CAST: Authoring Data-Driven Chart Animations

Tong Ge Bongshin Lee Yunhai Wang
Shandong University Microsoft Research Shandong University
Qingdao, China Redmond, United States Qingdao, China

tgeconf@gmail.com

Chart | =i

Ranking of Carbon Dioxide Emissions

- — 3 =

31 Anlmation Spectication

bongshin @microsoft.com

1557 1063 1554 1985 195 1567 1552 1555 2000 3001 3087 2003 1004 3005 006 2007 2008 2005 10 201

cloudseawang @gmail.com

Anirmation Preview

Ranking of Carbon Dioxide Emissions

D = T B

-—

1967 583 1954 1805 1505 1957 1983 1359 2000 IDS0 002 2003 2004 1005 J00E 2007 2008 2008 2010 2t

Figure 1: CAST enables the interactive construction of a variety of chart animations. Its interface consists of four panels: (a) data
panel; (b) chart panel; (c) animation preview panel; and (d) animation specification panel. In this case, the system is about halfway
through the animation of a ‘bump chart,” showing how the ranking of carbon dioxide emissions has changed over the years. Please
visit the CAST website (https://chartanimation.github.io/cast) to see the animation.

ABSTRACT

We present CAST, an authoring tool that enables the interactive
creation of chart animations. It introduces the visual specification
of chart animations consisting of keyframes that can be played
sequentially or simultaneously, and animation parameters (e.g., du-
ration, delay). Building on Canis [19], a declarative chart animation
grammar that leverages data-enriched SVG charts, CAST supports
auto-completion for constructing both keyframes and keyframe se-
quences. It also enables users to refine the animation specification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CHI '21, May 08-13, 2021, Yokohama, Japan

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

(e.g., aligning keyframes across tracks to play them together, ad-
justing delay) with direct manipulation and other parameters for
animation effects (e.g., animation type, easing function) using a
control panel. In addition to describing how CAST infers recommen-
dations for auto-completion, we present a gallery of examples to
demonstrate the expressiveness of CAST and a user study to verify
its learnability and usability. Finally, we discuss the limitations and
potentials of CAST as well as directions for future research.

CCS CONCEPTS

* Human-centered computing — Visualization systems and tools;
Interactive systems and tools.

KEYWORDS

Chart animation, chart animation authoring, chart animation specifi-
cation, data visualization, interactive system

https://chartanimation.github.io/cast
https://doi.org/10.1145/1122445.1122456

CHI 21, May 08-13, 2021, Yokohama, Japan

ACM Reference Format:

Tong Ge, Bongshin Lee, and Yunhai Wang. 2021. CAST: Authoring Data-
Driven Chart Animations. In CHI Conference on Human Factors in Com-
puting Systems (CHI ’21), May 813, 2021, Yokohama, Japan. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Chart animations are an engaging means for communicating data-
driven insights as they are effective in attracting and retaining audi-
ences’ attention. Hans Rosling’s animated bubble charts [44, 45] and
numerous compelling examples [3, 55] from practitioners gained
huge popularity from the public, demonstrating a competitive advan-
tage over static charts in increasing audience engagement.

Today, several commercial and research tools allow people with-
out programming skills to create chart animations. However, most
interactive tools for authoring chart animations (e.g., DataClips [4],
Flourish [28], Adobe Stock [2]) ask users to choose from a set of
predefined templates. They cover only a small number of standard
chart types, such as bar charts, line charts, or pie charts, and pro-
vide limited support for customization in sequencing keyframes
and pacing between them. As a result, these tools preclude expres-
sive chart animations, preventing users from leveraging the wide
range of charts that can be created with bespoke chart creation tools.
Although general animation creation tools (e.g., Adobe After Ef-
fects [1]) can be used to author expressive chart animations, they
often require tedious and time-consuming manipulation due to the
lack of data-driven abstractions.

Besides interactive tools, people can use programming libraries
like D3 [9] and gganimate [62] to author highly sophisticated chart
animations. This approach, however, is only accessible to people
with advanced programming skills and requires significant efforts
in fine-tuning the animation factors, such as transition and pacing.
To address this issue, Ge et al. recently introduced Canis [19], the
first high-level language for the declarative specification of chart
animations. In contrast to D3, Canis employs a simpler syntax for
creating expressive animations by focusing on chart animations and
leveraging data-enriched scalable vector graphics (SVG) charts as
the input. However, it still requires people to write code to define
keyframes and handle some of the timing factors.

In this paper, we present CAST (Canis Studio; Figure 1), a web-
based authoring tool that enables people to create chart animations
with a wide range of chart designs without programming. Building
on Canis, CAST works with the charts created by existing chart
construction tools. To facilitate the authoring and understanding
of chart animations, it introduces a visual specification approach
that explicitly represents keyframe-based chart animations with four
visual components: keyframe, keyframe group, timing, and effect.
Combining with a sequence-based timeline and storyboard, the spec-
ifications consist of keyframes that can be played sequentially or
simultaneously, and animation parameters (e.g., duration, delay). To
support the easy construction of keyframe-based animations, CAST
offers data-driven auto-completion that suggests candidates for both
keyframes and keyframe sequences. (We explain how the system
infers candidates in Section 3.4 in detail.) Specifically, CAST takes
data-enriched SVG charts as the input and enables authors to craft an-
imations using three key features: keyframe construction, keyframe
sequencing, and animation property refinement. After constructing

Tong Ge, Bongshin Lee, and Yunhai Wang

keyframes and sequences with the auto-completion through a few
selection operations, authors can refine the animation specification
(e.g., aligning keyframes across tracks to play them together, adjust-
ing gaps between frames) with direct manipulation. Other parameters
for animation effects (e.g., animation type, easing function) can be
adjusted using a control panel. The easy-to-understand visual speci-
fication of chart animations and this simple form of user interaction
powered by the auto-completion make CAST accessible to novices
who lack the ability to program chart animations.
In summary, the main contributions of this work are:

e We introduce the visual specification of chart animations that
explicitly represents keyframe-based chart animations. It conveys
the core aspects of animation with four components—keyframe &
keyframe group, timing, and effect.

e Based on our visual specification, we design and develop CAST,
a web-based system that enables the interactive construction of
chart animations. CAST employs data-driven auto-completion to
reduce the effort required in constructing keyframes and keyframe
sequences, and direct manipulation to facilitate the easy specifica-
tion of chart animations.

e We present two forms of evaluations. Our gallery (Figure 2)
demonstrates the expressiveness of CAST. Our two-part user
study with 18 participants assesses if participants could learn and
understand our visual specification, and evaluates the learnability
and usability of CAST.

2 RELATED WORK

CAST builds on visualization system research spanning perceptual
guidelines, tools for authoring chart animations, visual programming
language, and the underlying chart animation language, Canis [19].
In this section, we focus on the creation of chart animations and the
reader can refer to previous studies [6, 10, 42] for the effectiveness
of chart animations.

2.1 Perception of Animations

A complete review of general perception of animations is beyond
the scope of this paper (refer to Tversky et al. [S6] and Chevalier et
al. [13]). We restrict our discussion to the perception of data-driven
chart animations, where motion is used as a preattentive visualization
technique [58]. Previous studies show that appropriately-designed
animations not only reveal complex data relations (e.g., causal re-
lations [59]) but also support filtering and brushing [7] as well as
facilitate decision making [20].

Following the Gestalt law of common fate [26], the animated vi-
sual marks moving with the same velocity are perceived as the same
group. A few studies investigated the human abilities in perceiving
the changes of speed [31], direction [54], or both [22] in animated
visualization. Weiskopf [60] found that color plays an important
role in the perception of motion direction and velocity. Romat et
al. [43] introduced three motion variables (speed, frequency, and
pattern) for defining animated edge textures in node-link diagrams
and assessed the effectiveness of each variable. Recently, Chalbi [11]
suggested that not only the motion but also the change in luminance
and size all have the strong grouping effect. Although CAST does
not fully guarantee the perceptual effectiveness of chart animations,

https://doi.org/10.1145/1122445.1122456

CAST: Authoring Data-Driven Chart Animations

S
v

CHI 21, May 08-13, 2021, Yokohama, Japan

()

®

(9)

Polio Incidenc Polioln " Ratoepolll 00 Polio Incidence Rates.

Figure 2: Eight example chart animations demonstrating the expressiveness of CAST. We used the first seven chart animations (a-g)
as tasks in our user study in Section 4. In addition to these, more examples can be found with the input charts, descriptions, and
videos illustrating the creation processes in the website (https://chartanimation.github.io/cast).

we were mindful about the previous research on animation percep-
tion: CAST’s auto-completion ensures the perceptual grouping by
analyzing the visually encoded data attributes.

2.2 Chart Animation Design Space

Animation is a promising way for conveying the changes in visu-
alizations, although its effectiveness is still controversial for data
analysis [56]. To promote effective animation design, a few guide-
lines have been proposed. Tversky et al. [56] suggest two high-
level principles: congruence and apprehension, namely, requiring
that the animation should be accurately perceived with respect to
user’s mental representation. While adhering to these principles,
Heer and Robertson [23] and Fisher [18] recommend a few specific
design guidelines for crafting effective chart animations including
“consistent semantic-syntactic mappings” and “meaningful motion.’
Through carefully examining a corpus of data videos, Amini et
al. [3] characterize the elemental units of data videos as the com-
binations of visualization types X animation types. Very recently,
Thompson et al. [55] characterize the design space by four dimen-
sions: object, graphic, data, and timing. The object dimension refers
to which marks undergo an animation, the graphic and data dimen-
sions describe the change of visual states of the marks, and the time
dimension specifies the pace sequences of the animation. Those di-
mensions can be combined into compositions of animated transitions
and pacing techniques. While not perfectly aligned with Thompson
et al.’s design space,1 CAST’s design can be projected onto their
space. CAST enables users to select graphic objects, such as marks,

s

1Thompson et al.’s paper on animation design space [55] was published after we
designed CAST.

