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ABSTRACT
Spectral methods have been widely used to study the struc-
tural properties of unlabeled datasets. In this work we
describe a clustering approach that exploits the structural
properties in the configuration space of objects as well as
the spectral sub-space, quite unlike earlier methods. We
propose a spectral clustering approach, where we formalize
the notion of clusters as vertices of a simplex in the spec-
tral subspace. We define clustering as memberships of data
points to vertices of this simplex. We empirically demon-
strate that our method is comparable to the state-of-the-
art methods in a variety of domains and outperforms other
generic clustering algorithms.

1. INTRODUCTION
In recent years, spectral clustering has become one of

the most popular approaches for clustering data. There
have been many successful applications of spectral cluster-
ing methods on the real world data (e.g., [15, 21, 22, 14,
2], etc.). These methods outperform conventional clustering
techniques, yet are simple to implement and can be solved
by standard linear algebra tools. Moreover, spectral cluster-
ing can be implemented efficiently even for large data sets,
as long as the similarity graph is sparse, which is usually true
for real world applications. Central to the idea of spectral
clustering is the graph Laplacian which is obtained from the
similarity graph ([10]). There are many tight connections
between the topological properties of graphs and the graph
Laplacian matrices, which spectral clustering methods ex-
ploit to partition the data into clusters.

Spectral clustering was made popular by the works of [15]
(Normalized Cut Algorithm), [12], [7], etc. Although these
methods are known to have many successful applications,
they typically work on a case-by-case basis. Though the
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spectra of the Laplacian preserves the structural properties
of the graph, the methods used thereafter to cluster the data
in the eigenspace of the Laplacian do not guarantee this. For
example [13, 15] uses k-means clustering in the eigenspace of
the Laplacian, which will only work if the clusters lie in dis-
joint convex sets of the underlying eigenspace. While [12]
uses projections onto the largest k − eigenvectors to par-
tition the data into clusters, which does not preserve the
topological properties of the data lying in the eigenspace
of the Laplacian. This is because projection methods do
not incorporate geometric constraints due to the underly-
ing structure in the eigenspace: points closer in Eucledian
distance may be far apart on the manifold.

In this work we describe a clustering approach that ex-
ploits the structural properties in the configuration space of
objects as well as the spectral sub-space, quite unlike earlier
methods. We construct the Laplacian from the adjacency
information. The spectra of this Laplacian is constructed,
which encodes the structural properties of the underlying
graph. We then find the best transformation of the spec-
tra, such that the transformed basis aligns itself with the
clusters of data points in the eigen-space. Then we use a
projection method described in Section 4 to find the mem-
bership of each of the datapoints to a set of of special points
lying on the transformed basis, which we identify as vertices
of a simplex, as decribed in Section 3.

An important point to note here is that while the sec-
ondary clustering might look similar to the one in N-Cut, it
is in fact quite different from the N-Cut algorithm. N-cut
performs k-means clustering after projecting the data onto
the top-k eigenvectors, while we assign memberships to the
identified vertices in the eigenspace. These vertices need not
coincide with the centroid of the data points.

Analytically [20] shows that the convex hull of the data
points form a simplex in the Laplacian eigenspace of a suit-
ably constructed similarity graph. In disjoint datasets where
the similarity matrix is block diagonal, the data points lie
on the vertices of this simplex. In datasets which are not
completely disjoint but which show some group structure one
may consider the data points as perturbations near this sim-
plex structure formed by perfect disjoint sets in the Lapla-
cian eigen-subspace.

For first order perturbation, we show that the simplex is
linearly transformed and all the data points cluster exactly
at the vertices of this transformed simplex. For higher order
perturbations, which is the most general case, the process
of clustering is defined as assigning degrees of association of
the data points to each of these vertices. Consequently, a



good clustering is one that minimizes the deviation from the
simplex structure. Clustering is therefore defined as the de-
gree of association of the data-points with each of these clus-
ters. Unlike the other methods cited above, our method does
not make any assumptions on the structure of the underly-
ing spectral-space, and hence is generalizable across multiple
domains. This is indeed what we observe in Section 5.

We take inspiration from the conformal dynamics litera-
ture, where [20] does a similar analysis to detect conformal
states of a dynamical system. They propose a spectral clus-
tering algorithm PCCA+, which is based on the the princi-
ples of Perron Cluster Analysis of the transition structure of
the system. We extend their analysis to generic structural
similarity data to yield a state-of-the-art spectral clustering
algorithm. Using this framework gives us various advan-
tages:

• A formal notion of clusters as vertices of a simplex
in the eigen-subspace of the Laplacian. The clustering
is performed by minimizing deviations from a simplex
structure and hence does not require any arbitrary reg-
ularization term.

