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Abstract

Leveraging weak or noisy supervision for building effective
machine learning models has long been an important research
problem. Its importance has further increased recently due to
the growing need for large-scale datasets to train deep learning
models. Weak or noisy supervision could originate from mul-
tiple sources including non-expert annotators or automatic la-
beling based on heuristics or user interaction signals. There is
an extensive amount of previous work focusing on leveraging
noisy labels. Most notably, recent work has shown impressive
gains by using a meta-learned instance re-weighting approach
where a meta-learning framework is used to assign instance
weights to noisy labels. In this paper, we extend this approach
via posing the problem as a label correction problem within a
meta-learning framework. We view the label correction proce-
dure as a meta-process and propose a new meta-learning based
framework termed MLC (Meta Label Correction) for learning
with noisy labels. Specifically, a label correction network is
adopted as a meta-model to produce corrected labels for noisy
labels while the main model is trained to leverage the corrected
labels. Both models are jointly trained by solving a bi-level
optimization problem. We run extensive experiments with dif-
ferent label noise levels and types on both image recognition
and text classification tasks. We compare the re-weighing and
correction approaches showing that the correction framing
addresses some of the limitations of re-weighting. We also
show that the proposed MLC approach outperforms previous
methods in both image and language tasks.

Introduction

Recent advances in deep learning have enabled impres-
sive performance on various tasks, including image recogni-
tion (He et al. 2016) and natural language processing (Devlin
et al. 2018). At the core of this success lies the availability of
large amounts of annotated data. However, such datasets are
not readily available at scale for many tasks. Learning with
weak supervision aims to address this challenge by leverag-
ing weak evidences of supervision. Weak supervision can
come in several forms including: incomplete supervision;
where only a small subset of the training data has labels,
inexact supervision; where only coarse-grained annotations
are available, and inaccurate supervision; where noisy labels
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Figure 1: Illustration of label reweighting vs label correc-
tion. The first image is a t ruck and the given noisy label
is truck, where MW-Net (A label reweighting method)
and MLC successfully recover it. However, for the second
image whose true label is dog and the given noisy label is
automobile, MW-Net is unable to down-weight the incor-
rect label while MLC correctly adjusts its label by predicting
the maximum weight on the class dog than all other classes.
So is the case for the airplane with noisy label frog.

are given (Zhou 2017). In this work, we focus on using in-
accurate (noisy) labels as a form of weak supervision. Noisy
labels may originate from multiple sources including: cor-
rupted labels, non-expert annotators, automatic labels based
on heuristics or user interaction signals, etc.

Training deep networks with noisy labels is challeng-
ing since they are prone to fitting and memorizing the
noise (Zhang et al. 2017) given their high model capacity. As
such, multiple lines of work have been proposed recently to
effectively combine clean (or gold) labeled data with noisy
(or weak) supervision data for more effective learning. One
line of work focused on selecting samples from the noisy data
that are likely to be correct using co-teaching or curriculum
learning (Jiang et al. 2017; Han et al. 2018b). Another line
of work tries to re-weight the weak instances for selective
training (Ren et al. 2018; Shu et al. 2019), instead of either
including or excluding them. Some of these approaches use a
meta-learning framework to assign importance scores to each



sample in the noisy training set such that the ones with higher
weights can contribute more to the main model training (Ren
et al. 2018; Shu et al. 2019).

One of the limitations of label re-weighting is that it is
limited to up or down weighting the contribution of an in-
stance in the learning process. An alternative approach relies
on the idea of label correction. It aims to correct the noisy
labels based on certain assumptions about the weak label
generation process. In a sense, label correction aims to go
beyond selecting or assigning high weights to useful exam-
ples to also altering the assigned labels of incorrectly labeled
examples. However, previous methods of label correction
rely on assumptions about the weak label generation process
and thus often involves two independent steps: (1) estimating
a label corruption matrix (Hendrycks et al. 2018), (2) training
a model on the noisy data leveraging the corruption matrix.
Estimating the corruption matrix often involves assumptions
about the noise generation process, such as assuming that
the noisy label is only dependent on the true label and is
independent of the data itself (Hendrycks et al. 2018).

