈g〉mb −M ∗` 〈h〉nb for
b ∈ {0, 1}.

communication) similar to the techniques of generating Beaver
triples [15]. The communication complexity of this protocol
is µ(λ+ µ/2 + 1/2) +mn, where µ = min(m,n).

By definition of ∗`, we wish to compute uint(x) ·
uint(y) mod L, where ` = m+ n. Let x = x0 + x1 mod M
and y = y0 + y1 mod N . Algorithm 3 gives our protocol for
Fm,nUMult that builds on the following: Over Z,

uint(x) · uint(y) = (x0 + x1 − 2mwx) · (y0 + y1 − 2nwy)

= x0y0 + x1y1 + x0y1 + x1y0

− 2mwxy − 2nwyx− 2`wxwy, (2)

where wx = wrap(x0, x1,M) and wy = wrap(y0, y1, N).
Taking a mod L, removes the last term. In the protocol, party
Pb computes xbyb as (xb ∗` yb) locally and invokes Fm,nCrossTerm

to compute shares of cross-terms xby1−b. Wraps are computed
using FWrap and multiplied to values using FMUX.

The communication complexity of our protocol is roughly
λ(3µ + ν) + µ(µ + 2ν) + 16(m + n) where µ = min(m,n)
and ν = max(m,n). In contrast, communication complexity
of naı̈ve approach of extend-then-multiply that uses our opti-
mized protocols for extension is roughly 3λ(µ+ν)+(m+n)2+
15(m+ n), i.e., roughly 1.5× more than our new protocol.

We note that the same ideas also work for the setting
` < m + n by using an appropriate protocol for Fm,n,`CrossTerm

with specific value of `. Similarly, we define the multiplication
functionality Fm,n,`UMult which internally invokes Fm,n,`CrossTerm,
where the additional superscript denotes the bitwidth of the
output. Our protocols for math library functions also uses this
setting for better efficiency.

Signed Multiplication with non-uniform bitwidths. Consider
the functionality Fm,nSMult that takes 〈x〉m and 〈y〉n as input
and returns 〈z〉`, where z = int(x) ∗` int(y), for ` = m + n.
Let x′ = x+ 2m−1 mod M,y′ = y + 2n−1 mod N such that
x′ = x′0+x′1 mod M and y′ = y′0+y′1 mod N . Our protocol
for Fm,nSMult builds on the following equations over Z:

int(x) · int(y) = (x′ − 2m−1) · (y′ − 2n−1) from Eq. 1

= x′ · y′ − 2m−1y′ − 2n−1x′ + 2m+n−2

= x′ · y′ − 2m−1(y′0 + y′1 − 2nwy′)

− 2n−1(x′0 + x′1 − 2mwx′) + 2m+n−2,



where wx′ = wrap(x′0, x
′
1,M), wy′ = wrap(y′0, y

′
1, N).

In the protocol, parties can compute the shares of x′, y′

locally. All terms in the final expression can be computed and
added locally except z1 = x′y′ and z2 = 2`−1(wx′ + wy′).
Since the final expression needs to be computed mod L, we
can compute shares of z1 in ZL using a call to Πm,n

UMult. We
piggyback the computation of boolean shares of wx′ and wy′
on Πm,n

UMult, which already computes them in steps 5&6. Note
that 2`−1wx′ = 2`−1(〈wx′〉B0 + 〈wx′〉B1 − 2〈wx′〉B0 〈wx′〉B1 )
and taking a mod L gets rid of the last term. Hence,
2`−1(〈wx′〉B + 〈wy′〉B) are correct arithmetic shares of z2
in ZL. Thus, we can do signed multiplication with a single
call to Πm,n

UMult and no additional cost.
We also consider the signed-multiplication functionality
Fm,n,`SMult , where the output bitwidth ` < m + n. The above
discussion on signed-multiplication holds in this case as well,
and thus, Πm,n,`

SMult has the same cost as Πm,n,`
UMult.

Matrix Multiplication and Convolutions. Two commonly used
operations in machine learning are matrix multiplications and
convolutions that build on element-wise multiplications.
Consider matrix multiplication of A ∈ Zd1×d2M and
B ∈ Zd2×d3N , where we would like to use our protocol
for Fm,nUMult. Now, each element in the output product matrix
is a result of d2 multiplications and d2 − 1 additions and
even when the result of multiplication is stored in the larger
ring ZL, ` = m+ n, the value can overflow due to additions.
One way to avoid this overflow is to extend the result of
element-wise products by e = dlog d2e bits and then do
the additions. However, this method is quite expensive as
the number of extensions needed would be d1d2d3. We
significantly reduce this cost as follows: Since the cost of
FCrossTerm depends on the smaller of the two bitwidths,
we extend the values in the matrix of larger bitwidth by
e bits. Then we perform the matrix multiplications into
Z2m+n+e , ensuring that there are no overflows. Moreover,
similar to the OT-based matrix multiplication from prior
works [92], [99], we also exploit the multi-use of input
matrix elements to optimize the cost of computing (matrix)
cross-terms in our protocol. Our protocol has communication
complexity roughly λ (3d1d2 (m+ 2) + d2d3 (n+ 2)) +
d1d2d3

(
(2m+ 4)(n+ e) +m2 + 5m

)
bits for m 6 n

ignoring lower order terms. We describe our protocol formally
in Appendix D2 along with exact communication complexity.
Above ideas easily extend to computing convolutions as well.

Multiply and Truncate. In most of our protocols, we first
invoke Fm,n,`SMult followed by F`,sTR , where ` 6 m + n. Hence,
for ease of exposition, we define the functionality Fm,n,`,sSMultTR for
signed multiplication and truncate-reduce that takes 〈x〉m and
〈y〉n as input and returns 〈z′〉`−s such that z = int(x)∗` int(y)
and z′ = TR(z, s).

D. Digit Decomposition and MSNZB

We consider the functionality F`,{di}i∈[c]DigDec that decomposes
an `-bit number into c sub-strings or digits of lengths {di}.

More formally, F`,{di}i∈[c]DigDec takes 〈x〉` as input and outputs
〈zc−1〉dc−1 , . . . , 〈z0〉d0 such that x = zc−1|| . . . ||z0.

For an `-bit integer x, MSNZB(x) refers to the index of the
most significant non-zero-bit. That is, MSNZB(x) = k ∈ [`],
if xk = 1 and xj = 0 for all j > k. Consider the functionality
F`MSNZB that takes as input 〈x〉` and outputs {〈zi〉B}i∈[`] such
that zi = 1 if MSNZB(x) = i and 0 otherwise.

We describe the protocols for F`,{di}i∈[c]DigDec and F`MSNZB in
Appendix E and F, respectively.

E. MSB-to-Wrap Optimization

Our protocols above for extension, truncation and multipli-
cation make use of the following step: Parties P0, P1 hold
〈x〉` and compute 〈w〉B , where w = wrap(〈x〉`0, 〈x〉`1, L).
This is either computed through an explicit call to F`Wrap

(e.g., extension and multiplication) or computed via wrap of
lower and upper bits (e.g., truncation). We show that shares
of w can be computed with much less communication and
rounds if the parties either know the mx = MSB(x) in the
clear or shared form. The MSB refers to the most significant
bit of a number. In our math library implementations in
Section V, this condition is true for almost all invocations.
For instance, in exponential, when multiplying the values
from multiple LUTs, we know that all operands are positive,
i.e., MSB of all inputs to multiplication is 0. We call this
optimization MSB-to-Wrap and the idea is as follows: We can
write w = ((1 ⊕ mx) ∧ (m0 ⊕ m1)) ⊕ (m0 ∧ m1), where
mb = MSB(〈x〉`b) for b ∈ {0, 1}. With this, given shares of
mx, boolean shares of w can be computed using a single call
to
(
4
1

)
-OT1, i.e., 2λ+ 4 bits of communication and 2 rounds.

