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A b s t r a c t  

The long-term success of the World Wide Web depends on fast response time. People use the Web 
to access information from remote sites, but do not like to wait long for their results. The latency 
of retrieving a Web document depends on several factors such as the network bandwidth, propagation 
time and the speed of the server and client computers. Although several proposals have been made for 
reducing this latency, it is difficult to push it to the point where it becomes insignificant. 

This motivates our work, where we investigate a scheme for reducing the latency perceived by users 
by predicting and prefetching files that are likely to be requested soon, while the user is browsing 
through the currently displayed page. In our scheme the server, which gets to see requests from several 
clients, makes predictions while individual clients initiate prefetching. We evaluate our scheme based 
on trace-driven simulations of prefetching over both high-bandwidth and low-bandwidth links. Our 
results indicate that prefetching is quite beneficial in both cases, resulting in a significant reduction in 
the average access time at the cost of an increase in network traffic by a similar fraction. We expect 
prefetching to be particularly profitable over non-shared (dialup) links and high-bandwidth, high-latency 
(satellite) links. 

1 Introduction 

People use the  World Wide Web ( W W W )  because it gives quick and easy access to a t remendous  variety of 
information in remote locations. Users do not like to wait for their results; they tend to avoid or complain 
about  Web pages tha t  take a long time t o  retrieve. That  is, users care about  Web latency. 

Perceived latency comes from several sources. Web servers can take a long t ime to process a request, 
especially if they are overloaded or have slow disks. Web clients can add delay if they do not quickly parse 
the retrieved da t a  and display it for the user. The retrieval time of Web documents  also depends on network 
latency. The Web is useful precisely because it provides remote access, and transmission of da t a  across a 
distance takes time. Some of this delay depends on bandwidth;  one cannot  retrieve a 1 MB file across a 1 
Mbps link in less than 8 seconds. But  much of the network latency comes from propagation delay. Some of 
these delays, such as client or server slowness or transmission time, can in principle be reduced by buying 
faster computers  or higher bandwidth links. However, other components  such as propagat ion delay, which 
is basically determined by the physical distance traversed, cannot be reduced beyond a point. 

The Hyper tex t  Transport  Protocol  (HTTP)  version 1.0 [1], as it is currently used in the Web, is simple, 
but  far from optimal as far as latency is concerned. Several researchers ([6],[8],[9],[11]) have analyzed 
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the inefficiencies in use of the network by HTTP, and have proposed modifications to reduce retrieval 
latency significantly. However, it is difficult to push retrieval latency beyond the point where it becomes 
insignificant. 

This motivates the investigation of ways of hiding retrieval latency from the user rather than actually 
reducing it. We describe a scheme in which clients, in collaboration with servers, prefetch Web pages that  
the user is likely to access soon, while he/she is viewing the currently displayed page. Then, if the user 
does request one of the prefetched pages, it will already be in the local site's cache. Thus, the retrieval 
latency (also called retrieval time) would be masked from the user in such cases, yielding a lower access 
time. We maintain this distinction between retrieval latency (or time) and access time through the rest of 
this paper. 

We use a distributed prefetching scheme with distinct roles for the clients and servers. Servers, which get 
to see accesses from several clients, make predictions on which files are likely to be accessed in the near 
future. Clients initiate prefetching based on advice from servers. Clearly, the effectiveness of prefetching 
critically depends on how good the predictions are. We use a prediction algorithm patterned after that  
proposed by Griffioen and Appleton [3] in the context of file systems, though there are a few noteworthy 
differences. 

The results from our trace-driven simulations indicate that  prefetching helps significantly decrease the 
average access time at the cost of an increase in network traffic. The latency of retrieving Web data  
involves a relatively large component  that  is independent of the amount  of data  transferred. This includes 
network round-trip times and other overheads at the end-hosts. In such situations, it is often more effective 
to use prefetching to reduce latency rather than to simply increase the available bandwidth. 

The rest of this paper is organized as follows. In section 2, we briefly discuss the basics of H T T P  that  are 
needed to understand the rest of this paper. In that  section we also briefly describe the modifications to 
H T T P  proposed in [8]. In section 3, we present our scheme for predictive prefetching. The methodology 
used for the simulation experiments is described in section 4, and the results are presented in 5. In section 
6, we discuss some issues pertaining to prefetching. We present our conclusions in section 7. 