In this paper, we adopt label correction to address the prob-
lem of learning with noisy labels, from a meta-learning per-
spective. We term our method meta label correction (MLC).
Specifically, we view the label correction procedure as a
meta-process, which objective is to provide corrected labels
for the examples with noisy labels. Meanwhile, the main
predictive model is trained with such corrected labels gener-
ated by the meta-model. Both the meta-model and the main
model are learned concurrently via a bi-level optimization
procedure. This allows the model to maximize the perfor-
mance on the clean data set (i.e., the clean labels serve as a
validation set w.r.t. the noisy set) by updating the label correc-
tion process in a differentiable manner. MLC extends work
on re-weighting and correction leveraging the advantages of
both approaches. In contrast to meta-learning based instance
re-weighting, which only considers up or down weighting
the given noisy label, MLC provides a more refined way of
leveraging noisy labels by exploring all possible classes in
the label space. In contrast to previous label correction meth-
ods, MLC doesn’t make assumptions about the underlying
label noises and concurrently learns a correction model with
the main model. Figure 1 shows examples where label re-
weighting could at best down-weight noisy samples, reducing
their impact on the learning process. On the other hand, MLC
can successfully correct the noisy labels to the true ones.

Meta learning has been successfully used for many appli-
cations including hyper-parameter tuning (Maclaurin, Du-
venaud, and Adams 2015), optimizer learning (Ravi and
Larochelle 2017), model selection (Pedregosa 2016), adapta-
tion to new tasks (Finn, Abbeel, and Levine 2017) and neural
architecture search (Liu, Simonyan, and Yang 2019). This
work leverages meta-learning for label correction to learn
from noisy labels and makes the following contributions:

* We pose the problem of learning from weak (noisy) su-
pervision as a meta label correction where a correction
network is trained as a meta process to provide reliable
labels for the main models to learn;

* We compare and contrast re-weighting and correction as

two strategies for handling noisy labeled data;

* We conduct experiments on a combination of 3 image
recognition and 4 large-scale text classification tasks with
varying noise levels and types, including real-world noisy
labels. We show that the proposed method outperform pre-
vious best methods on label correction and re-weighting,
demonstrating the power of the proposed method.

Related Work

Labeled data largely determines whether a machine learn-
ing system can perform well on a task or not, as noisy la-
bel or corrupted labels could cause dramatic performance
drop (Nettleton, Orriols-Puig, and Fornells 2010). The prob-
lem gets even worse when an adversarial rival intentionally
injects noises into the labels (Reed et al. 2014). Thus, un-
derstanding, modeling, correcting, and learning with noisy
labels has been of interest at large in the research communi-
ties (Natarajan et al. 2013; Frénay and Verleysen 2013). Sev-
eral approaches (Mnih and Hinton 2012; Patrini et al. 2017;
Sukhbaatar et al. 2014; Larsen et al. 1998) have attempted
to address the weak labels by modifying the model’s archi-
tecture or by implementing a loss correction. (Sukhbaatar
et al. 2014) introduced a stochastic variant to estimate label
corruption, however the method has to have access to the
true labels, rendering it inapplicable when no true labels are
present. A forward loss correction adds a linear layer to the
end of the model and the loss is adjusted accordingly to in-
corporate learning about the label noise. (Patrini et al. 2017)
also make use of the forward loss correction mechanism, and
propose an estimate of the label corruption estimation matrix
which relies on strong assumptions, and does not make use
of clean labels that might be available for a portion of the
data set. Similar idea is also explored in (Goldberger and
Ben-Reuven 2017).

In this paper, we limit our attention to the setting where
in addition to a large amount of weakly labeled data, there
is also a small set of clean data available. Under this setup,
two major lines of work have been proposed to solve learning
problem with noisy labels and we briefly review them here.