Also, when mx is publicly known, this can be computed using(
2
1

)
-OT1, i.e., λ+2 bits. The cost of our protocols with above

optimization are provided in Table V.

V. MATH LIBRARY FUNCTIONS

In this section, we provide our cleartext implementations for
math functions exponential, sigmoid, tan hyperbolic (tanh),
and reciprocal square root as well as the protocols for the
same. Note that these functions are impossible to implement
exactly using finite-bit arithmetic, and hence, our implemen-
tations realize them approximately (Section V-D). Below, we
use the notation from Section III-C and Section III-D. For
a mathematical function f , we consider the functionality
Fm,s,n,s

′

f that takes as input the shares 〈x〉m and outputs 〈y〉n
such that srt(n,s′)(y) ≈ f(srt(m,s)(x)).

Our math function implementations rely on functions dis-
cussed in Section IV, and we recall some of them here.
We denote signed-extension of an m-value to an n-value
by SExt(x,m, n) with n > m. Next, we denote truncate-
and-reduce by s-bits using TR(x, s) that takes a value x of,
say, `-bits, drops lower s bits and returns the corresponding
(`−s)-bit value. Finally, we use a signed multiplication where
the operands and the output can have unequal bitwidths. It
is denoted by x ∗` y, where x and y are, say, m and n-
bit integers, respectively, and the output of multiplication is
z = int(x) · int(y) mod L.



A. Exponential

Consider the math functionality Fm,s,n,s
′

rExp with rExp(z) =
e−z , z ∈ R+ described in Figure 3. Intuitively, the correctness
of this functionality, i.e., srt(n,s′)(y) ≈ rExp(srt(m,s)(x)),
relies on rExp(srt(m,s)(x)) = rExp(2d(k−1)−sxk−1) · . . . ·
rExp(2−sx0). Each rExp call on the RHS can be computed
approximately using a lookup table L of size 2d with s′+2 bit
entries of scale s′. Since the entries of the LUTs are between
0 and 1 with scale s′, it is sufficient to have a bitwidth of
s′ + 2. For instance, when m = n = 16, d = 8, and s′ = 14
we use two LUTs where first maps the upper 8 bits of x and
second maps the lower 8 bits of x. Final output is computed
by multiplying the two 16-bit looked up values from the two
LUTs into a 32-bit number followed by an appropriate truncate
and reduce operation to get 16-bit y with scale 14. We formally
verify that for m, s, n, s′ used in our evaluation, our choice of
d ensures precise results in Section V-D.

The protocol for this functionality can be built easily relying
on the protocols described in Section IV. Step 1 can be
implemented by a call to the digit decomposition functionality,
FDigDec. The LUTs in Step 2 can be looked up using FLUT

(Section III-E). These s′ + 2-bit values are multiplied using
a tree-based multiplication using Fs

′+2,s′+2,2s′+2,s′

SMultTR to get an
s′ + 2-bit number with scale s′ in Step 3. Finally, Step 4
extends g to an n-bit value using Fs

′+2,n
SExt . Table II gives our

concrete numbers and compares with prior work.

Functionality Fm,s,n,s
′

rExp (〈x〉m)

1) Let x = xk−1|| . . . ||x0, xi ∈ {0, 1}d, i ∈ [k], dk = m.
2) For i ∈ [k], let Li : {0, 1}d → Z2s

′+2 s.t. Li(j) =
Fix
(
rExp(2di−sj), s′ + 2, s′

)
.

3) Compute g = Lk−1[xk−1] ∗ . . . ∗ L0[x0], g has bitwidth
s′ + 2 and scale s′.

4) Return 〈y〉n for y = SExt(g, s′ + 2, n).

Fig. 3: The functionality Fm,s,n,s
′

rExp for a parameter d.

B. Sigmoid and Tanh

Consider the math functionality Fm,s,n,s
′

sigmoid where
sigmoid(z) = 1

1+e−z can be written as

sigmoid(z) =


0.5, if z = 0

1
1+rExp(z) , if z > 0

rExp(−z) 1
1+rExp(−z) , if z < 0

Hence, sigmoid can be built by extending the math function-
ality Fm,s,n,s

′

h such that h(z) = 1
1+rExp(z) , z ∈ R+ described

in Figure 4. This functionality calls FrExp that we described
above, followed by a call to a functionality to approximate the
reciprocal that we describe next.

For computing the reciprocal, we rely on the Goldschmidt’s
algorithm [50] that iterates on an initial approximation [63].
This initial approximation requires that we only compute

Functionality Fm,s,n,s
′

h (〈x〉m)

1) 〈u〉s
′+2 ← Fm,s,s

′+2,s′

rExp (〈x〉m).
2) 〈w〉s

′+2 ← Fs
′+2,s′

Rec (〈2s
′
+ u〉s

′+2).
3) Return SExt(w, s′ + 2, n).

Fig. 4: The functionality Fm,s,n,s
′

h .

reciprocal of values v such that 1 6 srt(`,s)(v) < 2 which
is true for the case of h and sigmoid.

We describe the math functionality F`,sRec in Figure 5 that
maps inputs v with bitwidth ` and scale s to outputs of same
bitwidth and scale. Since 1 6 srt(`,s)(v) < 2, in Step 1, d = 1.
We use the g most significant bits of the fractional part to index
into the LUT Lrec in Step 2 whose entries are described in [63].
The initial approximation w has bitwidth s+ 1 and scale s. If
the number of Goldschmidt iterations t is set to 0, then FRec

outputs initial approximation sign extended to output bitwidth,
i.e., SExt(w, s + 1, `). We formally verify that for m, s, n, s′

used in our evaluation, our choice of parameters for FrExp and
FRec ensures precise results for Fsigmoid in Section V-D.

Note that this functionality crucially utilizes arithmetic over
variable bitwidth and extension/truncation operations and these
steps require our efficient protocols from Section IV. Table I
gives our concrete numbers and compares with prior work.

Functionality F`,sRec(〈v〉
`)

Computes the initial approximation w as follows [63]:
1) v = d||e||f , d ∈ {0, 1}`−s, e ∈ {0, 1}g , f ∈ {0, 1}s−g .
2) c0||c1 = Lrec(e), c0 ∈ {0, 1}g+4 and c1 ∈ {0, 1}2g+3.
3) c2 = SExt((c0 ∗s+4 f), s+ 4, s+ g + 4).
4) w′ = 2s−g+1 ∗s+g+4 c1 − c2, w = TR(w′, g + 3).

Goldschmidt’s method for t iterations.
1) p1 = 2s − TR(v ∗2s+2 w, s).
2) q1 = 2s + p1, a1 = q1.
3) For i ∈ {2, . . . , t} do

a) ai = TR(ai−1 ∗2s+2 qi−1, s).
b) pi = TR(pi−1 ∗2s+2 pi−1, s).
c) qi = 2s + pi.

4) Return SExt(at, s+ 2, `).

Fig. 5: The functionality F`,sRec for a parameters g, t.

Tanh. The math functionality Fm,s,n,s
′

Tanh where Tanh(z) =
ez−e−z

ez+e−z = 2 · sigmoid(2z)− 1 can be realized using Fsigmoid.

C. Reciprocal of Square Root

In ML, reciprocal square root is typically used to scale down
vectors ~u of large magnitude to unit vectors by dividing each
entry of the vector with 1√

uTu
. The reciprocal square root

function maps x to 1√
x

, for x > 0. If x is small then to
avoid divide-by-zero errors a small public constant ε is added
to x and 1√

x+ε
is computed instead. Hence, we present our

mathematical functionality F`,s,`,s
′

rsqrt in Figure 6 for the math
function rsqrt(z) = 1√

z
where z > ε.



