Tweaklt: Supporting End-User Programmers
Who Transmogrify Code

Sam Lau Sruti Srinivasa Ragavan Ken Milne
UC San Diego Microsoft Research Microsoft
lau@ucsd.edu t-ssr@microsoft.com kenmilne@microsoft.com

Titus Barik
Microsoft Research
titus.barik@microsoft.com

r<T - 111
[SO S SN S - -

Advait Sarkar
Microsoft Research
& University of Cambridge
advait@microsoft.com

b

| e T i M i |
R S S S .

W

Figure 1: TWEAKIT is a system that enables end-user programmers to collect, understand, and tweak Python code within
a spreadsheet environment. (Left) Users collect Python code snippets and insert these snippets into the scratchpad. (Middle)
Users can select Python expressions and TWEAKIT previews the outputs directly in the spreadsheet. (Right) Users can compare
two outputs; after users are satisfied with their program they can save the current selection as a table in the spreadsheet.

ABSTRACT

End-user programmers opportunistically copy-and-paste code snip-
pets from colleagues or the web to accomplish their tasks. Un-
fortunately, these snippets often don’t work verbatim, so these
people—who are non-specialists in the programming language—
make guesses and tweak the code to understand and apply it suc-
cessfully. To support their desired workflow and facilitate tweaking
and understanding, we built a prototype tool, TWEAKIT, that pro-
vides users with a familiar live interaction to help them understand,
introspect, and reify how different code snippets would transform
their data. Through a usability study with 14 data analysts, par-
ticipants found the tool to be useful to understand the function
of otherwise unfamiliar code, to increase their confidence about
what the code does, to identify relevant parts of code specific to
their task, and to proactively explore and evaluate code. Overall,
our participants were enthusiastic about incorporating TWEAKIT
in their own day-to-day work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI 21, May 8-13, 2021, Yokohama, Japan

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8096-6/21/05.

https://doi.org/10.1145/3411764.3445265

CCS CONCEPTS

+ Human-centered computing — Interactive systems and tools;
« Software and its engineering — Development frameworks
and environments.

KEYWORDS

End-user programming, live programming, data analysts, data work-
flows, opportunistic code reuse

ACM Reference Format:

Sam Lau, Sruti Srinivasa Ragavan, Ken Milne, Titus Barik, and Advait Sarkar.
2021. Tweaklt: Supporting End-User Programmers Who Transmogrify Code.
In CHI Conference on Human Factors in Computing Systems (CHI °21), May
8-13, 2021, Yokohama, Japan. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3411764.3445265

1 INTRODUCTION

Data analysts across a variety of diverse disciplines—chemists,
molecular biologists, material scientists, and cognitive psychologists—
routinely find themselves in situations where they must intersect
their specialization with programming to accomplish their day-to-
day work.

These data analysts are end-user programmers who conduct
data analyses but don’t see themselves as professional software
developers. They often have little-to-no background in computer
science at all; for them, code is rightfully just one of many tools
in their toolbox that helps them to transform and analyze their

© Owner/Author 2021. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in Proc. CHI 21, http://dx.doi.org/10.1145/3411764.3445265

https://doi.org/10.1145/3411764.3445265
https://doi.org/10.1145/3411764.3445265
https://doi.org/10.1145/3411764.3445265

CHI ’21, May 8-13, 2021, Yokohama, Japan

Sam Lau, Sruti Srinivasa Ragavan, Ken Milne, Titus Barik, and Advait Sarkar

Book 1 - Saved v

File Home Insert Formulas Tweaklt
/A Save Output Into Sheet
A B C D
1 CucG
2 pAL
3 [uuaa AAUU | Anuu
4 |GGGG cccc : ccce
5 |[ccee GGGG | GGGG
6 |UCAC AGUG I AGUG
7 |AAUU UUAA | UUAA
8 |RRRR YIY_Y____! RRRR
9

—_ =
- O

Y =Y
NN

> = 4+ Sheet1

o L5 = vaect, “uacer
tbl = str.maketrans(i, j)