Learning with Label Correction

The first line of work aims to correct the weak labels as much
as possible by imposing assumptions of how the noisy labels
are generated from its underlying true labels. Consider the
problem of classifying the data into k categories, label cor-
rection involves estimating a label corruption matrix Cj, x
whose entry C;; denotes the probability of observing noisy
label for class ¢ while the underlying true class label is ac-
tually 5 (Han et al. 2018a; Yao et al. 2020; Xia et al. 2019).
For example, gold loss correction (Hendrycks et al. 2018)
falls into this category; a key drawback of this line of work
is that the label corruption matrix is estimated in an adhoc
way and also that the estimation process is separate from
the main model process, hence allowing no feedback from
the main model to the estimation process. In addition, the
estimated label corruption matrices are global, thus ignoring
data dependent noises, a setting prevalent in real world label
noises(Xia et al. 2020).



Learning to Re-weight Training Instances

Knowing that not all training examples are equally important
and useful for building a main model given the noise, another
line of work for learning with weak supervision focuses on
selecting a subset of samples from the noisy data that are
likely to be correct (Jiang et al. 2017; Han et al. 2018b; Yu
et al. 2019; Fang et al. 2020). Instead of discarding exam-
ples, an extension of this idea focused on assigning learnable
weights to each example in the training noisy set. The goal
is to assign a weight for each training example, indicating
how useful the example is, such that the main model could
use these weights to improve performance on a separate vali-
dation set (the clean set) (Ren et al. 2018; Shu et al. 2019).
The example weights are essentially hyper-parameters for
the main model and can be learned by formulating a bi-level
optimization problem. This framework allows the example
weights learning and the main model to communicate with
each other and a better model could be learned.

Our work follows the learning to correct framework by
learning to model and correct the label noise in the noisy
examples. Instead of separately handling the label correc-
tion and model learning steps, we propose a meta-learning
approach to co-optimize for the two steps. We show that
our model can outperform state-of-the-art methods for both
learning to correct and learning to re-weight.

Meta Label Correction

Following (Charikar, Steinhardt, and Valiant 2017; Veit et al.
2017; Li et al. 2017; Xiao et al. 2015; Ren et al. 2018), we
assume that the setup of learning with noisy labels involves
two sets of data: a small set of data with clean/trusted labels
and a large set of data with noisy/weak labels. Typically the
clean set is much smaller compared to the noisy set, due to
scarcity of expert labels and high labeling costs. Training
directly on the small clean set often tends to be sub-optimal,
as too little data can easily cause over-fitting. Training directly
on the noisy set (or a combination of the noisy and clean sets)
also tends to be sub-optimal, as large high-capacity models
can fit and memorize the noise (Zhang et al. 2017). Note that
unlike some of the work in this area, e.g., (Veit et al. 2017),
we do not require having trusted and noisy labels for the same
instances.

One advantage of the label correction approach is that it
allows us to combine clean labels and corrected noisy labels
in the learning process. Our proposed approach adopts the
label correction methodology while also co-optimizing the
label correction process together with the main model process
through a unified meta-learning framework. We achieve that
by training a meta learner (meta model) that tries to correct
the noisy labels and a main model that tries to build the best
predictive model with corrected labels coming from the meta
model, allowing the meta model and main model to reinforce
each other.

A Meta-learning Method for Label Correction

We describe the framework in detail as follows. Given a set of
clean data examples D = {x,y}™ and a set of weak (noisy)
data examples D’ = {x,y’}™ with m much smaller than M.
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Figure 2: MLC computation graph. (x;,y}) denotes a pair of
sample with weak label and (x;, y ;) is a pair of sample with
clean label. (a) Architecture of the label correction network,
where h(x) is a feature representation of input x; (b) Com-
putation flow of updating the LCN. In order, operations are:
(D Feed the weak instance to the LCN and get its corrected
label, @) Feed the data instance to the current classifier and
compute the logits for prediction, 3) Compute the loss with
the logits and corrected label, and compute the gradient of
the loss w.r.t. the parameter of the classifier. Note that the
gradient will be a function of the parameters of the LCN. @
Update the classifier parameter while keeping the computa-
tion graph for its gradient, ) Feed a pair of clean instance to
the new model and compute its loss, 6) Compute the gradient
of the loss w.r.t the parameter of LCN and update the LCN.