(title) text, axis, legend, to be animated, and use them to construct
keyframes and keyframe sequences by data-driven auto-completion.
In addition, users can specity the animation effects (e.g., appear) and
modify the timing of animation (e.g., duration, delay).

The effectiveness of different aspects of animation transition de-
sign, such as staging, staggering, and trajectories, have also been
studied. Bartram and Ware [7] find that objects with similar motions
are preattentively grouped even they are otherwise dissimilar. Heer
and Robertson [23] show that carefully designed staged animation
improves understanding of the underlying data, while complex multi-
stage transitions are less favored. Shanmugasundaram et al. [49] find
that smooth animation transitions substantially help in maintaining
the connectivity and overall structure in node-link diagrams. Drag-
icevic et al. [14] compare the effects of different temporal distortion
strategies on object tracking and suggest that slow-in/slow-out out-
performs others, although the differences depend on the type of
animation transitions. Chevalier et al. [12] study another pacing tech-
nique, staggering, where the start time of moving elements is delayed
incrementally and found that it has a negligible, or even negative
impact on multiple object tracking performance. Other studies find
that using bundled trajectories or smooth non-linear ones [15, 57]
are more effective than straight ones in some specific conditions.
CAST is designed to help users easily follow these guidelines with a
simple and intuitive interface.

2.3 Chart Animation Authoring Tool

A complete survey of visualization authoring tools is referred to
Grammel et al. [21] and we focus on the authoring tools for chart an-
imations, which can be classified into two categories: programming
and non-programming tools.

https://chartanimation.github.io/cast/

CHI 21, May 08-13, 2021, Yokohama, Japan

Programming Tools. A few animation libraries [24, 41] have been
developed for creating general animations, but the ones specifically
for chart animations are scarce. One striking example is D3 [9],
which provides a transition operator and a collection of interpolation
functions for animating the charts made by D3 itself. By exploit-
ing GPU hardware rendering, StarDust [40] produces animations
with better performance while providing a similar API as D3. Such
expressive low-level grammars facilitates the creation of highly-
customized animations, however, the resulted verbose specification
impedes rapid authoring. In contrast, gganimate [?] provides a high-
level grammar for easily creating chart animations. However, it can
only animate the charts created by ggplot2 [61] with limited types
of animation transitions. By separating the chart animation form
the creation step, the recently proposed high-level chart animation
language, Canis [19], enables the concise, high-level specification
of chart animations for the input of any data-enriched SVG chart.
However, all these tools have a steep learning curve, especially for
people who lack programming skills. To address this issue, CAST
takes a visual specification approach for interactive chart animation
specification by building and extending on top of Canis.

Non-Programming Tools. As discussed by Thompson et al. [55],
there are three approaches for animation authoring: keyframing, pro-
cedural and template based animations. The procedural animations
are mainly used for showing simulated processes, while most exist-
ing interactive authoring tools are based on templates. DataClips [4]
allows non-experts to craft data videos by composing a sequence of
predefined combinations of visualization types and animation types.
Likewise, Adobe Stock [2] provides a set of data-driven motion
graphics templates, while Flourish [28] further allows for integrating
audio into chart animations. Such tools enable non-experts to create
chart animations, however, their expressiveness is limited to the
templates. Specifically, they support neither customizing the pacing
or animation effects nor authoring animations for the visualizations
beyond the predefined types.

In contrast, the keyframe-based tools, like Adobe After Effects [1],
allow for precise control of visual properties and behaviors of visual
elements with keyframes. Therefore, they are often used by experi-
enced designers for crafting compelling chart animations. However,
such tools do not provide data-driven abstractions of chart anima-
tions (e.g., their keyframes use absolute timing), resulting in a time-
consuming and error-prone manual process to specify different chart
states and each keyframe’s timing. Inspired by Data Illustrator [27]
that enhances graphic design tools with data encoding support for
authoring expressive visualizations, our goal is to enhance traditional
keyframe-based tools with visual specifications and data-driven auto-
completion for authoring expressive chart animations.

2.4 Visual Specifications

The visual specification approach describes an abstract description
of an object or a system by using a graphical vocabulary. As a
result, it makes specification easier and more accessible with no
need to know the details of how the system works [30]. The most
notable example is Unified Modelling Language (UML) [46], which
provides a variety of visual objects for modelling software systems.

Tong Ge, Bongshin Lee, and Yunhai Wang

Many visualization systems offer interactive visual specifications
of visualization and analysis operations. Polaris [52] and its com-
mercial successor Tableau [29] allow users to define visual speci-
fications via drag-and-drop operations, namely, placing data fields
onto “shelves” corresponding to visual encodings such as position,
size, shape, or color. iVOLVER [32] provides an interactive visual
language that enables users to acquire data from various sources
and create interactive visualizations and animations. Lyra [47] al-
lows visual specification of flexible custom visualizations such as
force-directed layouts, trees and word clouds. Wrangler [25] takes a
further step that can automatically suggest applicable data transfor-
mations based on the input visual specifications. Likewise, CAST
also combines direct manipulation with automatic inference of rele-
vant visual marks or keyframes, enabling designers to rapidly author
desired chart animations.

2.5 Canis: CAST’s Underlying Grammar

CAST is built on Canis [19], a high-level grammar to specify chart
animations. Canis specifications can be used to describe a variety of
animations of data-enriched SVG charts. Here, we briefly explain
Canis because we refer to its core components while explaining
the design and implementation of CAST. Please refer to the Ca-
nis website (https://chartanimation.github.io/canis) for the complete
specifications and example animations. Later in Section 3.5, we will
briefly explain how we extend Canis to enable interactive specifica-
tions of chart animations.

A Canis specification describes the animation of data-enriched
SVG charts with a sequence of animation units aniunits. The input
charts are embedded with the source data, and each aniunit is defined
by a quadruple:

aniunit := (timing, selector, grouping, ef fects), (1)

where the selector is used to select marks to be animated from the
input charts using the W3C Selectors API [16]. The selected marks
are further grouped into a set of elementary units that we refer to as
mark units, with regard to categorical or nominal data attributes by
grouping. The visual properties of the marks within the same mark
unit update together during the animation. Note that grouping can
be nested and thus a mark unit tree can be formed, where each level
is grouped by one unique visually encoded data attribute.

Timing is defined both in aniunit and in each level of grouping,
which controls the pacing of animation. It specifies when the ani-
mation starts using the reference (start with vs. after previous) and
delay. While the effect component specifies the type of animation ef-
fect, easing function, and the duration of this effect. If not specified,
Canis will automatically apply default values (e.g., default duration
=300ms).

Figure 3 (a) shows an example of Canis specification. It consists
of two aniunits which describe the animations of the title and dots.
In the dot unit, each dot is a mark unit, and it starts to animate a short
time after the previous one started with the “circle” effect, according
to their “rate” value in ascending order. The resulting animation is
illustrated in Figure 3 (b).

https://chartanimation.github.io/canis/

CAST: Authoring Data-Driven Chart Animations

"animations": [{

"selector": ".title",

"effects": [{ "type": "fade", "duration": 300 }]
oA

"reference": "start after previous",

"selector": ".dot",

"grouping": {
"groupBy": "id", "delay": 100,

"sort": { "field": "rate", "order": "ascending" }
Y,
"effects": [{ "type": "circle", "duration": 500 }]
H
(a)

Polio Incidence Rates

United States, 1952 United § United States

CHI 21, May 08-13, 2021, Yokohama, Japan

Polio Incidence Rates
United States, 1952

Polio Inci(Polio Incider

(b)

Figure 3: An example animation specified by Canis. (a) The Canis specification and (b) the resulted animation started with fading in
the title, followed by the staggering animation of dots according to their associated data values in an ascending order.

3 CAST

In this section, we first present our design principles for CAST and
introduce its visual specifications. We then describe its user interface
and interactions along with three usage scenarios, and explain how
CAST supports auto-completion for constructing keyframes and
keyframe sequences. Finally, we provide two additional techniques
employed for interactivity and better user experience, as well as
implementation details.

3.1 Design Principles

With CAST, we aim to enable people who lack programming skills to
easily create chart animations with a wide range of chart designs. To
this end, we settled on the following three guiding design principles:

DP1: Provide explicit representations for chart animation specifi-
cation. Being a general purpose animation authoring system, ex-
isting keyframe-based systems represent animations in an abstract
manner within a purely timeline-based interface. For example, in
Adobe After Effects and Adobe Premiere, a keyframe is represented
as a diamond in a timeline. This abstract representation makes it
nearly impossible for people to understand the animation they cre-
ated without previewing. In contrast, to foster the understanding
of specifications for chart animation, CAST uses explicit visual
elements to represent animated marks (i.e., chart elements) and an-
imation properties (e.g., timing, animation effects). Furthermore,
CAST introduces an animation specification panel that blends story-
board with timeline. In their recent paper, which was published after
we designed CAST, Thompson et al. [55] suggested that “storyboard
interface and the timeline interface may be tightly coupled so that
users can easily navigate between these two paradigms.”