• Characteristic functions that describe the degree of mem-
bership to a given abstract cluster. We can interpret
the membership functions as the likelihood of an ob-
ject belonging to a particular cluster (see [16]). The
algorithm could also generate crisp partitioning of the
objects into groups, as and when required.

• Connectivity information between the clusters which
might be required in certain domains. For example
one might be interested to know the connectivity in-
formation between two documents in a text dataset.

The rest of the paper is organized as follows. Section 2
introduces Spectral Methods. Section 3 describes the notion
of clustering as mapping to a simplex structure. Section 4
introduces the PCCA+ algorithm. Finally we empirically
demonstrate in Section 5 that our method is comparable
to the state-of-the-art methods in a variety of domains and
outperforms any other generic clustering algorithm.

2. BACKGROUND
Given a set of data points x1, . . . , xn and some notion of

similarity sij > 0 between all pairs of data points xi and xj ,
the intuitive goal of clustering is to divide the data points
into several groups such that points in the same group are
similar and points in different groups are dissimilar to each
other. For this purpose we represent the data in form of the
similarity graph G = (V,E). Each vertex vi in this graph
represents a data point xi. Two vertices are connected if
the similarity sij between the corresponding data points xi
and xj is positive or larger than a certain threshold, and the
edge is weighted by sij . We build a similarity matrix for the
similarity graph as the weighted adjacency matrix:

Wij =

{
sij sij ≥ tc
0 otherwise

(1)

It is not trivial to construct a suitable similarity matrix and
this is usually domain specific.

The degree of the vertex vi ∈ V is defined as di =
∑
j wij .

We define the Laplacian as

L = D−1W (2)

where D is the matrix with di on its diagonal and 0 else-
where. The spectrum of this Laplacian, namely the eigen-
values and eigenvectors encode the structural properties of
the graph.

Figure 1: Simplex First order and Higher order Perturbation

3. CLUSTERING AS MAPPING TO THE SIM-
PLEX STRUCTURE

In this section we describes the notion of clustering as
mapping to a simplex structure and provide some deriva-
tions and interpretations to better understand the process
of clustering. Lemma 1 describes the structure of the sim-
plex. We derive an explicit formula (Lemma 2) for the best
transformation operator, such that the transformed simplex
(whose vertices lie on the transformed basis) aligns itself
with the data points. We then define the notion of cluster-
ing as membership to these vertices (Def 1), which are iden-
tified as clusters. While [4, 8] derives the results in Lemma
2 using different methods, we give a new approach for in-
terpreting them. We also derive bounds on the deviation
of actual data-points from this simplex structure in Lemma
3. We define another quantity, the macro transition matrix,
in Def 2 which encodes the connectivity information across
clusters, which could be useful to know in various domains.

For a graph with disjoint components i.e., one whose sim-
ilarity matrix can be reduced to a block diagonal form, the
Lapalcian matrix L̃ has a block structure, where each block
is a matrix which corresponds to the Laplacian matrix for
the disjoint set of vertices. Each vertex vi ∈ V can be
mapped to the ith row of the eigenvector matrix Ỹnk; where
n is the number of vertices and k is number of eigenvec-
tors, corresponding to the eigenvalues = 1. As it turns out,
the eigenvectors for the Laplacian matrix can be interpreted
as an indicator of membership for each object to a suitable
disjoint set.

Lemma 1. Eigenvectors of the Laplacian L with a block
diagonal structure form the vertices of a simplex IRk−1 ([20]).

Proof. Each block matrix has its own Laplacian L̂, since
the rows of the Laplacian sum to 1, hence a vector with all
identical elements is an eigenvector of this system. Trans-
forming this to the full Laplacian matrix, components of
each of the eigenvectors [Y1, Y2, . . . , Yk] of L are pairwise



Algorithm 1 PCCA+

1: Construct L from the Similarity matrix S
2: Compute first n (in the descending order) eigenvalues (d) for L
3: Choose first k eigenvalues for which

(ek+1−ek)

1−ek
> tc(Spectral Gap Threshold). Compute the eigenvectors for corresponding

eigenvalues (e1, e2, . . . , ek) and stack them as column vectors in matrix Y
4: Lets denote the rows of Y as Y (1), Y (2), . . . Y (N) ∈ IRk.
5: Define π(1) as that index, for which ‖Y (π(1))‖2 is maximal. Define γ1 = span{Y (π1)}.
6: For i = 2, . . . , k: Define πi as that index, for which the distance to the hyperplane γi−1, i.e. ‖Y (πi)− γi−1‖2, is maximal.