To best exploit the information carried by the weak labels,
we propose to construct a label correction network (LCN),
serving as a meta model, which takes a pair of noisy data
example and its weak label as input and attempts to produce a
corrected label for this data example. The LCN is parameter-
ized as a function with parameters o, y. = go(h(x),y’) to
correct the weak label ¢’ of example feature h(x) to a more
accurate one. (Note that y. is a soft label, i.e., a multinomial
distribution for all possible classes and the subscription in
Y. emphasizes that it’s generating a corrected label). Mean-
while, the main model f, that we aim to train and use for
prediction after training, is instantiated as another function
with parameters w, y = f (X).

Without linking the two models, there’s no way to enforce
that: 1) the corrected label from LCN for an example from
the meta model g is indeed a meaningful one, let alone a
corrected one, since directly training the LCN is not possible
without clean labels for the noisy examples ; 2) The main
model f ends up fitting onto the correct true labels, if the
labels provided by the LCN do not align with the unknown
true labels. Fortunately, the two models can be linked to-
gether via a bi-level optimization framework, motivated by
the intuition that if the labels generated by the LCN are of
high quality, then a classifier trained with such corrected
labels as supervision should achieve low loss on a separate
set of clean examples. Formally, this can be formulated as the
following bi-level optimization problem:

min Exyyep £ (¥, fuy, (%)) M

s.t. WZL = arg m“i,n]E(x,y’)eD’ 14 (ga(h(x)a y/)a fw(x))
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Figure 3: Different bi-level optimization learning strategies.
(a) For any step, the optimal w7, is approximated with one-
step look-ahead optimizer update, and used to compute the
evaluation loss £, which is then used to update «. (b) « are
updated once every two updates from w, i.e., a two-step look-
ahead update is used to approximate w},. (c) Extending to
k-step look-ahead approximation of w}, for updating cc. We
find using a k in the range of 1 ~ 10 works well empirically.

where £(-) is the loss function for classification, i.e., cross-
entropy'. We term this framework as Meta Label Correction
(MLC); Figure 2 provides an overview of the framework.
Note that to facilitate a light-weight design of the LCN, we
take h(x) to be the feature representations from the main
classifier, e.g., representations from the last layer, with stop-
gradient operators before feeding to LCN to prevent gradi-
ent flowing the LCN back to the main model.

In this bi-level optimization, the LCN parameters c are the
upper parameters (or meta parameters) while the main model
parameters w are the lower parameters (or main parameters).
Like many other work involving bi-level optimizations, exact
solutions to Problem (1) requires solving for the optimal w*
whenever o gets updated. This is both analytically infeasible
and computationally expensive, particularly when the main
model f is complex, such as ResNet (He et al. 2016) for
image recognition and BERT (Devlin et al. 2018) for text
classification.

Gradient-based optimization for bi-level optimization.
Outside of label correction research, various other studies,
including differentiable architecture search (Liu, Simonyan,
and Yang 2019), few-shot meta learning (Finn, Abbeel, and
Levine 2017; Nichol, Achiam, and Schulman 2018), have
used similar bi-level formulation as Problem (1). Instead of
solving for the optimal for w* for each «, one step of SGD
update for w to approximate the optimal main model for a
given o has been employed?’