DP2: Support the easy construction of keyframe and keyframe
sequences using data-driven inferences. The straightforward way
to construct a keyframe is to manually select all of the necessary
visual marks from the (data-enriched SVG) chart. However, this fully
manual construction of keyframes is time-consuming and prone to
errors, as well as even impractical as the number of keyframes
grows. CAST strives to strike the right balance between the flexible
graphics manipulation and procedural keyframe sequence generation
based on Canis. It allows for efficiently constructing keyframes by
suggesting possible visual marks based on the data attributes of the
user-selected marks. CAST also suggests concrete and meaningful
keyframe sequences based on the constructed keyframes.

DP3: Blend direct manipulation and configuration panel. Although
direct manipulation is natural and intuitive, it is difficult to pre-
cisely specify quantitative values and perform repetitive actions [35].
CAST, as mentioned above, enables designers to directly manipulate
visual elements to construct animations, whereas several relative
timing properties cannot be exactly or easily specified. One example
is that the given duration or delay time can hardly be exactly de-
fined and another one is to manually specify meaningful animation
order of keyframes, which is time consuming and error-prone. To
overcome these issues, CAST consistently blend direct manipulation
and several concise configurations panels together to specify such
options that cannot be directly manipulated.

3.2 Visual Specifications

To improve the readability and understandability of the anima-
tion process (DP1), we introduce visual specifications with four
components—keyframe & keyframe group, timing, and effect—to
visually convey the core aspects of animation.

Keyframe and Keyframe group. As described earlier in Section 2.5,
a mark unit refers to a collection of marks whose visual properties
are changed together during the animation. Each keyframe con-
tains one such mark unit to be animated along with other units
whose animations have been completed. These mark units can be
grouped and nested, and the level of each group is indicated using
the nested boxes with different shading intensities (mimicking the
treemap [50]). These keyframes and keyframe groups convey mean-
ingful steps in the animation, forming a storyboard. For example,
as shown in Figure 4, the animation of a map incrementally reveal-
ing the polio incidence rates of the United States in 1952 can be
represented with two keyframe groups: the first group containing
one keyframe to display the chart title and the second group hav-
ing 51 keyframes (with 48 collapsed into an ellipsis) to show the
corresponding zones one at a time.

Timing: Alignment, Duration, and Delay. The relative timing be-
tween keyframes is determined by three attributes—position, dura-
tion time, and delay time—in the storyboard-incorporated timeline
(see the tracks within the animation specification panel in Figure 1
(d)). The horizontal placement of keyframes determines the order of
their animations. The adjacent keyframes play sequentially, while
the keyframes vertically aligned across multiple tracks play simulta-
neously (vertical alignment is represented with a dark-gray dotted

CHI 21, May 08-13, 2021, Yokohama, Japan

effect type: [{[¢ JOYEXOINIC I
easing function:

Tong Ge, Bongshin Lee, and Yunhai Wang

Polio Incidence Rates

Unitod Staes. 1952

x48|

'd\\uration bar

delay bar

ellipsis

Figure 4: The visual representation of the animation of a map showing the polio incidence rates of the United States in 1952. The
title fades in first, then all dots animate according to their rate in an ascending order with the “circle” effect. Such animation is
represented by two keyframe groups with other animation properties including timing bars indicating duration and delay, and iconic
representation of effect type and easing function (all effect types and easing functions are listed at the top left).

line)?: Figure 1 shows an example of the alignment between labels
(corresponding to dots) and links (connecting the dots).

CAST conveys the timing properties of each keyframe—duration
and delay—using timing bars. The bar width represents the time
length and bar color encodes the type (blue for duration and orange
for delay). The duration bar is placed on the right side of each
keyframe, while the delay bar is placed on the left side of a keyframe
to show the delay before the corresponding animation starts. (As
a keyframe group is a logical collection of keyframes, it does not
have a duration bar: its duration is determined by the duration of
keyframes that belong to this group.)

CAST allows the next keyframe to start before the previous
keyframe finishes. In this case, the delay bar of the next keyframe
will be aligned to the left with the duration bar of the previous
keyframe. To avoid the complete occlusion between them, the dura-
tion bar is scaled in Y direction to be a bit taller than the delay bar.
For example, in the second keyframe group in Figure 4, the delay bar
of the second keyframe is left-aligned with the duration bar of the
first keyframe, conveying that the animation for the second keyframe
will start while the first keyframe is still animating.

All keyframes in the same keyframe group share animation prop-
erties, and thus showing all keyframes in a keyframe group is redun-
dant, consuming a lot of screen space. Therefore, CAST shows only
three (first, second, and last)? keyframes in one keyframe group and
collapses keyframes under the ellipsis (Figure 4). The number of the
collapsed keyframes will be labeled on the ellipsis.

Animation Effects. We use icons to represent two properties of
animation effects—effect type and easing function—as they are cat-
egorical variables. CAST currently provides eight types of effects
(e.g., fade, wipe) and four types of easing (Figure 4) drawn from
commonly used tools like PowerPoint. We note that it is straight-
forward to add additional translation effects and easing functions.
Since all keyframes in the same topmost keyframe group share the
animation effect, the effect type and easing function are only shown
on the topmost keyframe group.

2Keyframes and keyframe groups are equivalent in many aspects. For the sake of
simplicity, we describe only with keyframes and highlight the cases where keyframes
and keyframe groups behave differently.
3CAST shows only two (first and last) when zoomed out to see a high-level overview of
the animation, as illustrated in Figure 9.

3.3 User Interface and Interaction

The CAST user interface consists of a data panel, a chart panel, an
animation preview panel, and an animation specification panel (Fig-
ure 1). We explain CAST’s interaction using three example scenarios
(open this PDF in Acrobat Reader to view the animations shown
in each scenario). To see how CAST works, please refer to the gallery
videos on the CAST website (https://chartanimation.github.io/cast/).

Interaction Mechanisms. When the data-enriched SVG chart is
loaded?, it is assigned to the default animation which is to fade in the
entire chart: the corresponding representation of a single keyframe
with all visual elements in the chart as a mark unit is generated on the
animation specification panel. To author the customized animation
for the chart, the author can start from creating the mark unit to be
animated by simply selecting the desired marks on the chart panel.
The data table and the input chart are tightly coupled: the author
can select the marks from the data table when the marks need to
be selected based on the data values that are not clearly displayed
(for example, see Scenario 2). Moreover, when it is difficult to select
marks in a few selection operations, (e.g., selecting all blue dots
in the faceted dot plot in Figure 2 (d)), the author can first select
a small portion of the desired marks as an example, then they can
either select the mark unit which is automatically recommended by
CAST or keep selecting from the input chart manually.

To generate a keyframe, the author can drag and drop the selected
marks on the animation specification panel (see Figure 5 (a)). Then
CAST automatically generates a keyframe for the corresponding
animation unit and suggests a list of potential next keyframes for the
author to select (see Figure 5 (b)). This suggestion-selection process
will proceed recursively until the keyframe sequence is determined.

Once the keyframe sequence is generated, the author can rear-
range the animation order of the sibling keyframe groups using the
popup panel on their parent keyframe group (Figure 5 (d)). To change
the timing of keyframes, the author can drag one keyframe and adjust
its relative position to the previous one. CAST will hint the changes
to be made while the keyframe is being dragged (Figure 5 (c)). As
for editing the length of duration or delay, the author can change the

#The data-enriched SVG chart can be automatically generated with our online generator
(https://chartanimation.github.io/canis/marker/index.html) by using the SVG charts
created either with interactive authoring tools like Charticulator or using a programming
library like D3.

https://chartanimation.github.io/cast/
https://chartanimation.github.io/canis/marker/index.html

CAST: Authoring Data-Driven Chart Animations

CHI 21, May 08-13, 2021, Yokohama, Japan

Click to preview from here

%;

duration: 200 ms

duration: €[t ms

Surface:
Smooth

Odor:
Creosote

IsEdible:
Edible

(b)

(e) ()

Figure 5: An example illustrating the keyframe and keyframe sequence construction procedure. (a) a mark unit with four blue dots
is dragged over the dropzone ahead of the keyframe group containing all dots; (b) after creating a keyframe for the selected dots, a
list of possible next keyframes is suggested to let users select to complete the keyframe sequence; (c) dragging one keyframe to make
keyframes animate a short time after the previous one started; (d) rearranging the animation order of sibling keyframe groups; (e)
selecting effect type for keyframe group; and (f) two ways to update the duration length.

width of the timing bar by dragging the end of it. To specify precise
duration, they can enter the number in the popup input box shown
when hovering the timing bar (Figure 5 (f)). Finally, the author can
specify the desired animation effect and easing function by selecting
from the callout list on the top-most level keyframe group (Figure 5
(e)). CAST also supports undo/redo operations which enables the
author to recover from unintended modifications to the animation.

The change on any keyframe will be automatically applied to
all keyframes within the same top-most level keyframe group. The
result animation can be previewed on the animation preview panel
using the media controllers. (Clicking on a keyframe will start the
preview from the keyframe.)

Scenario 1: Animation of the faceted dot plot.
Sample of Mushrooms

Edble
Fibrous. M Poisonous

seay:

smootn *

& & &

Almond Creosote Fishy Fou None

We will create the animation with a faceted dot plot (Figure 2 (d)),
as illustrated in the inset figure above. The chart depicts 170 samples
of mushrooms, grouping them by their odor (x-axis) and surface
quality (y-axis). Each dot in the chart corresponds to one mushroom
sample, where its color indicates whether it is poisonous or not. The
animation of this chart starts with the title, axis, and legend fading in

together. Then the dots in each cell appear together from the cell on
the bottom left to the top right one after another. Meanwhile, there
is a short pause between animation of cells within the same row and
a longer pause between rows.