This functionality follows a similar template of first comput-
ing an initial approximation for reciprocal square root followed
by Goldschmidt’s iterations. The initial approximation 10 re-
quires 1 6 x < 2, and hence, first we perform a range
reduction to map arbitrary x of the form y.z to x′ of the form
1.z′ that satisfies this constraint. This requires computing the
most significant non-zero bit (MSNZB) of x (Step 1). Note
that MSNZB(x) = k ∈ [`] if xk = 1 and all xi = 0 for all
i > k. The normalized value x′ has bitwidth ` and scale `−2.
Next, we use g most significant bits of z′, i.e., e and the parity
of k − s, i.e., B, to compute the initial approximation via a
lookup table Lrsqrt whose entries are as follows:

Lrsqrt(e||B) = Fix

(
1√

(B + 1)(1 + urt(g,g)(e))
, g + 4, g + 2

)

Functionality F`,s,`,s
′

rsqrt (〈x〉`)
Normalizes x to x′ as follows:

1) k = MSNZB(x) ∈ [`].
2) A = 2`−2−k, B = (s− k) mod 2.
3) C = 2d

s−k
2
e+b `−s−1

2
c.

4) x′ = x ∗` A.
Computes the initial approximation w as follows:

1) x′ = d||e||f, d ∈ {0, 1}2, e ∈ {0, 1}g, f ∈ {0, 1}`−2−g .
2) w = Lrsqrt(e||B), w ∈ {0, 1}g+4.

Goldschmidt’s method for t iterations:
1) x′′ = TR(x′, `− 3− s′), q0 = B ? x′′ : TR(x′, 1).
2) a0 = 2s

′−g−2 ∗s′+2 w, p0 = a0.
3) For i ∈ {1, . . . , t} do

a) Yi = TR(pi−1 ∗2s′+2 pi−1, s
′).

b) qi = TR(qi−1 ∗2s′+2 Yi, s
′).

c) pi = 3 · 2s
′−1 − (qi�A1).

d) ai = TR(ai−1 ∗2s′+2 pi, s
′).

Uses reciprocal square root of x′ to compute the same for x:
1) Return TR(at ∗`/2+s′+3 C,

⌊
`−s−1

2

⌋
) mod L.

Fig. 6: The functionality F`,s,s
′

rsqrt for parameters g, t.

We formally verify that for `, s, s′ in our evaluation, our
choice of g, t ensures precise results for Frsqrt (Section V-D).

We build a protocol for Frsqrt as follows: We consider
the functionality FMSNZB that outputs the shares of one-hot
encoding of MSNZB(x) and give a protocol for the same
in Appendix F. It is easy to compute the terms A,B,C
using dot-products of this one-hot vector with publicly known
vectors. For our initial approximation, we rely on protocols
for FDigDec and FLUT. The Goldschmidt’s iterations crucially
utilize arithmetic over variable bitwidth and truncation oper-
ations and each of these steps require our efficient protocols
from Section IV. Table II gives our concrete numbers and
compares with prior work.

10Although we would have liked to use the initial approximation provided
by [63], there seems to be some typographical errors in the published
equations and we are unable to correct them.

D. Formal verification of our Math functionalities

It is desirable for math libraries to have a formal proof of
correctness about their purported numerical precision. Such
a proof establishes that for all possible inputs, the ULP
error (Section III) between the math implementation and the
exact real result is small. For small bitwidths (e.g. 6 32)
that are used in ML (Section VI-C), it is tractable to prove
these bounds on ULP error using exhaustive testing, whereas
for 64-bit floating-point or 64-bit fixed-point math libraries,
these proofs can either be interactive [54], [77] or fully
automatic [38], [78], [108]. Since our focus is on math libraries
for ML, we choose the exhaustive testing approach for our
math library, specifically, we 1) run our implementations on
all possible inputs, 2) compare the ULP error between each
output and the infinite precision real result, and 3) report the
maximum observed ULP error as the bound. For step 2, we
need the ability to compute math functions to arbitrary degrees
of precision – this is offered by the GNU MPFR library [45].

We prove ULP error bounds for bitwidth 16 (Section VI-C)
and appropriate input/output scales, sx and sy , and choose
parameters d, g, and t accordingly to ensure high precision.
Note that given a bitwidth `, a proof via exhaustive testing
requires 2` tests. For exponential, we set d = 8 and prove that
∀sx, sy ∈ [8, 14], the maximum ULP error is 3. For sigmoid
and tanh, we set d = 8, g = d sy−22 e and t = 0, and prove that
∀sx, sy ∈ [8, 14] the maximum ULP error is 3 for sigmoid
and 4 for tanh. For reciprocal square root, we choose inputs
x > ε where ε = 0.1, and set g = d sy2 e and t = 1. We prove
that ∀sx, sy ∈ [4, 13], the maximum ULP error is 4.

Thus, using exhaustive testing, we prove that our math
implementations are precise for chosen parameters and provide
standard precision guarantees that are expected from math
libraries viz. ULP error < 5; Intel’s SVML [4] also provides
math implementations with 4 ULP error. We use the same
parameter setting described above for the empirical evaluation.

VI. EVALUATION

In this section, we empirically compare our protocols for
math functions with prior works and describe the results of our
ML case studies. The closest work to ours is MiniONN [83],
the only prior work on secure inference that has been evaluated
on an RNN. MiniONN proposes a recipe to obtain piecewise
linear approximations to sigmoid/tanh that are then evaluated
using its protocols. Our secure implementations of sigmoid are
an order of magnitude better in communication (Table I). Note
that no prior work on 2-party secure inference (including Min-
iONN) provides secure implementations of exponentiation and
reciprocal square root; we evaluate them in Table II. General-
purpose MPC frameworks like MP-SPDZ [66] also provide
semi-honest 2PC implementations of math functions [3] that
are compatible with the standard (power-of-2 ring-based)
fixed-point representation. However, the communication of our
protocols is up to two orders of magnitude lower. Alternatives
that use representations such as field-based representations or
floating-point also suffer from high communication overheads.



Next, we evaluate our library SIRNN for DNN inference on
end-to-end ML models. First, we evaluate SIRNN on models
with math functions considered by priors works [83], [102].
Since they evaluate sigmoid and tanh using generic 2PC pro-
tocols, SIRNN has an order of magnitude less communication
(Table III). Next, we evaluate SIRNN on RNNs for sports
training and audio keyword spotting that use GRU cells, which
are composed of sigmoid and tanh operators. There are two
ways to securely evaluate our math functionalities, with our
2PC protocols and with generic 2PC protocols for mixed
arithmetic and boolean compute [25], [32], [41], [95]. We
evaluate both and observe that SIRNN communicates over
500× less data for both the RNNs (Table IV). Finally, we
evaluate SIRNN on a recent model architecture that combines
CNN operators and RNN operators to find the human heads
in images with state-of-the-art accuracy [104]. We provide
the first secure implementation for this complex model; its
secure implementation requires all the protocols described in
this paper including reciprocal square root and takes less than
7 minutes on our evaluation set up:
System Details. We use a set up where the 2 machines are
connected via a 377 MBps LAN network with 0.8 ms RTT.
Both the machines have commodity hardware with a 4-core
3.7 GHz Xeon processor and 16 GBs of RAM.
Implementation Details. The users of SIRNN express their
DNNs as a combination of calls to SIRNN’s C++ library
functions. These functions include matrix multiplication, con-
volutions, MBConv blocks, L2 Normalization, batch normal-
ization, broadcasting; pointwise operators like sigmoid, tanh,
exponential, reciprocal square root, matrix addition, Hadamard
product; comparison-based operators like argmax, maxpool,
ReLU, and ReLU6. The last four functions use protocols
from [99] and the rest use our building blocks. The library
functions take scales as arguments and are templated on
the bitwidths. The SIRNN library is implemented using 28K
lines of C++. We statically generate 36 LUTs that consume
additional 35K LOC.