2 H T T P  P r o t o c o l  E l e m e n t s  

The H T T P  protocol is layered over a reliable bidirectional byte stream, normally TCP  [10]. Each H T T P  
interaction consists of a request sent from the client to the server, followed by a response sent back 
from the server to the client. Requests and responses are expressed in a simple ASCII format. Most 
existing implementations conform to the original version of the protocol, HTTP/1 .0  [1]. The next version, 
HTTP/1 .1 ,  is presently in draft form [2]. 

An H T T P  request includes several elements: a method such as GET, PUT, POST, etc.; a Uniform Resource 
Locator (URL); a set of Hypertext Request (HTRQ) headers, with which the clients specifies things such 
as the kinds of documents it is willing to accept, authentication information, etc; and an optional data  
field, used with certain methods such as PUT. 

The server parses the request, then takes action according to the specified method.  It then sends a response 
to the client, including a status code to indicate if the request succeeded, or if not, why not; a set of object 
headers, meta-information about the "object" returned by the server, optionally including the "content- 
length" of the response; and a data  field, containing the file requested, or the output  generated by a 
server-side script. 
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2.1 Limitat ions  of  H T T P  

We now look at the way the interaction between HTTP clients and servers appears on the network, with 
particular emphasis on how this affects latency. We mainly look at HTTP/1 .0  since that  is used by most 
servers and clients around today. 

C l i e n t  S e r v e r  
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Figure 1: This figure shows the packet exchanges between a client and a server for HTTP.  Time runs 
down the page. D A T  and A C K  denote data and acknowledgement packets respectively, though most data 
packets also carry acknowledgements. S Y N  and FIN denote packets used by TCP to signal the start and 
end, respectively, of a connection. To the left of the Client timeline, horizontal dotted lines show the 
"mandatory" round trip times (RTTs) through the network, imposed by the combination of the H T T P  and 
TCP protocols. 

Figure 1 depicts the packet-exchange between a client and a server at the beginning of a typical interaction, 
the retrieval of an HTML document with at least one uncached inline image. We note two obvious 
inefficiencies in the protocol. First, the transfer of each HTML or image file involves setting up and tearing 
down a new T C P  connection. Second, the request-response protocol between the client and the server 
operates in a stop-and-go manner, with a new request being sent only after the reply to the previous one 
has arrived. These result in considerable delays. 

2.2 Pers i s tent  Connect ion  H T T P  ( P - H T T P )  

We briefly discuss persistent connection H T T P  (P-HTTP) proposed by Padmanabhan  and Mogul [8] 
(the terra P - H T T P  is from [6]). P -HTTP uses a single, long-lived TCP  connection for multiple H T T P  
transactions. The connection stays open for all the inline images of a single document,  and across multiple 
HTML retrievals. This helps solve the first problem mentioned above. The HTTP/1 .1  protocol [2] also 
defines a persistent connection mechanism to solve the same problem. 

To avoid the second problem, [8] proposes two new H T T P  methods (primitives), GETALL and GETLIST,  
that  allow pipelining requests and responses between a client and a server. GETALL is a request to fetch 
the specified HTML file and all inline images that  reside on the server. GETLIST is a request to fetch all 
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files specified in the list that  the client passes to the server. It is possible to simulate GETLIST with an 
asynchronous series of pipelined GETs. 

Together, these modifications result in considerably reduced retrieval latency, in some cases less than half 
the original latency. 

3 Predict ive  Prefetching 

It is clear from section 2.1 that the retrieval of a typical Web page involves several network round trips 
using HTTP/1.0.  P-HTTP reduces this cost considerably, but as [8] reports image-rich Web pages still 
suffer from multi-second retrieval latencies. In light of this, we decided to investigate techniques that  do 
not actually reduce retrieval time, but still improve response time perceived by the user. 