To first animate the title, axis, and legend, we start by selecting
and dragging them to the animation specification panel to create
the first keyframe. To specify the dots in the first cell to animate,
we create another keyframe with the four dots on the bottom left
corner. Then CAST provides a list of next keyframes indicating all
possible keyframe sequences, where each one corresponds to the
unique partition strategy for all dots. We choose the one showing the
keyframe sequence we wanted, which was also labeled as to partition
by Surface first, then partition by Odor (see Figure 5 (b)). Finally,
to add delay between keyframes, we adjust the distance between
two adjacent keyframes by dragging one away from the other. After
inserting delay between the keyframe groups in the same manner,
we increase the delay by stretching the right border of the delay bar.

Scenario 2: Animation of the Mekko Chart.

Per Capita Food Supply (Daily Calories) in 2013

Fame Jwan Fen Cuba Chna Paksan Souh AveaZanba K

We will create an accumulation animation with a Mekko chart,
which shows per capita food supply. In the chart, each column

CHI 21, May 08-13, 2021, Yokohama, Japan

represents the proportion of calories provided by different foods in
one country, and the color of each rectangle encodes the type of the
food. The animation starts by fading in the title and axes, and then
the labels of food types and corresponding rectangles are interlaced
to animate with fade and wipe effects, respectively.

To first fade in title and axes, we drag them from the chart panel
to the animation specification panel to create the first keyframe. To
animate rectangles by food type, we first select the rectangles corre-
sponding to Grain to create another keyframe. In response, CAST
automatically completes the animation of accumulating rectangles
of other types of foods since there is only one possible animation
sequence. After that, we change the effect type of rectangles to “wipe
bottom.” To let the labels fade in before the corresponding rectangles,
we first create the staggering animation of labels in the same manner,
then we drag the keyframe group of rectangles to align it with the
labels on the element level.

Scenario 3: Animation of the Connected Scatterplot.

We will create an animation with Hannah Fairfield’s connected
scatterplot [17] (Figure 2 (b)), which shows the relationship between
driving distance and oil price over time. In this chart, each dot
representing the oil data of a year is positioned according to miles
driven (x-axis) and its price (y-axis), having year as a text label. Two
dots for adjacent years are connected by a link. The animation starts
with both axes fading in followed by all dots fading in together. Then
each link grows in chronological order, and the year label fades in
once the link reaches the corresponding dot.

To create the first keyframe of the axis, we select several axis
ticks with their labels from the input chart. Then CAST recommends
the entire axis including ticks, tick labels, and grids. We drag them
to the animation specification panel to create the first keyframe.
Then, we create the second keyframe with all dots in a similar way.
In response, CAST automatically creates three keyframe groups
each containing a single keyframe. These keyframe groups, placed
horizontally adjacent to each other, depict the animation of three
types of marks: dots, labels, and links with the default effect “fade
in,” respectively.

To make the labels fade in one by one, we drag the first label
from the chart panel to the dropzone ahead of the keyframe group
corresponding to labels. To make the labels fade in when the link
reaches the corresponding dot, we drag the keyframe group of links
and align it with the keyframe group of labels on the element level.
Finally, we change the effect type of links animation to “grow” and
extend their duration.

Tong Ge, Bongshin Lee, and Yunhai Wang

3.4 Auto-completion of Keyframes and Keyframe
Sequences

In this section, we explain how CAST infers suggestions to sup-
port auto-completion for constructing both keyframes and keyframe
sequences (DP2).

Mark Unit Recommendation. Given the input chart (Figure 6 (a)),
CAST infers the underlying mark units based on the selected visual
marks (Figure 6 (b)) and recommends all marks in the correspond-
ing unit for completing the selection. To convey meaningful data
patterns, the mark unit is obtained by analyzing the visually en-
coded data attributes of the selected marks. Specifically, all marks
in each mark unit should have the same values of the encoded at-
tributes S, while these marks can have different values of the encoded
attributes D. For example, S only has the attribute IsEdible in Fig-
ure 6 (b), while D includes Odor and Surface. Accordingly, all
un-selected marks in the mark unit associated with the same data
value as the selected marks are suggested. In Figure 6 (c), two mark
units are formed corresponding to two different values of the at-
tribute IsEdible and all blue marks are highlighted and suggested
for selection while the others are translucent.

In case that D contains several attributes encoded by different
channels, the suggested mark units might not meet with users’ expec-
tation. For example, two selected points in Figure 6 (d) have different
values in three attributes and thus one point in each group in which
all marks have the same values in three attributes is suggested (Fig-
ure 6 (e)). However, the suggested two points in different colors
from each of the cells containing both blue and red classes might not
match user intention, because the selected marks do not reflect such
preference. To address this issue, CAST filters D with the effective-
ness principle of visual encoding [34] and only keeps those encoded
with the most effective channel. In Figure 6 (d), the attributes Odor
and Surface are more important than IsEdible since they are en-
coded by the most effective channel, position. Hence, the attribute
IsEdible does not need to be considered and one point in each
cell is suggested to be selected (see Figure 6 (e)). Note that if the
suggestion is not accepted, the authors can select additional marks
to let CAST keep recommending new mark units, or turn off the
suggestion mode and re-select marks.

Next Keyframe Recommendation. Once the keyframe with the
selected mark unit is generated on the animation specification panel,
CAST automatically infers the possible animation orderings of all
such units and suggests a list of unique next keyframes for the author
to select to complete the whole keyframe sequence.

To generate meaningful sequences, CAST hierarchically groups
the mark units internally based on the visually encoded data at-
tributes. For mark units with a set of visually encoded data attributes,
CAST provide diverse animation options by iteratively permuting
and filtering data attributes. Give the set of attributes A, CAST first
generates multiple ordering schemes corresponding to all permuta-
tions of attributes and then filters out data attributes encoded by the
relatively least effective visual channel from A. Next, CAST re-do
this process until A is empty. Figure 7 shows an example, where
the points in the selected mark unit have three visually encoded
attributes: Odor, Surface, and IsEdible (see Figure 7 (a)). Since
they are encoded by two position channels (x-level and y-level) and
the color channel, respectively, there are 8 possible ordering schemes

CAST: Authoring Data-Driven Chart Animations

Sample of Mushrooms

@

".@:'. Visual Mapping
X-level: Odor
Y-level: Surface
sea. 3 b .
N e & Color: IsEdible

.|
B
&

D = {Odor, Surface, IsEdible} Candidate 1

(d) (e)

S = {IsEdible} D ={Odor, Surface}

CHI 21, May 08-13, 2021, Yokohama, Japan

Partition by:
IsEdible
Odor
Surface
Suggested Mark Unit
(b) (c)
© 5 Effectiveness
Partition by: Partition by: i\/isS:Inl(;If?agnifels*
Odor Odor iPosition > Colori
Surface . o Surface
IsEdible
L]
o L]
Candidate 2

(f)

Figure 6: CAST suggests additional marks to be selected based on the user selected marks from (a) the input chart. When (b) two cells
with only blue dots are selected, all blue dots in every cell are highlighted as (c) the suggestion result. When (d) two different colored
dots from two different cells are selected, from (e, f) the two candidates our system recommends the (f) second candidate based on the

effectiveness ranking.

(6 from permutations of all three attributes, and 2 from permutations
of the two attributes encoded by the position channel). Figure 7 (b-d)
show three of those animation orderings.

Based on all possible keyframe sequences, CAST suggests all
unique second keyframes as the next possible keyframes. By check-
ing the eight ordering sequences of the example in Figure 7, there
are two unique possible second keyframes (highlighted with purple
border). If the one in Figure 7 (e) is selected, the whole sequence
is determined; otherwise, multiple third keyframes are suggested
(highlighted with pink border).

Note that if the mark unit is not data-encoded, there is only one
keyframe sequence where the ordering is determined by the index
of mark unit. For example, if the first tick and label of the axis are
selected, CAST generates the sequence of animating pairs of ticks
and labels one by one.

3.5 Incremental Compiling, Semantic Zooming,
and Implementation Details

Incremental Compiling. With original Canis, any small changes
lead to recompiling the entire specification. This might become too
slow to achieve interactivity when authoring complex or expressive
animations. To address this issue, we extended Canis with an in-
cremental compilation [36] that re-compiles only a portion of the
specification affected by modifications. Given a modified specifica-
tion resulted by user interaction, we first use the diff mechanism to
quickly locate its difference with the previous version and generate
the changeset. Then, we apply the build-bind-evaluate operator to
update the mark-unit tree in terms of the changeset. Specifically,

the build operator locally updates the tree structure in terms of the
new grouping specification. Once the tree is updated, the bind and
evaluate operators update the effect and timing properties of each
mark unit. An example is shown in Figure 8, where the two-level
mark-unit tree (see Figure 8 (b)) is updated to a three-level one (see
Figure 8 (d)).

Semantic Zooming. Because our keyframes show a thumbnail of
the chart (to fulfill DP1), the animation sequence in the specification
panel can become too long to be easily accessed. To address this
issue, we employ semantic zooming [8] in the animation specifica-
tion panel with two design goals: (1) preserve the entire hierarchical
grouping structures of keyframe sequences and (2) maintain the
visibility of visual marks when zooming out.

To achieve these goals, CAST sets I zoom levels where the
sizes and numbers of keyframes and keyframe groups are gradu-
ally reduced with the same scaling factor. At level /, each keyframe
group consists of three child components: the first, second, and last
keyframe groups or keyframes at the next level (see the keyframe
sequence at zoom level 8 in Figure 9) and the second keyframes in
each keyframe group are removed at level [— 1. As the zooming level
decreases by one, the mark unit tree is traversed one level up, and the
second keyframe group of the sibling groups at the corresponding
level is removed, see the sequences of the zoom levels 6 in Figure 9.