*

wi ~w(a)=w—nVuLp(a,w) 2)

"Note that cross-entropy loss also works with soft labels in the
lower-level optimization of Problem (1)

?For clarity, we derive this with plain SGD, however this also
holds for most variants of SGD, including SGD with momentum,
Adam (Kingma and Ba 2014).

while not converged do

Update meta parameters « by descending Eq. (6)

Update model parameters w by descending
VwLp (o, w)

end
Algorithm 1: MLC - Meta Label Correction

where Lp (o, w) £ Epynep £ (ga(x,y'), fw(x)) is a
shorthand for the lower-level objective function and 7 is
the learning rate for the main model f. Denoting the
upper-level objective function (meta loss) as Lp(w) £ w
E(x,yyep £(y, fw(x)), the proxy optimization problem with
one-step look ahead SGD now becomes

min Lp(w'(a)) =Lp(w—nVwLlp(a,w)) (3)

Efficient Meta-gradient with k-step SGD of Main
Parameters

Different from DARTS (Liu, Simonyan, and Yang 2019), the
meta loss Lp(w,) depends only implicitly on the meta pa-
rameters o via the trained model w?,, hence a more accurate
estimate of the optimal solution w, for the current LCN
parameters « is desired. To this end, we propose to employ
a k-step ahead SGD update as the proxy estimate for the
optimal solution. Figure 3 demonstrates the parameter updat-
ing schemes for different k. A larger k principally provides
less noisy estimate for the optimal solution w,, however it
also results in longer dependencies over the past & iterations,
which requires caching % copies of the model parameters
w. To address this, we further propose to approximate the
current meta-parameter gradient with information from the
previous k step as follows

ow’ ow
9 (I —AHyww) 9o AHo w 4)
ow’ ow
gw’% = gw’ (I - AHW,W) % - gw’AHa,w (5)
OLp(W') gwt OLp(W)
— K~ w’I_A K. w’AHaw
(6)

where w’ is the model parameter for next step, gy is a
short hand for the gradient of the training loss w.r.t w,
A is a diagonal matrix representing the current learning
rates for all parameters in w, and H, v is a short hand for
%ﬁp/ (o, w). Hy v is estimated with identity to ease
computation and the second term can be computed as

Gw AH o w :Vi,w/:p/ (a, W)AV Lp(w')
:va (V‘TVED/(Q,W)AVWUCD(W/)) (7)

Algorithm 1 outlines an iterative procedure to solve the
above proxy problem with k-step look ahead SGD for the
main model.

Training with Soft Labels from LCN

Not only does the LCN explicitly model the dependency of
the corrected label on both the data example and its noisy
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Figure 4: Different treatments of noisy labels from Meta-
WN and MLC. Total number of classes assumed to be 5 for
illustration purpose. (a) Meta-WN; (b) MLC.

label, but also it ensures that the output from the LCN is a
valid categorical distribution over all possible classes. Soft
labels are crucial in MLC as they make gradient propaga-
tion back to the meta model from the main model possible.
However, when the main model takes these examples with
soft corrected labels, it brings difficulty to training due to
the additional uncertainly in the corrected labels. This can be
alleviated by the following strategy. In training for each batch
of clean data, we split it into two parts, with one serving
as the clean evaluation set and add the other to the training
process for f, as a small portion of the clean set will provide
clean guidance for training, to ease model training. This has
been shown to be effective in similar settings (Ranzato et al.
2015; Pham et al. 2020).

Remark: Label Correction vs Label Reweighting

To address noisy labels, Meta-WN (Shu et al. 2019) leverages
the Weight-Network (WN) as the meta-module to reweight
the given noisy label, while MLC aims to provide a more
refined treatment, i.e., to correct the noisy label. More explic-
itly, Figure 4 demonstrates the difference of the underlying
operations between Meta-WN and MLC. To highlight

* For an input, Meta-WN tries to learn a weight for the
given noisy class only, whiling ignoring all other possible
classes (demonstrated by the single non-negative weight
w for Class 2 while 0 for all other classes in Figure 4(a)),
while since MLC tries to correct the given weak label,
essentially it considers all possible classes (demonstrated
by the full non-negative vector resulting from the final
softmax layer of the LCN, i.e., (w1, w1, ws,ws,ws) for all
classes with wy + w1 + w3 + wy + ws = 1, essentially
weighting all possible classes)

* Another key difference between MLC and Meta-WN re-
lies on the information bottleneck to their corresponding
meta-modules. For Meta-WN doesn’t directly take an pair
of data and noisy label as input, but rather relies on the
scalar loss of the classifier that particular input incurs as
input. In other words, the meta-module lacks the ability to
differentiate the different input pairs if the loss values for
them are similar, effectively limiting the modeling capacity
of the meta-module. While the LCN in MLC directly takes
the data feature h(x) and its weak label as input, allowing
a more flexible treatment and enabling the LCN to identify
different information brought by different input pairs.