Users usually browse the Web by following hyperlinks from one Web page to another. Hyperlinks on a 
page often refer to pages stored on the same server. Typically, there is a pause after each page is loaded, 
while the user reads the displayed material. This time could be used by the client to prefetch files that are 
likely to be accessed soon, thereby avoiding retrieval latency if and when those files are actually requested. 
The retrieval latency has not actually been reduced; it has just been overlapped with the time the user 
spends reading, thereby decreasing the access time. 

In our proposal, the server computes the likelihood that a particular Web page will be accessed next 
and conveys this information to the client. The client program then decides whether or not to actually 
prefetch the page. This partitioning of work between the server and the client is natural. The server has 
the opportunity to observe the pattern of accesses from several clients and use this information to make 
intelligent predictions. On the other hand, the client is in the best position to decide if it should prefetch 
files based on whether it already has them cached or the cost (in terms of CPU time, memory, network 
bandwidth, and so on) needed to prefetch data. 

As an aside, we note that the server could prefetch files from disk into memory, independent of client 
requests. However, we believe that the benefit of this would be limited because of the dominance of 
network latency over disk latency, especially in a wide-area context. So in our study we only investigated 
prefetching from the server to clients across the network. 

3.1 A r c h i t e c t u r e  o f  t h e  S y s t e m  w i t h  Prefetching 

We now describe the architecture of the system with prefetching, as depicted in figure 2. On the server side, 
there are two types of user-level processes. One is the set of HTTP daemon processes, h t tpd ,  with support 
for persistent connections and some other features described below. One h t t p d  process gets spawned to 
service requests from each client. Since persistent connections are supported, there is one process per 
client rather than one per client request. The other process is the prediction daemon, p r e d i c t d ,  which 
makes prefetching-related predictions. There is only one p r e d i c t d  per server, not a new one for each client 
request or for each client. Furthermore, p r e d i c t d  only communicates with h t tpd ,  not directly with the 
clients. This design is based on that of the NCSA server, which invokes processes rather than threads to 
service client requests. 

On receiving a request from a client, httpd passes on the identity of the client and the names of the 
files requested to p r e d i c t d .  Since we are only concerned with file accesses, p r e d i c t d  only looks at client 
requests that use the GET method or its variants (such as GETALL or GETLIST in P-HTTP).  P r e d i c t d  
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Figure 2: This figure depicts the architecture of  the system with prefetching. On the server side, the set of 
h t t p d  processes (one per active client) communicate with the prediction engine, which makes prefetching- 
related predictions. On the client side, the prefetch engine initiates prefetching based on advice from the 
server and some other factors. The bidirectional arrows denote local communication between entities at 
the server and at the client. 

uses the prediction algorithm described in section 3.2 to determine files that  are candidates for prefetching 
based on the likelihood of their being accessed soon, and conveys this information to the client. This 
information can be piggy-backed on the reply sent by h t t p d  to the client, in a special field. 

The client side consists of a browser, such as Mosaic, and a prefetch engine. The prefetch engine uses the 
prediction information sent by the server in its reply to decide whether or not to prefetch files. It could 
also make its decision based on a variety of other factors, such as the contents of the local cache (which 
might already contain the file), the current system load, the browser's current mode of operation (such as 
image loading turned off), and so on. 

Once the prefetch engine has decided to prefetch a file, it sends a request to the server. In this request 
it also indicates that  it is prefetching data, and not fetching data that the user has explicitly requested. 
This information can be used by the server in a variety of ways. P r o d i c t d  could decide not to do any 
further prefetching-related computation based on this request since this is itself a prefetch request. Also, 
if multiple requests are being scheduled in any way, this request could be assigned a lower priority than 
explicit fetch requests. 

3.2 P r e d i c t i o n  A l g o r i t h m  

Our prediction algorithm is based on that described by Griffioen and Appleton [3]. However, there are 
a few noteworthy differences. First, while their scheme was designed for use by the operating system to 
prefetch files from disk into the file system cache, our model is a distributed one with user-level processes 
at the server and client hosts managing prefetching across the network, into the client's cache. Thus, our 
scheme does not require any kernel modifications. 