When the zooming level is less than [/2, the mark appearance is
modulated with two strategies to improve visibility (R2). First, all
2D visual marks are enlarged a little after being shrunk with the scale
factor. For example, the area of the closed marks (e.g., circles) or the
path related marks (e.g., links) is enlarged by increasing the radius or
thickness with (I/2—1)*2 pixels. Second, the text related marks (label,

CHI 21, May 08-13, 2021, Yokohama, Japan Tong Ge, Bongshin Lee, and Yunhai Wang

Group by . R py 202 2, o2 f3f siite,
“Surface” @ # & & B B % g oBE v
G b ¥ — ¥ 3 ¥ ¥
roup by o ° Qo2 F 8%
rouo b | I s T
roupy) 2, S0 oft
=3 “IsEdible” * B & % 2 B B
¢ 1 2 3 4 5 6 7 8 9 100 1 12 13 14 15 16 17
selected Keyframes
mark unit (b)
Group by n n 2 200 B o
P -.: T “Surface” b @ *® & 4 & L
L — b D EE—
Groupby . £ J o otiis
________________ __ “IsEdible” * < % % & e 30 s
g b ool @ i .‘I‘-"=§=:E ¥ | 1 & —— ! ¥ ——
LELLE DT g S Groupby B o B & oz B B s
“Odor” % %° o :: Q £ "ese %0
[I , [it |':."| :'.'.'| 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17
L8 Vg i’%: RN AR Keyframes
all (c)
mark units
Group by . o . 0,0 2. S0, ote $e2s, 32830,
« . % % 9 git oo 0B i v
Surface Surface | '.'% | 5.35" 38
Odor ¥ ¥ ; 3 ¥ 3 ; 3 ¥ ¥
IsEdibia Group by (3 '.3:3: ‘:.5- :'.:..‘ ':'..'..' $ s ‘3:%55 ®
roup b & & oo
1 2 3 4 5 6 7 8 9 10 " 12 13
Keyframes
(a) (d) ...(5 more sequences)

Figure 7: CAST computes possible keyframe sequences by analyzing the visually encoded data attributes associated with the selected
mark unit. (a) the selected mark unit (top) and all mark units (bottom); (b, ¢, d) three out of eight possible keyframe sequences
generated by grouping all mark units with different permutations of data attributes, where (d) is generated with two attributes after
removing IsEdible which is encoded by a less effective visual channel, color. The highlighted keyframes in (b, c, d) are the keyframes
to be suggested to the users (after deduplication).

"grouping": { all
"groupBy": "Surface", marks

"timing": { |
® ﬁ % "reference": "start after previous"
}} Smooth Scaly Fibrous

(b)

(0]

o

g & % * & % "grouping": {

S "groupBy": "Surface", all

[¢)) "timing": { marks
"reference": "start after previous", |
"delay": 400

, Smooth Scaly Fibrous
ﬁ # ﬁ & ﬁ ')'grouping": { /I \ /I \ / \ \

"groupBy": "Odor",
"timing": { Almond Creosote... None Almond Creosote... None Creosote Foul None
"reference": "start after previous"

Odor 1
(a) (c)

Figure 8: The illustration of an incremental compilation for the modified specification with the input chart in (a). (b) The original spec-
ification (left) and the resulted two-level mark-unit tree (right); (c) the modified specification where the changed part is highlighted
(left) and the updated three-level mark-unit tree (right).

CAST: Authoring Data-Driven Chart Animations

CHI 21, May 08-13, 2021, Yokohama, Japan

zoom
level 8

x2

. PP, s
& 4 s ¢ @ & 4 B B 4

zoom
level 6

zoom
level 3

Figure 9: An example illustrating how the keyframe sequence shown in Figure 7 (d) is changed with semantic zooming on different
zoom levels. We present this keyframe sequence on three zoom levels since it shows the same number of keyframes or keyframe
groups under level 6, while the size is scaled; The last keyframe in the first keyframe group is highlighted with an orange frame to

illustrate the changes when zooming.

title and legend) become hardly to be read and thus we generate the
bounding boxes of them to indicate the existence of them. In doing so,
the bounding boxes provide navigational assistance while directing
users to focus on data-encoded visual marks. In our experiment, we
found that / = 8 is enough in most cases since the depth of the mark
unit tree in most animation is less than 5.

Implementation Details. CAST is an HTMLS web application im-
plemented with TypeScript and Webpack, following the Redux ar-
chitecture [51]. It maintains the State, which records the status of all
components in the system. Specifically, the status of the animation
specification panel is described using a Canis Specification. The ac-
cess and alteration of the State are controlled by the “Store” part of
Redux. For each editing interaction on this panel, an “Action” as the
payload carrying the update information will be emitted to the Store
and then the store alters the Canis specification in the state according
to the received information. Once the state is successfully updated,
the renderer will be invoked by the store to update components on
the animation specification panel. The other components in CAST
share the same mechanism.

4 EVALUATION: GALLERY AND USER
STUDY

To demonstrate the expressive power of CAST, we created a wide
variety of chart animations with a diverse collection of charts and
animation effects. Fig. 2 shows eight examples from our gallery and
the full gallery can be found in the website, along with animations,
detailed descriptions, and videos illustrating the creation processes.

The visualization research community has acknowledged the chal-
lenges and limitations of comparative studies for evaluating visual-
ization authoring systems (especially designed for communication
purposes) [39, 48]. We face similar issues: there are no prior works

that allow people to easily create chart animations. In addition, as
CAST introduces a new visual specification, the authors first need
to learn and understand the specification to use CAST for authoring
chart animations. We therefore decided not to conduct a formal com-
parative study, but we instead designed a study to evaluate both the
visual specification and the system as described below.

4.1 Study Design

Our user study consists of two parts. Part 1 (Understanding Ani-
mation Specification) assesses if people can learn and understand
CAST’s visual specification. Part 2 (Reproducing Chart Anima-
tions) determines if people can reproduce customized animations
using CAST, following a similar methodology used for evaluating
chart authoring tools [27, 37, 38, 63, 65].

Participants. We recruited 18 participants (6 females; 12 males)
from the local university. Their ages range from 22 to 32, with an
average age of 25. All participants have a normal or corrected-to-
normal vision. They major in computer science and most of them
have the experience of using video or animation editors, such as
TechSmith Camtasia [53], Adobe After Effect [1], iMovie [5], and
Movie Maker [33].

Apparatus. We used a desktop computer with an Intel i7-8700K
3.7GHz CPU and 16GB RAM, using two 27-inch LCD displays
placed side-by-side, both running at 1920 X 1080 resolution. In part 1,
we only used one display and recorded participants’ choices for each
task. In part 2, the input chart, target animation, and animation de-
scription were shown on the left monitor, and asked the participants
to reproduce animations on the right monitor. During this procedure,
we logged all of the participant’s interactions with CAST, recording
the time taken by participants for completing each task. We also
captured the whole reproduction process using a screen recorder.

CHI 21, May 08-13, 2021, Yokohama, Japan

Tasks. We prepared three tasks (Figures 2 (a-c)) for part 1, covering
visual elements and layouts used in the visual specifications, and four
animation reproduction tasks (Figures 2 (d-g)) for part 2, encompass-
ing basic interactions in CAST. For both parts, the expressiveness
and complexity of the subsequent tasks gradually increased.

Procedure. After briefly introducing the study goals and procedure,
we asked participants to fill out a pre-study questionnaire. We then
provided the tutorial of how to read the visual specification with
three animations. After completing three training tasks to expand
the understanding of the visual specifications, participants can click
the “Start Task™ button to perform part 1 of the study. We asked
participants to verbally describe the animation from the visual speci-
fication, so that we can ensure that they understood it. Finally, we
asked participants to complete a questionnaire asking about the vi-
sual specifications in terms of easy to learn and easy to understand
by using a 5-point Likert scale with 1 being “Strongly Disagree” and
5 being “Strongly Agree.”

After a 10-min break, the participants proceeded to part 2. We
first taught the participants how to use CAST by demonstrating the
basic features with two animations. We then asked the participants
to complete four training tasks to familiarize themselves with the
system. The participants then performed the four reproduction tasks.
Before they started each task, in addition to showing the input vi-
sualization chart and target animation, we provided the description
of key animation features including the duration and delay, effect
type, and easing function because these features are not easily rec-
ognizable from the video. We also asked the participants to describe
the animation to us to ensure that they understood the task. When
they were ready, they could click the “Load Chart” button to load
the input chart in CAST and start the task. During the reproduction
process, we asked participants to think aloud about their experience
with CAST, and provided hints to the participants when they asked
for help. After participants finished all four tasks, we asked them to
rate CAST on four criteria using a 5-point Likert scale, with 1 being
“Strongly Disagree” and 5 being “Strongly Agree.” On average, the
entire session lasted about 80 minutes (30 for Part 1, 40 for Part 2,
and 10 for a break).

4.2 User Study Results

Understanding Animation Specification. Fifteen (out of 18) par-
ticipants found the correct animation in all three tasks without any
hints. Two participants (P15 and P17) made an incorrect choice in
Task 1: they interpreted that the keyframe sequence is grouped first
by month and then by mortality, but it is grouped by mortality first.
One participant (P3) was confused with the relative timing between
keyframes and keyframe groups in task 2. As shown in Fig. 10(a),
the responses from the after-study questionnaire indicate that the
visual elements used in the visual specifications are easy to learn
(Avg =4.7) and easy to understand (Avg = 4.6).