Available Python variables: P

A = A3:A8

my_str = A

my_str.translate(tbl)

from Bio.Seq impory |H
my_dna = Seq(A)

my_dna.complement()

o

Figure 2: TwEAKIT supports data analysts who guess their way towards working code. (A) Users open a code editing pane
directly within their spreadsheet application. (B) Users can click on any code expression to highlight it. (C) The selected
expression output is displayed directly in the spreadsheet grid as data. (D) The previously selected output (from the expression
under the light gray mouse icon) is retained in the grid to facilitate comparison.

data, explore hypotheses, and evaluate their findings. Through our
formative interviews, we found that their coding workflow consists
less about actually writing code and more about transmogrifying
it: in a typical workflow, our data analysts opportunistically cob-
bled together various snippets of code from colleagues or online
sites like Stack Overflow, tweaking these snippets with trial-and-
error incantations, and applying educating guesses and makeshift
heuristics about what lines of code to permute along their jour-
ney. Through a combination of grit, superstition, and serendipity, a
“working” code snippet eventually emerged (well, sometimes).

Essentially, our data analysts reflect the “paradox of the ac-
tive user” [7], where users are motivated to get their immediate
task done and bypass conceptual resources—such as programming
tutorials—in favor of directly applying and manipulating the objects
of study to their work. Consistent with prior work on this “stable
but suboptimal preference” [11], our analysts preferred actions with
fast and incremental visual feedback like pasting and tweaking code.
For better or worse, guess-and-check remained their interaction
mode of choice. Rather than asking users to change how they be-
have, how can we design tools that support the highly goal-oriented
coding workflows they prefer?

This paper aims to address the needs of end-user programmers
who transmogrify and tweak code through two contributions. The
first contribution is the design and implementation of a prototype
tool called TWEAKIT to support data analysts as they guess their way
to working programs. In contrast to end-user programming tools
that abstract code behind user interfaces, TWEAKIT allows analysts
to work directly with code in their existing data workflows by

situating code alongside spreadsheets. By applying a live interaction
to a familiar affordance, TWEAKIT enables analysts to preview and
compare code outputs without pausing their code-tweaking work.

Our second contribution is a set of insights gained from a first-
use usability study of TWEAKIT with 14 data analysts. We found
that analysts valued TWEAKIT’s support for their preferred guess-
and-check coding workflow. As analysts tweaked code, they relied
on live output previews to narrow the search space of possible edits
and used preview comparison as lightweight explanations for what
code did. TWEAKIT’s affordances encouraged code exploration and
increased confidence without decreasing participant effectiveness
and efficiency. As a whole, analysts reported many day-to-day
tasks that they felt could be better addressed using code and were
enthusiastic about support for code tweaking within their existing
workflows.

2 EXAMPLE USAGE SCENARIO

Interaction with TWEAKIT is summarised in Figure 2. Robin is an
expert molecular biologist working with viral RNA. After conduct-
ing her experiments, she opens her data using Excel—her preferred
spreadsheet application—and explores the data using a combination
of operations in the graphical user interface and spreadsheet formu-
las. After performing basic data cleaning, she has a column of RNA
sequences stored as strings consisting of characters like A, U, G, and
C. Robin needs to calculate the RNA complement of each sequence
by replacing each letter with another. For example, every A should
get converted into a U. Since her software does not support this

Tweaklt: Supporting End-User Programmers Who Transmogrify Code

calculation via a simple formula, Robin performs a web search. She
finds two Python examples, one using the Python str.translate
method and one using the complement method from the Biopython
package.

Robin begins working with these two example snippets using
TweAKIT. To get started, she clicks a button in her spreadsheet
application to open a scratchpad for code directly inside her ap-
plication. Robin pastes both examples into the scratchpad Q On
pasting, TWEAKIT automatically corrects minor syntax errors like
missing quotes and parentheses at the start or end of the code.
TweAKIT also detects that Robin doesn’t have the Biopython pack-
age installed and automatically installs this package so that the
snippets run without error immediately after pasting.