Second, the scheme described in [3] does not try to maintain a distinction between accesses by different 
processes (the clients in the context of a file system). Thus, independent accesses (by different processes), 
that  occur close together in time, could incorrectly be considered as related. As we explain below, our 
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Figure 3: This figure depicts a small portion of a hypothetical dependency graph. Based on past observa- 
tions, when home.html is accessed there is a 50~ chance that iraagel . g i f  will be accessed soon afterwards 
and also a 50~ chance that image2 . g i f  will be accessed soon afterwards. Furthermore, if  £raagel . g i f  is 
accessed, there is a 90~ chance that image2 . g i f  will follow soon afterwards. 

scheme avoids this problem of false correlations. 

The prediction algorithm constructs a dependency graph that depicts the pattern of accesses to different 
files stored at the server. The graph has a node for every file that has ever been accessed. There is an arc 
from node A to B if and only if at some point in time B was accessed within w accesses after A, where w 
is the lookahead window size. The weight on the arc is the ratio of the number of accesses to B within a 
window after A to the number of accesses to A itself. This weight is not actually the probability that the 
B will be requested immediately after A. So the weights on arcs emanating from a particular node need 
not add up to 1. Figure 3 depicts a portion of a hypothetical dependency graph. 

The dependency graph is dynamically updated as the server receives new requests. This is done by the 
prediction daemon, p r e d i c t d ,  which receives information about requests from each h t t p d  process running 
on the server machine. It maintains a ring buffer of size equal to the window size w for each client that  
is currently connected to this server (assuming that persistent connections are used). When it receives a 
new request from one of the h t t p d  processes, it inserts the ID of the file accessed into the corresponding 
ring buffer. Only the entries within the same ring buffer are considered related, so only the corresponding 
arcs in the dependency graph are updated. This logically separates out accesses by different clients and 
thereby avoids the problem of false correlations. However, in some cases, such as clients located behind 
a proxy cache, p r e d i c t d  will not be able to distinguish between accesses from different clients. One way 
of getting around this problem is to use mechanisms (such as those proposed in [5]) to pass session-state 
identification between clients and servers even when there is a proxy between them. 

P r e d i c t d  bases its predictions on the dependency graph. When A is accessed, it would make sense to 
prefetch B if the arc from A to B has a large weight (which implies that  there is a good chance of B 
being accessed soon afterwards). In general, p r e d i c t d  would declare B as a candidate for prefetching if 
the arc from A to B has a weight higher than the prefetch threshold, p. It is possible to set this threshold 
differently for each client and also vary it dynamically. 
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3.3 S o m e  I s s u e s  

We have implemented the prediction daemon, and have made the necessary changes to h t t p d  for it to com- 
municate information on accesses to p r e d i c t d  through a UNIX pipe. In case of a GETALL or GETLIST 
request, the modified h t t p d  conveys this fact to p r e d i c t d  so that  the latter is aware that  all the files 
corresponding to the GETALL or GETLIST have already been sent to the client and hence need not be 
considered as candidates for being prefetched at this time. We have not yet implemented the client-server 
communications interface and the client-side support for prefetching. 

There is the issue of how the lookahead window is managed when there are multiple accesses to the 
same file within a window. As an example, consider a window size of 10 and the sequence of accesses 
A B B . . .  A C . . .  A D . . .  A B B ,  where . . .  denotes gaps much larger than the window size. If we counted the 
multiple occurrences of B within a window, then the weight of the arc from A to B would be 4/4 = 1. 
However, this does not reflect the dependency between accesses to A and B correctly because, in fact, B 
does not follow A within a window 50% of the time. Caching at the clients should eliminate such multiple 
accesses, but they happen sometimes, for instance, when the data pointed to by a URL (B in this case) is 
updated frequently. We ignored such multiple accesses to the same file within a window while computing 
the weights on arcs. 

Dependencies between accesses to different files may vary with time. For instance, certain pages at a Web 
site might be very popular for a few days, so it would make sense to prefetch them whenever a client 
accesses the "home page" for that site. As the popularity of these pages wanes, prefetching them would be 
less beneficial. The weights on arcs in the dependency graph should be adjusted accordingly using some 
form of aging. Furthermore, nodes in the dependency graph of files that have not been accessed for a long 
time could be pruned to limit the size of the graph. In our implementation, we have ignored these issues. 