Define γi = span{Y (π1), ..., Y (πi)}. ‖Y (πi)− γi−1‖2 =
∥∥Y (πi)− γTi−1((γi−1γ

T
i−1)−1γi−1)Y (πi)

T )
∥∥

identical for indices corresponding to the same block. Re-
garding the rows of Y in IRk as k distinct points in IRk, they
form the vertices of a simplex because by definition the con-
vex hull of k distinct points in IRk form a simplex σ̂k−1.

We call these vertices in the eigenspace IRk as (first-order)
Clusters Ck. Laplacian in systems which exhibit connections
across groups can be approximated as perturbations on dis-
joint sets.

L̃ = L+ εL(1) + ε2L(2) + . . .

where L(1),L(2), . . . are respectively the first order and
higher order Laplacian perturbation terms, and ε is the order
artifact. With the ε perturbation analysis of this equation
the perturbation on the eigenvectors and eigenvalues can
similarly be written as

Ỹ = Y + εY (1) +O(ε2)

Λ̃ = Λ− εΛ(1) −O(ε2)

Lemma 2. First order perturbation term Y (1) = Y B, B ∈
IRk×k is a linear mapping: IRk 7→ IRk.

Proof. consider the ith eigenvector

L̃ỹi = λ̃iỹi

writing it in terms of the perturbation expansion and
matching the same order terms (for the first order pertur-
bation) we get

Ly(1)
i + L(1)yi = λiy

(1)
i − λ

(1)
i yi

therefore,

(L(1) + λ
(1)
i I)yi + (L − λiI)y

(1)
i = 0

Taking a dot product of this equation with another eigen-
vector yj , we get〈

(L(1) + λ
(1)
i I)yi, yj

〉
+
〈

(L − λiI)y
(1)
i , yj

〉
= 0〈

(L(1) + λ
(1)
i I)yi, yj

〉
+
〈
y

(1)
i , (L − λiI)yj

〉
= 0

The second term goes to zero because (L − λiI)yj = 0,
hence we have the first term zero as well. This implies that

(L(1)+λ
(1)
i I) is linear transformation which takes a vector yi

and either transforms it perpendicular to itself, or to itself,
because 〈yi, yj〉 = 0. Also

y
(1)
i = (λiI − L)−1(L(1) + λ

(1)
i I)yi

Hence we get y
(1)
i = Byi

This implies that the perturbation of the simplex struc-
ture can at most be of the order O(ε2) (see Figure 1). In
other words, the simplex structure is preserved for first order
perturbations, while for the higher order perturbations the
simplex structure perturbs. Hence we have here a formal
definition of clusters, in the abstract notion, as vertices Ck
of this simplex structure.

Def 1. A vertex vi is said to belong to the cluster Ck with
the perfect membership if Y (i, :) = Ck

In soft clustering a continuous indicator for membership χ̃i :
V 7→ [0, 1], which assigns a grade of membership between
0 and 1 to each vertex vi ∈ V ; ∀i. Therefore, a vertex
may correspond to different clusters with a different grade
of membership. For each vertex v ∈ V the sum of the grades
of membership with regard to the different clusters is 1, i.e.

k∑
i

χ̃i(v) = 1

Each vertex is represented by a vector (χ1(v), . . . , χk(v)) ∈
IRk . Since these vectors are positive and the partition of
unity holds, they lie in the standard σk−1 simplex spanned
by the k unit vectors of IRk. Therefore, clustering can be
seen as a simple linear mapping from the rows of Y to the
rows of a membership matrix χ̃. The linear mapping is ex-
pressed by a regular k × k matrix A:

χ̃ = ỸA

This matrix maps the vertices of the simplex contained in the
rows of Y onto the vertices of the simplex σk−1. Therefore,
if one finds the indices π1, . . . , πn ∈ [1, N ] of the vertices in
Y one can construct the linear mapping as follows

A−1 =

Ỹπ1,1 · · · Ỹπ1,k

...
...

...