Experiments

To test the performance of MLC, we conduct experiments
on a combination of three image recognition and four text
classification tasks, and compare with previous state-of-the-
art approaches for learning with noisy labels under different
types of label noises.

Datasets and Setup

Datasets. We evaluate our method on 3 image recognition
datasets, CIFAR-10, CIFAR-100 (Krizhevsky 2009) and
Clothing1M (Xiao et al. 2015) and 4 large-scale multi-class
text classification benchmark datasets, that are widely used by
text classification research (Zhang, Zhao, and LeCun 2015;
Xie et al. 2019; Dai et al. 2019; Yang et al. 2016; Conneau
et al. 2016), AG news, Amazon reviews, Yelp reviews and
Yahoo answers. Information about all datasets is summarized
in Table 1.

Noisy label sources Following related work (Hendrycks
et al. 2018; Ren et al. 2018; Shu et al. 2019), for each dataset,
we sample a portion of the entire training set as the clean
set (except for ClothingIM). To ensure a fair and consistent
evaluation, we use only 1000 images as clean set for both
CIFAR-10 and CIFAR-100, and only 100 instances per class
for the four large scale text classification data sets. The noisy
sets are generated by corrupting the labels of all the remaining
data points based on the following two setting:

Uniform label noise (UNIF). For a dataset with C classes,
a clean example with true label y is randomly corrupted to
all possible classes 3’ with probability % and stays in its
original label with probability 1 — p. (Note the corrupted
label might also happen to be the original label, hence the
label has probability of 1 — p + & to stay uncorrupted.)

Flipped label noise (FLIP). For a dataset with C classes,
a clean example with true label y is randomly flipped to one
of the rest C' — 1 classes with probability p and stays in its
original label with probability 1 — p.

We vary p in the range of [0, 1] to simulate different noise
levels for both types. We emphasize that both simulated noise
types make the assumption that given the true label the noisy
label doesn’t depend on the data itself. Hence we also evalu-
ate all the methods on another source of noisy labels:

Real-world noisy labels. ClothingI1M (Xiao et al. 2015)
is a dataset where noisy labels for images are devised by
leveraging user tags as proxy annotations. As Clothing1M is
the only dataset that comes with real-world noisy labels, we
use its original split of clean and noisy sets.

Finally, we also note that regardless of noise types, none
of the methods tested in this paper is aware of the label
corruption probability p nor do they have knowledge about
which data sample in the noisy set is actually corrupted.

Baseline Methods and Model Architectures

We focus our evaluation of MLC against state-of-the-art meth-
ods for learning with weak supervision from two different
themes, i.e., (Hendrycks et al. 2018) for label correction (de-
noted by GLC hereafter) and instance re-weighting with meta
learning (Shu et al. 2019) (denoted by MW-Net hereafter).



Dataset | CIFAR-10 CIFAR-100 | ClothlnglM | AG Amazon-5 Yelp-5  Yahoo
# classes 10 100 5 5 10
Train 50K 50K 1. OSM IZOK 3M 650K 1.4M
Test 10K 10K 10K 7.6K 650K 50K 60K
Clean 1000 1000 50K 400 500 500 1000
Noisy 49K 49K IM | 119.6K ~3M 649.5K ~ 14M
Classifier | ResNet 32 |  ResNet50 | Pre-trained BERT-base

Table 1: Dataset statistics and classifier architectures used. Note the clean set is significantly smaller than the noisy label set.