Finally, we note that  some items are inherently non-prefetchable (such as the result of filling out a form). 
Other items might have an "intermediate" prefetchability; for example, a "live" camera shot might be 
worth prefetching 1 second before the actual reference, but not 10 minutes early. Ideally, the prediction 
algorithm and the prefetching scheme should take these into account. 

4 Experimental Methodology 

We evaluate the usefulness of our prefetching scheme using simulations. We use the access logs of Digital 
Equipment Corporation's main Web server ( h t t p : / /www.d ig i t a l . com)  to drive the simulations. This 
is a regular h t t p d  server from NCSA, so there are no GETALL or GETLIST accesses. In each run, 
the simulator uses the first 50000 access log entries to prime its dependency graph, without simulating 
prefetching. It uses the next 150000 entries to simulate the working of a real system with prefetching 
predictions and updates to the dependency graph. It also simulates a 100 MB LRU cache at each client. 
In our simulations, a clients always prefetch files that  the server advises it to, except when the the file is 
already in the client's cache. 

The following parameters are varied in the experiments: 

1. The prefetch threshold, p, which is varied from 0.0 through 1.1 in steps of 0.1. The value 1.1 
corresponds to no prefetching, since the weight on an arc in the dependency graph cannot exceed 
1.0. 
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2. The lookahead window size, w, which takes on values between 2 and 10. A window size of 2 corre- 
sponds to the minimal, one-step lookahead. 

3. The maximum number of URLs that  predictd can advise a client to prefetch at any one time, i 
(standing for the amount  of prediction "information"). This is assigned integer values from 1 through 
3, and is also set to infinity, which corresponds to there being no limit. 

The following performance metrics are computed in each simulation run: 

1. The average access time perfile, computed assuming a zero retrieval t ime on a hit in the client cache, 
and a retrieval t ime based on the models described in sections 4.1 and 4.2 on a miss. 

2. The fractional increase in network traffic, computed as the ratio of the increase in the total  number of 
da ta  bytes transferred from the server to the client with prefetching, to the total  without prefetching. 

4 .1 N e t w o r k  m o d e l  

We need a way of estimating the t ime for retrieving files across the network in order to evaluate the benefits 
of prefetching. For this purpose, we construct  a simple model of the network. 

The data-pipe between the client and the server is modeled using a linear regression. Retrieving a file 
of size s bytes is assumed to incur a s tar tup cost, b0, and a per-byte cost, bl, yielding a total  t ime of 
b0 + s • bl. The s tar tup  cost includes the round-trip times for setting up a new connection, the t ime for 
sending the H T T P  request, etc. The per-byte cost reflects the share of the network bandwidth available 
for communication between a client and a server. From the set of da ta  points, {(x, y)}, the parameters  of 

the linear regression can be computed as bl ~ and b0 = ~ For simplicity, we use = ,, ~ ~ 2 _ ( L - = ) 2  , ,  • 

the same network model for all clients. 

In order to obtain da ta  points for constructing the model, we instrumented a Web browser to record the 
retrieval t ime for files. We ran the browser on a host connected to an ethernet  segment at UC Berkeley, 
and made 230 random retrievals of various sizes from Digital Equipment Corporation's  main Web server, 
in Palo Alto, California (not far from Berkeley). Figure 4 shows the data-points and the line corresponding 
to a linear regression model with parameters  b0 = 1.13 seconds and bl -- 5.36 × 10 -5 seconds per byte 
(equivalent to a bandwidth of 149 Kbps). Our network model does not a t t empt  to model the progress of 
t ranspor t  (TCP) connections in detail (e.g. slow start ,  congestion control, etc.). From the figure, we see 
that  this simple model fits the da ta  quite well. 

We extrapolate  the above model to the case where the client host is connected via a 28.8 Kbps modem line 
rather  than an ethernet .  Based on the larger latency of the modem link and the increased transmission 
time for H T T P  requests over this link, we estimate the s tar tup cost b0 to be about  1.5 seconds. Assuming 
the 28.8 Kbps modem line to be the bottleneck link, the per-byte cost is about  2.7 x 10 -4 seconds per byte. 