Ỹπk,1 · · · Ỹπk,k


[19] shows that solution for A exists, if and only if the

convex hull of the rows of Ỹ is a simplex. From perturba-
tion analysis we know that this is the case with a devia-
tion of order O(ε2). To partition the data, as and when re-
quired, we assign each state to a partition numbered P (s) =
arg maxnk=1 χ̃k(s). 2

To estimate the number of clusters k, the spectral gap is
used as an indicator of deviation from the simplex structure.
Spikes in the eigenvalues indicate the presence of a group
structure in the graph.



Lemma 3. The perturbation coefficient is bounded by

ε <
1− λ̃min∣∣∣λ(1)

max

∣∣∣
where ˜λmin is the smallest eigenvalue of L̃ and

∣∣∣λ(1)
max

∣∣∣ 6= 0

(this condition just means there are perturbations around
the regular zeroth order simplex structure, if there are no
perturbations then the Lemma trivially hold as ε = 0).

Proof. Consider

L̃ − λ̃iI = L − λiI − (λ̃i − λi) + (L̃ − L)

=
[
(1− (λ̃i − λi − (L̃ − L))(L̃ − λiI)−1

]
(L − λiI)

Taking inverse on both sides

(L̃ − λ̃iI)−1 =[
1− (λ̃i − λi − (L̃ − L))(L̃ − λiI)−1

]−1

(L − λiI)−1

The terms inside [·]−1 can be defined by a convergent Neu-
mann series. Which in this case we get [8]:∣∣∣λ̃i − λi∣∣∣+

∥∥∥L̃ − L∥∥∥ < ∥∥∥(L̃ − λiI)−1
∥∥∥−1

≤
∥∥∥((L̃ − λiI)−1)−1

∥∥∥
=
∥∥∥(L̃ − λiI)

∥∥∥
where ‖·‖ is the spectral norm induced by L2-norm, which
is equal to the square root of the largest eigenvalue of the
matrix (·)(·)T .
Since ∣∣∣λ̃i − λi∣∣∣ =

∣∣∣ελ(1)
i + ε2λ

(2)
i + . . .

∣∣∣
= ε

∣∣∣λ(1)
i + ελ

(2)
i + . . .

∣∣∣
Therefore

ε
∣∣∣λ(1)
i + ελ

(2)
i + . . .

∣∣∣ < ∥∥∥(L̃ − λiI)
∥∥∥− ∥∥∥L̃ − L∥∥∥

For a given i, such that λi = 1 implies that λ̃i > 0. Hence

for all such i each λ
(n)
i > 0. Therefore for such an i

ε
∣∣∣λ(1)
i

∣∣∣ < ∥∥∥(L̃ − λiI)
∥∥∥− ∥∥∥L̃ − L∥∥∥

<
∥∥∥(L̃ − λiI)

∥∥∥
≤ 1− λ̃min

ε <
1− λ̃min∣∣∣λ(1)

max

∣∣∣
Hence the deviation from the simplex structure is bounded

above as shown.

The connectivity information between the various clusters
can also be recovered from the membership function.

Def 2. The connectivity information across different clus-
ters, is given by

Lmacro = χ̃T L̃χ̃

where Lmacro is the Laplacian in a matrix space.

In this representation each cluster is represented by a sin-
gle node, and connectivity information across the clusters is
given Lmacro(i, j) for i 6= j, while the relative connectivity
information within a cluster is given by Lmacro(i, i) for all i.
The connectivity information might be required in certain
domains. For example one might be interested to know the
connectivity information between two documents in a text
dataset (see 5.2).

4. PCCA+: THE ALGORITHM
We propose the use of PCCA+ (see Algorithm 1) as a

clustering algorithm on unlabeled datasets. Datasets are
represented as similarity graph by defining a pairwise simi-
larity function between pairs of objects (pixels, states, ver-
tices, etc.) in the dataset. Using these similarity functions
for all the data points, we construct a similarity matrix S.
Using this similarity matrix, we define the Laplacian and
construct its spectra through eigenanalysis . The spectral
gap method is used to estimate the number of clusters k
(line 3 in Algorithm 1). This is used to find the simplex in
the IRk eigen-subspace.