Reproducing Chart Animations. By carefully checking the repro-
duced animations in part 2, we found that 17 out of 18 participants
successfully reproduced the target animations in all four tasks. Nine
participants completed them without any hints, and eight participants
needed only a few hints. The one remaining participant failed to
reproduce Task 4, forgetting how to further partition an existing

Tong Ge, Bongshin Lee, and Yunhai Wang

keyframe sequence and rearrange the order of keyframe sequences
of different marks.

The average task completion time was less than two minutes ex-
cept for Task 4 (282 seconds); see Figure 10 (b) for the summary.
Note that we did not explicitly ask the participants to complete the
task as quickly as possible. With regards to subjective ratings, as
shown in Figure 10 (a), participants indicated that CAST is easy to
learn (Avg = 4.5) and use (Avg = 4.7), and that they can efficiently
create chart animations (Avg = 4.7) and enjoy the tool (Avg = 4.6).
Our participants were generally positive about various features of
CAST. Participants appreciated the direct manipulation of relative
timing between keyframes or keyframe groups. Six participants men-
tioned that the auto-completion of the keyframe sequence impressed
them most.

However, we also identified some usability issues of CAST. The
areas and affordances for dragging of the keyframe and keyframe
group are quite different: drag bar on the bottom for the keyframe
and the tab on the top left corner for the keyframe group. As they do
not clearly convey how they can be interact with, participants were
sometimes confused about which one should be dragged (keyframe
or keyframe group) and to where, especially when there is only
one keyframe in the keyframe group. In addition, sometimes during
a component is dragged, multiple signals might be emitted to the
system. For example, dragging a keyframe group to cross multiple
keyframe groups may send several timing update signals to the
system. This may cause some unintended results (e.g., losing focus
of the cursor to the dragging component). We already revised the
signal management strategy to address the second issue, and plan to
improve our interaction design to resolve the first issue.

S DISCUSSION AND FUTURE WORK

General Reactions. The encouraging results—task completion time
and subjective rations—of our user study indicate that the design
of the visual specification and CAST facilitate the easy creation of
chart animations. In general, our study participants also expressed
excitement about the expressive animations CAST enabled. P18, for
example, was particularly satisfied with the animation he created
with CAST, and remarked,

“I was attracted by the animations at the first sight,
since I never thought those charts can be animated in
such expressive manner. Meanwhile I was worried that
I would spend a lot of time and effort on authoring
those animations. However, after only a few steps of
playing around the graphics, the animation which just
amazed me is now created by myself.”

Participants appreciated the direct manipulation and the auto-completion

of the keyframe sequence CAST offered. For example, P4, who is
interested in designing visual analytic systems, commented,

“The suggestion on mark selection and sequence con-
struction impressed me most, it provided me with mul-
tiple possible animations and simplified my authoring
procedure. And the direct visual manipulation and
system feedback on the graphics also ensures the con-
sistency of my interaction with the system.”

CAST: Authoring Data-Driven Chart Animations

=

Q

Part 1

CHI 21, May 08-13, 2021, Yokohama, Japan

: The visual specifications
are easy to learn.
Q2: | can easily understand

—o— Task 4

the visual representation.

Q

=

Part 2

- Task 3

: This tool is easy to learn.

Q2: This tool is easy to use.

- Task 2

Q3: | can use this tool to efficiently
create chart animations.

Q4: | enjoy creating chart

. Task 1

animations with this tool.

1 2 3 4 5
Score

(a)

0 50 100 150 200 250 300
Time (seconds)

(b)

Figure 10: Results of the user study. (a) The 95% confidence interval in scores to two satisfaction questions in part 1 and four questions
in part 2: the higher score the better. (b) The completion time in seconds for four reproduction tasks in part 2: error bars represent

the standard deviations.

Furthermore, the expressiveness of the resulted animations combined
with the simple yet interesting graphical interactions seemed to make
the animation authoring process a fun activity. For example, P10
noted, “The authoring process is like playing a game, I can get such
a fancy animation while having fun.”

Expressiveness of CAST. Because CAST supports data-driven an-
imations, it can cover a wide range of charts including highly ex-
pressive ones: the examples in our galley leveraged charts created
with Charticualtor [38] and D3 [9]. In terms of the types of anima-
tion (using DataClip’s taxonomy [4]), CAST currently supports four
types of animations: creation, deconstruction, accumulation, and
transition even though most animations used in the paper can be
categorized as the creation and accumulation. (Please refer to the
example gallery of CAST at https://chartanimation.github.io/cast).
We note that CAST disables some interactions for the authoring
of transition animations. For example, the keyframe can no longer
be dragged to specify the mark units in one chart to be animated
successively since it might result in invalid visual mappings during
the transition between multiple charts. CAST cannot produce all
animations that can be created using Canis because of the limitations
in the visual specifications. The visual specification does not provide
components for two operators defined in Canis: (1) it does not allow
users to bind data attributes to the animation duration and delay yet
and (2) it does not support multi-view animations, which facilitate
a side-by-side comparison. Addressing these issues will require us
to carefully extend our visual specifications and user interface. We
also note that it may require further research to design an interactive
system to support additional animation types from the DataClip’s
taxonomy like annotation or embellished.

CAST also inherits a limitation of Canis which is lacking the
support of staged transitions. As CAST builds on Canis, we plan
to extend Canis by enabling the specification of intermediate key
steps in transition and explore the possibility of auto-completing the
transition animation by suggesting the intermediate keyframes based
on prior perceptual studies [23]. Meanwhile, we will enrich our
visual specifications with components for representing transitions
and refine CAST’s user interface for interactively defining such
intermediate steps.

Study Limitations. Our study participants were all students major-
ing in computer science. Even though their daily job does not nec-
essarily involve creating chart animations (or even visualizations),
they are presumed to be able to perform computational thinking.
It could be helpful to conduct further studies to assess if people
with different backgrounds (e.g., design, marketing) can also create
expressive chart animations with CAST.

Our user study employed a reproduction study [39], following
the approach commonly used for evaluating visualization authoring
systems, including Data Illustrator [27], Datalnk [63], and Chartic-
ulator [38]. We assessed if people could produce chart animations
using CAST when provided with a reference animation and a short
training (in the second part of our study, the tutorial and training
took about 25 minutes). Furthermore, CAST requires a chart design
to craft animations. With our study, which inherits the limitation of
this study methodology, we cannot conclude if people will be able
to create expressive animations using CAST. In the future, we hope
to evaluate CAST’s expressiveness with designers in a hackathon
setting, allowing enough time to think about creative animations.
In addition, as our system is deployed on the web, we want to col-
lect chart animations people create with CAST in the future, while
logging people’s usage.

We also note that our work can be complimented with future stud-
ies. For example, it will be informative to conduct a study focusing
on auto-completion as a technique and investigate how it can help
users create chart animations. In addition, in-depth studies on what
animation types and effects are most challenging, contribute the
most to expressivity, and require the use of auto-completion.

To design our questionnaire, we also referred to the questionnaires
used in previous reproduction studies to evaluate chart authoring
tools [39]. However, the positive framing of questionnaire statements
(e.g., the visual specifications are easy to learn) might have biased
participants to give a higher rating [64]. In the future studies, we
will use statements framed more neutrally (e.g., To what extent do
you feel that the visual specifications are easy / difficult to learn) to
avoid framing influence on participants’ subjective ratings.

https://chartanimation.github.io/cast

CHI 21, May 08-13, 2021, Yokohama, Japan

6 CONCLUSION

Despite the effectiveness and popularity of chart animation, it is
not easy for people without programming skills to craft one, espe-
cially with bespoke charts: this is partly due to the lack of authoring
tools specifically designed for chart animations. In this paper, we
presented CAST, an interactive chart animation authoring tool that
helps people easily produce expressive animations using a wide
variety of chart designs. Unlike most existing timeline-based ani-
mation authoring tools, CAST introduces the visual specifications
specifically designed for chart animations to foster easy understand-
ing of the animation process. It also leverages the direct graphi-
cal manipulation of the visual elements and auto-completion of
keyframe and keyframe sequences to facilitate the easy construc-
tion of animations. We explained the design principles of CAST
to achieve our goal in help people who lack programming skills
to easily create chart animations. With three usage scenarios, we
illustrated how the visual specification and interface of CAST en-
ables rapid animation creation process. We also explained in detail
about the auto-completion based on data-driven inferences which
improves the authoring efficiency. Through a two-part user study, we
assessed the learnability and understandability of the visual specifi-
cations, and CAST’s learnability and usability. CAST is available at
https://chartanimation.github.io/cast, along with our example gallery
that demonstrates the system’s expressiveness.

ACKNOWLEDGMENTS

This work was supported in part by the grants of the NSFC (61772315,
61861136012), the Open Project Program of State Key Laboratory

of Virtual Reality Technology and Systems, Beihang University

(No.VRLAB2020C08), and the CAS grant (GJHZ1862).

REFERENCES

[1] Adobe After Effects cc. 2021. Adobe After effects. https://www.adobe.com/ca/

products/aftereffects.html. [Online; accessed 5-September-2020].

Adobe Stock. 2021. Adobe Stock. https://stock.adobe.com. [Online; accessed

5-September-2020].

Fereshteh Amini, Nathalie Henry Riche, Bongshin Lee, Christophe Hurter, and

Pourang Irani. 2015. Understanding data videos: Looking at narrative visualization

through the cinematography lens. In Proc. SIGCHI Conference on Human Factors

in Computing Systems. 1459-1468. https://doi.org/10.1145/2702123.2702431

Fereshteh Amini, Nathalie Henry Riche, Bongshin Lee, Andres Monroy-

Hernandez, and Pourang Irani. 2016. Authoring data-driven videos with dataclips.