4 .2  R e t r i e v a l  M o d e l  

File retrievals, both demand-fetches (in response to explicit user requests) as well as prefetches, share 
the bandwidth of the client-server data-pipe. Demand-fetches are given priority over prefetches; on-going 
prefetches, if any, are suspended when a new user request is issued, and resumed only after all such fetches 
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Figure 4: A scatter plot of the time taken by a client at UC Berkeley to fetch files (Web pages, inline images, 
etc.) of different sizes from Digital's Web server, and the line corresponding to the linear regression model. 

have completed. In practice, the client could use separate TCP  connections for the demand-fetches and the 
prefetches. When required, the client could thrott le the prefetch connection by shrinking the T C P  receiver 
window. However, the algorithms employed by TCP  will still Mlow the server to send min(congestion 
window, receiver window) bytes of data  before the connection is fully thrott led.  

We consider two different models of file retrieval over the data-pipe between a client and a server. The 
first is the no-overlap model which assumes that  file retrievals happen sequentially (except for prefetches 
which can be suspended in the middle and resumed later). The second is the overlap model which Mlows 
a client to issue new retrieval requests before earlier ones have completed. The fixed s tar tup latency of 
a file retrieval, which largely arises due to network round-trip delays, could be overlapped with on-going 
transfers. This models the effect of multiple parallel connections used by Netscape  N a v i g a t o r  [7] or 
pipelined requests described in [8]. 

Finally, for simplicity we ignore the interaction between data  transfers to different clients. While this 
could introduce inaccuracies, we believe that  this is a plausible assumption for the following reason. Our 
measurements of the network connectivity between UC Berkeley and Digital were done in the presence 
of competing traffic to other clients (and, in general, other Internet traffic). Consequently, the model we 
developed reflects the share of the total network bandwidth that  is available for the data-pipe between UC 
Berkeley and Digital. If there is a fair distribution of network resources, it might be reasonable to assume 
each client-server data-path is guaranteed this share of the network bandwidth. 

5 R e s u l t s  

In this section, we discuss the results obtained from simulation experiments. Most of the discussion 
focuses on results obtained using the network model for the connectivity between UC Berkeley and Digital. 
However, we Mso present some results for prefetching across a slower, modem-speed link. Unless otherwise 
mentioned, the upper bound on the number of URLs that  the server can advise the client to prefetch, i, is 
set to 3. In the discussion below, we justify this choice. 

Figure 5 shows the variation of average file access time with the prefetch threshold and the lookahead 
window size. This is shown both for the overlap and the no-overlap network models. Increasing the 
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model are essentially the same. 

prefetch threshold results in less aggressive prefetching and, consequently, a larger average file access time. 
The access t ime is maximum when the prefetch threshold is larger than 1, resulting in no prefetching. 
Increasing the lookahead window size decreases the average access time. This is because a larger window 
is bet ter  able to capture dependencies between accesses to different files, including those not accessed 
consecutively. 

The benefit of  reduced access t ime due to prefetching comes at the cost of an increase in the amount  of 
da ta  transferred from the server to the clients, which we quantify in terms of the fractional increase in 
network traffic. As shown in figure 6, an increase in the prefetch threshold decreases this quant i ty  whereas 
an increase in the lookahead window size increases it. 

Assuming a no-overlap network model instead of an overlap one results in an increase in the est imated 
file access times. However, the relative improvement in access times is quite similar for the two models. 
Furthermore,  the amount  of network traffic is not affected by the choice of one model versus the other. In 
the remainder of this section, we focus on the overlap model, which is likely to be closer to reality than 
the no-overlap model. 

It is clear tha t  a balance needs to be struck between the improved access t ime and the increase in traffic. 
The inverse relationship between these quantities is clear from figure 7. We also note that ,  in general, a 
larger lookahead window size results in a smaller access time for a given increase in traffic. For instance, in 
figure 7, a window size of 4 results in better  performance than the other values shown. The performance 
improvement derived from increasing the window size beyond 4 is limited, so we use this setting for all the 
other experiments.  