Note that for the first order perturbation the simplex is
just a linear transformation around the origin, hence in or-
der to find the vertices of the simplex σk−1, we need to find
the k points which could form the convex hull such that
the deviation of all the points from this convex hull is min-
imized. Hence, we start by finding the datapoint which is
farthest located from the origin (line 5 in Algorithm 1), say

Ỹπ1 . Then we proceed by finding the data point which is far-
thest located from the first point, say Ỹπ2 . We iterate this
procedure of finding the datapoints which is located farthest
from the consecutive hyperplane constructed by joining the
previous data points, until we find k datapoints (see line 6
in Algorithm 1). These datapoints form the vertices of the
simplex. While this approach is superficially similar to [18]
in fact this is very different since they operate in the data
space and we operate in the Eigen subspace.

For example, Figure 1, shows a 3 dimensional eigen-subspace
with a σ2 simplex. The data points are shown as small black
dots. Had the system been a completely disjoint system
with 3 disjoint sets, the simplex would be aligned with the
axes, with the clusters corresponding to the vertices of the
simplex (the unit vectors). Since the system is represented
as perturbations around this disjoint system, the first order
perturbation linearly transforms the simplex, as shown. Be-
cause the data consists of higher order perturbations, the
datapoints do not exactly map to the vertices of the new
simplex, though their deviation is minimized from this sim-
plex. The clusters for this system are the vertices of the
new simplex. Thus we have clustering as membership of
datapoints to the vertices of the new simplex.

For a graph with pronounced group structure, the dat-
apoints will tend to clutter near the vertices of the trans-
formed simplex, while for a graph with high connectivity
the datapoints will spread out over the simplex plane. Hence
this framework also contains an intrinsic mechanism to re-
turn the information about goodness of clustering, which is
the distribution of the membership functions for a datapoint
across various clusters. Sharp peaks in the value indicates a
good clustering while a more uniform value indicates a bad
group structure and hence a bad clustering.

Hence, unlike the other methods we have various advan-
tages in clustering. a) We exploit the local structural prop-



(a) Image (b) PCCA+ (c) N-Cut

Figure 2: Partitioning into multiple segments. Comparision with N-Cut

erties of the underlying data space by using pairwise sim-
ilarity functions, while we use spectral methods to encode
the global structural properties. b) The clustering proce-
dure does not assume anything about the underlying struc-
ture and the mapping to a simplex is inherently built in the
properties of the Laplacian. c) We define a formal notion
of clustering as the membership of datapoints to the ver-
tices of the simplex. d) We also estimate the connectivity
information across clusters. e) As shown in Section 3 the
perturbations could at most be O(ε2), hence the maximum
deviation of any datapoint can at most be O(ε2). This im-
plies that the clustering procedure is robust to outliers, as in
the spectral subspace, they can at most have a deviation of
O(ε2). An important point to note here is that the standard
spectral clustering approach (refer [12]) which projects the
data onto the top eigenvectors could be thought of as the
zeroth order version of PCCA+ or for a special case when
B = I (where B is the transformation operator defined in
Lemma 2).

(a) χ̃1 (b) χ̃2

(c) χ̃3 (d) χ̃4

Figure 3: Membership Functions for some clusters

5. EXPERIMENTS
Other spectral clustering methods had varying amounts

of success on different domain. Although few of them have
been successfully used across multiple domains. The pri-
mary reason for this is because none of them have a princi-
pled way of exploiting structural properties encoded in the
laplcian. We demonstrate the utility of PCCA+ across mul-
tiple domains, while comparing it with other state of the art

(a) Image (b) Image

(c) PCCA+ (d) PCCA+

(e) N-Cut (f) N-Cut

Figure 4: Segmentation for some other images

methods in that domain. We also compare PCCA+ with
N-Cut method ([15]) across all these domains.

5.1 Image Segmentation
Figure 2a shows an image we would like to segment.
The procedure for clustering is as follows

1. Construct a similarity graphG = (V,E) by taking each
pixel as a node and connecting each pair of pixels by an
edge. The similarity value should reflect the likelihood
of 2 pixels belonging to the same group. We define the
similarity matrix in terms of the radial basis function
of the brightness of the pixels adjacent to each other
as follows

Wij =

exp−‖Fi−Fj‖2
σ2

I
if ‖Xi −Xj‖2 ≤ 1

0 otherwise
(3)

where Xi and Xj are the spatial location of the pixels,
Fi and Fj are the intensity values for brightness of the
pixels. This similarity matrix gives a non zero value for



Table 1: Normalized Cut Values for PCCA+ and N-Cut.
(Lower is good)

Image PCCA+ Ncut
Bird 2.1616e-005 0.2099
Baby 4.7245e-004 0.0126
Aircraft 0.0029 0.0128

the pixel i connected to a pixel j which is located on
any of the 8 sites on a square lattice around the pixel i.
For a colored RGB image, the corresponding grayscale
image is used here for image segmentation. Please note
that this construction of the similarity matrix is quite
different from the construction of the similarity matrix
by [15], we have only 1 parameter to adjust which is
the width of the intensity gaussian mixture as opposed
to 6 parameters in [15].

