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Abstract

In this paper, we first study the problem of combinatorial
pure exploration with full-bandit feedback (CPE-BL), where
a learner is given a combinatorial action space X ⊆ {0, 1}d,
and in each round the learner pulls an action x ∈ X and re-
ceives a random reward with expectation x>θ, with θ ∈ Rd
a latent and unknown environment vector. The objective is to
identify the optimal action with the highest expected reward,
using as few samples as possible. For CPE-BL, we design the
first polynomial-time adaptive algorithm, whose sample com-
plexity matches the lower bound (within a logarithmic factor)
for a family of instances and has a light dependence of ∆min

(the smallest gap between the optimal action and sub-optimal
actions). Furthermore, we propose a novel generalization of
CPE-BL with flexible feedback structures, called combinato-
rial pure exploration with partial linear feedback (CPE-PL),
which encompasses several families of sub-problems including
full-bandit feedback, semi-bandit feedback, partial feedback
and nonlinear reward functions. In CPE-PL, each pull of ac-
tion x reports a random feedback vector with expectation of
Mxθ, where Mx ∈ Rmx×d is a transformation matrix for x,
and gains a random (possibly nonlinear) reward related to x.
For CPE-PL, we develop the first polynomial-time algorithm,
which simultaneously addresses limited feedback, general re-
ward function and combinatorial action space (e.g., matroids,
matchings and s-t paths), and provide its sample complexity
analysis. Our empirical evaluation demonstrates that our algo-
rithms run orders of magnitude faster than the existing ones,
and our CPE-BL algorithm is robust across different ∆min

settings while our CPE-PL algorithm is the first one returning
correct answers for nonlinear reward functions.

1 Introduction
The problem of best arm identification (BAI) is the pure-
exploration framework in stochastic multi-armed bandits. In
BAI, at each step a learner chooses an arm and observes its
reward sampled from an unknown distribution, with the goal
of returning the best arm with the highest expected reward
using as few exploration steps as possible. This problem
abstracts a decision making model in the face of uncertainty
with a wide range of applications, and has received much
attentions in the literature (Even-Dar, Mannor, and Mansour
∗The first two authors have equal contributions.
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2006; Audibert, Bubeck, and Munos 2010; Chen and Li 2015;
Kaufmann, Cappé, and Garivier 2016).

In many application domains, possible actions have a cer-
tain combinatorial structure. For example, each action may
be a size-k subset of keywords in online advertisements (Rus-
mevichientong and Williamson 2006), or an assignment be-
tween workers and tasks in crowdsourcing (Lin et al. 2014),
or a spanning tree in communication networks (Huang, Liu,
and Ding 2008). To deal with such a combinaotrial action
space, the model of combinatorial pure exploration of multi-
armed bandits (CPE-MB) was first proposed by Chen et
al. (2014). In this model, there are d base arms, each of
which is associated with an unknown reward distribution, and
a collection of super arms, each of which is a subset of base
arms. A learner plays a base arm at each step and observes
its random reward, with the goal of identifying the best su-
per arm that maximizes the sum of expected rewards at the
end of exploration. CPE-MB generalizes the classical BAI
problem (Kalyanakrishnan and Stone 2010; Kalyanakrishnan
et al. 2012; Bubeck, Wang, and Viswanathan 2013).

However, many real-world scenarios may not fit into CPE-
MB. In particular, CPE-MB assumes that the learner can
directly play each base arm and observe its outcome, but this
might not be allowed due to system constraints or privacy
issues. Only a few studies avoid such an assumption. Kuroki
et al. (2020b) studied the combinatorial pure exploration with
full-bandit linear feedback (CPE-BL), in which the learner
pulls a super arm (rather than base arm) and only observes
the sum of rewards from the involved base arms. They de-
signed an efficient algorithm for CPE-BL, but the algorithm
is nonadaptive and its sample complexity heavily depends
on the smallest gap between the best and the other super
arms (denoted by ∆min). Rejwan and Mansour (2020) also
designed an efficient algorithm with an adaptive Successive-
Accept-Reject algorithm, but the algorithm only works for
the top-k case of CPE-BL, which we show can be simply
reduced to previous CPE-MB (see Appendix D in the full
version).

Note that CPE-BL can be regarded as an instance of the
best arm identification in linear bandits (BAI-LB), which has
received increasing attention recently (Soare, Lazaric, and
Munos 2014; Tao, Blanco, and Zhou 2018; Fiez et al. 2019).
However, none of the existing algorithms for BAI-LB can
efficiently solve CPE-BL, because their running times have



polynomial dependence on the size of action space, which is
exponential in the combinatorial setting.

In this paper, we provide the first algorithm solving CPE-
BL that simultaneous achieves the following properties: (a)
polynomial-time complexity, (b) adaptive sampling, such that
the sample complexity is not heavily dependent on ∆min; (c)
general combinatorial constraints, and (d) nearly optimal
sample complexity for some family of instances.

Next, we propose a more general setting, combinatorial
pure exploration with partial linear feedback (CPE-PL),
which simultaneously models limited feedback, general (pos-
sibly nonlinear) reward and combinatorial action space. In
CPE-PL, given a combinatorial action space X ⊆ {0, 1}d,
where each dimension corresponds to a base arm and each
action x ∈ X can also be viewed as a super arm that con-
tains those dimensions with coordinate 1. At each step the
learner chooses an action (super arm) xt ∈ X to play and
observes a random partial linear feedback with expectation
of Mxtθ, where Mxt is a transformation matrix for xt and
θ ∈ Rd is an unknown environment vector. The learner also
gains a random (possibly nonlinear) reward related to xt and
θ, which may not be a part of the feedback and thus may
not be directly observed. Given a confidence level δ, the ob-
jective is to identify the optimal action with the maximum
expected reward with probability at least 1− δ, using as few
samples as possible. CPE-PL framework includes CPE-BL as
its important sub-problem. In CPE-BL, the learner observes
full-bandit feedback (i.e. Mx = x>) and gains linear reward
(with expectation of x>θ) after each play.

The model of CPE-PL appears in many practical scenarios.
For example, in online ranking (Chaudhuri and Tewari 2017),
a company recommends their products to users by presenting
rankings of entire items, and wants to find the best ranking
with limited feedback on the top-ranked item due to user bur-
den constraints and privacy concerns. In crowdsourcing (Lin
et al. 2014), an employer assigns crowdworkers to tasks ac-
cording to the worker-task performance, and wants to find
the best matching with limited feedback on a small subset of
the completed tasks, owing to the burden of entire feedback
and privacy issues (see Section 4.3 for detailed applications).

We remark that, CPE-PL is a novel and general model that
encompasses several families of sub-problems across full-
bandit feedback, semi-bandit feedback and nonlinear reward
function, and it cannot be translated to CPE-BL or BAI-LB.
For example, when the reward function is (x>θ)/‖x‖1 and
Mx = diag(x), CPE-PL reduces to a semi-bandit problem
with nonlinear reward function, and no existing CPE-BL or
BAI-LB algorithm could solve this problem.

Finally, we empirically compare our algorithms with sev-
eral state-of-the-art CPE-BL and BAI-LB algorithms. Our
result demonstrates that (a) our algorithms run much faster
than all others, some of which cannot even finish after days
of running; (b) For CPE-BL, our adaptive algorithm is much
more robust on different ∆min settings than the existing non-
adaptive algorithm; and (c) For CPE-PL, our algorithm is the
only one that correctly outputs the optimal action for a non-
linear reward function among all the compared algorithms.

To summarize, our contributions include: (a) proposing
the first polynomial-time adaptive algorithm for CPE-BL

with general constraints that achieves near optimal sample
complexity for some family of instances; and (b) proposing
the general CPE-PL framework and the first polynomial time
algorithm for CPE-PL with its sample complexity analysis.

Due to the space constraint, full proofs with additional
results and discussions are moved to the appendices in the
full version (Du, Kuroki, and Chen 2020).

1.1 State-of-the-art Related Work
Here we compare with the most related and state-of-the-art
works (see Table 1), and the full discussion and comparison
table with notation definitions are included in Appendix A in
the full version. For CPE-BL, Kuroki et al. (2020b) propose
a polynomial-time but static algorithm ICB, which has a
heavy dependence on ∆min in the sample complexity and
requires a large number of samples for small-∆min instances
empirically (see Appendix I in the full version). Rejwan
and Mansour (2020) develop a polynomial-time adaptive
algorithm CSAR but it only works for the top-k case, which
has a naive reduction to previous CPE-MB (see Appendix D
in the full version).

For BAI-LB where the action space is often considered
small, Tao, Blanco, and Zhou (2018) propose an adaptive
algorithm ALBA with a light ∆min dependence. Fiez et
al. (2019) present the first lower bound and a nearly optimal
algorithm RAGE. Recently, Katz-Samuels et al. (2020) also
design an improved nearly optimal algorithm Peace, which
is built upon the previous RAGE. Degenne et al. (2020) and
Jedra and Proutiere (2020) develop asymptotically optimal
algorithms, but a fair way to compare their results with other
non-asymptotical results is unknown. While the existing BAI-
LB algorithms achieve satisfactory sample complexity, none
of them can efficiently solve CPE-BL with an exponentially
large combinatorial action space. This paper proposes the
first polynomial-time adaptive algorithm for CPE-BL, which
is nearly optimal for some family of instances, and the first
polynomial-time algorithm for CPE-PL.

2 Problem Statements
Combinatorial pure exploration with full-bandit linear
feedback (CPE-BL). In CPE-BL, a learner is given d
base arms numbered 1, 2, . . . , d. We define X ⊆ {0, 1}d
as a collection of subsets of base arms, which satisfies a
certain combinatorial structure such as size-k subsets, ma-
troids, paths and matchings. A subset of base arms x ∈ X
is called a super arm (or an action). Let m denote the max-
imum number of base arms that a super arm in X contains,
i.e. m = maxx∈X ‖x‖1 (m ≤ d). There is an unknown envi-
ronment vector θ ∈ Rd with ‖θ‖2 ≤ L. At each time step t,
a learner pulls a super arm xt and receives a random reward
(full-bandit feedback) yt = x>(θ + ηt), where ηt is a zero-
mean noise vector bounded in [−1, 1]d and it is independent
among different time step t. Let x∗ = argmaxx∈X x

>θ de-
note the optimal super arm, and we assume that the optimal
x∗ is unique as previous pure exploration works (Chen et al.
2014; Lin et al. 2014; Fiez et al. 2019) do. Let ∆i denote the
gap of the expected rewards between x∗ and the super arm
with the i-th largest expected reward.



Table 1: Comparison between our results and state-of-the-art results for CPE-BL(PL). “General” represents that the algorithm
works for any combinatorial structure. Õ(·) only omits log log factors. Main notations is defined in Section 2.