A. Microbenchmarks

a) Sigmoid: In Table I, we compare our protocol with
prior work for generating sigmoid output with 12-bits of
precision (i.e., scale 12). We report absolute numbers for
time taken and communication for both our protocols and
prior work, as well as improvement factor of our protocols
in parentheses. We follow this pattern for all the tables
in this section. We focus on sigmoid as the numbers for
tanh are similar. One sigmoid evaluation with our protocols
incurs less than 5KB of communication and produces precise
results with at most 3 ULPs error. In ML, sigmoid is usually
computed pointwise over all the entries in a tensor. Hence,
one needs to compute sigmoid of a large number of instances
when dealing with realistic ML benchmarks. Although the
communication to compute n sigmoid instances grows linearly
with n, empirically we have observed that the time taken or the
latency grows sub-linearly with n (columns 2 to 5 of Table I),
which helps our implementations to scale well to large tensors

(Section VI-C). The cost of rounds amortizes better for large
tensors resulting in the sub-linear growth in latency.

As a baseline, we consider the recipe of MiniONN that
approximates math functions with piecewise linear approxi-
mations and provides protocols to evaluate these splines. More
precise approximations require more number of pieces. To get
an ULP error below 5, MiniONN needs a 48-way spline which
provides poor performance when evaluated securely because
of a 70× communication overhead.

For the RNN benchmark that MiniONN considers (Sec-
tion VI-B), the precision offered by the 48-piece spline is an
overkill and a 12-piece spline suffices to maintain the cross
entropy loss. Although this 12-piece spline is more efficient
than 48-piece spline, its performance is still much worse than
our protocols and incurs a 19× communication overhead.
Furthermore, this 12-piece spline incurs an error of 104 ULPs.
Hence, our implementations are superior in both precision and
performance. While a 12-piece spline suffices for this bench-
mark, MiniONN remarks that other benchmarks need splines
with more number of pieces that are even more expensive to
compute. Because our implementations are guaranteed to be
numerically precise, they can be used as-is with no loss in
model accuracy (Section VI-C).

DeepSecure [102] uses garbled circuits (GC) to evaluate
DNNs that use sigmoid and tanh activations. We checked with
the authors of DeepSecure and the circuits for math functions
are not available. Hence, we cannot compute the ULP errors
of their implementations. However, DeepSecure reports the
number of non-XOR gates that can be used for performance
estimates. We used state-of-the-art for GC implementation,
i.e., EMP-Toolkit [1], [52], [53], to obtain these performance
estimates that are better than the performance reported by
DeepSecure. The communication of our protocols is 25×
lower (4th row of Table I).

MP-SPDZ [66], a general-purpose MPC framework, pro-
vides 2 baseline sigmoid implementations for 2PC [3]: Poly-
based, which uses a range reduction and Taylor series poly-
nomials to compute exponential followed by division, and
PL-based, which is a built-in piecewise linear spline. The
former implementation incurs error comparable to us but
communicates 201× more, while the latter is more than an
order of magnitude inferior in precision and communication
(5th and 6th row of Table I).

While we focus on power-of-2 rings, there are other works
on secure implementations of sigmoid that use field-based or
floating point representations. Field-based protocols perform
poorly for non-linear computations like truncation and com-
parisons, which are abundant in fixed-point representations
of DNNs [64], [90], [99]. Similarly, it is well-known that
the protocols over floating-point are much slower than fixed-
point [29], [73]. Nonetheless, for completeness, we compare
against the state-of-the-art field-based implementations in MP-
SPDZ [3], [66] and they perform worse (7th and 8th rows of
Table I). We also compare with floating-point implementations
of math functions provided by ABY [40] and EMP-Toolkit [1];
our protocols are at least 90× better in communication per



Technique
Total Time for #Instances (in sec) Comm./

Instance
(in KB)

Max
ULP
Err.

102 103 104 105

Our Work 0.08 0.10 0.25 1.58 4.88 3

MiniONN
48-piece

0.20
(2.5x)

1.94
(19.4x)

18.85
(75x)

182.2
(115x)

341.03
(70x)

4

MiniONN
12-piece

0.06
(0.8x)

0.54
(5.4x)

5.24
(21x)

53.84
(34x)

93.36
(19.1x)

104

Deep-
Secure

0.16
(2x)

0.84
(8.4x)

8.1
(32x)

141.3
(89x)

124.65
(25x)

NA

MP-SPDZ
Ring Poly

0.75
(9.4x)

1.72
(17.2x)

14.88
(59.5x)

140.6
(89x)

981.11
(201x)

2

MP-SPDZ
Ring PL

0.27
(3.4x)

0.28
(2.8x)

1.32
(5.3x)

12.34
(7.8x)

76.42
(15.7x)

266

MP-SPDZ
Field Poly

0.91
(11.4x)

1.91
(19.1x)

16.51
(66x)

127
(80x)

228.63
(46.9x)

2

MP-SPDZ
Field PL

0.52
(6.5x)

0.47
(4.7x)

1.79
(7.2x)

14.23
(9x)

27.52
(5.6x)

266

TABLE I: Comparison with prior works on sigmoid with
varying number of instances.

Technique
Total Time for #Instances (in sec) Comm./

Instance
(in KB)

Max
ULP
Error

102 103 104 105

Exponentiation
Our Work 0.03 0.04 0.15 1.00 2.12 3

MP-SPDZ
0.34

(11.3x)
0.56
(14x)

3.90
(26x)

35.95
(35.9x)

254.95
(120x)

2

Reciprocal Square Root
Our Work 0.13 0.13 0.30 1.84 6 4

MP-SPDZ
0.94

(7.2x)
3.90
(30x)

35.87
(120x)

338.9
(184x)

2535
(423x)

8

TABLE II: Comparison with (power-of-2) ring-based MP-
SPDZ protocols with varying number of instances.

instance and 97× better in runtime (for 105 instances).

Finally, SecureML [92] and ABY2.0 [95] use a 3-piece lin-
ear spline to approximate sigmoid. This simple implementation
has a whopping error of 1547 ULPs and tanks the accuracy of
our RNN benchmarks. For instance, it leads to a tremendous
drop in accuracy of the Google-30 network from 84.4% (with
our sigmoid implementation) to 60.95%. The insufficiency
of this approximation has also been noted by [83] where it
caused the cross-entropy loss to diverge to infinity. Hence, this
crude approximation is usable only in restricted contexts and
is unsuitable for generic math libraries, which is our aim here.

b) Exponential and reciprocal square-root: Table II
shows the comparison of our exponentiation and reciprocal
square-root protocols with power-of-2 ring based protocols in
MP-SPDZ framework (for scale 12). It has native support for
exponentiation. We implement reciprocal square root in MP-
SPDZ by calling its built-in functions for square root and
reciprocal. As the table shows, our protocols are orders of
magnitude better, both in terms of time-taken and communi-
cation, and provide better or comparable ULP errors.

Inference
Benchmark

Runtime (in sec) Comm.
Prior Our Work Prior Our Work

MiniONN LSTM
1.1

(2.2x)
0.48

182 MB
(19.5x)

9.32 MB

DeepSecure B4
465

(87x)
5.3

83.7 GB
(43x)

1.94 GB

TABLE III: Comparison with benchmarks from Min-
iONN [83] and DeepSecure [102].