2. We find the number of clusters using spectral gap method

by finding the top k eigenvalues for which
(ek+1−ek)

1−ek
>

tc, where tc is the spectral gap threshold.

3. We apply PCCA+ algorithm (Algorithm 1) to obtain
the membership matrix for the graph. We show in
Figure 3 the plot of membership functions for some of
the clusters identified. We show in Figure 2 the parti-
tioning of the image into discrete segments, where each
segment is differently color coded. We also show in the
same Figure 2, the results obtained using N-Cut (by
performing k-means in the eigen-space for secondary
clustering) by carefully choosing the best parameters1.
Note that PCCA+ provides clusters which could sep-
arate the background from the objects which is struc-
turally a very complex group, while N-Cut segmented
the background into different groups.

We also compare the Normalized Cut Values of PCCA+ and
N-Cut in Table 1. We observe that PCCA+ gives very good
average Normalized Cut values ∼ 0.

5.2 Text Clustering
Document clustering is one of the most crucial techniques

to organize the documents in an unsupervised manner. Many
clustering methods have been applied to clustering docu-
ments into categories, such as k-means [11], naive Bayes
or Gaussian mixture model [1, 9], single-link [6], and DB-
SCAN [5]. From different perspectives, these clustering meth-
ods can be classified into agglomerative or divisive, hard or
fuzzy, deterministic or stochastic. The typical data clus-
tering tasks are directly performed in the data space. How-
ever, the document space is always of very high dimensional-
ity. Due to the consideration of the curse of dimensionality,
it is desirable to first project the documents into a lower-
dimensional subspace in which the semantic structure of the
document space becomes clear. Literature on spectral clus-
tering shows its capability to handle highly nonlinear data.
Also, its strong connections to differential geometry make it
capable of discovering the manifold structure of the docu-
ment space.

1The parameter values for N-Cut are taken from
http:://note.sonots.com/SciSoftware/ NcutImageSegmenta-
tion.html, where the author claims that these parameter val-
ues for N-Cut produce the best results

For the experiments, three standard document collections
were used in our experiments: Reuters-21578, Newsgroups20
and TDT2. Reuters-21578 corpus2 contains 21,578 docu-
ments in 135 categories. The 20 Newsgroups data set is
a collection of approximately 20,000 newsgroup documents,
partitioned (nearly) evenly across 20 different newsgroups3.
The TDT2 corpus4 consists of data collected during the first
half of 1998 and taken from six sources. It consists of 11,201
on-topic documents which are classified into 96 semantic cat-
egories. From the original corpus, the documents appear-
ing in multiple categories are removed. The pruned TDT2
dataset contains 9394 documents containing top 30 cate-
gories, Reuters-21578 contains 8293 documents belonging to
65 categories and 20Newsgroup contains 18846 documents
that belongs to 20 groups. All the dataset are Document-
term matrix where each row represents a document. We
perform TF-IDF. This gives the weighted document-term
matrix. Then we calculate the distance between any two
documents using cosine similarity where each document is a
term-vector.

Consider a set of documents x1, x2, . . . , xn ∈ IRm. Assume
xi has been normalized to 1.

1. To construct the adjacency graph, suppose the ith node
corresponds to the document xi. We put an edge be-
tween nodes i and j if xi is among p nearest neighbors
of xj or xj is among p nearest neighbors of xi.

2. We construct the similarity matrix S as follows: If
nodes i and j are connected, Sij = xT

i xj; Otherwise,
Sij = 0.