As discussed in section 4, retrieving a file from a Web server involves a significant s ta r tup  cost, which is 
largely independent of the network bandwidth. So just increasing the bandwidth will not reduce the access 
t ime beyond a point. Figure 8 illustrates this graphically for the UC Berkeley-Digital network model. The 
horizontal, dot ted lines show the simulated mean access times for non-prefetching systems with available 
bandwidths of 100%, 120~0, and 200% of that  used when simulating the prefetching system. The solid curve 
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Figure 7: The average file access time versus the fractional increase in network traffic. Curves are shown 
for lookahead window sizes of 2, 3 and 4. 

corresponds to prefetching with a lookahead window size of 4. It is clear from the figure that  prefetching 
can result in lower access times compared to just increasing the available bandwidth. For instance, the 
figure shows that  prefetching can reduce the average access time to about 0.8 seconds with a 25% increase 
in network traffic. In contrast, even a doubling of the bandwidth only reduces the access time to about 1 
second, in the absence of prefetching. 

To investigate the benefit of prefetching when the bandwidth is low, we consider the case where a 28.8 
Kbps modem link is the bottleneck on the path between the client and the server. Figure 9 is the analogue 
of figure 8 for this case. Since the bandwidth is low, the contribution of data transmission time to the total 
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Figure 8: Figure 9: 
The average file access time with and without prefetching, both with UC Berkeley-Digital network model 
(figure 8) and a 28.8 gbps modem link (figure 9). The solid curve in each figure corresponds to the case of 
prefetching with a lookahead window size of 4. The horizontal, dotted lines correspond to non-prefetching 
systems with available bandwidths of 100~, 120~, and 200~o of that used when simulating the prefetching 
system. 

file retrieval time is significant. This explains why an increase in bandwidth reduces the average file access 
time more drastically than before. However, prefetching is still quite beneficial - when the prefetching 
threshold is set to a point that  requires a 20% increase in network traffic, the resulting ~ccess time is lower 
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than the non-prefetching system would obtain with a 20% increase in available bandwidth.  

In the discussion so far, we have set the parameter  i, which determines the amount  of prefetching-related 
information tha t  the server can piggyback on replies to clients, to a constant  value, 3. We now provide 
justification for this choice. Figures 10 and 11, respectively, show the average file access t ime and the 
increase in network traffic for various values of i. The ideal case is when i is set to infinity, implying tha t  
there is no limit on the amount  of prediction information that  the server can convey to the clients. From 
the figures, we see tha t  when i is set to 3, both the traffic and the access t ime curves are close to those 
for i equal to infinity, especially when the prefetch threshold is larger than about  0.3. This indicates tha t  
setting i to a relatively small value (and, consequently, having the server send only a small amount  of 
prefetching information to the clients) is sufficient for good performance. 
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Figure 12: A scatter plot of access time versus file 
size without prefetching. 

Figure 13: A scatter plot of  access time versus file 
size with the prefetch threshold set to 0.4 and the 
lookahead window size set to 4. 

Finally, we consider the effect of prefetching on the variability of file access times. From a user's perspective, 
it might be desirable to reduce this variability while also decreasing the average access time. Figures 12 
and 13 show scat ter  plots of file access t ime versus file size without prefetching and with prefetching, 
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respectively. Both the plots show a distinctive line corresponding to the linear model used for estimating 
file retrieval times. In the absence of prefetching, most of the data  points either lie on this line or above it 
(due to queuing delays). There are also many points with zero access times corresponding to cache hits. 
When prefetching is done, there are numerous points that  lie below the line corresponding to the linear 
model, because prefetching masks a part or the whole of the retrieval time. The prefetching system also 
yields more points with an access time of zero. These trends are evident from the distribution of access 
times shown in Table 1. 

2 We quantify the variability in file access times in terms of the standard deviation of errors, s e [4]. Given a 
collection of n data-points,  { (x, y)}, a simple linear regression with parameters bo and bl can be constructed 
(as described in section 4.1). The sum of squared errors, S S E ,  is then defined to be ~ y2 _ bo ~, y -  bl ~, xy. 

2 is computed as • The standard deviation of errors, se, .V x~-2" This is a measure of the deviation of the data- 
points from line corresponding to the linear regression. Table 1 shows the regression parameters and the 
standard deviation of errors corresponding to figures 12 and 13. 