Algorithm Sample complexity Case Problem Type Strategy Time

GCB-PE (ours, Thm. 2) O
( |σ|β2

σL
2
p

∆2
min

log
β2
σL

2
p

∆2
minδ

)
General CPE-PL Static Poly(d)

PolyALBA (ours, Thm. 1) Õ
(∑b d2 c

i=2
1

∆2
i

log |X |δ + d2mξmax(M̃(λ)
−1

)
∆2
d+1

log |X |δ
)

General CPE-BL Adaptive Poly(d)

ICB (Kuroki et al. 2020b) Õ
(dξmax(M(λ)−1)ρ(λ)

∆2
min

log dξmax(M(λ)−1)ρ(λ)
∆2

minδ

)
General CPE-BL Static Poly(d)

CSAR (Rejwan and Mansour 2020) Õ
(∑d

i=2
1

∆̃2
i

log d
δ

)
Top-k CPE-BL Adaptive Poly(d)

ALBA (Tao, Blanco, and Zhou 2018) Õ
(∑d

i=2
1

∆2
i
(log δ−1 + log |X |)

)
X ⊆ Rd BAI-LB Adaptive Ω(|X |)

RAGE (Fiez et al. 2019) O
(∑blog2(4/∆min)c

t=1 2(2t)2ρ̃(Y(St)) log(t2|X |2/δ)
)

X ⊆ Rd BAI-LB Adaptive Ω(|X |)

LinGame(-C) (Degenne et al. 2020) lim supδ→0
Eθ[τδ]

log(1/δ) ≤ minλ∈4(X ) maxx∈X\{x∗}
2||x∗−x||2

M(λ)−1

((x∗−x)>θ)2
X ⊆ Rd BAI-LB Adaptive Ω(|X |)

Peace (Katz-Samuels et al. 2020) O
(
(minλ∈4(X ) maxx∈X\{x∗}

||x∗−x||2
M(λ)−1

((x∗−x)>θ)2
+ γ∗) log(1/δ)

)
X ⊆ Rd BAI-LB Adaptive Ω(|X |)

LT&S (Jedra and Proutiere 2020) lim supδ→0
Eθ[τδ]

log(1/δ) ≤ minλ∈4(X ) maxx∈X\{x∗}
||x∗−x||2

M(λ)−1

((x∗−x)>θ)2
X ⊆ Rd BAI-LB Adaptive Ω(|X |)

Lower Bound (Fiez et al. 2019) Eθ[τδ] ≥ minλ∈4(X ) maxx∈X\{x∗}
||x∗−x||2

M(λ)−1

((x∗−x)>θ)2
log(1/2.4δ) X ⊆ Rd BAI-LB - -

Given a confidence level δ ∈ (0, 1), the objective is to use
as few samples as possible to identify the optimal super arm
with probability at least 1− δ. This is often called the fixed
confidence setting in the bandit literature, and the number of
samples required by the learner is called sample complexity.
Combinatorial pure exploration with partial-monitoring
linear feedback (CPE-PL). CPE-PL is a generalization
of CPE-BL to partial linear feedback and nonlinear reward
functions. In CPE-PL, each super arm x ∈ X is associated
with a transformation matrix Mx ∈ Rmx×d, whose row di-
mensionmx depends on x. At each timestep t, a learner pulls
a super arm xt and observes a random linear feedback vector
yt = Mxt(θ + ηt) ∈ Rmxt , where ηt is the noise vector.
Meanwhile, the learner gains a random reward with expecta-
tion of r̄(xt, θ). Note that for each pull of super arm xt, the
actual expected reward r̄(xt, θ) may not be part of the linear
feedback vector yt and thus may not be directly observed
by the learner. Similarly, given a confidence δ ∈ (0, 1), the
learner aims to use as few samples as possible to identify the
optimal super arm with probability at least 1− δ.

CPE-PL allows more flexible feedback structures than
CPE-BL or BAI-LB, and encompasses several families of
sub-problems including full-bandit feedback, semi-bandit
feedback and nonlinear reward functions. For example, when
Mx = x> ∈ R1×d for all x ∈ X , this model reduces to CPE-
BL. When Mx = diag(x) ∈ Rd×d for all x ∈ X , this model
reduces to combinatorial pure exploration with semi-bandit
feedback (see Appendix B in the full version for illustration
examples).

The regret minimization version of CPE-PL has been stud-
ied in Lin et al. (2014); Chaudhuri and Tewari (2016). In this
paper, we study the pure exploration version and inherit the
two technical assumptions from Lin et al. (2014); Chaudhuri
and Tewari (2016) in order to design an efficient algorithm.
Assumption 1 (Lipschitz continuity of the expected reward
function). There exists a constantLp such that for any x ∈ X
and any θ1, θ2 ∈ Rd, |r̄(x, θ1)− r̄(x, θ2)| ≤ Lp||θ1 − θ2||2.
Assumption 2 (Global observer set). There exists a global

observer set σ = {x1, x2, . . . , x|σ|} ⊆ X , such that
the stacked

∑|σ|
i=1mxi × d transformation matrix Mσ =

(Mx1 ;Mx2 ; . . . ;Mx|σ|) is of full column rank (rank(Mσ) =
d).

Then, the Moore-Penrose pseudoinverse M+
σ satisfies

M+
σ Mσ = Id, where Id is the d × d identity matrix. We

justify Assumption 2 by the fact that without the existence of
global observer set, the learner cannot recover θ and may not
distinguish two different actions. With Assumption 2, we can
systematically construct a global observer set with |σ| ≤ d
by sequentially adding an action that strictly increases the
rank of Mσ, until Mσ reaches the full rank. Section 4.3 pro-
vides more detailed discussion on the global observer set
with applications of CPE-PL.
Notations. For clarity, we also introduce the following
notations. Let [d] = {1, 2, . . . , d}. For a vector x ∈ Rd

and a matrix B ∈ Rd×d, let ‖x‖B =
√
x>Bx. For a posi-

tive definite matrix B ∈ Rd×d, we use B1/2 to denote the
unique positive definite matrix whose square is B. For a
given family X , we use 4(X ) to denote the set of proba-
bility distributions over X . For distribution λ ∈ 4(X ), we
define supp(λ) = {x : λ(x) > 0}, M(λ) = Ez∼λ[zz>]

and M̃(λ) =
∑
x∈supp(λ) xx

>. We denote the maximum
(minimal) eigenvalue of matrix B by ξmax(B) (ξmin(B)).

3 Combinatorial Pure Exploration with
Full-bandit Feedback (CPE-BL)

In this section, we propose the first polynomial-time adaptive
algorithm PolyALBA for CPE-BL, and show that its sample
complexity matches the lower bound (within a logarithmic
factor) for a family of instances.

3.1 Algorithm Procedure
ALBA algorithm. Before stating the main algorithm, we in-
troduce the Adaptive Linear Best Arm (ALBA) algorithm for
BAI-LB (Tao, Blanco, and Zhou 2018) (see Algorithm 1 for



Algorithm 1: ALBA(S, δ) (Tao, Blanco, and Zhou
2018)

Input :Action set S and confidence δ.
1 Initialize S1 ← S;
2 for q ← 1, . . . , blog2 dc do
3 δq ← 6

π2
δ

(q+1)2 ;
4 Sq+1 ← ElimTilb d2q c(Sq, δq);

5 q ← q + 1;
Output : x ∈ Sq+1

Algorithm 2: ElimTilp(S, δ)
Input :A parameter p, arms set S and confidence

level δ.
1 Compute λ∗S ← minλ∈4(S) maxx∈S x

>M(λ)−1x;
2 Initialize S1 ← S, r ← 1;
3 while |Sr| > p do
4 Set εr ← 1/2r, δr ← 6/π2 · δ/r2;
5 θ̂r ← VectorEst(λ∗S , c0

2+(6+εr/2)d
(ε/2)2 ln 5|S|

δr
);

6 xr ← argmaxx∈Sr x
>θ̂r;

7 Sr+1 ← Sr \ {x ∈ Sr | x>θ̂r < x>r θ̂r − εr};
8 r ← r + 1;

Output :Sr

its description), which is the key subroutine of our proposed
method PolyALBA. First, we describe the randomized least-
square estimator defined by Tao et al. (2018). Let y1, . . . , yn
be n i.i.d. samples following a given distribution λ ∈ 4(X ),
and let the corresponding rewards be r1, . . . , rn respectively.
Let b =

∑n
i=1 riyi. Then, the randomized estimator θ̂ is

given by θ̂ = A−1b, where A = nM(λ) ∈ Rd×d (recall
that M(λ) = Ez∼λ[zz>]). The procedure for computing
the estimate for θ is described in VectorEst (Algorithm 3).
ALBA is an elimination-based algorithm, where in round q it
identifies the top d/2q arms and discards the remaining arms
by means of ElimTilp (Algorithm 2). Note that ALBA(S, δ)
runs in time polynomial to |S|. However, since in CPE-BL,
|X | is exponential to the instance size, it is infeasible to run
ALBA with S = X . Our main contribution is the nontrivial
construction of a polynomial sized S1 to run ALBA with.
Main algorithm. Now we present our proposed algorithm
PolyALBA (see Algorithm 4 for its description), in which
ALBA is invoked with S = S1 with |S1| = d. Set S1 is
constructed by a novel preparation procedure in the first
epoch (q = 0). In this preparation epoch, we first compute
a fixed distribution λ ∈ 4(X ) that has a polynomial-size
support and a key parameter α (line 1). Then, based on λ
we apply static estimation to estimate θ, until we see a big
enough gap between the empirically best and (d+ 1)-th best
actions (lines 4–13). The empirical top-d actions, excluding
those that also have big gaps to the best one, form the set S1

(lines 10–11), which is used to call ALBA to obtain the final
result x̂∗.

Note that, computing the empirical best d+ 1 super arms

Algorithm 3: VectorEst(λ, n)
Input :distribution λ and the number of samples n

1 Let y1 . . . , yn be the n samples acquired from
supp(λ) according to the distribution λ;

2 Pull arms y1, . . . , yn;
3 Observe the rewards r1, . . . , rn;
4 A← n ·

∑
x∈supp(λ) λ(x)xx>;

5 b←
∑n
i=1 riyi;

Output :The estimate θ̂ ← A−1b

Algorithm 4: PolyALBA
Input :confidence level δ, c0 = max{4L2, 3}.

1 Set q ← 0 and δq ← 6
π2

δ
(q+1)2 ;

2 Compute a distribution λ← λ∗Xσ and parameter

α←
√
md/ξmin(M̃(λ∗Xσ )) by Algorithm 5;

3 r ← 1;
4 while true do
5 Set εr ← 1

2r and δr ← 6
π2

δq
r2 ;

6 `(ε)← 2m+2α
√
md+4α2d+αεd
ε2 ;

7 θ̂r ← VectorEst(λ, c0`( εr2 ) ln( 5|X |
δr

));
8 Select d+ 1 actions x̂1, . . . , x̂d, x̂d+1 with the

highest d+ 1 empirical means x>θ̂r in all
x ∈ X ;

9 if x̂>1 θ̂r − x̂>d+1θ̂r > εr then
10 B1 ← {x̂1, . . . , x̂d};
11 S1 ← B1 \ {x ∈ B1 | x̂>1 θ̂r − x>θ̂r > εr};
12 break;
13 r ← r + 1;
14 x̂∗ ← output by ALBA(S1, δ1)

Output :x̂∗

Algorithm 5: Computing a distribution λ
Input :d-base arms

1 Choose any d super arms Xσ = {b1, . . . , bd} from X ,
such that rank(X) = d where X = (b1, . . . , bd);

2 λ∗Xσ ← argminλ∈4(Xσ) maxx∈Xσ x
>M(λ)−1x by

the entropy mirror descent algorithm of (Tao, Blanco,
and Zhou 2018) (see Algorithm 8 in Appendix E in
the full version) ;

3 α←
√
md/ξmin(M̃(λ∗Xσ ));

Output : λ∗Xσ and α

can be done in polynomial time by using Lawler’s k-best
procedure (Lawler 1972). This procedure only requires the
existence of the efficient maximization oracle, which is sat-
isfied in many combinatorial problems such as maximum
matching, shortest paths and minimum spanning tree. More-
over, the computational efficiency of PolyALBA is not merely
owing to the Lawler’s k-best procedure. In fact, even if pre-



vious BAI-LB algorithms apply the same procedure, they
cannot run in polynomial time since they explicitly maintain
exponential-sized action set and sample on distributions with
exponential supports. These render heavy computation and
memory in every round of previous algorithms. In contrast,
we avoid the naive enumeration and sampling on the com-
binatorial space directly, and instead find empirical top-d
actions as representatives through a novel polynomial-time
computation procedure.

3.2 Theoretical Analysis
Now we provide the sample complexity bound of PolyALBA.

Theorem 1. With probability at least 1− δ, the PolyALBA
algorithm (Algorithm 4) returns the best super arm x∗ with
sample complexity

O

( b d2 c∑
i=2

c0
∆2
i

(ln δ−1 + ln |X |+ ln ln ∆−1
i )

+
c0d(α

√
m+ α2)

∆2
d+1

(
ln δ−1 + ln |X |+ ln ln ∆−1

d+1

))
,

where α =
√
md/ξmin(M̃(λ∗Xσ )).