Next, Robin uses TWEAKIT’s live output preview feature to un-
derstand what the example snippets do. Instead of looking up the
documentation for each function call in the snippets, Robin can
immediately see what each function does by clicking it in the
code scratchpad—TwEAKIT detects and highlights the complete
code expression that surrounds the current cursor location e o
TweAKIT captures the output of this expression, then overlays this
output as a provisional table directly in the spreadsheet G e
This allows Robin to preview every expression by clicking through
the example code e

B
1 i, j = "AUGC", "UACG"
2 tbl = str.maketrans(i, j)
3 my_str = "GUAC"
4 o.t te(thl)
5
6 [GUAC -: from Bio.S port Seq
7 my_dna = Seq("CCCCCGATAG")
8 e my_dna.complement()
(2]
10
11
B
1 i, j = "AUGC", "UACG"
2 tbl = str.maketrans(i, j)
3 my_str = "GUAC"
4 my_str.translate(tbl)
5
6 [CAUG -! ort Seq
7 - - my—afa = S CCCCGATAG")
8 my_dna.complement ()
9
10
11

Robin uses TWEAKIT’s output comparison feature to understand
how the two example snippets differ. As Robin clicks through the
example code, TWEAKIT displays both current and previous selected

CHI ’21, May 8-13, 2021, Yokohama, Japan

expression outputs in the spreadsheet o To directly compare the
outputs of the two snippets, she clicks on the str.translate call,
then clicks on the complement call. She sees that both examples
produce the correct result for RNA sequences that use the characters
ACGU. Robin also wants to check that the character R is converted
to Y. She edits the code, adding R characters to the examples’ RNA
sequences. Robin compares the outputs of both snippets and finds
that the BioPython example produces the correct output YYC o
but the str.translate example does not e; so, she deletes the
str.translate example. Robin treats the live output previews as
explanations, using a combination of editing and comparing to
deduce what the code does.

B ©
1 i, j = "AUGC", "UACG"
9 tbl = str.maketrans(i, j)
3 my_str = "RRG"
4 my_str.translate(tbl)
5
6 [Y_YC____-! RRC from Bio.Seq import |11
7 i my_dna = Seq("RRG")
8 o o my_dna.complement()
9
1y 1

pAWN

—
o

Finally, Robin uses TWEAKIT to apply the code to her spread-
sheet data. When Robin selects cells in her spreadsheet application,
TweAKIT initializes Python variables that store the selected data
G. Robin selects cell A3, then edits the Python snippet to use the
TweAKIT variable A o When she previews the last expression
of this code, she finds that it correctly calculates the RNA comple-
ment for cell A3 e To apply this code on all her sequences, she
selects all the data in column A of the spreadsheet e TwEAKIT
automatically detects that the Python code needs to be run once
per cell and computes all of Robin’s desired RNA complements. To
save this result into the spreadsheet, Robin clicks the “Save Output
Into Sheet” button @ Having completed this task, Robin can now
proceed to further analyze her data through the spreadsheet.

78 save Output Into Sheet 8 save Output Into Sheet

A B . . A B
Available Python variables: UUAA

UUAA
6666 A=A

Available Python variables:

1 1

2 2 666 ___ RS L

8 Jecce | 8 [CCCC |GGG i | tron bio.seq tnport Seq

4 UCAC i 4 UCAC # my_dna = Seq("RRG")

5 AAUU H 5 AAUU my_dna = Seq(A)

6 RRRR ny_dna. conplement () S_|RRRR my_dna. complement (),

7 7

A Output Into Sheet dﬁ Save Output Into Sheet

2 ilabl hy iabl = bl iabl

UUAA AAUU Available Python variables: UUAA AA able Python variables:
G666 |ccce A = AT:AG 6666 [ccce = Al:AG

cccc GGGG
AGUG
AAUU UUAA
RRRR YYYY

cccc GGGG
AGUG
AAUU UUAA
RRRR YYYY

from Bio.Seq import Seq from Bio.Seq import Seq

my_dna = Seq("RRG") # my_dna = Seq("RRG")

my_dna = Seq(A) my_dna = Seq(A)

ny_d tement () my_dna. complenent ()

IR IR IFNF RN
=
S
>
A
IR IRCIF N FININ
=
a
>
a

Without TWEAKIT, Robin lacks a built-in method to use example
code within her spreadsheet application. She would have to figure

CHI ’21, May 8-13, 2021, Yokohama, Japan

out how to export her data out of her spreadsheet, import the data
into Python, paste the example script into the Python interpreter,
edit the script to operate correctly on her data, then import the data
back into her spreadsheet. Instead, TWEAKIT enables Robin to use
example Python code as a single step within her desired workflow,
and makes the code concrete through live output previews and
comparisons so that Robin can figure out what edits to make.