Datasets CIFAR-10 CIFAR-100 AG Yelp-5 Amazon-5 Yahoo
(# clean labels) (10 x 100) (100 x 10) | (4 x 100) (5 x 100) (5 x 100) (10 x 100)
MW-Net (Shu et al. 2019) 65.12 39.96 75.91 51.27 49.49 60.18
GLC (Hendrycks et al. 2018) 86.62 50.50 83.88 60.12 60.31 68.03
MLC (Ours) 86.81 53.68 85.27 62.61 61.21 73.72

Table 2: Mean accuracies on all data sets. Each cell represents the average runs over two noise types and 10 noise levels. A k = 5
(5-step ahead SGD) is used for all experiment. (Each configuration is run for 5 times and the mean is reported)

Method Forward Joint Learning MLNT MW-Net GLC MLC
(Patrini et al. 2017)  (Tanakaet al. 2018) (Lietal. 2019) (Shuetal. 2019) (Hendrycks et al. 2018)  (Ours)
Accuracy 69.84 72.23 73.47 73.72 73.69 75.78

Table 3: Test set accuracies on Clothing1M with real-world noisy labels (k = 5)

Note that GLC and MW-Net were shown to consistently out-
perform other methods such as training on clean data only,
cleaning on weak data only, combining clean and weak data,
as well as more sophisticated models for combining the clean
and weak labels such as distillation (Li et al. 2017) and for-
ward loss correction (Sukhbaatar et al. 2014). Additionally,
MW-Net was shown to outperform a slightly different variant
for instance re-weighting with meta-parameters (Ren et al.
2018). As such, we do not show results from these methods.

For fair and consistent comparisons, we use the same clas-
sifier architectures for all methods, i.e., ResNet 32 for CIFAR-
10 and CIFAR-100, ResNet 50 pretrained from ImageNet for
Clothing1M, and pre-trained BERT-base for the four large-
scale text data sets. We implement all models and exper-
iments in PyTorch. All models are trained with the same
number of epochs for the same dataset.’

LCN architecture. We use the same LCN architecture for
MLC across all settings as follows (Figure 2(a)):

An embedding layer of size (C,128) to embed the in-
put noisy labels, followed by a three-layer feed-forward
network with dimensions of (128+xdim, hdim),
(hdim, hdim), (hdim,C) respectively. tanh is
used as the nonlinear activation function in-between them
and lastly a Softmax layer to output a categorical distribu-
tion as the corrected labels

where C is the number of classes, xdim is the feature dimen-
sion of input x from the last layer from the main classifier,
i.e., 64 from ResNet32 for CIFAR-10 and CIFAR-100, 2048
from ResNet 50 for ClothinglM and 768 from BERT-base
for text datasets and hdim is the hidden dimension for the
LCN (set to 768 for text datasets and 64 otherwise).

3Code for MLC is available at https:/aka.ms/MLC_

Main Results

MLC on image recognition. We start by comparing all
methods on the standard image recognition datasets. Table 2
presents the averaged accuracies across multiple configura-
tions (two noise types, 10 noise levels) with £ = 5. The table
shows that MLC consistently outperforms other methods over
all datasets. In addition, on Clothing 1M with real noisy labels
(Table 3), MLC outperforms all baseline methods and im-
proves over GLC and MW-Net by over 2 points in accuracy,
suggesting its ability to capture better data-dependent label
corruptions via the meta-learning framework.

MLC on text classification. Table 2 also presents the
mean accuracies of MLC on 4 large text data sets with
pre-trained BERT-base as its main classifier. Overall, label
reweighting (MW-Net) seems insufficient to fully address
the text classification problem; label correction approaches
demonstrate much higher performances, while MLC achieves
the best thanks to its nature of combining of both label cor-
rection and the data-driven meta-learning framework.