Analysis of the statistical and computational efficiency.
The first term in Theorem 1 is for the remaining epochs re-
quired by subroutine ALBA and the second term is for the
preparation procedure. As shown in Theorem 1, our sam-
ple complexity bound has lighter dependence on 1/∆2

min,
compared with the existing result (see Table 1). Now we
explain the key role for the polynomial-time complexity
of PolyALBA in the first epoch played by the distribution
λ∗Xσ and parameter α. Notice that even if we employ a uni-
form distribution on a polynomial-size support Xσ ⊆ X ,
i.e., λXσ = (1/|Xσ|)x∈Xσ , computing the maximal confi-
dence bound maxx∈X ‖x‖M(λXσ )−1 is NP-hard, while many
(UCB-based) algorithms in LB ignore this issue and simply
use a brute force method. In contrast, PolyALBA utilizes
G-optimal design (Pukelsheim 2006) and runs in polyno-
mial time while guaranteeing the optimality. In the following
lemma, we show that α

√
d gives the upper bound on the

maximal ellipsoidal norm associated to M(λ∗Xσ )−1.

Lemma 1. For λ∗Xσ and α obtained by Algorithm 5, it
holds that maxx∈X ‖x‖M(λ∗Xσ )−1 ≤ α

√
d, where α =√

md/ξmin(M̃(λ∗Xσ )).

From the equivalence theorem for optimal experimen-
tal designs (Proposition 2 in Appendix G in the full ver-
sion), it holds that minλ∈4(X ) maxx∈X ‖x‖M(λ)−1 =

√
d.

From this fact and Lemma 1, we see that λ∗Xσ is α (≥
1)-approximate solution to minλ∈4(X ) maxx∈X ‖x‖M(λ)−1

where X can be defined by general combinatorial con-
straints. Note that α can be easily obtained by comput-
ing ξmin(M̃(λ∗Xσ )) (recall that M̃(λ) =

∑
x∈supp(λ) xx

>).
Therefore, by employing λ∗Xσ and a prior knowledge of its
approximation ratio α, we can guarantee that the preparation

sampling scheme identifies a set S1 containing the optimal
super arm x∗ with high probability. In the remaining epochs,
PolyALBA can successfully focus on sampling near-optimal
super arms by ALBA owing to the optimality of S1. Note
that α = 1 if we compute minλ∈4(X ) maxx∈X ‖x‖M(λ)−1

exactly. If we approximately solve it, α is independent on the
arm-selection ratio but it can depend on the support of λ. For
further discussion on improving α, please see Appendix E in
the full version.
Discussion on the optimality. Fiez et al. (2019) give
a sample complexity lower bound for BAI-LB (see Ta-
ble 1) and propose a nearly (within a logarithmic fac-
tor) optimal algorithm RAGE with sample complexity of
O
(∑blog2(4/∆min)c

t=1 2(2t)2ρ̃(Y(St)) log(t2|X |2/δ)
)

. Note
that the existing lower bound (Fiez et al. 2019) and nearly
(or asymptotically) optimal algorithms (Fiez et al. 2019; De-
genne et al. 2020; Katz-Samuels et al. 2020) do not consider
computational efficiency for combinatorially-large |X |, and
the lower bound for polynomial-time CPE-BL algorithms is
still an open problem.

When compared to the lower bound (Fiez
et al. 2019), there exists a family of instances
such that ∆bd/2(t−2)c+1 = 4 · 2−t, t =

2, 3, . . . , log2( 4
∆min

), in which our PolyALBA achieves

O(
∑blog2(4/∆min)c
t=2 2(2t)2ρ̃(Y(St)) log(t2|X |2/δ) +

mdξmax(M̃−1(λ))ρ̃(Y(S1)) log(|X |2/δ)) sample complex-
ity (see Appendix C in the full version for more details).
When ignoring a logarithmic factor and with sufficiently
small ∆min, the additional term related to ξmax(M̃−1(λ))
is absorbed and the result matches the lower bound, which
shows superiority over other heavily ∆min-dependent
algorithms (Soare, Lazaric, and Munos 2014; Karnin
2016; Kuroki et al. 2020b). Note that the term related to
ξmax(M̃−1(λ)) can be viewed as the cost for achieving
computational efficiency.

To our best knowledge, our PolyALBA is the first
polynomial-time adaptive algorithm that works for CPE-BL
with general combinatorial structures and achieves nearly op-
timal sample complexity for a family of problem instances.

4 Combinatorial Pure Exploration with
Partial Linear Feedback (CPE-PL)

In this section, we present the first polynomial-time algorithm
GCB-PE for CPE-PL with sample complexity analysis, and
discuss its further improvements via a non-uniform allocation
strategy. We also give practical applications for CPE-PL and
explain the corresponding global observer set and sample
complexity result in these scenarios.

4.1 Algorithm Procedure
We illustrate GCB-PE in Algorithm 6. GCB-PE estimates
the environment vector θ by repeatedly pulling the global
observer set σ = {x1, x2, . . . , x|σ|}, which in turn helps
estimate the expected rewards r̄(x, θ) of all super arms x ∈
X using the Lipschitz continuity (Assumption 1). We call
one pull of global observer set σ one exploration round, the



specific procedure of which is described as follows: for the
n-th exploration round, the learner plays all actions in σ =
{x1, x2, . . . , x|σ|} once and respectively observes feedback
y1, y2, . . . , y|σ|, the stacked vector of which is denoted by
~yn = (y1; y2; . . . ; y|σ|). The estimate of environment vector
θ in this exploration round is θ̂n = M+

σ ~yn, where M+
σ is

the Moore-Penrose pseudoinverse of Mσ . From Assumption
2, we have E[θ̂n] = θ. Then, we can use the independent
estimates in multiple rounds, i.e., θ̂(n) = 1

n

∑n
j=1 θ̂j , to

obtain an accurate estimate of θ.
Similar to Lin et al. (2014), we define a constant βσ :=

maxη1,··· ,η|σ|∈[−1,1]d ‖(M>σ Mσ)−1
∑|σ|
i=1M

>
xiMxiηi‖2,

which only depends on global observer set σ, and bounds
the estimate error of one exploration round, i.e., for any n,
‖θ̂n−θ‖2 ≤ βσ , the proof of which is given in Appendix H.1
in the full version. Based on βσ, we further design a global
confidence radius radn =

√
2β2

σ log(4n2e2/δ)/n for the
estimate θ̂(n), and show that with high probability, radn
bounds the estimate error of θ̂(n).

Compared with GCB in Lin et al. (2014), which works for
the regret minimization metric of the combinatorial partial
monitoring game with linear feedback problem, GCB-PE
targets the best action identification and mainly controls the
stopping time of the exploration phase rather than balancing
the frequency of exploration and exploitation phases. For the
pure exploration metric, our global confidence radius radn is
novelly designed to bound the estimate error. In addition, the
stopping condition, which uses the designed confidence ra-
dius and Lipschitz continuity of the expected reward function,
is also novelly adopted to fit the CPE-PL setting.

The computational efficiency of GCB-PE relies on the
polynomial-time offline maximization oracle for the specific
combinatorial instance, which is used in the two argmax op-
erations in GCB-PE. It is reasonable to assume the existence
of polynomial-time offline maximization oracle, otherwise
we cannot efficiently address the exponentially large action
space even if the real environment vector θ is known.

4.2 Theoretical Analysis
We give the sample complexity of GCB-PE below.
Theorem 2. With probability at least 1 − δ, the GCB-PE
algorithm (Algorithm 6) will return the optimal super arm
x∗ with sample complexity

O

(
|σ|β2

σL
2
p

∆2
min

log

(
β2
σL

2
p

∆2
minδ

))
,

where |σ| ≤ d.
When the expected reward function is linear, i.e. r̄(x, θ) =

x>θ, we have Lp =
√
m, where m (≤ d) is the maxi-

mum number of base arms a super arm contains. In addition,
βσ = Poly(d) in several practical applications of CPE-PL
(see Section 4.3 for our detailed discussion).
Discussion on the optimality. While the sample com-
plexity of GCB-PE is sometimes worse than the CPE-BL
or BAI-LB algorithms (PolyALBA, ALBA and RAGE), it
solves a more general class of problems than CPE-BL and

Algorithm 6: GCB-PE
Input :Confidence level δ, global observer set σ,

constant βσ , Lipschitz constant Lp
1 for s = 1, . . . , |σ| do
2 Pull xs in observer set σ, and observe ys;
3 n← 1;
4 ~y1 ← (y1; y2; . . . ; y|σ|);
5 θ̂1 ←M+

σ ~y1 and θ̂(1)← θ̂1;
6 while true do
7 x̂← argmaxx∈X r̄(x, θ̂(n));
8 x̂− ← argmaxx∈X\{x̂} r̄(x, θ̂(n));

9 radn ←
√

2β2
σ log( 4n2e2

δ )

n ;
10 if r̄(x̂, θ̂(n))− r̄(x̂−, θ̂(n)) > 2Lp · radn then
11 return x̂;
12 else
13 for s = 1, . . . , |σ| do
14 Pull xs in observer set σ, and observe ys;
15 n← n+ 1;
16 ~yn ← (y1; y2; . . . ; y|σ|);
17 θ̂n ←M+

σ ~yn;
18 θ̂(n)← 1

n

∑n
j=1 θ̂j ;

Output : x̂

BAI-LB. We emphasize that our contribution mainly focuses
on proposing the first polynomial-time algorithm GCB-PE
that simultaneously addresses combinatorial action apace,
partial linear feedback and nonlinear reward function. On
non-uniform or adaptive allocation strategy. GCB-PE
can be further improved by employing a non-uniform
allocation strategy when considering the global observer
set σ with multiplicity: we can obtain such an alloca-
tion by solving an optimization argminλ∈4(σ) βσ(λ)

and rounding the result, where βσ(λ) :=

maxη1,··· ,η|σ|∈[−1,1]d ‖(M>σ Mσ)−1
∑|σ|
i=1 λiM

>
xiMxiηi‖2.

Since uniform sampling is not essential in our analysis,
the proposed improvement for GCB-PE via non-uniform
allocation does not violate Assumption 2 and keeps our
theoretical analysis. GCB-PE is a static algorithm, and
we leave the study of adaptive strategies for CPE-PL
as future work. In Appendix D in the full version, we
discuss a fully-adaptive algorithm for CPE-BL (special
case of CPE-PL), and show that the result depends on a
non-controllable term M(λ)−1, which indicates that the
static control may be required to deal with linear feedback
efficiently.

4.3 Applications for GCB-PL
CPE-PL characterizes more flexible feedback structures than
CPE-BL (or BAI-LB) and finds many real-world applications.
Below we present two practical applications and discuss the
global observer set (Assumption 2) and parameter βσ .
Online ranking. Consider that a company wishes to recom-



mend their products to users by presenting the ranked list of
items. Due to user burden constraints and privacy concerns,
collecting a large amount of data on the relevance of all items
might be infeasible, and thus the company usually collects
the relevance of only the top-ranked item (Chaudhuri and
Tewari 2015, 2016, 2017). In this scenario, a learner selects
a permutation of d items (each action x is a permutation)
at each step, and observes the relevance of the top-ranked
item, i.e., Mx contains a single row with 1 in the place of the
top-ranked item and 0 everywhere else. The objective is to
identify the best permutation as soon as possible. Then, we
can construct a global observable set σ to be the set of any d
actions which places a distinct item at top. Here Mσ is the
d× d identity matrix and βσ =

√
d.

Task assignments in crowdsourcing. Consider that an em-
ployer wishes to assign crowdworkers to tasks with high
quality performance, and it wants to avoid the high cost and
the privacy concern of collecting each individual worker-task
pair performance (Lin et al. 2014). Thus, the employer se-
quentially chooses an assignment fromN workers toM tasks
(each action x is a worker-task matching) and only collects
the sum of performance feedback for 1 ≤ s < N matched
worker-task pairs, i.e., Mx contains a single row with 1s in
the places of s matched pairs and 0 everywhere else. The
objective is to find the best worker-task matching as soon
as possible. For 1 ≤ s < N , Lin et al. (2014) provide a
systematic method to construct a global observer set.