B. Prior DNNs

In Table III, we evaluate our protocols on benchmarks with
math functions from MiniONN [83] and DeepSecure [102].
MiniONN evaluated an LSTM for text data which has 2
LSTM layers each with 800 instances of sigmoid and 200
instances of tanh. Our protocols incur an order of magnitude
less communication for these instances. We consider the
largest benchmark of DeepSecure, B4, with 2 tanh layers of
2000 and 500 instances, which classifies sensor data into 19
different physical activities. To estimate the time taken by
DeepSecure on our setup, we ran a circuit with the same non-
XOR complexity as B4 using EMP-Toolkit [1] (similar to our
microbenchmarks) that provides better performance than the
communication and latency in [102]. Our protocols have 87×
lower latency and 43× lower communication.

C. Case studies

We demonstrate the applicability of secure inference to three
new domains that no prior work has considered before: RNNs
applied to time series sensor data, RNNs applied to speech
data, and combining CNNs and RNNs to identify human heads
in images. The feasibility of our case studies crucially relies on
our efficient protocols for math functions. Our first case study
is an industrial model (Industrial [72]) which uses an RNN
with GRU cells to provide feedback on the quality of shots
in a bat-and-ball game from the data obtained from sensors
deployed on the bat. Second, we evaluate an RNN (Google-
30 [74]) for keyword spotting in the standard Google-30 [112]
dataset that identifies simple commands, digits, and directions
from speech data obtained from thousands of people. Third,
the head detection model (Heads [104]) combines CNNs and
RNNs for the best accuracy on the SCUT Head dataset [96].
It uses inverted residual blocks, or MBConv blocks [105],
for efficient convolutions. Instead of simple pooling operators
like maxpool or average pool, it uses RNN-based pooling
that provides high accuracy. We summarize the input fixed-
point code of these benchmarks below. These fixed-point C++
programs were automatically generated from high-level ML
models by [72] (a compiler for embedded devices) and linked
with SIRNN. All of the benchmarks use a mixture of variables
with bitwidth 8, 16, and 32 with 16 being the bitwidth used
for input and output of the math functions.

• Industrial-72: It contains 7 sigmoid and 7 tanh layers,
with 64 instances each. While sigmoid uses the input
scale 8 and output scale 14, for tanh both scales are 8.



Benchmark Batch
Runtime (sec) Comm.
[41] SIRNN [41] SIRNN

Industrial-72
1

68.33
(18x)

3.7
11.84 GB

(510x)
23.8 MB

128
8746∗

(661x)
13.2

1.47 TB∗

(1451x)
1.04 GB

Google-30
1

3337
(67x)

49.6
259 GB
(574x)

0.45 GB

128
4.3x105∗

(3050x)
140

32.38 TB∗

(1316x)
25.2 GB

Heads 1 NA 409.7 NA 85.5 GB
*extrapolated, the run could not be completed due to TB comm.

TABLE IV: Secure inference on DNNs using SIRNN and [41].

• Google-30: It contains 99 sigmoid and 99 tanh layers,
with 100 instances each. While sigmoid uses the input
scale 6 and output scale 14, for tanh both scales are 6.

• Heads: It contains 128 sigmoid and 128 tanh layers, with
18096 instances each. While sigmoid uses the input scale
11 and output scale 14, for tanh both scales are 11.
Additionally, the benchmark contains 8 sigmoid and 8
tanh layers, with 72384 instances each. For these layers,
sigmoid uses the input scale 13 and output scale 14, and
for tanh both scales are 13. Finally, it also contains 3 L2-
Normalise layers that have 1200, 1200 and 300 reciprocal
square-root operations. The layers have input scales 12,
10 and 12 and output scales 11, 9 and 11, respectively.

Note that the Heads model makes about 3 million calls to
sigmoid/tanh, which is three orders of magnitude larger than
the number of calls to these functions in the benchmarks used
by prior work (Section VI-B).

In Table IV, we present the latency and communication
required by SIRNN on above benchmarks. Using our protocols,
Industrial takes 4 seconds, Google-30 takes under a minute,
and Heads takes less than 7 minutes. The time per inference
can be further improved by batching multiple predictions. For
a batch size of 128, the amortized time per inference of Indus-
trial is 0.1s and of Google-30 is 1.1s! The savings in batching
come from amortizing the networking cost by packing data
from multiple inference queries. Owing to the high numerical
precision of our math functionalities (Section V-D), SIRNN
either matches or exceeds the model accuracy of the provided
fixed-point ML model. In Heads, about half the time is spent
in math operations and the rest of the time is spent in matrix
multiplications, convolutions, and Hadamard products. The
good performance on end-to-end benchmarks is a result of co-
designing precise math functionalities and efficient protocols.

Next, we perform an ablation study. In particular, the fixed-
point code with our math functionalities can be run with
other protocols. However, prior work on secure inference don’t
support juggling between different bitwidths that our math
functionalities require. Hence, for running these functionalities
with any prior protocol, we need to use an appropriately
large uniform bitwidth. We evaluate our benchmarks with
ABY [41] using the necessary bitwidth of 64 as a baseline
in Table IV. ABY [41] provides general purpose state-of-

the-art 2PC protocols that have been used by recent work
on secure inference [25], [32], [83], [92]. We have added a
new code generator to [72] that generates EZPC [32] code
which is then automatically translated to ABY code. Other
generic protocols that have suitable frontends [60], [82], [88],
[109], like garbled circuits, are several orders of magnitude
slower than ABY [32], [92]: ML inference involves many
multiplications that are very expensive with garbled circuits.
SIRNN is over 500× better than ABY in communication and
more than an order of magnitude faster in runtime. Without
our protocols, it takes almost an hour to run Google-30. This
situation is further exacerbated on bigger models and running
the Heads model with ABY is intractable because it requires
hundreds of terabytes of communication. With batching, the
performance differences are stark: SIRNN is three orders of
magnitude better in latency and communication compared to
the ABY baseline.

VII. OTHER RELATED WORK

Prior 2PC works that use high degree polynomials for
approximating math functions [9], [34], [57], [68] need degree
7 or higher to maintain accuracy. In the course of this
work, we have observed that evaluating polynomials with
degree 3 or higher with 2PC is much more expensive than
the LUT-based implementations of Section V. Some prior
works on secure inference implement math functions with
ad hoc approximations that can lose model accuracy: e.g.
SecureML [92] and ABY2.0 [95] use a crude 3-piece linear
approximation, Ball et al. [13] replace tanh with the signum
function, and Glyph [85] and Nandakumar et al. [93] use
tables of approximate results Most recent works on secure
inference limit their evaluation to benchmarks that don’t use
math functions [17], [39], [44], [47], [64], [90], [99]. Prior
2PC works that use floating-point representations (instead of
fixed-point representations) have much higher performance
overheads [1], [6], [7], [12], [33], [40], [46], [66], [84]

Other relevant works that need additional parties to en-
sure security such as 3PC with honest majority or 2PC
with trusted dealer include [8], [9], [28]–[31], [43], [86],
Chameleon [101], CrypTen [69], TF-Encrypted [2], CrypT-
Flow [73], PySyft [103], ABY3 [91], SecureQ8 [37], and
Sharemind [65], [67], [71], [75], [97]. Some of these works
have considered approximations to math functions and, similar
to 2PC works, they either use polynomial-based approxima-
tions (e.g. [9], [71], [86]) or work over floating-point (e.g. [8],
[29], [30], [65], [67], [75], [97]). Kerik et al. [67] also consider
building blocks such as extension, truncate-and-reduce, and
multiplication of non-uniform bitwidths in the 3PC context.
In terms of representations, while floating-point and fixed-
point representations are most common, [43] proposed the new
representations of golden-section and logarithmic numbers and
evaluated using 3PC protocols.

Recent works on silent-OT [22], [114] provide OT exten-
sions with much lower communication than IKNP-style exten-
sions [62], at the cost of higher computational overhead. Since



our protocols make use of OTs in a black-box manner, silent-
OT can be used to obtain lower communication. However,
in our setting, when the IKNP-OT instances are computed
by multiple threads and are “load-balanced” (i.e., each party
plays the role of the sender in half the OT instances and as the
receiver in the other half), we empirically observe that IKNP-
style extensions are more performant than silent-OT in our
LAN evaluation environment. Hence, SIRNN uses IKNP-style
OT extensions in Section VI.