IEEE Transactions Visualization and Computer Graphics 23, 1 (2016), 501-510.

https://doi.org/10.1109/TVCG.2016.2598647

Apple. 2021. iMovie. https://www.apple.com/imovie/. [Online; accessed 5-

September-2020].

Daniel Archambault, Helen Purchase, and Bruno Pinaud. 2010. Animation,

small multiples, and the effect of mental map preservation in dynamic graphs.

IEEE Transactions Visualization and Computer Graphics 17, 4 (2010), 539-552.

https://doi.org/10.1109/TVCG.2010.78

Lyn Bartram and Colin Ware. 2002. Filtering and brushing with motion. Infor-

mation Visualization 1, 1 (2002), 66-79. https://doi.org/10.1057/palgrave/ivs/

9500005

Benjamin B Bederson and James D Hollan. 1994. Pad++ a zooming graphical

interface for exploring alternate interface physics. In Proc. ACM symposium on

User Interface Software and Technology. 17-26. https://doi.org/10.1145/192426.

192435

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D? data-driven

documents. IEEE Transactions Visualization and Computer Graphics 17, 12

(2011), 2301-2309. https://doi.org/10.1109/TVCG.2011.185

[10] Matthew Brehmer, Bongshin Lee, Petra Isenberg, and Eun Kyoung Choe. 2019. A
Comparative Evaluation of Animation and Small Multiples for Trend Visualization
on Mobile Phones. IEEE Transactions Visualization and Computer Graphics 26,
1 (2019), 364-374. https://doi.org/10.1109/TVCG.2019.2934397

[2

3

[4

[5

[6

[7

[8

[9

Tong Ge, Bongshin Lee, and Yunhai Wang

[11] Amira Chalbi, Jacob Ritchie, Deokgun Park, Jungu Choi, Nicolas Roussel, Niklas
Elmgyvist, and Fanny Chevalier. 2019. Common Fate for Animated Transitions in
Visualization. /EEE transactions on visualization and computer graphics 26, 1
(2019), 386-396. https://doi.org/10.1109/tvcg.2019.2934288

[12] Fanny Chevalier, Pierre Dragicevic, and Steven Franconeri. 2014. The not-so-
staggering effect of staggered animated transitions on visual tracking. /EEE
Transactions Visualization and Computer Graphics 20, 12 (2014), 2241-2250.
https://doi.org/10.1109/TVCG.2014.2346424

[13] Fanny Chevalier, Nathalie Henry Riche, Catherine Plaisant, Amira Chalbi, and
Christophe Hurter. 2016. Animations 25 years later: New roles and opportunities.
In Proceedings of the International Working Conference on Advanced Visual
Interfaces. 280-287.

[14] Pierre Dragicevic, Anastasia Bezerianos, Waqas Javed, Niklas Elmqvist, and
Jean-Daniel Fekete. 2011. Temporal distortion for animated transitions. In Proc.
SIGCHI Conference on Human Factors in Computing Systems. 2009-2018. https:
//doi.org/10.1145/1978942.1979233

[15] Fan Du, Nan Cao, Jian Zhao, and Yu-Ru Lin. 2015. Trajectory bundling for ani-
mated transitions. In Proc. SIGCHI Conference on Human Factors in Computing
Systems. 289-298. https://doi.org/10.1145/2702123.2702476

[16] J David Eisenberg and Amelia Bellamy-Royds. 2014. SVG Essentials: Producing
Scalable Vector Graphics with XML. " O’Reilly Media, Inc.".

[17] Hannah Fairfield. 2009. Driving Shifts Into Reverse. https://archive.nytimes.com/
www.nytimes.com/imagepages/2010/05/02/business/02metrics.html

[18] Danyel Fisher. 2010. Animation for visualization: opportunities and drawbacks.
Vol. 19. Chapter 19, 329-352.

[19] Tong Ge, Yue Zhao, Bongshin Lee, Donghao Ren, Baoquan Chen, and Yunhai
Wang. 2020. Canis: A High-Level Language for Data-Driven Chart Animations.
Computer Graphics Forum 39, 3 (2020), 607—617. https://doi.org/10.1111/cgf.
14005

[20] Cleotilde Gonzalez. 1996. Does animation in user interfaces improve decision
making?. In Proceedings of the SIGCHI conference on human factors in computing
systems. 27-34. https://doi.org/10.1145/238386.238396

[21] Lars Grammel, Chris Bennett, Melanie Tory, and Margaret-Anne D Storey. 2013.
A Survey of Visualization Construction User Interfaces.. In EuroVis (Short Papers).
https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023

[22] John A Greenwood and Mark Edwards. 2009. The detection of multiple global di-

rections: Capacity limits with spatially segregated and transparent-motion signals.

Journal of vision 9, 1 (2009), 40-40. https://doi.org/10.1167/9.1.40

Jeffrey Heer and George Robertson. 2007. Animated transitions in statistical data

graphics. IEEE Transactions Visualization and Computer Graphics 13, 6 (2007),

1240-1247. https://doi.org/10.1109/TVCG.2007.70539

[24] HENRI. 2019. 40 Javascript Ul Animation Libraries For Web & Mo-
bile. https://bashooka.com/coding/40-javascript-ui-animation-libraries-for-web-
mobile/. [Online; accessed 5-February-2020].

[25] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011.
Wrangler: Interactive visual specification of data transformation scripts. In Proc.
SIGCHI Conference on Human Factors in Computing Systems. 3363-3372.
https://doi.org/10.1145/1978942.1979444

[26] Kurt Koffka. 1922. Perception: an introduction to the Gestalt-Theorie. Psycholog-
ical Bulletin 19, 10 (1922), 531. https://doi.org/10.1037/h0072422

[27] Zhicheng Liu, John Thompson, Alan Wilson, Mira Dontcheva, James Delorey,
Sam Grigg, Bernard Kerr, and John Stasko. 2018. Data Illustrator: Augmenting
vector design tools with lazy data binding for expressive visualization authoring.
In Proc. SIGCHI Conference on Human Factors in Computing Systems. 123.
https://doi.org/10.1145/3173574.3173697

[28] Kiln Enterprises Ltd. 2020. Flourish. https://flourish.studio. [Online; accessed
5-February-2020].

[29] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. 2007. Show me: Automatic
presentation for visual analysis. IEEE Transactions Visualization and Computer
Graphics 13, 6 (2007), 1137-1144. https://doi.org/10.1109/TVCG.2007.70594

[30] Kim Marriott and Bernd Meyer. 1998. Visual language theory. Springer Science
& Business Media.

[31] Stefan Mateeff, George Dimitrov, and Joachim Hohnsbein. 1995. Temporal
thresholds and reaction time to changes in velocity of visual motion. Vision
research 35, 3 (1995), 355-363. https://doi.org/10.1016/0042-6989(94)00130-¢

[32] Gonzalo Gabriel Méndez, Miguel A Nacenta, and Sebastien Vandenheste. 2016.
iVoLVER: Interactive visual language for visualization extraction and reconstruc-
tion. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems. 4073-4085.

[33] Microsoft. 2021. Windows Movie Maker. http://moviemaker.support/. [Online;
accessed 5-September-2020].

[34] Tamara Munzner. 2014. Visualization analysis and design. CRC press.

[35] Charles Perin. 2014. Direct manipulation for information visualization. Ph.D.
Dissertation.

[36] Steven P Reiss. 1984. An approach to incremental compilation. ACM SIGPlan
Notices 19, 6 (1984), 144-156. https://doi.org/10.1145/502949.502889

[37] Donghao Ren, Matthew Brehmer, Bongshin Lee, Tobias Hollerer, and Eun Kyoung
Choe. 2017. ChartAccent: Annotation for data-driven storytelling. In Proc. IEEE

23

https://www.adobe.com/ca/products/aftereffects.html
https://www.adobe.com/ca/products/aftereffects.html
https://stock.adobe.com
https://doi.org/10.1145/2702123.2702431
https://doi.org/10.1109/TVCG.2016.2598647
https://www.apple.com/imovie/
https://doi.org/10.1109/TVCG.2010.78
https://doi.org/10.1057/palgrave/ivs/9500005
https://doi.org/10.1057/palgrave/ivs/9500005
https://doi.org/10.1145/192426.192435
https://doi.org/10.1145/192426.192435
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2019.2934397
https://doi.org/10.1109/tvcg.2019.2934288
https://doi.org/10.1109/TVCG.2014.2346424
https://doi.org/10.1145/1978942.1979233
https://doi.org/10.1145/1978942.1979233
https://doi.org/10.1145/2702123.2702476
https://archive.nytimes.com/www.nytimes.com/imagepages/2010/05/02/business/02metrics.html
https://archive.nytimes.com/www.nytimes.com/imagepages/2010/05/02/business/02metrics.html
https://doi.org/10.1111/cgf.14005
https://doi.org/10.1111/cgf.14005
https://doi.org/10.1145/238386.238396
https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
https://doi.org/10.1167/9.1.40
https://doi.org/10.1109/TVCG.2007.70539
https://bashooka.com/coding/40-javascript-ui-animation-libraries-for-web-mobile/
https://bashooka.com/coding/40-javascript-ui-animation-libraries-for-web-mobile/
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1037/h0072422
https://doi.org/10.1145/3173574.3173697
https://flourish.studio
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1016/0042-6989(94)00130-e
http://moviemaker.support/
https://doi.org/10.1145/502949.502889

CAST: Authoring Data-Driven Chart Animations

[38]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]
[59]
[60]

[61]

[62]

Pacific Visualization Symposium. 230-239. https://doi.org/10.1109/PACIFICVIS.
2017.8031599

Donghao Ren, Bongshin Lee, and Matthew Brehmer. 2018. Charticulator: Interac-
tive construction of bespoke chart layouts. IEEE Transactions Visualization and
Computer Graphics 25, 1 (2018), 789-799. https://doi.org/10.1109/TVCG.2018.
2865158

Donghao Ren, Bongshin Lee, Matthew Brehmer, and Nathalie Henry Riche.
2018. Reflecting on the Evaluation of Visualization Authoring Systems: Position
Paper. In 2018 IEEE Evaluation and Beyond-Methodological Approaches for
Visualization (BELIV). IEEE, 86-92.