5 Experiments
We conduct experiments for CPE-BL and CPE-PL on the
matching and top-k instances, and compare our algorithms
with the state-of-the-arts in both running time and sample
complexity. Due to the space limit, here we only present
the results on matchings and defer the top-k results with
discussion on ∆min-dependence to Appendix I in the full
version.

We evaluate all the compared algorithms on Intel Xeon
E5-2640 v3 CPU at 2.60GHz with 132GB RAM. For both
CPE-BL and CPE-PL, we set action space X as matchings
in 3-by-3, 4-by-4 and 5-by-5 complete bipartite graphs. The
dimension d, i.e. the number of edges, is set from 9 to 25. The
number of matchings |X | are set from 12 to 480. θ1, . . . , θd
is set as a geometric sequence in [0, 1]. We simulate the
random feedback for action x by a Gaussian distribution with
mean of x>θ and unit variance. For CPE-PL, we use the
full-bandit feedback as CPE-BL (Mx = x>) but a nonlinear
reward function r̄(x, θ) = x>θ/‖x‖1. For each algorithm,
we perform 20 independent runs and present the average
running time and sample complexity with 95% confidence
intervals across runs. In the experiments, RAGE (Fiez et al.
2019) reports memory errors when |X | > 48 due to its heavy
memory burden, and thus we only obtain its results on small-
|X | instances. For PolyALBA, ALBA and RAGE, we obtain
the same sample complexity in different runs, since these
algorithms compute the required samples at the beginning of
each phase and then perform the fixed samples.
Experiments for CPE-BL. For CPE-BL, we compare
our PolyALBA with the state-of-the-art BAI-LB algorithms
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Figure 1: Experimental results of running time and sample
complexity for CPE-BL and CPE-PL.

ALBA and RAGE in running time and sample complex-
ity. As shown in Figure 1(a) with a logarithmic y-axis, our
PolyALBA runs about two orders of magnitude faster than
ALBA and RAGE, and the running time of PolyALBA in-
creases more slowly than the others as |X | increases. Due to
the extra preparation epoch, PolyALBA has a higher sample
complexity, but we argue that in practice one has to keep the
computation time low first to make an algorithm useful, and
for that matter ALBA and RAGE are too slow to run and
PolyALBA is the only feasible option.

Experiments for CPE-PL. For CPE-PL, we compare
GCB-PE with BAI-LB algorithms ALBA and RAGE in
running time and sample complexity on a more challeng-
ing nonlinear reward task. In the experiments for CPE-PL,
ALBA and RAGE return wrong answers because they are
not designed to handle nonlinear reward functions. Never-
theless, we can still analyze the running times presented in
Figure 1(b). It shows that our GCB-PE runs two orders of
magnitude faster than ALBA and RAGE while reporting the
correct answer. In addition, as |X | increases, the running time
of GCB-PE increases in a much slower pace than the oth-
ers. The experimental results demonstrate the capability of
GCB-PE to simultaneously deal with combinatorial action
space, nonlinear reward function and partial feedback in a
computationally efficient way.

6 Future Work

There are several interesting directions worth further investi-
gation. First, it is open to prove a lower bound of polynomial-
time algorithms for both CPE-PL and CPE-BL. Another chal-
lenging direction is to design efficient algorithms for specific
combinatorial cases to choose the global observer set σ and
the distribution λ∗Xσ , and derive specific sample complexity
bounds. Furthermore, the extension of CPE-PL to nonlinear
feedback is also a practical and valuable problem.
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Appendix

A Additional Related Work
In this section, we further review the full-literature of BAI-LB
and variants of CPE recently proposed. Comparison between
our algorithms and existing algorithms is summarized in
Table 1.

Best Arm Identification in Linear Bandits (BAI-LB).
Soare et al. (2014) addressed the BAI-LB in the fixed con-
fidence setting and first provided the static allocation al-
gorithm for BAI-LB by introducing the interesting con-
nection between BAI-LB and G-optimal experimental de-
sign (Pukelsheim 2006). Tao et al. (2018) analyzed the novel
randomized estimator based on the convex relaxation of G-
optimal design, and devised the adaptive algorithm whose
sample complexity depends linearly on the dimension d. Xu
et al. (2018) proposed a fully adaptive algorithm inspired
by UGapE (Gabillon, Ghavamzadeh, and Lazaric 2012).
Karnin (2016) analyzed the explore-verify algorithms for sev-
eral settings of BAI including linear, dueling, unimodal, and
graphical bandits. Fiez et al. (2019) introduced the transduc-
tive BAI-LB, and proposed the first non-asymptotic algorithm
that nearly achieves the information-theoretic lower bound.
Zaki et al. (2019) proposed a generalized LUCB algorithm
for BAI-LB with sample complexity analysis for the special
cases of two and three arms. Degenne et al. (2020) designed
the first asymptotically optimal sampling rules for BAI-LB.
Katz-Samuels et al. (2020) proposed near-optimal algorithms
for both fixed confidence and fixed budget settings by lever-
aging the theory of suprema of empirical processes. Although
they further discussed a computationally efficient algorithm
for CPE-MB with linear rewards, it cannot be applied to
CPE-BL since the set of measurement vectors considered
in (Katz-Samuels et al. 2020) is also exponentially large for
CPE-BL. Zaki, Moha, and Gopalan (2020) proposed the ex-
plicitly described algorithm by using tools from game theory
and no-regret learning to solve minimax games.

Despite the recent advances in BAI-LB described above,
no existing algorithms can solve CPE-BL efficiently, since
their computation for distribution λ∗ and ways to maintain
alive action set cost exponential time in the settings of CPE-
BL and CPE-PL. Moreover, no existing algorithms can deal
with the nonlinear reward functions or partial linear feedback
in CPE-PL.

1Notations appearing in the table but not relevant in our
problem setting are given below: ρ(λ) = maxx∈X ‖x‖2M(λ)−1 .
∆̃i = θi − θk+1 if i ≤ k and θk − θi otherwise. Hx =

max
xi,xj∈X

ρ̄x(xi,xj)

max{∆̄2
i ∆̄2

j}
where ∆̄ = (x∗ − xi)

>θ if xi 6= x∗,

argminx∈X x
∗ − x otherwise, and ρ̄x(xi, xj) is a term defined

by the optimal solution to a convex optimization (see (11) in (Xu,
Honda, and Sugiyama 2018)). St = {x ∈ X : (x∗ −
x)>θ ≤ 4 · 2−t}. Y(St) = {x − x′ : ∀x, x′ ∈ St, x 6=
x′}. ρ̃(Y(St)) = minλ∈4(X ) maxv∈Y(St) ‖v‖M(λ)−1 . γ∗ =

minλ∈4(X ) Eη∼N(0,1)

[
maxx∈X\{x∗}

(x∗−x)>M(λ)−1/2η

(x∗−x)>θ

]2

.
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Figure 2: Example of the crowdsourcing application.

Combinatorial Pure Exploration (CPE). For variants in
CPE, Huang et al. (2018) designed the algorithm for CPE
with continuous and separable reward functions. Although
their model considers nonlinear rewards, it cannot deal with
either full-bandit or partial linear feedback and thus cannot be
applied to our settings. Recently, the best arm identification
in cascading bandits is investigated by Zhong et al. (2020).
Their problem setting can be seen as another model of top-k
identification with partial feedback. However, their algorithm
is designed for identifying the top-k actions and thus it cannot
be applied to the case under other combinatorial structures
such as paths, mathchings, and matroids. Kuroki et al. (2020a)
studied a special sub-problem of CPE-PL, where the offline
optimization is the densest subgraph problem and the learner
observes full-bandit feedback for a set of edges. Their algo-
rithms and analysis use the property of the average degree,
and thus they cannot be directly applied to solve either CPE-
BL or CPE-PL. Chen et al. (2020) studied an adaptation of
CPE to the dueling bandit setting, where at each timestep
the leaner plays a pair of edges (base arms) in a bipartite
graph and observes a random outcome of the comparison
with the objective of identifying the optimal matching. They
only consider relative feedback between two compared base
arms in the matching case, and thus their algorithms cannot
be applied to either CPE-BL or CPE-PL.

B Illustration Examples for CPE-PL
In this section, we will provide specific examples to illustrate
the feedback model of CPE-PL by considering the crowd-
sourcing scenario (see Figure 2). There are N = 4 workers
and M = 4 tasks, which can be represented as a complete
bipartite graph G = (L,R,E). In this bipartite graph, each
edge corresponds to a pair between a worker and a task,
and its edge-weight corresponds to the utility that is un-
known to the learner. In the model of CPE-PL, each base
arm i ∈ {1, 2, ..., d} prescribes each edge e ∈ E where
d = |E| and its mean is the unknown edge-weight θe. Let
edges (1, 1), (2, 3), (3, 4), (4, 2) be the first, second, third,
fourth base arms respectively. Suppose that random outcome



Table 2: Comparison between our results and existing results for CPE-PL (BL). “General” represents that the algorithm works for
any combinatorial structure. Õ(·) only omits log log factors. Main notations are defined in Section 2 and other specific notations
are given in the footnote.

Algorithm Sample complexity 1 Case Problem Type Strategy Time

GCB-PE (ours, Thm. 2) O
( |σ|β2

σL
2
p

∆2
min

log
β2
σL

2
p

∆2
minδ

)
General CPE-PL Static Poly(d)

PolyALBA (ours, Thm. 1) Õ
(∑b d2 c

i=2
1

∆2
i

log |X |δ + d2mξmax(M̃(λ)
−1

)
∆2
d+1

log |X |δ
)

General CPE-BL Adaptive Poly(d)

ICB (Kuroki et al. 2020b) Õ
(dξmax(M(λ)−1)ρ(λ)

∆2
min

log dξmax(M(λ)−1)ρ(λ)
∆2

minδ

)
General CPE-BL Static Poly(d)

SAQM (Kuroki et al. 2020b) Õ
(d1/4kξmax(M(λ)−1)ρ(λ)

∆2
min

log d1/4kξmax(M(λ)−1)ρ(λ)
∆2

minδ

)
Top-k CPE-BL Static Poly(d)

CSAR (Rejwan and Mansour 2020) Õ
(∑d

i=2
1

∆̃2
i

log d
δ

)
Top-k CPE-BL Adaptive Poly(d)

XY-static (Soare, Lazaric, and Munos 2014) O
(

d
∆2

min
log |X |

δ∆2
min

+ d2
)

X ⊆ Rd BAI-LB Static Ω(|X |)

Explore-Verify (Karnin 2016) O
(

d
∆2

min
log |X |

δ∆min
+ d log δ−1

)
X ⊆ Rd BAI-LB Static Ω(|X |)

LinGapE (Xu, Honda, and Sugiyama 2018) Õ
(
d
∑
x∈X Hx log d|X |

δ ·
∑
x∈X Hx

)
X ⊆ Rd BAI-LB Adaptive Ω(|X |)

Y-ElimTil (Tao, Blanco, and Zhou 2018) Õ
(

d
∆2

min
(log δ−1 + log |X |)

)
X ⊆ Rd BAI-LB Adaptive Ω(|X |)

ALBA (Tao, Blanco, and Zhou 2018) Õ
(∑d

i=2
1

∆2
i
(log δ−1 + log |X |)

)
X ⊆ Rd BAI-LB Adaptive Ω(|X |)

RAGE (Fiez et al. 2019) O
(∑blog2(4/∆min)c

t=1 2(2t)2ρ̃(Y(St)) log(t2|X |2/δ)
)

X ⊆ Rd BAI-LB Adaptive Ω(|X |)

LinGame(-C) (Degenne et al. 2020) lim supδ→0
Eθ[τδ]

log(1/δ) ≤ minλ∈4(X ) maxx∈X\{x∗}
2||x∗−x||2

M(λ)−1

((x∗−x)>θ)2
X ⊆ Rd BAI-LB Adaptive Ω(|X |)

Peace (Katz-Samuels et al. 2020) O
((

minλ∈4(X ) maxx∈X\{x∗}
||x∗−x||2

M(λ)−1

((x∗−x)>θ)2
+ γ∗

)
log(1/δ)

)
X ⊆ Rd BAI-LB Adaptive Ω(|X |)

Lower Bound (Fiez et al. 2019) Eθ[τδ] ≥ minλ∈4(X ) maxx∈X\{x∗}
||x∗−x||2

M(λ)−1

((x∗−x)>θ)2
log(1/2.4δ) X ⊆ Rd BAI-LB - -

at round t is θ + ηt = (0.2, 0.3, 0.4, 0.6, . . .)> ∈ Rd, and
the learner will pull the action xt = (1, 1, 1, 1, 0, 0, . . . , 0)>.
In this case, the examples of transformation matrix Mx ∈
Rmx×d and corresponding random feedback yt = Mxt(θ +
ηt) ∈ Rmxt can be written as follows.