VIII. CONCLUSION

We presented novel secure implementations of math func-
tions that rely on cryptographic protocols for mixed-bitwidths.
These implementations, with up to 423× lower communica-
tion than the state-of-the-art, help us evaluate ML models that
have three orders of magnitude more calls to math functions
than benchmarks considered by prior work. Compared to a
baseline, SIRNN achieves three orders of magnitude lower
communication and latency. While prior work on secure 2-
party inference has focused on image analysis, SIRNN pro-
vides the first implementations of RNNs operating on speech
data, sensor data, and, in combinations with CNNs, detecting
heads with state-of-the-art accuracy. Because of high numeri-
cal precision of our math implementations, there is no loss in
model accuracy over cleartext. Although, in this work, we have
focused on particular functions that occur in many ML models,
the recipe of look ups followed by Newton Raphson iterations
to obtain precise functionalities is well-known in embedded
systems and can be instantiated for other math functions as
well. We believe that our novel 2PC protocols would help
provide the building blocks necessary for such functionalities.
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APPENDIX

A. Optimized Protocol for F`MUX

In this section, we present an optimized protocol for F`MUX

which utilizes COT and builds over the protocol used in [99].
Our optimization relies on the following observation: consider
x ∈ Z2 with shares 〈x〉B = (x0, x1) and y ∈ ZL with shares
〈y〉` = (y0, y1), then the following holds:

x ∗` y = (x0 ⊕ x1) ∗` (y0 + y1)

= (x0 + x1 − 2x0 ∗` x1) ∗` (y0 + y1)

= x0 ∗` y0 + x1 ∗` (y0 − 2x0 ∗` y0)

+ x1 ∗` y1 + x0 ∗` (y1 − 2x1 ∗` y1)

In the above, the terms x0 ∗` y0 and x1 ∗` y1 can be locally
computed by P0 and P1, respectively, while for the other two
terms, we use

(
2
1

)
-COT` protocol. In particular, to calculate

shares of x1∗` (y0−2x0∗`y0) term, P0 acts as the sender with
correlation (y0 − 2x0 ∗` y0) and P1 acts as the receiver with
choice bit x1; similarly the term can be computed with the
sender and receiver roles reversed. Note that both the COTs
can be done in parallel giving us a 2-round solution which

communicates 2` less bits than prior approach from [99] that
used 2 instances of

(
2
1

)
-OT`.

B. Wrap and All Ones

Recall that the functionality F`Wrap&All1s(x, y) outputs
(〈w〉B ||〈e〉B) such that w = wrap(x, y, L) and e = 1{(x +
y mod L) = L − 1}. Consider the `-bit functionality
F`Eq(x, y) that returns 〈e〉B such that e = 1{x = y}. Then,
F`Wrap&All1s(x, y) = F`Mill(L − 1 − x, y)||F`Eq(L − 1 − x, y),
that is, millionaires’ and equality on the same inputs. Now,
to construct an efficient protocol for F`Mill, CrypTFlow2 [99]
used the following recurrence relations: Let x = (x1||x0) and
y = (y1||y0) such that xi, yi ∈ {0, 1}`/2 for i ∈ {0, 1}. Then,

1{x < y} = 1{x1 < y1} ⊕ (1{x1 = y1} ∧ 1{x0 < y0})
1{x = y} = 1{x1 = y1} ∧ 1{x0 = y0}

That is, they reduce the millionaires’ on `-bit strings to
millionaires’ and equalities on smaller strings. While they
computed millionaires’ instances on all nodes, they skipped
a small number of equality computations that were not used,
e.g. the root note. For F`Wrap&All1s, we compute millionaires’
and equality on all notes and this marginally increases the cost
over the protocol for F`Mill. Nonetheless, the communication
cost of F`Wrap&All1s is at most λ`+ 14`.

C. Truncation

1) Proof for Lemma 1: For b ∈ {0, 1}, let xb = 〈x〉`b. Over
Z, we can write xb = ub · 2s + vb and have the following:

x0 + x1 = (v0 + v1) + 2s(u0 + u1)

= (v0 + v1 − c · 2s) + 2s(u0 + u1 − d · 2`−s)
+ c · 2s + d · L

= v′ + 2s(u′ + c) + d · L

Let w′ = 1{u′ + c > 2`−s − 1}. Then

x0 + x1 = v′ + 2s(u′ + c− w′ · 2`−s) + L · (d+ w′) (3)

When d = 1, then e = 0 and u′ = u0 + u1 − 2`−s. Since
u0, u1 6 2`−s − 1, we have that u′ 6 2`−s − 2. Therefore,
w′ = 0 (because c ∈ {0, 1}). On the other hand when d = 0,
u′ = u0 + u1 6 2`−s − 1. Therefore, w′ = 1 when u′ =
2`−s − 1 (i.e., e = 1) as well as c = 1, and 0 otherwise.
Since at most one of d and w′ is 1 in any given case, we can
rewrite Equation 3 as:

x0 + x1 = v′ + 2s(u′ + c− w′ · 2`−s) + L · (d⊕ (c ∧ e))

Since v′ < 2s and u′+ c−w′ · 2`−s < 2`−s, w = d⊕ (c∧ e).

2) Division by power-of-2: We can write DivPow2(x, s) =
(x�As) + mx ∧ c, where mx = 1{x > 2`−1} is the MSB
of x and c = 1{x mod 2s 6= 0}. In this equation, mx can
be computed with a call to F`−1Mill using the integer DReLU
protocol from [99] and c can be computed with an equality
check on s-bit inputs. We get mx∧c in `-bits with a call each
to FAND and F`B2A, and then a final call to F`,sARS gives us
DivPow2(x, s). Since we have already computed the MSB of



Algorithm 4 Cross Term Multiplication, Πm,n
CrossTerm:

Input: P0 holds x ∈ ZM and P1 holds y ∈ ZN , where m 6 n.
Output: P0 & P1 get 〈z〉`b, where z = x ∗` y and ` = m+ n.

1: P0 parses x as an m-bit string x = xm−1|| · · · ||x0, where
xi ∈ {0, 1}.

2: for i = {0, . . . ,m− 1} do
3: P0 & P1 invoke

(
2
1

)
-COT`−i, where P0 is the sender with

input xi and P1 is the receiver with input y, and learn 〈ti〉`−i.
4: end for
5: For b ∈ {0, 1}, Pb sets 〈z〉`b =

∑m−1
i=0 2i · 〈ti〉`−ib .

x, we employ the MSB-to-wrap optimization (Section IV-E)
here to minimize the cost of F`,sARS. The exact cost expression
for computing DivPow2 is given in Table V.

D. Multiplication

Here, we formally describe our protocols for cross term
multiplication Fm,nCrossTerm and matrix multiplication.

1) Cross Term Multiplication, Fm,nCrossTerm: Our protocol for
Fm,nCrossTerm uses COT similar to prior works [41], [92], [99], but
unlike prior works, we support operands of different bitlengths.
We present our protocol in Algorithm 4 for the m 6 n case.
When m > n, we simply reverse the roles of the parties in
our protocol so that only n COTs are performed. Correctness
of this protocol follows similarly to the prior works.