3. We apply PCCA+ algorithm (Algorithm 1) to obtain
the membership matrix for the documents to clusters.
The maximum membership criteria is used to cluster
documents. We perform 3 sets of experiments to eval-
uate the cluster quality identified by PCCA+. In the
first set of experiments using the unlabeled dataset,
we chose the number of clusters using the eigen-gap
measure. It was observed that using this measure the
number of clusters were exactly equal to the number
of categories in the labeled data. Table 4 shows the
purity measure for a few datasets. In the second set
of experiments, we compare PCCA+ with other clus-
tering based on LSI [3], spectral clustering method,
LPI [2] and Nonnegative Matrix Factorization cluster-
ing method [24, 23] (refer Table 3, Table2). The eval-
uations are conducted for the cluster numbers rang-
ing from two to ten. For each given cluster number
k, 50 test runs are conducted on different randomly
chosen clusters. The clustering performance is eval-
uated by comparing the obtained label of each doc-
ument with that provided by the document corpus.
Given a document xi, let ri and si be the obtained
cluster label and the label provided by the corpus, re-
spectively (refer [24]). The accuracy measure is de-

fined as
∑n

i=1 δ(si,map(ri))

n
, where n is the total num-

2Reuters-21578 corpus is available
at http://www.daviddlewis.com/ re-
sources/testcollections/reuters21578/
3The homepage of 20 Newsgroups dataset is
http://qwone.com/ jason/20Newsgroups/
4Nist Topic Detection and Tracking corpus is at
http://www.nist.gov/speech/tests/tdt/tdt98/index.html



Table 2: Accuracy Measure for TFTD2

K K-means LSI LPI LE NMF-NCW PCCA+
2 0.871 0.913 0.963 0.923 0.925 0.9948
3 0.775 0.815 0.884 0.816 0.807 0.9810
4 0.732 0.773 0.843 0.793 0.787 0.9528
5 0.671 0.704 0.780 0.737 0.735 0.9424
6 0.655 0.683 0.760 0.719 0.722 0.9403
7 0.623 0.651 0.724 0.694 0.689 0.9331
8 0.582 0.617 0.693 0.650 0.662 0.7953
9 0.553 0.587 0.661 0.625 0.623 0.859
10 0.545 0.573 0.646 0.615 0.616 0.817

Avg 0.667 0.702 0.657 0.730 0.730 0.913

Table 3: Accuracy Measure for Reuters

K K-means LSI LPI LE NMF-NCW PCCA+
2 0.989 0.992 0.998 0.998 0.985 0.9715
3 0.974 0.985 0.996 0.996 0.953 0.9794
4 0.959 0.970 0.996 0.996 0.964 0.9801
5 0.948 0.961 0.993 0.993 0.980 0.9693
6 0.945 0.954 0.993 0.992 0.932 0.970
7 0.883 0.903 0.990 0.988 0.921 0.9703
8 0.874 0.890 0.989 0.987 0.908 0.9699
9 0.852 0.870 0.987 0.984 0.895 0.9698
10 0.835 0.850 0.982 0.979 0.898 0.9697

Avg 0.918 0.931 0.982 0.990 0.937 0.9722

ber of documents, δ(x, y) is the delta function, and
map(ri), is the permutation mapping function, that
maps each cluster label ri to the equivalent label from
the data corpus. We observe that PCCA+ provides
better quality clusters as compared to other cluster-
ing techniques in most of the cases while comparable
in others. The third set of experiments is performed
using the Reuters-21578 dataset, in this experiment 7
most frequent categories are considered but we do not
remove documents belonging to multiple categories.
After removing documents whose label sets or main
texts are empty, 8,866 documents are retained where
only 3.37% of them are associated with more than one
class labels. After randomly removing documents with
only one label, a text categorization data set contain-
ing 1998 documents is obtained (Table 5 provides de-
tails of the used categories). We run PCCA+ on this
document and generate the connectivity information
across categories using the definition provided in Def
2. The macro-transition operator (normalized) which
quantifies relation between categories is shown in Ta-
ble 6. The interesting observation to note is that the
macro-transition operator provides high values across
categories with seemingly related nature, for exam-
ple the pairs Money fx-Trade, Trade-Crude, Trade-
Interest have high values, while the pair Grain-Earn
have low connectivity values.

We observe that PCCA+ is competitive with the best
algorithm for all the values of number of clusters. We also
observe in Table 4 that PCCA+ has a very high purity mea-
sure for document clustering.

5.3 Synthetic Datasets
We demonstrate the goodness of quality of clustering ob-

Table 4: Purity measure for Document Clusters

Dataset Number of docs K Purity
TDT2 9394 30 0.9344

Reuters 8293 65 0.9694
Newsgroup 18846 20 0.9023

Table 5: Details of the used Reuters21578 top 7 Categories

Category Number of Docs
Earn 831

Acquisition 482
Money-fx 299

Grain 153
Crude 128
Trade 154

Interest 261

tained by using PCCA+ on various synthetic datasets with
different structural properties.