If Mxt = (1, 0, 0, . . . , 0), the learner can observe only
first base arm, that is,

Mxt(θ + ηt) = (1, 0, 0, . . . , 0)


0.2
0.3
0.4
0.6

...

 = 0.2 = yt.

If Mxt = diag(x), the learner can obtain semi-bandit feed-
back, that is,

Mxt(θ + ηt) =

 1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·




0.2
0.3
0.4
0.6

...



=

 0.2
0.3
0.4
0.6


=yt.

If Mxt = x>t , the learner can only observe the sum of the

rewards (i.e., full-bandit feedback), that is,

Mxt(θ + ηt) = (1, 1, 1, 1, 0, . . . , 0)


0.2
0.3
0.4
0.6

...

 = 1.5 = yt.

For other cases, the learner may obtain the sum of the rewards
from two base arms as follows,

Mxt(θ + ηt) =

(
1 1 0 0 · · ·
0 0 1 1 · · ·

)
0.2
0.3
0.4
0.6

...


=

(
0.5
1.0

)
=yt.

Note that reward functions in CPE-PL can be nonlinear,
while feedback model is linear as illustrated above.

C More Discussion on the Optimality of
PolyALBA

For BAI-LB, Fiez et al. (2019) propose the first sample com-
plexity lower bound

Eθ[τδ] ≥ min
λ∈4(X )

max
x∈X\{x∗}

||x∗ − x||2M(λ)−1

((x∗ − x)>θ)2
log(1/2.4δ),



and a nearly optimal algorithm RAGE with sample complex-
ity

O

blog2(4/∆min)c∑
t=1

2(2t)2ρ̃(Y(St)) log(t2|X |2/δ)

 ,

where St = {x ∈ X : (x∗ − x)>θ ≤ 4 · 2−t},
Y(St) = {x − x′ : ∀x, x′ ∈ St, x 6= x′} and ρ̃(Y(St)) =
minλ∈4(X ) maxv∈Y(St) ‖v‖M(λ)−1 . Fiez et al. (2019) prove
that this upper bound for RAGE matches the lower bound
with a logarithmic factor.

Below we show that for a family of instances, the sample
complexity of PolyALBA matches that of RAGE and also
achieves near-optimality. Consider a family of instances such
that ∆bd/2(t−2)c+1 = 4 · 2−t, t = 2, 3, . . . , log2( 4

∆min
),

which can be easily found in practical sub-problems. For
example, in the Multi-Bandit case (Gabillon et al. 2011),
we are given base arms numbered by 1, . . . , 10, and a feasi-
ble super arm consists of two base arms respectively from
{1, . . . , 5} and {6, . . . , 7}, where d = 10 and |X | = 25.
Let θ = (2.5, 2, 1.5, 1, 0.5, 0.625, 0.5, 0.375, 0.25, 0.125)>.
We use xi and Ai to denote the indicator vector and the
set of base arm indices for the i-th best super arm. Then,
A1 = {1, 6}, x>1 θ = 3.125, A2 = {1, 7}, x>2 θ = 3, A3 =
{1, 8}, x>3 θ = 2.875, A6 = {2, 6}, x>6 θ = 2.625, A11 =
{3, 6}, x>11θ = 2.125, which belongs to the considered fam-
ily of instances.

In such family of instances, our PolyALBA performs simi-
lar elimination procedure as RAGE. Specifically, since the
sample complexity upper bound of PolyALBA guarantees
that for epoch q, any action x with ∆x ≥ ∆bd/2qc+1 will be
discarded, we have that ∀x′ ∈ Sq,∆x′ ≤ ∆bd/2q−1c+1 =

2 · 2−q, q = 1, 2, . . . , log2( 4
∆min

), which is the same to
the gap constraint for St in RAGE. Then, in epoch q =
2, . . . , log2( 4

∆min
), PolyALBA essentially performs the same

procedure as RAGE, while in epoch q = 1, PolyALBA per-
forms a higher samples (the ξmax(M̃−1(λ))-related term)
than RAGE. Formally, in such instances PolyALBA has sam-
ple complexity

O

( blog2(4/∆min)c∑
t=2

2(2t)2ρ̃(Y(St)) log(t2|X |2/δ)

+mdξmax(M̃−1(λ))ρ̃(Y(S1)) log(|X |2/δ)
)
.

For sufficiently small ∆min (increase d in the above Multi-
Bandit case to obtain small ∆min), the additional term related
to ξmax(M̃−1(λ)) is absorbed and the result is the same to
that of RAGE, which matches the lower bound within a
logarithmic factor. The sample complexity of PolyALBA
shows superiority over other heavily ∆min-dependent al-
gorithms (Soare, Lazaric, and Munos 2014; Karnin 2016;
Kuroki et al. 2020b), and the additional term related to
ξmax(M̃−1(λ)) can be viewed as a cost for achieving com-
putational efficiency.

We also remark that PolyALBA is close to the lower bound
in the worst-case instances and our sample complexity has

an interesting relation with that of G-allocation strategy for
BAI-LB (Soare, Lazaric, and Munos 2014). Soare, Lazaric,
and Munos (2014) proved the following lemma to bound
the oracle complexity HLB defined as follows, which also
appears in the information theoretic lower bound (Fiez et al.
2019).

HLB = min
λ∈4(X )

max
x∈X\{x∗}

‖x∗ − x‖2M(λ)−1

((x∗ − x)>θ)2
.

Lemma 2 (Lemma 2, Soare, Lazaric, and Munos (2014)).
Given an arm set X ⊆ Rd and parameter θ, the complexity
HLB is such that

max
x∈X\{x∗}

‖x∗ − x‖22
Lx∆2

min

≤ HLB ≤
4d

∆2
min

,

where Lx is the upper bound of the `2-norm of any x ∈ X .
Furthermore, if X is the canonical basis, the problem reduces
to a MAB and

∑|X |
i=1 1/∆i ≤ HLB ≤ 2

∑|X |
i=1 1/∆i.

Soare, Lazaric, and Munos (2014) designed the
G-allocation strategy and its sample complexity is
O
(

4d
∆2

min
log |X |δ

)
, which shows that G-allocation strategy

is optimal within logarithmic terms for instances where the
worst-case value of HLB is given (See Theorem 1 in their
paper). For instances with ∆i = ∆min,∀i > 1, PolyALBA
has the sample complexity of Õ

(
md2ξmax(M̃−1(λ))

∆2
min

log |X |δ

)
,

which matches that of G-allocation strategy up to a factor
of mdξmax(M̃−1(λ))) (when we ignore the log log terms).
PolyALBA also employs G-optimal design for its static phase
but we restrict its support in order to make it running in poly-
nomial time, which causes the additional term related to
ξmax(M̃−1(λ)). Note that the lower bound (Fiez et al. 2019)
does not consider time complexity, and the gap in the addi-
tional term may be a price paid for achieving computational
efficiency.

To sum up, to our best knowledge, PolyALBA is the first
polynomial-time adaptive algorithm that works for CPE-BL
with general combinatorial structures and achieves nearly op-
timal sample complexity for a family of problem instances. It
is very interesting to study a lower bound for polynomial-time
CPE-BL algorithms and it remains open to design efficient
algorithms with instance-wise optimal sample complexity.

D Naive Reduction of Top-k and Analysis of
a UCB-based Algorithm for CPE-BL

In this section, we briefly explain a naive reduction to the
classic CPE-MB for CPE-BL in the top-k setting, and note
that there is no simple reduction for general CPE-BL by
showing an undesirable property of a UCB-based algorithm
with a regularized least-square estimator.

We first remark that with only O(k) more samples, the
problem of top-k identification with full-bandit feedback can
be solved by classic top-k algorithms in which base arms
are queried. Suppose that an algorithm has a sample com-
plexity of Cδ,∆ in classic setting, it yields a complexity of
Õ(k · Cδ,∆) for the full-bandit setting, where Õ omits some
log factors. This is due to the fact that the unbiased estimate



Algorithm 7: Combinatorial lower-upper naive con-
fidence bound (CLUNCB)

Input : Accuracy ε > 0, confidence level δ ∈ (0, 1)
1 Initialization For each e ∈ [d], pull xe ∈ X such that

e ∈ xe once. Initialize Aιxt and bt;
2 while θ̃>t x̃t − θ̃>x̂∗t ≤ ε is not true do
3 t← t+ 1;
4 x̂∗t ← argmaxx∈X θ̂

>
t x;

5 Set radt(e) = Ct
√

(Aιxt)
−1(e, e) for all e ∈ [d];

6 for e = 1, . . . , d do
7 if e ∈ x̂∗t then θ̃t(e)← θ̂t(e)− radt(e);
8 else θ̃t(e)← θ̂t(e) + radt(e);

9 x̃t ← argmaxx∈X θ̃
>
t x;

10 pt ← argmaxe∈(x̃t\x̂∗t )
⋃

(x̂∗t \x̃t) radt(e);
11 Sample any xt ∈ X such that pt ∈ xt;
12 Update Aιxt , bt and θ̂t;
13 Return Out← x̂∗t

can be obtained for the difference between the two base arms
by comparing two k-base arm queries with one base arm dif-
ference. Formally, with any fixed base arm i0, one can get an
unbiased estimate for the gap θj− θi0 with O(k) times larger
variance by querying two super-arms S ∪ {j} and S ∪ {i0}
for S ⊆ [d] such that |S| = k − 1 and j, i0 /∈ S. Therefore,
when Cδ,∆ has dependence of

∑
i∈[d] ∆−2

i , we also have a
sample complexity which has dependence of

∑
i∈[d] ∆−2

i for
top-k case with full-bandit feedback. However, for more
complex cases such as matroid, matroid intersection, and s-t
path, we cannot use such a reduction due to its combinatorial
constraint.

We show that with a simple modification using the regu-
larized least-square estimator, CLUCB algorithm proposed
in (Chen et al. 2014) can work for CPE-BL for general con-
straints such as top-k, matroid, matroid intersection, s-t path,
and it is a polynomial-time (ε, δ)-PAC algorithm. However,
we prove that this naive adaption can be sub-optimal and the
sample complexity depends on 1

∆2
min

in the worst case.

D.1 Preliminary

We call an algorithm fully adaptive if it changes the arm-
selection strategy based on the past observation at all rounds.
For such an adaptive algorithm, we cannot use the ordinary
least-square estimator for θ ∈ Rd as an unbiased estimator.
Instead we will use the regularized least-square estimator. If
the sequence of super-arm selections xt = (x1, . . . , xt) is
adaptively determined based on the past observations, the
regularized least-square estimator is given by

θ̂t = (Aιxt)
−1bxt , (1)

where Aιxt and bxt is defined by

Aιxt = ιI +

t∑
i=1

xix
>
i , and bxt =

t∑
i=1

xiri ∈ Rn.

for regularization parameter ι > 0 and the identity matrix I .
If we set ι = 0 and we are allowed to sample a base arm, i.e.,
unit vector at all rounds, it is easy to see thatAιxt(i, i) = Ti(t)
for i ∈ [d] and Aιxt(i, j) = 0 for i 6= j, where Ti(t) is the
number of times that base arm i is sampled before round
t+ 1.