2) Matrix Multiplication: Before we look at matrix mul-
tiplication, we first set some notation starting with operator
�` : Zd1×d2 × Zd2×d3 → Zd1×d3L , which does a matrix
multiplication between two input matrices X and Y such that
X�` Y = X×Y mod L . Similarly to the ∗` notation, when
one of the matrices has elements over ring ZM , we use the
lossless typecast operator ζm to map all elements of that matrix
to Z. All the single-input functionalities we consider naturally
extend to matrices, where the functionality is independently
applied to all elements of the input matrix to output a matrix of
the same dimensions. The shares of a matrix X ∈ Zd1×d2M are
denoted by 〈X〉m, where 〈X〉m = {〈X[i, j]〉m}i∈[d1],j∈[d2],
and the shares of its transpose are denoted by 〈XT 〉m.

Now, consider the matrix multiplication functionality
Fm,n,d1,d2,d3UMatMul that takes as input 〈X〉m ∈ Zd1×d2M and
〈Y 〉n ∈ Zd2×d3N and outputs 〈Z〉` ∈ Zd1×d3L such that
` = m + n + dlog d2e and Z = X �` Y . As described in
Section IV-C, we need the additional e = dlog d2e bits to
prevent integer overflow due to additions. When m 6 n, we
extend the input matrix 〈Y 〉n to get 〈Y ′〉n′ for n′ = n + e.
Then, Equation 2 generalizes to matrices as follows:
X �` Y ′ = X0 �` Y ′0 + X1 �` Y ′1 + X0 �` Y ′1 +

X1�` Y ′0 − 2n
′ ∗` (X �mWY ′)−M ∗` (WX �n′ Y ′), where

WX = wrap(X0, X1,M) and WY ′ = wrap(Y ′0 , Y
′
1 , 2

n′).
Similar to Fm,n

′

CrossTerm, we define a functionality
Fm,n

′,d1,d2,d3
MatCrossTerm for matrices to compute the cross-terms

X0 �` Y ′1 and X1 �` Y ′0 . This functionality can be realized
naively by making d1d2d3 independent calls to Πm,n′

CrossTerm.

Algorithm 5 Unsigned Matrix Multiplication, Πm,n,d1,d2,d3
UMatMul :

Input: P0 & P1 hold 〈X〉m and 〈Y 〉n, where X ∈ Zd1×d2M ,
Y ∈ Zd2×d3N and m 6 n.

Output: P0 & P1 get 〈Z〉`, where Z = X �` Y , ` = m+ n+ e
and e = dlog d2e.

1: P0 & P1 invoke Fn,n+eZExt (〈Y 〉n) and learn 〈Y ′〉n
′
.

2: For b ∈ {0, 1}, let Xb = 〈X〉mb and Y ′b = 〈Y ′〉n
′
b .

3: P0 and P1 invoke the following functionalities.
4: Fm,n

′,d1,d2,d3
MatCrossTerm (X0, Y

′
1 ) and learn 〈C〉`.

5: Fn
′,m,d3,d2,d1

MatCrossTerm (Y ′
T
0 , X

T
1 ) and learn 〈D〉`.

6: FmWrap(X0, X1) to learn 〈WX〉B .

7: Fn
′

Wrap(Y
′
0 , Y

′
1 ) to learn 〈WY ′〉B .

8: Fm,d3,d2,d1BitMatMul (〈WT
Y ′〉B , 〈XT 〉m) to learn 〈G〉m.

9: Fn
′,d1,d2,d3

BitMatMul (〈WX〉B , 〈Y ′〉n
′
) to learn 〈H〉n

′
.

10: Pb outputs Xb �` Y ′b + 〈C〉`b + 〈DT 〉`b − 2n
′
∗` 〈GT 〉mb −

2m ∗` 〈H〉n
′
b for b ∈ {0, 1}.

Instead, we can do much better by observing that in a
matrix multiplication, each element of X is multiplied with
d3 elements of Y . Thus, rather than doing d3 independent
COTs on ` − i bit-strings in Step 3 of Πm,n′

CrossTerm, we can
perform a single COT on d3 · (` − i) bit-strings (while
respecting the independent correlations). This method of
batching COTs was also used in prior works on secure
inference [92], [99], and it leads to an overall communication
of d1d2(mλ+ (mn′ +m2/2 +m/2)d3) bits.

Note that 〈WX〉B and 〈WY ′〉B can be computed by making
d1d2 calls to FmWrap and d2d3 calls to Fn′Wrap, respectively.
Since the terms Xi �` Y ′i can be computed locally, the only
terms left to compute are X �m WY ′ and WX �n′ Y ′.
They can be computed using the following functionality
F`,d1,d2,d3BitMatMul that takes a bit-matrix 〈W 〉B ∈ {0, 1}d1×d2 and
a matrix 〈X〉` ∈ Zd2×d3L as inputs, and outputs a matrix
〈Z〉` ∈ Zd1×d3L such that Z = W �` X . We use the OT-
based MUX protocol from [99] to implement F`,d1,d2,d3BitMatMul ,
and also leverage the batching technique here to reduce the
number of OTs. The communication required by this protocol
is 2d1d2(λ+ 2`d3) bits.

Our complete protocol for Fm,n,d1,d2,d3UMatMul is presented in
Algorithm 5 for the m 6 n case. The total communication cost
of this protocol is d1d2d3((2m+ 4)(n+ e) +m2 + 5m) +
d1d2(λ(3m+ 6) + 14m+ e− 6) + d2d3(λ(n+ 2) + 14n)
bits. In the protocol, we extend Y because it has elements
of larger bitwidth, and this strategy leads to better overall
communication in most cases. The other case of m > n is
similar and we extend the entries of matrix X by e bits.

E. Digit Decomposition

We consider the functionality F`,{di}i∈[c]DigDec that decomposes
an `-bit number into c sub-strings or digits of lengths {di}
such that

∑
i∈[c] di = `. More formally, F`,{di}i∈[c]DigDec takes

〈x〉` as input and outputs 〈zc−1〉dc−1 , . . . , 〈z0〉d0 such that
x = zc−1|| . . . ||z0. We use this functionality in extracting



Protocol Comm. (bits) Rounds

Πm,nZExt & Πm,nSExt λ(m+ 1) + 13m+ n logm+ 2

?Πm,nZExt & ?Πm,nSExt 2λ−m+ n+ 2 4

Π`,sLRS & Π`,sARS λ(`+ 3) + 15`+ s+ 20 log `+ 3

?Π`,sLRS & ?Π`,sARS λ(s+ 3) + `+ 15s+ 2 log s+ 2

Π`,sTR λ(s+ 1) + `+ 13s log s+ 2

Π`,sDivPow2 λ(`+ 7s/4 + 4) + 16`+ 23s− 5 log `+ 4

Πm,nUMult & Πm,nSMult λ(3µ+ ν + 4) + 2µν + µ2 + 17µ+ 16ν log ν + 2

?Πm,nUMult & ?Πm,nSMult λ(2µ+ 6) + 2µν + µ2 + 3µ+ 2ν + 4 4

Π`,dDigDec (`/d− 1)(λ(d+ 2) + 15d+ 20) log d+ `/d+ 1

Π`,dMSNZB (`/d− 1)(λ(d+ 8) + 2d(ι+ 1) + 15d+ 2ι+ 60) + 6λ+ 2d(ι+ 1) + `2 + 2ι log d+ 2`/d+ 7

TABLE V: Exact communication and round expressions for our building blocks, assuming that the cost of Π`
Mill and Π`

Mill&Eq

is λ`+ 14` bits. µ = min(m,n), ν = max(m,n), and ? denotes the variant of the protocol in which the MSBs of the inputs
are already known in the clear. In case the MSBs are known in the shared form, the additional cost is just λ+ 2 bits per input.

digits to be used as input to lookup tables for approxima-
tions for exponential, initial approximation of reciprocal in
sigmoid/tanh and reciprocal square root.