1. Conisder the set of datapoints x1, x2, . . . , xn ∈ IRm :
The similarity matrix is constructed as follows

Sij =


exp− (xi−xj)T

Σ−1(xi−xj)
2

if ‖xi − xj‖
≤ threshold and i 6= j

0 otherwise

where Σ is the covariance matrix

2. We find the number of clusters using spectral gap method

by finding the top k eigenvalues for which
(ek+1−ek)

1−ek
>

tc, where tc is the spectral gap threshold.



Table 6: Macro connectivity information for Reuters21578 top 7 Categories

Earn Acquisition Money-fx Grain Crude Trade Interest
Earn 0.106 0.093 0.031 0.052 0.259 0.255 0.202

Acquisition 0.021 0.104 0.058 0.075 0.243 0.279 0.216
Money-fx 0.005 0.056 0.184 0.074 0.228 0.283 0.166

Grain 0.005 0.038 0.039 0.287 0.189 0.169 0.269
Crude 0.015 0.062 0.06 0.095 0.291 0.268 0.205
Trade 0.013 0.07 0.073 0.083 0.261 0.328 0.169

Interest 0.009 0.043 0.034 0.107 0.164 0.138 0.501

(a) Aggregation(7 clusters) (b) Spiral(3 clusters) (c) R15(15 clusters)

Figure 5: Clustering on Synthetic Datasets using PCCA+

3. We apply PCCA+ algorithm (Algorithm 1) to obtain
the membership matrix for the data points to clusters.
Figure 5 shows the clusters obtained using PCCA+.
Table 7 shows the purity measure of the clusters ob-
tained using PCCA+ for the same number of clusters
k as present in the labeled data (Note that the spec-
tral gap method always identified the same number of
clusters a present in the labeled data)

Figure 6: Simplex identified by PCCA+ for the spiral
dataset in 5b. The data points are shown as colored dots and
are clustered around the vertices of the transformed simplex
(shown in black dots). The original basis is shown in black
lines.

We observe in Table 7 that PCCA+ obtained clustering
with a very high purity measure, even with datasets of dif-
ferent structural properties as is seen in the original data
space. We also plot the simplex identified by PCCA+ for
the case of spiral dataset in Figure 6. Few observations to
note here are: a) the simplex is linearly transformed from
its corresponding regular simplex structure, which shows the
first order perturbation, and b) the data points(plotted in
colored markers) around the vertices of the transformed sim-
plex shows higher order perturbations around the simplex
structure.

Table 7: Purity measure for Synthetic Dataset

Dataset Number of datapoints K Purity
R15 600 15 99.7

Spiral 312 3 100.0
Aggregation 788 7 99.6

6. DISCUSSION AND CONCLUSION
In this work we introduced the notion of clustering that

better exploits the structural similarity information in datasets.
We propose using the vertices of a simplex in the Eigen sub-
space of the Laplacian of the structure information as ab-
stract clusters. We demonstrated the use of the spectral
clustering algorithm, PCCA+, for deriving memberships to
such abstract clusters across a variety of domains. The ex-
periments show that we are competitive with the state-of-
the-art clustering methods in three domains, namely, image
segmentation, text clustering, and synthetic datasets. We
significantly outperform other generic clustering methods in
these domains. We also have promising results in few other
domains like Community Detection and Spatial Abstraction.
We believe that this approach represents a new direction in
clustering and should open the doors for more robust and
efficient spectral methods in different domains.

One of the chief criticisms of spectral clustering methods
is the higher time complexity. Since we were dealing with
largely sparse similarity matrices, we were able to employ
the Lancsoz’s algorithm ([17]) and achieved O(n) per round
complexity with typically far fewer rounds than the data
size. The Lancsoz algorithm is also amenable to parallel im-
plementations and we are exploring this direction to achieve
better speedup. While the spectral gap method for deter-
mining the number of clusters usually works well in practice
we are exploring the relations between the cluster structure
and the graph spectra to derive provably robust methods.
Also as mentioned earlier, we can also compute the connec-
tivity between the clusters. This information can be used,



depending on the domain to derive more efficient planners,
stochastic block models, or super pixel information. This is
a very promising line of inquiry that we are currently pur-
suing in some of the domains
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