Abbasi-Yaddkori et al. (2011) showed the high probability
bound for the regularized least-squares estimator θ̂.

Proposition 1 (Theorem 2 in Abbasi-Yaddkori et al. (2011)).
Let θ̂t be the regularized least-squares estimator. Suppose
that a noise ηt is κ-sub-Gaussian. If the `2-norm of parameter
θ is less than L, then for all i ∈ [d] and for every adaptive
sequence xt,

|x>θ − x>θ̂t| ≤ Ct‖x‖(Aιxt )−1

holds for all t ∈ {1, 2, . . .} and ∀x ∈ Rn with probability at
least 1− δ, where

Ct = κ

√
2 log

det(Aιxt)
1
2

ι
n
2

+ ι
1
2L. (2)

Moreover, if ‖x‖2 ≤
√
m holds for all t > 0, then

Ct ≤ κ
√
d log

1 + tm/ι

δ
+ ι

1
2L. (3)

We also introduce the notion of the width for a decision
set X defined in Chen et al. (2014); width(X ) prescribes the
size of the thinnest exchange class (see Chen et al. (2014) for
detailed definition). For example, if X are independent sets
of ground set [d], width(X ) ≤ 2.

D.2 Analysis of CLUCB for CPE-BL
In the setting where each base arm is pulled at all rounds,
the confidence radius is simply defined as radt(e) =√

2 log
(

4dt3

δ

)
Te(t)

for all e ∈ [d]. Since we are not allowed to
pull each base arm, we cannot define such a radius as the
above form. However, we have concentration inequalities for
each unit vector of e, and thus we can construct the confi-
dence radius in the full-bandit setting. From Proposition 1,
we can construct the high probability confidence radius as
follows.

Lemma 3. Suppose that a reward from each base arm fol-
lows a 1-sub-Gaussian distribution for all i ∈ [d]. For all
t > 0 and all i ∈ [d], the confidence radius radt(i) is defined
as

radt(i) = Ct

√
(Aιxt)

−1(i, i) (∀i ∈ [d]), (4)

whereCt is given by (2). Let radt be an d-dimensional vector
with nonnegative entries. For radt, define random event Et
for all t > 0 as follows.

Et = {∀i ∈ [d], |θ(i)− θ̂t(i)| ≤ radt(i)} (5)
Then we have

Pr

[ ∞⋂
t=1

Et

]
≥ 1− δ. (6)



The proof is omitted since it is straightforward from Propo-
sition 1 and union bounds. Using the above confidence ra-
dius, we can design CLUCB-based algorithm for CPE-BL,
which is detailed in Algorithm 7. We show that Algorithm 7
is (ε, δ)-PAC and its sample complexity bound is given in
Corollary 1. As can be seen, the sample complexity depends
on ∆−2

min in the worst case. Also, since CLUNCB is fully
adaptive, we cannot completely control λC beforehand and
thus M(λC)−1(e, e) ≤ λmax(M(λC)−1) can be large.

Corollary 1. Let λC ∈ 4(X ) be a distribution in which
λC(x) represents the ratio that x is pulled by CLUNCB. The
total number of samples T is bounded as

T =O

(
dκ2H̃ log

(
dκ2mH̃/ι+log δ−1

δ

))
,

where H̃ is defined as

H̃=max
e∈[d]

(
M(λC)−1(e, e) min

{
9width(X )2

∆2
e

,
4m2

εd2

})
.

Proof. First, we state the following two lemmas in Chen et
al. (2014); Lemma 4 (Lemma 12 in Chen et al. (2014)) shows
that if the confidence radius is valid, then CLUCB always
outputs ε-optimal set, and Lemma 5 (Lemma 13 in Chen et
al. (2014)) implies that if the confidence radius of an arm
is sufficiently small, then the arm will not be chosen as pt.
Note that we have the lemmas since Lemmas 3, 5, 7, and 10
in Chen et al. (2014) also hold for our setting where radt
is given by (4) and the empirical mean is replaced with the
least square estimator θ̂t in (1).

Lemma 4 (Lemma 12 in Chen et al. (2014)). If CLUCB
stops on round t and suppose that Et occurs. Then, we have
θ>x∗ − θ>xOut ≤ ε.

Lemma 5 (Lemma 13 in Chen et al. (2014)). Given any t and
suppose that event Et occurs. For any e ∈ [d], if radt(e) <

max
{

∆e

3width(X ) ,
ε

2m

}
, then pt 6= e.

The random event
⋂∞
t=1 Et occurs with probability at least

1 − δ from Lemma 3. From Lemma 4, under the event⋂∞
t=1 Et, CLUNCB returns an ε-optimal set. Therefore, in

the rest of part, we shall assume this event holds.
Fix any arm e ∈ [d] and let τe be the last round which arm

e is chosen as pt. From (3) and for a small ι ≤ κ2

L2 log δ−1,
we have

Cτe ≤κ
√
n log

1 + τem/ι

δ
+ ι

1
2L

≤2κ

√
d log

(
1 + τem/ι

δ

)
.

By Lemma 5, we have radτe(e) ≥ max
{

∆e

3width(X ) ,
ε

2m

}
.

We define Λxτe =
Aιxt
τe

. Then, we have

max

{
∆2
e

9width(X )2
,
ε2

4m2

}
≤ rad2

t (e)

= C2
τe(A

λ
xτe

)−1(e, e)

≤ 4κ2d log

(
1 + τem/ι

δ

)
(Aλxτe )−1(e, e)

= 4κ2d log

(
1 + τem/ι

δ

)
(Λιxτe )−1(e, e)

τe
.

That is, we obtain

τe ≤ He log

(
1 + τem/ι

δ

)
,

where we define He =

4κ2d(Λιxτe )−1(e, e) min
{

9width(X )2

∆2
e

, 4m2

ε2

}
. Let τ ′(≤ τe)

satisfying

τe = He

(
log

(
1 +

τ ′m

ι

)
+ log

1

δ

)
. (7)

Then, we have

τ ′ ≤ τe = He

(
log

(
1 +

τ ′m

ι

)
+ log

1

δ

)
≤ He

(√
τ ′m

ι
+ log

1

δ

)
. (8)

Solving (8) for
√
τ ′, we obtain

√
τ ′ ≤1

2

(
He

√
m

ι
+

√
H2
e

m

ι
+ 4He log

1

δ

)

≤ 2

√
H2
e

m

4ι
+He log

1

δ
.

That is, we see that τ ′ = O
(
H2
e
m
ι +He log 1

δ

)
, which

shows that

log

(
1 + τ ′m

ι

)
= O

(
log

(
mHe

ι
+ log

1

δ

))
. (9)

Combining (9) into (7), we obtain

τe = O

(
He log

(
mHe/ι+ log δ−1

δ

))
.

The number of samples used by CLUNCB is T =
maxe∈[d] τe.

Recall that λC ∈ 4(X ) is a distribution in which λC(x)
represents the ratio that x was pulled by CLUNCB. Suppose
that T is sufficiently large such that ΛxT

=
Aιxt
T ≈M(λC).

Define

H̃ = max
e∈[d]

(
(M(λC)−1(e, e) min

{
9width(X )2

∆2
e

,
4m2

εd2

})
Then, we have

T = max
e∈[d]

τe = O

(
dκ2H̃ log

(
dκ2mH̃/ι+ log δ−1

δ

))
.



E Entropic Mirror Descent Algorithm for
Computing the Distribution λ∗Xσ

For completeness, we provide the algorithm
for computing the optimal distribution λ∗Xσ =

minλ∈4(Xσ) maxx∈Xσ x
>M(λ)−1x for a given set of

actions Xσ ⊆ X , which is used in both ALBA (Tao, Blanco,
and Zhou 2018) and our method PolyALBA. Algorithm 8
details the entropic mirror descent algorithm proposed in
Tao, Blanco, and Zhou (2018).

Algorithm 8: The entropic mirror descent for com-
puting λ∗Xσ (Tao, Blanco, and Zhou 2018)

Input :d-set of base arms [d], a set of super arms
Xσ ⊆ X , Lipschitz constant Lf of function
log detM(λ) and tolerance ε

1 Choose , such that rank(X) = d where
X = (b1, . . . , bd);

2 Initialize t← 1 and λ(1) ← (1/|Xσ|, . . . , 1/|Xσ|);
3 while |maxx∈Xσ x

>M(λ(t))−1x| − d ≥ ε do

4 at ←
√

2 ln |Xσ|
Lf
√
t

;

5 Compute gradient
G

(t)
i ← Tr(M(λ(t))−1(xix

>
i ));

6 Update λ(t+1)
i ← λ

(t)
i exp (atG

(t)
i )∑|Xσ|

i=1 λ
(t)
i exp (atG

(t)
i )

;

7 t← t+ 1;

8 λ∗Xσ ← λ(t);
Output : λ∗Xσ

F Discussion on Improving α
In this section, we further discuss the approximation algo-
rithm for computing λ ∈ 4(X ) and provide Algorithm 9,
which can be one alternative of Algorithm 5 in PolyALBA.
Lemma 1 indicates that choosing supp(λ) that maximizes
ξmin(M̃(λ)) gives the better bound. Such a design is so called
the E-optimal design, i.e., the goal is to minimize the maxi-
mum eigenvalue of the error covariance (Pukelsheim 2006).
As noted in the main paper, if we are allowed to pull unit
vectors, we have ξmin(M̃(λ)) ≥ 1. For general cases, more
sophisticated algorithm by the ellipsoid method (Grötschel,
Lovász, and Schrijver 1981) is considered in this section as
one alternative of Algorithm 5. This approach provides the
better choice of λ (or equivalently α) than Algorithm 5 in
terms of the expectation value.

Let 4(X )poly be the subset of probability distributions
over X with polynomial-size support. Our task is to find
an approximate solution λ̃ ∈ 4(X )poly to the following
minmax optimization:

min
λ∈4(X )

max
x∈X
‖x‖M(λ)−1 .

We denote the exact G-optimal design by λ∗ =
argminλ∈4(X ) maxx∈X ‖x‖M(λ)−1 . The above minmax op-
timization is computationally intractable in combinatorial set-
tings, while many existing methods in linear bandits involved

Algorithm 9: Approximation algorithm for G-
optimal design by the ellipsoid method

Input :d-set of base arms [d], n ∈ Z+, ñ ∈ Z+.
1 for i = 1, . . . , n do
2 Choose Xσi ← any ñ-super arms;
3 Compute λi ← λ∗Xσi

by Algorithm 8 for Xσi ;
4 Compute wλi ∈ Rd+ by setting

wλi = (
∑
j∈[d] |M(λi)

−1/2
e,j |)e∈[d] ∈ Rd+ ;

5 Perform the ellipsoid method to solve LPprimal:
LPprimal : min. ν (10)

s.t. ν ≥
∑
i∈[n]

hi
∑
e∈[d]

wλi,exe, (∀x ∈ X )

h ∈ 4([n]).6

7 h∗ ← optimal solution to LPprimal;
8 ν∗ ← optimal value of LPprimal

9 Sample i∗ ∈ [n] from h∗ ∈ 4([n]);

10 α← min
{
ν∗√
d
,mini∈[n]

√
md

ξmin(M̃(λi))

}
;

Output : λi∗ and α

the brute force to solve G-optimal design problem (Fiez et al.
2019; Soare, Lazaric, and Munos 2014; Tao, Blanco, and
Zhou 2018). To avoid a intractable brute force, we address
a relaxation problem for the minmax optimization, i.e., a
randomized mixed strategy for the robust combinatorial op-
timization. However, since the ellipsoidal norm ‖x‖M(λ)−1

has the quadratic form, such a relaxation problem is still hard
to compute. To overcome this challenge, we consider a sim-
pler norm instead of the ellipsoidal norm. In higher level, this
idea is similar to that of Dani, Hayes, and Kakade (2008);
they use skewed octahedron called ConfidenceBall1 as its
confidence region rather than the ellipsoid. The radius of
ConfidenceBall1 has been set large enough such that it con-
tains the confidence ellipsoid as an inscribed subset. Whereas
they use 1-norm ‖M(λ)1/2x‖1 to define ConfidenceBall1,
however, maxx∈X ‖M(λ)1/2x‖1 is still intractable in the
combinatorial action space. To avoid the computational hard-
ness, we introduce a linear function gλ : {0, 1}d → R+ in
order to utilize the underlying combinatorial structure. We de-
fine wλ = (

∑
j∈[d] |M(λ)

−1/2
i,j |)i∈[d] ∈ Rd+ for λ ∈ 4(X ).