For ease of exposition we first consider a simplified func-
tionality F`,dDigDec with d | ` that outputs c = `/d digits of
equal length d and present our protocol for this functionality
in Algorithm 6. Idea is as follows: To compute the shares of
zi, it suffices to compute the carry of lower bits into this digit
when reconstructing shares of x. That is, consider a parsing of
`-bit string 〈x〉`b as yb,c−1|| . . . ||yb,0 such that yb,i ∈ {0, 1}d
for all i ∈ [c] for b ∈ {0, 1}. Also, set Yb,i = yb,i|| . . . ||yb,0
for all i ∈ [c], b ∈ {0, 1}. Now, observe that zi = y0,i +
y1,i + carryi mod 2d, where carryi = Y0,i−1 + Y1,i−1 > 2id.
Alternatively, carryi = wrap(Y0,i−1, Y1,i−1, 2

id). In our proto-
col, we compute this carryi using Lemma 1 iteratively (similar
to our protocol for F`,sLRS) and the variable ui corresponds to
carryi. The communication complexity of our protocol for the
simplified setting is (c− 1)(λ(d+ 2) + 15d+ 20) bits.

Also, it is easy to see that the above protocol gen-
eralizes to the case of unequal size digits, by parsing
the initial shares appropriately and doing the same com-
putation. The communication for the generalized case is∑
i∈[c−1](λ(di + 2) + 15di + 20) bits. In contrast, doing a

digit-decomposition using GC would require λ(6` − 2c − 2)
bits of communication. For example, for ` = 32 and d = 8,
our protocol has an improvement of 5.5× over GC.

F. Most Significant Non-zero Bit (MSNZB)

For an `-bit integer x, MSNZB(x) refers to the index of the
most significant non-zero-bit. That is, MSNZB(x) = k ∈ [`], if
xk = 1 and xj = 0 for all j > k. Alternatively, MSNZB(x) =
k if and only if 2k 6 x < 2k+1. For the special case of input
being 0, MSNZB(0) = 0. Consider the functionality F`MSNZB

that takes as input 〈x〉` and outputs {〈zi〉B}i∈[`] such that
zi = 1 if MSNZB(x) = i and 0 otherwise. Our protocol
for F`MSNZB reduces to MSNZB-like computation on integers
on smaller bit-length as follows: For simplicity of exposition,
consider d ∈ N such that d | `. First, we invoke F`,dDigDec to

Algorithm 6 Digit Decomposition, Π`,d
DigDec:

Input: P0 & P1 hold 〈x〉` s.t. c = `/d.
Output: P0 & P1 get {〈zi〉d}i∈[c] s.t. x = zc−1|| . . . ||z0.

1: For b ∈ {0, 1}, Pb parses 〈x〉`b as an `-bit string yb,c−1|| . . . ||yb,0
s.t. yb,i ∈ {0, 1}d for all i ∈ [c].

2: For all i ∈ {0, . . . , c−2}, P0 & P1 invoke FdWrap&All1s(yb,i, yb,1)
and learn 〈wi〉B ||〈ei〉B .

3: For b ∈ {0, 1}, Pb sets 〈u0〉Bb = 0 and 〈z0〉db = yb,0.
4: for i ∈ {1, . . . , c− 1} do
5: P0 & P1 invoke FAND(〈ui−1〉B , 〈ei−1〉B) to learn 〈vi−1〉B .
6: For b ∈ {0, 1}, Pb sets 〈ui〉Bb = 〈vi−1〉Bb ⊕ 〈wi−1〉Bb .
7: P0 & P1 invoke FdB2A(〈ui〉B) and learn 〈ui〉d.
8: For b ∈ {0, 1}, Pb sets 〈zi〉db = yb,i + 〈ui〉Bb .
9: end for

decompose `-bit integer x into c = `/d integers of d-bits, say
{yi}i∈[c]. Now, we compute MSNZB on each of these smaller
integers yi by taking into account their position i in x and
output an index in [`] which corresponds to MSNZB(yi)+i·d.
Note that MSNZB(x) = MSNZB(yi) + i · d if yi 6= 0 and
yj = 0 for all j > i. To realize this logic we also compute
whether yi = 0 for all i ∈ [c].

More formally, let ι = log ` and consider the functionality
Fd,`,iMSNZB-P for i ∈ [c] that takes as input 〈y〉d and outputs
〈u〉ι such that 2u−id 6 y < 2u−id+1. Also, consider FdZeros
functionality that takes as input 〈y〉d and outputs 〈v〉B such
that v = 1{y = 0}. First, our protocol invokes Fd,`,iMSNZB-P on
each of 〈yi〉d (obtained from F`,dDigDec(〈x〉`)) to learn 〈ui〉ι.
Next, we invoke FdZeros(yi) to learn 〈vi〉B . Now, for all
i ∈ [c], we compute z′i = ui · (1 ⊕ vi) ·

∏
j>i vj . Note

that z′i = ui if yi 6= 0 and yj = 0 for all j > i and
0 otherwise. Moreover, at most one z′i is non-zero. Hence,
we compute MSNZB(x) = z̃ =

∑
i z
′
i. Finally, to output the

one-hot encoding described above, we invoke the functionality
F`One-Hot that takes as input 〈z̃〉ι and outputs {〈zi〉B}i∈[`] such
that zi = 1 for i = z̃ and 0 otherwise. We present our protocol
for F`MSNZB in Algorithm 7, for the special case of d | `; it is



Algorithm 7 Most Significant Non-Zero Bit, Π`,d
MSNZB:

Input: For b ∈ {0, 1}, Pb holds 〈x〉`b, c = `/d, ι = log `.
Output: For b ∈ {0, 1}, Pb learns {〈zi〉Bb }i∈[`] s.t. zi = 1 if 2i 6

x < 2i+1 and 0 otherwise.
1: P0 & P1 invoke F`,dDigDec(〈x〉

`) and learn {〈yi〉d}i∈[c].
2: for i ∈ {0, . . . , c− 1} do
3: P0 & P1 invoke Fd,`,iMSNZB-P(〈yi〉

d) and learn 〈ui〉ι.
4: P0 & P1 invoke FdZeros(〈yi〉d) and learn 〈vi〉B .
5: For b ∈ {0, 1}, Pb sets 〈v′i〉Bb = (b⊕ 〈vi〉Bb ).
6: end for
7: P0 & P1 invoke F ιMUX(〈v′c−1〉B , 〈uc−1〉ι) and learn 〈z′c−1〉ι.
8: For b ∈ {0, 1}, Pb sets 〈wc−1〉Bb = b.
9: for i ∈ {c− 2, . . . , 0} do

10: P0 & P1 invoke FAND(〈wi+1〉B , 〈vi+1〉B) and learn 〈wi〉B .
11: P0 & P1 invoke FAND(〈wi〉B , 〈v′i〉B) and learn 〈w′i〉B .
12: P0 & P1 invoke F ιMUX(〈w′i〉B , 〈ui〉ι) and learn 〈z′i〉ι.
13: end for
14: For b ∈ {0, 1}, Pb sets 〈z̃〉ιb =

∑c−1
i=0 〈z

′
i〉ιb.

15: P0 & P1 invoke F`One-Hot(〈z̃〉ι) and learn {〈zi〉B}i∈[`].

easy to see that the general case works in a similar manner.
Our protocol makes 1 call to F`,dDigDec, c calls each to Fd,`,iMSNZB-P,
FdZeros (with i going from 0 to c− 1) and F ιMUX, 2c− 2 calls
to FAND and 1 call to F`One-Hot.

We implement both Fd,`,iMSNZB-P and FdZeros using LUTs with
d-bit inputs. Moreover, since these are invoked on same input,
we combine them into a single LUT with entries (ui||vi).
Finally, we implement F`One-Hot using an LUT with ι-bit input
and `-bit entries. The exact expression for communication for
d | ` is given in Table V. The expression for the general
case can be computed similarly using expression in digit
decomposition. Based on empirical findings, we use d = 8
in our implementation.
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