Without  prefetching 
With prefetching 

Distribution of access times 
Zero Small Large 
20% 0% 80% 
42% 6% 52% 

Linear regression parameters 
(sec) b0(sec) bl (sec/byte) s e 

0.95 4.27 x 10 -5 1.52 
0.53 3.90 × 10 -5 1.60 

Table 1: The three columns to the left show the distribution of file access times in terms of three categories: 
zero (cache hit); non-zero but still smaller than that implied by the linear network model; and larger than 
that implied by the linear model. The three columns to the right show the parameters of the linear regression: 
the fixed cost (bo); the per-byte cost (bl); and the standard deviation of errors (s2). Note that this linear 
regression is only computed/or the purpose of quanti/ying the variation in files access times. It is not used 
to model access times. 

The standard deviation of errors with prefetching is 1.6 seconds, which is only slightly higher than that  
without prefetching (1.52 seconds). Thus prefetching can reduce the average file access t ime significantly 
without increasing the variability by much. 

6 D i s c u s s i o n  

Our results indicate that  predictive prefetching of Web data  can lead a significant reduction in perceived 
latency, but at the cost of an increase in the network traffic. Here we discuss some other issues related to 
prefetching. 

As explained in section 3, prefetching-related predictions are made by servers which can observe the 
pattern of accesses from several clients. For this purpose, a server needs to maintain a dependency graph 
that  reflects these patterns. On each client access, the server consults this da ta  s tructure to make its 
predictions. If it is necessary to minimize the additional load imposed on the server, the construction of 
the dependency graph can be scheduled for off-peak hours (such as late at night). Since it is reasonable 
to expect client access patterns to remain stable at least for the duration of a day, we believe tha t  such 
scheduling will not adversely impact the effectiveness of prefetching. 

For clients tha t  access the Web via proxy caches, prefetching can happen in two ways: between Web servers 
and the proxy cache, and between the proxy cache and the clients. In the latter case, the proxy cache makes 
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the prefetching-related predictions and conveys them to the clients. One advantage that  proxy caches have 
relative to Web servers is that they can observe client access patterns across servers. 

We consider two situations where the presence of a proxy cache is advantageous from the point of view 
of prefetching. The first is the case where each client is connected directly to the proxy via a non-shared 
link, such as a modem or ISDN line. In such a situation, it would be optimal for all the idle time on the 
link to be filled up with prefetch traffic. However, a mechanism is needed to rapidly throttle the prefetch 
traffic when needed, to avoid affecting the flow of other traffic across the link. 

The second case is where each client receives data via a high-bandwidth, high-latency link, such as a 
satellite downlink with a bandwidth of several Mbps and a latency hundreds of milliseconds. The reverse 
connection may be via a slow, telephone line. In such a scenario, the availability of spare bandwidth on 
the downlink and the large startup latency of fetching data on demand make prefetching an attractive 
proposition. By placing a proxy cache near the satellite ground station, throughputs close to the downlink 
bandwidth can be achieved between the cache and the client without increasing the load on any other part 
of the network. 

7 Conclusions 

We have presented a prefetching scheme for the World Wide Web aimed at reducing the latency perceived 
by users. In this scheme, the servers tell the clients which files are likely to be requested next by the 
user, and the clients decide whether or not to prefetch the files based on local considerations (such as the 
contents of the local cache). 

Our simulation results show that a substantial reduction in latency perceived by a client (quantified in 
terms of the average time to access a file) can be achieved at the cost of a similar increase in the network 
traffic. Since the retrieval time of a file includes a substantial startup latency, prefetching is often more 
effective in reducing the access time than just increasing the bandwidth. 

We conclude that prefetching might be worthwhile, especially when increasing bandwidth demands do 
not significantly degrade service for other users nor increase the cost for service. Two scenarios in which 
prefetching might be especially useful involve clients connected to a proxy cache via a non-shared modem 
or ISDN line, or via a high-bandwidth and high-latency satellite downlink. 

To support prefetching, the HTTP protocol could be enhanced to allow servers to piggyback prefetching 
hints on replies to clients. Also, it would help scheduling at a server if prefetches could be distinguished 
from demand-fetches, for instance to give them a lower priority. 
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