For λ ∈ 4(X ), a linear function gλ : {0, 1}d → R+ is rep-
resented as gλ(x) =

∑
e∈[d] wλ,exe. We shall assume that

the Ellipsoid method computes the optimal solution for linear
programmings by enough iterations (Grötschel, Lovász, and
Schrijver 1981).

We show that the optimal value ν∗ in Algorithm 9 gives
an upper bound of the confidence ellipsoidal norm.

Lemma 6. Let X be a family of super arms satisfying given
constraints such as the matroid, matroid intersection, and s-t
path. Let λh∗ ∈ 4(X )poly be an output by Algorithm 9. Let
h∗ be an optimal solution and ν∗ be the optimal value for
LPprimal. Then, λh∗ satisfies

max
x∈X

E[‖x‖M(λh∗)−1 ] ≤ ν∗.



Proof. By the definition of wλ = (
∑
j∈[d] |M(λ)

−1/2
i,j |)i∈[d]

and definitions of the quadratic norm and 1-norm, we have

‖x‖M(λ)−1 = ‖M(λ)−1/2x‖2
≤ ||M(λ)−1/2x||1
≤
∑
e∈[d]

wλ,exe

= gλ(x) (∀x ∈ {0, 1}d). (11)
Let y∗ = argmaxx∈X ‖x‖M(λ)−1 . From Eq. (11), it holds
that

max
x∈X
‖x‖M(λ)−1 = ‖y∗‖M(λ)−1 ≤ gλ(y∗). (12)

Recall that λh∗ = λi∗ where i∗ was sampled from
h∗ ∈ 4([n]) in Algorithm 9; we have E[wλh∗,e] =∑
i∈[n] h

∗
iwλi,e for all e ∈ [d]. Thus, for any x ∈ X , we

see that
E[gλh∗(x)] =

∑
i∈[n]

h∗i gλi(x).

From the above, we have that
max
x∈X

E[‖x‖M(λh∗)−1 ] ≤ max
x∈X

E[gλh∗(x)]

= max
x∈X

∑
i∈[n]

h∗i gλi(x). (13)

Thus, we obtain

max
x∈X

E[‖x‖M(λh∗)−1 ] ≤ max
x∈X

∑
i∈[n]

h∗i gλi(x)

= min
h∈4([n])

max
x∈X

∑
i∈[n]

higλi(x)

= ν∗

where the first inequality follows by Eq. (13) and the equa-
tions follow from the fact that h∗ is an optimal solution for
LPprimal.

Using the above property, α can be replaced with α =

min
{
ν∗√
d
,mini∈[n]

√
md

ξmin(M̃(λi))

}
in the expected sample

complexity given in Theorem 1.

Corollary 2. Let ν∗ be the optimal value for LPprimal ob-
tained in Algorithm 9. With probability at least 1 − δ, the
PolyALBA algorithm (Algorithm 4) will return the best super
arm x∗ with the expected sample complexity

O

(
c0d(α

√
m+ α2)

∆2
d+1

(
ln δ−1 + ln |X |+ ln ln ∆−1

d+1

)

+

b d2 c∑
i=2

c0
∆2
i

(ln δ−1 + ln |X |+ ln ln ∆−1
i )

)
,

where α = min
{
ν∗√
d
,mini∈[n]

√
md

ξmin(M̃(λi))

}
.

Note that Algorithm 9 runs in polynomial time as long as
gλ(x) is linear and not necessarily gλ(x) =

∑
e∈[d] wλ,exe

defined in this section.

LP-based algorithm for combinatorial robust optimiza-
tion. We briefly explain polynomial-time solvability of
LPprimal in Algorithm 9 by the Ellipsoid method. Given
a family X satisfying a combinatorial constraint and n-set
function gλ1

, . . . , gλn : 2[d] → R+, we describe how to solve
the following combinatorial robust optimization:

min
h∈4([n])

max
x∈X

∑
i∈[n]

higλi(x).

By von Neumann’s minimax theorem, it holds that

min
h∈4([n])

max
x∈X

∑
i∈[n]

higλi(x) = max
p∈4(X )

min
i∈[n]

∑
x∈X

pxgλi(x).

A polytope of X is defined as P (X ) = conv{x : x ∈ X}.
For a vector x ∈ X we define Sx to be the corresponding
subset form, i.e. Sx = {i ∈ [n] : xi = 1}. The key observa-
tion is that for any distribution p ∈ 4(X ), we can obtain a
point y ∈ P (X ) by y = p> · x, and thus for every e ∈ [d],
ye =

∑
x∈X : e∈Sx px. This means that ye is the marginal

probability of seeing an included dimension (a.k.a. a base
arm e) when selecting vector x (a.k.a. super arm Sx) accord-
ing to distribution p.

Then, the optimal value of the above problems is equal to
the value of the following LP:

LPdual : max. s (14)

s.t. s ≤
∑
e∈[d]

wλi,eye, (∀i ∈ [n])

y ∈ P (X ).

If X is a matroid, matroid intersection, or the set of s-t paths,
there exists an efficient separation oracle for P (X ). The
separation problem for these constraints can be solved in
polynomial time as long as gλ1 , . . . , gλn are linear functions.
Therefore, due to the theorem of Grötschel et al. (Grötschel,
Lovász, and Schrijver 1981), we can solve the LP in polyno-
mial time in d and n. Note that the Ellipsoid method can
find an optimal solution to the dual problem of LPdual,
i.e., LPprimal in (10). Therefore, we can obtain h∗ =
argminh∈4([n]) maxx∈X

∑
i∈[n] higλi(x). For the knapsack

constraint and the r(> 2)-matroid intersection constraint, the
corresponding separation problems are NP-hard. Kawase and
Sumita (2019) proposed approximation schemes by solv-
ing a separation problem for a relaxation of the polytope,
which gives PTAS for the knapsack constraint and 2/(er)-
approximate solution for r-matroid intersection constraint.

G Equivalence Theorem for Optimal
Experimental Design

We introduce the following equivalence theorem in Kiefer
and Wolfowitz (1960) adopted our setting of CPE-BL, which
will be used in our analysis.

Proposition 2 (Kiefer and Wolfowitz (1960)). Define
M(λ) = Ez∼λ[zz>] for any distribution λ supported on
X ⊆ Rd. We consider two extremum problems.

The first is to choose λ so that
(1)λ maximizes det M(λ) (D-optimal design)



The second one is to choose λ so that
(2)λminimizes max

x∈X
x>M(λ)−1x (G-optimal design)

We note that Ex∼λ[x>M(λ)−1x] is d, hence,
maxx∈X x

>M(λ)−1x ≥ d, and thus a sufficient con-
dition for λ to satisfy (2) is

(3) max
x∈X

x>M(λ)−1x = d.

Statements (1), (2) and (3) are equivalent.

H Missing proofs
H.1 Proof of ‖θ̂n − θ‖2 ≤ βσ in Section 4.1
Proof. We prove inequality ‖θ̂n − θ‖2 ≤ βσ in Section 4.1
using similar techniques in (Lin et al. 2014).

Recall that in the GCB-PE algorithm (Algorithm 6), θ̂n
is the estimate of the environment vector θ in the n-th explo-
ration round. For any n,∥∥∥θ̂n − θ∥∥∥

2

=
∥∥M+

σ ~yn −M+
σ Mσθ

∥∥
2

=
∥∥M+

σ · [Mx1η1; · · · ;Mx|σ|η|σ|]
∥∥

2

=

∥∥∥∥∥∥(M>σ Mσ)−1

|σ|∑
i=1

M>xiMxiηi

∥∥∥∥∥∥
2

≤ max
η1,··· ,η|σ|∈[−1,1]d

∥∥∥∥∥∥(M>σ Mσ)−1

|σ|∑
i=1

M>xiMxiηi

∥∥∥∥∥∥
2

=βσ.

H.2 Proof of Theorem 2
In order to prove Theorem 2, we first present the following
three lemmas, Lemma 7-9.

Lemma 7. For Algorithm 6, after n exploration rounds,

Pr[‖θ − θ̂(n)‖2 ≥ radn] ≤ δ

2n2

Proof. In Lemma A.3 in (Lin et al. 2014), let γ = radn.
Then, we have

Pr[‖θ − θ̂(n)‖2 ≥ radn] ≤2e2exp

{
− n

2β2
σ

·
2β2

σ log( 4n2e2

δ )

n

}

=
δ

2n2
.

Define the following events

En := {∀x ∈ X , |r̄(x, θ)− r̄(x, θ̂(n))| < Lp · radn}, n ≥ 1

E :=

∞⋂
n=1

En.

Lemma 8. It hols that Pr[E ] ≥ 1− δ.

Proof. From the continuity of the expected reward function,

r̄(x, θ)− r̄(x, θ̂(n)) < Lp · ‖θ − θ̂(n)‖2.
From Lemma 7, we have that with probability at least 1− δ

2n2 ,

‖θ − θ̂(n)‖2 < radn.

Thus, with probability at least 1− δ
2n2 ,

r̄(x, θ)− r̄(x, θ̂(n)) < Lp · radn.
In other words,

Pr[En] ≥ 1− δ

2n2
.

Thus, we have
Pr[E ] = 1− Pr[Ē ]

≥ 1−
∞∑
n=1

Pr[Ēj ]

≥ 1−
∞∑
n=1

δ

2n2

≥ 1− δ.

Lemma 9. Suppose that E occurs. If radn < ∆min
4Lp

, Algorithm
6 will terminate.

Proof. Suppose that E occurs. From the definition of E , we
have
r̄(x̂, θ̂(n))− r̄(x̂−, θ̂(n)) > r̄(x̂, θ)− r̄(x̂−, θ)− 2Lp · radn

= ∆min − 2Lp · radn
> 2Lp · radn

Thus, the stop condition holds, and then Algorithm 6 will
terminate.

Now we prove Theorem 2.

Proof. First, we prove the correctness of Algorithm 6. From
the stop condition, we have that when Algorithm 6 terminates,
for all x ∈ X \ {x̂},

r̄(x̂, θ̂(n))− r̄(x, θ̂(n)) > 2Lp · radn.
Then, conditioning on E , when Algorithm 6 terminates, for
all x ∈ X \ {x̂},

r̄(x̂, θ) > r̄(x̂, θ̂(n))− Lp · radn

> r̄(x, θ̂(n)) + Lp · radn
> r̄(x, θ),

which complete the proof of correctness.
Next, we prove the sample complexity of Algorithm 6.