Analysis and Ablation Studies

Effects of noise levels p and k for MLC. Figure 5 presents
the results of all methods under UNIF with noise levels from
0 to 1.0 with a step size of 0.1. It’s clear that, since Meta-WN
only attempts to re-weight the observed weak label, its per-
formance decreases significantly when the noise level goes
up, as the given label turns more likely to be the wrong label
thus re-weighting for this case is insufficient; while label
correction based methods (GLC and MLC) show to be robust
against severe label noises. This is consistent with results
reported in (Hendrycks et al. 2018) where label correction
was shown to perform well even in extreme noise level situa-
tions. Moreover, we observe that MLC is more effective in
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Figure 5: Test accuracy w.r.t noise levels
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Figure 6: (a) Heatmap of learned weights of MW-Net w.r.t
to the true labels; note that MW-Net does not alter the noisy
labels but only assigns them weight. (b) Heatmap of proba-
bility distribution of the corrected labels of MLC w.r.t to the
true labels; note that MLC can alter the input label (For all
examples in the test set with noise level p = 0.6.)

doing this than previous label correction methods for severe
noise. In terms of the number of look-ahead steps, k, used to
compute the meta-gradient, the value of k£ does not seem to
have an impact on MLC’s performance when the noise level
is low; however when the noise level is high (more than 0.6),
a larger k leads to higher test accuracy, validating the strat-
egy of using multiple steps to compute the meta-gradients.
Similar trends are also observed on FLIP.

Meta net evaluation. We perform additional experiments
to understand what the meta model, i.e., the LCN, actu-
ally learns after model convergence. Additionally, we seek
to quantify the benefit of correcting noisy labels, v.s. re-
weighting instances. We use the FLIP setting to generate
corrupted labels for instances in the test set in CIFAR-10
and feed them to the meta nets of both MLC and Meta-WN.
MLC will produce a probability distribution over all possible
classes where Meta-WN will assign a scalar weight to each
instance. Note that, for CIFAR-10, we know which of the
noisy label is actually correct and which is not but neither
of the models have access to this information. Ideally, Meta-
WN will assign higher weights to the correct instances and
lower weights to the incorrect ones. Similarly, MLC should
keep the label of correct instances as is and alter the labels of
the incorrect ones. We see from Figure 7 that this is actually
the case. On average, both model seem to be able to distin-
guish between the correct and incorrect labels. However, for
incorrect labels, Meta-WN can only down-weight the sample
reducing the dependence of the training process on it. MLC
goes beyond this by also trying to change the label to assign
the sample to the correct one, allowing the main model to
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Figure 7: Effect of reweighting vs correction for FLIP with
p = 0.6. (Left) Weights assigned by MW-Net w.r.t to the
input noisy label; (Right) Correction probabilities learned by
LCN to the input noisy label.
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Figure 8: (a,b,c) Loss and test set accuracy dynamics w.r.t
noise levels (losses are in log-scale). The two jump-points in
the curves are due to the decay of learning rates at 60th and
80th Epoch, or ~ 40K and 50K steps equivalently.

fully leverage it. We can see from Figure 6 that it does that
successfully. On other other hand, MW-Net can only assign
a weight to the noisy label.

MLC training dynamics. Figure 8(a,b,c) shows the train-
ing progress for one run on the CIFAR-10 with UNIF under
different noise levels. We monitor a set of different metrics
during training, including the loss function on the noisy data
with corrected labels, loss function on clean data, and the
test set accuracy as training progresses. The figure shows
that both losses decrease and test accuracy increases as the
training process progresses. Note that with larger noise levels
(hence more difficult cases), training with MLC gets harder
(as seen by the slightly higher loss on clean data and loss
on noisy data). However, MLC still converges and achieves
good results on test set as shown in Figure 8(c).

Conclusions

In this paper, we address the problem of learning with noisy
labels from a meta-learning perspective. Specifically, we pro-
pose to use a meta network to correct the noisy labels from
the data set, and a main classifier network is trained to fit
the example to a provided label, i.e., corrected labels for the
noisy examples and true labels for the clean ones. The meta
network and main network are jointly optimized in a bi-level
optimization fashion; to address the computation challenge,
we employ a k-step ahead SGD update to compute the meta-
gradient. Empirical experiments on three image recognition
and four text classification tasks with various label noise
types show the benefits of label correction over instance re-
weighting and demonstrate the strong performance of MLC
over previous methods leveraging noisy labels.
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