Donghao Ren, Bongshin Lee, and Tobias Hollerer. 2017. Stardust: Accessible
and transparent gpu support for information visualization rendering. Computer
Graphics Forum 36, 3 (2017), 179-188. https://doi.org/10.1111/cgf.13178

Ray Rischpater and Daniel Zucker. 2010. Introducing Qt Quick. In Beginning
Nokia Apps Development. Springer, 139-158.

George Robertson, Roland Fernandez, Danyel Fisher, Bongshin Lee, and John
Stasko. 2008. Effectiveness of animation in trend visualization. /EEE Transactions
Visualization and Computer Graphics 14, 6 (2008), 1325-1332. https://doi.org/
10.1109/TVCG.2008.125

Hugo Romat, Caroline Appert, Benjamin Bach, Nathalie Henry-Riche, and Em-
manuel Pietriga. 2018. Animated edge textures in node-link diagrams: A design
space and initial evaluation. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1-13. https://doi.org/10.1145/3173574.3173761
Hans Rosling. 2006. Debunking myths about the “third world”. TED (Technol-
ogy, Entertainment, Design) Conference presentation. https://www.gapminder.org/
videos/.

Hans Rosling. 2007. The seemingly impossible is possible. TED (Technology, En-
tertainment, Design) Conference presentation. https://www.gapminder.org/videos/.
James Rumbaugh, Ivar Jacobson, and Grady Booch. 1999. The unified modeling
language. Reference manual (1999).

Arvind Satyanarayan and Jeffrey Heer. 2014. Lyra: An interactive visualization
design environment. Computer Graphics Forum 33, 3 (2014), 351-360. https:
//doi.org/10.1111/cgf.12391

Arvind Satyanarayan, Bongshin Lee, Donghao Ren, Jeffrey Heer, John Stasko,
John Thompson, Matthew Brehmer, and Zhicheng Liu. 2019. Critical reflec-
tions on visualization authoring systems. IEEE Transactions Visualization and
Computer Graphics 26, 1 (2019), 461-471. https://doi.org/10.1109/TVCG.2019.
2934281

Maruthappan Shanmugasundaram, Pourang Irani, and Carl Gutwin. 2007. Can
smooth view transitions facilitate perceptual constancy in node-link diagrams?.
In Proceedings of Graphics Interface. 71-78. https://doi.org/10.1145/1268517.
1268531

Ben Shneiderman. 1992. Tree visualization with tree-maps: 2-d space-filling
approach. ACM Transactions on Graphics 11, 1 (1992), 92-99. https://doi.org/
10.1145/102377.115768

Harmeet Singh and Mehul Bhatt. 2016. Learning Web Development with React
and Bootstrap. Packt Publishing Ltd.

Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A system for
query, analysis, and visualization of multidimensional relational databases. /[EEE
Transactions Visualization and Computer Graphics 8, 1 (2002), 52—-65. https:
//doi.org/10.1109/2945.981851

TechSmith. 2020. Camtasia: Screen Recorder & Video Editor. https://www.
techsmith.com/video-editor.html. [Online; accessed 15-September-2020].
Tatiana TekuSov4, Jorn Kohlhammer, Slawomir J Skwarek, and Galina V Paramei.
2008. Perception of direction changes in animated data visualization. In Proceed-
ings of the 5th symposium on Applied perception in graphics and visualization.
205-205. https://doi.org/10.1145/1394281.1394331

John Thompson, Zhicheng Liu, Wilmot Li, and John Stasko. 2020. Understanding
the Design Space and Authoring Paradigms for Animated Data Graphics. Com-
puter Graphics Forum 39, 3 (2020), 207-218. https://doi.org/10.1111/cgf.13974
Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancourt. 2002. Ani-
mation: can it facilitate? International journal of human-computer studies 57, 4
(2002), 247-262. https://doi.org/10.1006/ijhc.2002.1017

Yong Wang, Daniel Archambault, Carlos E Scheidegger, and Huamin Qu. 2017.
A vector field design approach to animated transitions. /EEE Transactions Visu-
alization and Computer Graphics 24, 9 (2017), 2487-2500. https://doi.org/10.
1109/TVCG.2017.2750689

Colin Ware. 2004. Information Visualization: Perception for Design.

Colin Ware, Eric Neufeld, and Lyn Bartram. 1999. Visualizing causal relations. In
Proceedings of IEEE Information Visualization, Vol. 99. 39—42.

Daniel Weiskopf. 2004. On the role of color in the perception of motion in
animated visualizations. In JEEE Visualization 2004. IEEE, 305-312. https:
//doi.org/10.1109/visual.2004.73

Hadley Wickham. 2010. A layered grammar of graphics. Journal of Computational
and Graphical Statistics 19, 1 (2010), 3-28. https://doi.org//10.1198/jcgs.2009.
07098

Hadley Wickham. 2016. ggplot2: elegant graphics for data analysis. Springer.

[63]

[64]

[65]

CHI 21, May 08-13, 2021, Yokohama, Japan

Haijun Xia, Nathalie Henry Riche, Fanny Chevalier, Bruno De Araujo, and
Daniel Wigdor. 2018. Datalnk: Direct and creative data-oriented drawing. In
Proc. SIGCHI Conference on Human Factors in Computing Systems. https:
/ldoi.org/10.1145/3173574.3173797

Yingkui Yang, Hans Stubbe Solgaard, and Jingzheng Ren. 2018. Does positive
framing matter? An investigation of how framing affects consumers’ willingness
to buy green electricity in Denmark. Energy research & social science 46 (2018),
40-47. https://doi.org/10.1016/j.erss.2018.06.006

Jiayi Eris Zhang, Nicole Sultanum, Anastasia Bezerianos, and Fanny Chevalier.
2020. DataQuilt: Extracting Visual Elements from Images to Craft Pictorial
Visualizations. In Proc. SIGCHI Conference on Human Factors in Computing
Systems. 1-13. https://doi.org/10.1145/3313831.3376172

https://doi.org/10.1109/PACIFICVIS.2017.8031599
https://doi.org/10.1109/PACIFICVIS.2017.8031599
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1111/cgf.13178
https://doi.org/10.1109/TVCG.2008.125
https://doi.org/10.1109/TVCG.2008.125
https://doi.org/10.1145/3173574.3173761
https://www.gapminder.org/videos/
https://www.gapminder.org/videos/
https://www.gapminder.org/videos/
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1145/1268517.1268531
https://doi.org/10.1145/1268517.1268531
https://doi.org/10.1145/102377.115768
https://doi.org/10.1145/102377.115768
https://doi.org/10.1109/2945.981851
https://doi.org/10.1109/2945.981851
https://www.techsmith.com/video-editor.html
https://www.techsmith.com/video-editor.html
https://doi.org/10.1145/1394281.1394331
https://doi.org/10.1111/cgf.13974
https://doi.org/10.1006/ijhc.2002.1017
https://doi.org/10.1109/TVCG.2017.2750689
https://doi.org/10.1109/TVCG.2017.2750689
https://doi.org/10.1109/visual.2004.73
https://doi.org/10.1109/visual.2004.73
https://doi.org//10.1198/jcgs.2009.07098
https://doi.org//10.1198/jcgs.2009.07098
https://doi.org/10.1145/3173574.3173797
https://doi.org/10.1145/3173574.3173797
https://doi.org/10.1016/j.erss.2018.06.006
https://doi.org/10.1145/3313831.3376172

	Abstract
	1 Introduction
	2 Related Work
	2.1 Perception of Animations
	2.2 Chart Animation Design Space
	2.3 Chart Animation Authoring Tool
	2.4 Visual Specifications
	2.5 Canis: CAST's Underlying Grammar

	3 CAST
	3.1 Design Principles
	3.2 Visual Specifications
	3.3 User Interface and Interaction
	3.4 Auto-completion of Keyframes and Keyframe Sequences
	3.5 Incremental Compiling, Semantic Zooming, and Implementation Details

	4 Evaluation: Gallery and User Study
	4.1 Study Design
	4.2 User Study Results

	5 Discussion and Future Work
	6 Conclusion
	Acknowledgments
	References

	anm2:
	2.112:
	2.111:
	2.110:
	2.109:
	2.108:
	2.107:
	2.106:
	2.105:
	2.104:
	2.103:
	2.102:
	2.101:
	2.100:
	2.99:
	2.98:
	2.97:
	2.96:
	2.95:
	2.94:
	2.93:
	2.92:
	2.91:
	2.90:
	2.89:
	2.88:
	2.87:
	2.86:
	2.85:
	2.84:
	2.83:
	2.82:
	2.81:
	2.80:
	2.79:
	2.78:
	2.77:
	2.76:
	2.75:
	2.74:
	2.73:
	2.72:
	2.71:
	2.70:
	2.69:
	2.68:
	2.67:
	2.66:
	2.65:
	2.64:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