Let N denote the total number of the exploration rounds. If
N = 1, Theorem 2 trivially holds. In the If N > 1, from



Lemma 9, we have that after N − 1 exploration rounds,√
2β2

σ log( 4(N−1)2e2

δ )

N − 1
≥ ∆min

4Lp

N ≤
32β2

σL
2
p

∆2
min

log

(
4N2e2

δ

)
+ 1

Let H̃ :=
β2
σL

2
p

∆2
min

. In the following, we prove N ≤

655H̃ log( H̃δ ). We can write N = CH̃ log( H̃δ ) for some
C > 0. In order to prove the theorem, it suffices to prove
C ≤ 655. Suppose, on the contrary, that C > 655. Then, we
have

N ≤32H̃ log

(
4N2e2

δ

)
+ 1

=64H̃ log

(
2eCH̃ log H̃

δ

δ

)
+ 1

≤64H̃ log(2eC) + 64H̃ log
H̃

δ
+ 64H̃ log

(
log

H̃

δ

)

+ H̃ log
H̃

δ

≤64H̃ log(2eC) + 129H̃ log
H̃

δ

<CH̃ log
H̃

δ
=N,

which makes a contradiction. Thus,

N ≤ 655H̃ log(
H̃

δ
).

Since an exploration round contains |σ| ≤ n actions, the total
number of samples

T = |σ| ·N ≤
655β2

σL
2
p

∆2
min

log

(
β2
σL

2
p

∆2
minδ

)
.

H.3 Proof of Lemma 1

Proof. Recall that in Algorithm 5, we choose d super arms
Xσ = {x1, . . . , xd} from X , such that rank(X) = d where
X = (x1, . . . , xd). Then, for any super arm z ∈ X , z can be
written as a linear combination of x1, x2, . . . , xd, i.e.,

z = Xw,

where w ∈ Rd is the vector of coefficients. Let ξmin(A)
denote the smallest eigenvalue of matrix A. Then, we have

d∑
k=1

|wk| ≤

√√√√d

(
d∑
k=1

w2
k

)
=
√
dw>w

≤
√
dw>X>Xw · max

w′∈Rd

√
w′>w′

w′>X>Xw′

≤
√
dw>X>Xw ·

√
1

ξmin(X>X)

=

√
d

ξmin(X>X)
‖z‖2

≤

√
md

ξmin(X>X)

=

√
md

ξmin(XX>)

=α.

Note that in Algorithm 5, we compute λ∗Xσ =

argminλ∈4(Xσ) maxx∈Xσ x
>M(λ)−1x by the entropic mir-

ror descent (Algorithm 8 in Appendix E). λ∗Xσ is the solution
to Proposition 2 and satisfies maxx∈Xσ x

>M(λ∗Xσ )−1x = d.
Thus, maxx∈Xσ ‖x‖M(λ∗Xσ )−1 =

√
d. Thus, for any z ∈ X

we have
‖z‖M(λ∗Xσ )−1 =‖w1x1 + · · ·+ wdxd‖M(λ∗Xσ )−1

≤|w1| · ‖x1‖M(λ∗Xσ )−1 + . . .

+ |wd| · ‖xd‖M(λ∗Xσ )−1

≤|w1| ·
√
d+ · · ·+ |wd| ·

√
d

=(|w1|+ · · ·+ |wd|)
√
d

≤α
√
d.

H.4 Proof of Theorem 1
Technical lemmas for Theorem 1
Lemma 10. When n ≥ c0`(ε) ln( 5|X |

δr
) where ε ≤ 3, we

have
Pr[|x>θ − x>θ̂| ≤ ε,∀x ∈ X ] ≥ 1− δ.

Proof. We introduce the high probability bound for the esti-
mator θ̂ as follows.

Proposition 3 (Lemma 10 Tao, Blanco, and Zhou (2018)).
Let c0 = max{4L2, 3}. Let n ≥ ` ln(5/8) where ` ≥ d. For
any fixed x ∈ X , with probability at least 1− δ, we have

|x>(θ − θ̂)| ≤√
2‖x‖22+2

√
d‖x‖2‖x‖M(λ)−1+(4+2

√
d/`)‖x‖2M(λ)−1

`
.



Since ‖x‖2 ≤
√
m and ‖x‖M(λ)−1 ≤ α

√
d from

Lemma 1, applying Proposition 3 for every super arm in X
and via a union bound, we have that when n ≥ c0` ln( 5|X |

δr
)

where ` ≥ d,

Pr

[
|x>θ − x>θ̂| ≤√

2m+ 2α
√
md+ (4 + 2

√
d/`)α2d

`
,∀x ∈ X

]
≥ 1− δ.

Setting ` as `(ε) := 2m+2α
√
md+4α2d+αεd
ε2 , we have that

with probability at least 1− δ, ∀x ∈ X ,

|x>θ − x>θ̂| ≤

√
2m+ 2α

√
md+ (4 + 2

√
d/`)α2d

`

=

(
2m+ 2α

√
md+ 4α2d

2m+ 2α
√
md+ 4α2d+ αεd

ε2

+
2α2d

3
2

(2m+ 2α
√
md+ 4α2d+ αεd)

3
2

ε3

) 1
2

≤ε

(
1− αεd

2m+ 2α
√
md+ 4α2d+ αεd

+
2α
√
d√

2m+ 2α
√
md+ 4α2d+ αεd

·

αεd

(2m+ 2α
√
md+ 4α2d+ αεd)

) 1
2

≤ε,
which completes the proof.

Next, we show the sample complexity bound for the epoch
q = 0.
Lemma 11. With probability at least 1− δ0, the first epoch
q = 0 in Algorithm 4 satisfies the following properties: (i)
epoch q = 0 ends with x∗ ∈ S1; and (ii) the sample complex-
ity is bounded by

O

(
c0(α
√
md+ α2d)

∆2
d+1

(
ln δ−1 + ln |X |+ ln ln ∆−1

d+1

))
.

Proof. For round r of the first epoch, define event Fr :=

{|x>θ−x>θ̂r| ≤ ε
2 ,∀x ∈ X}. Applying Lemma 10, we have

Pr[Fr] ≤ 1 − δr. Define event F :=
⋂∞
r=1 Fr. By a union

bound, we have Pr[F ] ≥ 1−
∑∞
r=1 δr = 1−

∑∞
r=1

6
π2

δq
r2 ≥

1− δq . We condition the remaining proof on event F .
(i) First, we show that the first epoch q = 0 will end with

x∗ ∈ S1. Let x1, x2, . . . denote the super arms ranked by
x>θ for x ∈ X (i.e., x>1 θ ≥ x>2 θ, . . .), and we use x∗ and x1

interchangeably.
For any round r ≥ 1, x>1 θ̂r ≥ x>1 θ − εr

2 ≥ x̂>1 θ − εr
2 ≥

x̂>1 θ̂r − εr. Rearranging the terms, we have x̂>1 θ̂r − x>1 θ̂r ≤
εr, which implies that x1 will never be discarded. Thus, when
the first epoch q = 0 ends, x1 ∈ S1.

Let r∗ be the smallest round such that εr∗ <
∆d+1

2 . In
round r∗, for xi s.t. i ≥ d + 1, x>1 θ̂r∗ − x>i θ̂r∗ ≥ (x>1 θ −
εr∗
2 )− (x>i θ+ εr∗

2 ) ≥ ∆i−εr∗ ≥ ∆d+1−εr∗ > εr∗ . Then,
the first epoch q = 0 will end.

(ii) Since the first epoch q = 0 will end in (or before) round
r∗, which is the smallest round such that εr∗ <

∆d+1

2 , then
the sample complexity of the first epoch q = 0 is bounded by

O

(
c0(α
√
md+ α2d)

ε2
r∗

ln

(
|X |
δr∗

))
=O

(
c0(α
√
md+ α2d)

∆2
d+1

(
ln δ−1 + ln |X |+ ln ln ∆−1

d+1

))
.

Proof of Theorem 1

Proof. Define q∗ = blog2 dc. For epoch q = 0, applying
Lemma 11, the sample complexity is bounded by

O

(
c0(α
√
md+ α2d)

∆2
d+1

(
ln δ−1 + ln |X |+ ln ln ∆−1

d+1

))
.

For epoch q ≥ 1, the PolyALBA algorithm directly calls
subroutine ALBA. Applying Lemma 17 in (Tao, Blanco, and
Zhou 2018), we can bound the sample complexity for epoch
q ≥ 1 by

q∗∑
q=1

O

c0 ⌊ d
2q−1

⌋
∆2

b d2q c+1

(
ln δ−1 + ln |X |+ ln ln ∆−1

b d2q c+1

)
=

q∗∑
q=1

O

 c0
⌊
d
2q

⌋
∆2

b d2q c+1

(
ln δ−1 + ln |X |+ ln ln ∆−1

b d2q c+1

)
=

q∗∑
q=1

O

(
c0(
⌊
d
2q

⌋
−
⌊

d
2q+1

⌋
)

∆2

b d2q c+1

·

(
ln δ−1 + ln |X |+ ln ln ∆−1

b d2q c+1

))

=

q∗−1∑
q=1

b d2q c∑
b d

2q+1 c+1

O

(
c0
∆2
i

(
ln δ−1 + ln |X |+ ln ln ∆−1

i

))

=O

b d2 c∑
i=2

c0
∆2
i

(
ln δ−1 + ln |X |+ ln ln ∆−1

i

) .

Summing the sample complexity for epoch q = 0 and
q ≥ 1, we obtain the theorem.

I Experiments on the Top-k Instances
The main purpose of the experiments in this section is to
see the dependence of the performance on the minimum gap
∆min. We empirically demonstrate that PolyALBA is robust
across different ∆min settings and runs much faster than
existing BAI-LB algorithms as reported in Figure 3.
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(a) The number of samples and running time with (d, k) = (8, 3).
We vary the minimum gap ∆min from 0.1 to 1.0. Each point is an
average over 10 realizations.
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(b) The number of samples and running time with k = 3, d =
8, 10, 12, 14, 16, and ∆min = 0.5. Each point is an average over
10 realizations.

Figure 3: Experimental results of running time and sample
complexity for full-bandit top-k instances.

Experimental settings. As a polynomial-time baseline al-
gorithm, we implement ICB (Kuroki et al. 2020b), whose
sample complexity heavily depends on ∆−2

min. We evaluate
PolyALBA, ALBA, and ICB for the top-k case of CPE-BL on
Intel Xeon E5-2640 v3 CPU at 2.60GHz with 132GB RAM.
We set the expected rewards for the top-k base arms uni-
formly at random from [0.5, 1.0]. Let θmin-k be the minimum
expected reward in the top-k base arms. We set the expected
reward of the top (k + 1)-th base arm to θmin-k − ∆min

for the predetermined parameter ∆min ∈ [0.1, 1.0]. Then,
we generate the expected rewards of the rest of base arms
by uniform samples from [−1.0, θmin-k −∆min] so that ex-
pected rewards of the best super-arm is larger than those of
the rest of super arms by at least ∆min. We set the additive
noise distribution N (0, 1). In all instances we set δ = 0.05.
In order to perform the exponential-time algorithms ALBA
in reasonable time, we run the experiments with d = 8,
k = 3, and thus |X | = 56. Note that since RAGE is already
prohibitive in these instances due to its memory error, we
exclude it here. The result is shown in Figure 3(a). In the
second experiment, we evaluate PolyALBA, ALBA, and ICB
on the synthetic instances with varying |X | and fixed ∆min.
To perform ICB with a reasonable sample complexity, we
set ∆min = 0.5 in all instances. We vary the number of
base arms d = [8, 10, 12, 14, 16] while k = 3 is fixed. Thus,
|X | ∈ [56, 120, 220, 364, 560] in this experiment. The result
is shown in Figure 3(b).

Results. As can be seen in Figure 3(a), PolyALBA per-
forms well in all instances, while a polynomial-time baseline
ICB is sensitive to the value of ∆min, which matches our the-
oretical analysis. Indeed, ICB cannot stop even after several

days because it requires at least more than 109 samples when
∆min = 0.4. On the other hand, PolyALBA is still compet-
itive with the exponential-time baseline ALBA. Figure 3(b)
demonstrates that ALBA is too slow in larger sized instances;
we report that ALBA cannot work in the large instance with
d = 18 and |X | = 816 due to its memory issue in our envi-
ronment. From the results, PolyALBA is the only practical
algorithm that is efficient in terms of both time complexity
and sample complexity. We validate that the sample complex-
ity of PolyALBA is robust against the minimum gap, which
well suits the real-world applications.