3 BACKGROUND AND RELATED WORK

TweAKIT aims to help end-user spreadsheet analysts reuse code
opportunistically, by displaying live code output. Thus, we view our
work as extending our understanding of end-user programming,
specifically building upon the intersection of opportunistic code
reuse and live programming.

3.1 End-user programming

End-user programming typically refers to activities where a person
with no formal programming education writes code to accomplish
a task; examples include biologists writing code to analyze data, or
accountants building spreadsheet macros. Prior work has aimed
to understand and support their programming and debugging ac-
tivities in various domains such as spreadsheets, CAD [29], web
mashups [35], home automation [5] and hobby electronics [2]; ap-
proaches range from visual languages, programming by example
[9], mixed-initiative programming [12], help seeking [21, 34] and
natural languages to formal engineering (e.g., testing, verification
and versioning) to ensure quality [22, 28].

The challenge of defining end-user programmers exclusively as
people with no formal programming education is that it conflates
behaviour with expertise—although they are appear correlated, they
are in fact orthogonal. On one hand, expert programmers regularly
find themselves in the position of a non-expert, needing to code in
an unfamiliar language, API, or project. They often need to prioritize
working code for a specific short-term aim (e.g., a script to generate
plots for a presentation) over comprehensibility and maintainability.
On the other hand, there are non-expert programmers such as
novice spreadsheet users who want to build well laid-out and well-
tested spreadsheets for long-term use by their team. Consequently,
end-user programming is better viewed as an activity that both
experts and non-experts engage in, and end-user programmers can
then be defined as people who engage in end-user programming
behaviors [22].

In our formative interviews, we found that data analysts who
tweak code often do not self-identify as having programming ex-
pertise. Those who do may nonetheless lack expertise in the data
scripting language they are trying to reuse—in our case, Python. Of
the small fraction who do have Python expertise, an even smaller
fraction are aware of, let alone have expertise in, the APIs of specific
data manipulation libraries, such as pandas. Thus, code tweakers
are better viewed as end-user programmers than as software devel-
opers, even if they have programming expertise.

3.2 Opportunistic code reuse

To help our target end-user population, it is necessary to charac-
terize the kind of end-user programming activity they are doing
when code tweaking. This is a blend of authoring, debugging, and

Sam Lau, Sruti Srinivasa Ragavan, Ken Milne, Titus Barik, and Advait Sarkar

information seeking that is best captured by the term ‘opportunistic
code reuse’ This is a specific instance of opportunistic program-
ming [4], which is defined by prioritizing getting things done over
code comprehension and maintainability. Opportunistic program-
mers reuse snippets of code from prior versions of the same code
[31], from others’ code or in specialized code repositories [30] and
from the internet [3]. They piece them together using glue code
and use ad-hoc debugging techniques such as commenting code
and print statements over formal debugging tools.

A closely related, but distinct activity, is exploratory program-
ming [17, 18]. Here users write code to experiment or prototype
with different ideas: the goal is open-ended and evolves through
the process of programming, and the programmer is not attempting
to match a specification. Although exploratory programming can
involve opportunistic behaviors, it is clearly a different phenome-
non.

The term ‘tinkering’ also appears in the literature. Burnett et al’s
GenderMag framework [6] uses the word ‘tinkerer’ to refer to an
intrinsic personality trait of some end-users that causes them to be
more inclined to program, edit, and customize software. Our data
did not suggest that our users were universally tinkerers—rather,
they were usually only motivated to do the minimum tinkering
necessary to get their work done. Terms such as ‘customization’,
‘configuring’, and ‘tailoring’ [10, 16, 33] describe setting parameters
of existing programs, but not direct modification of a program’s
source code. Thus, it appears as though opportunistic program-
ming, particularly opportunistic code reuse from the internet, best
describes the activities performed by our user group.

The problems of opportunistic code reuse can be characterised
in terms of Ko’s learning barriers [24]. In particular, they might
face difficulties selecting the right code snippet to reuse (a selection
barrier), understanding how to use a code snippet and adapting
it to the task at hand (a use barrier), putting together different
code snippets to seek the desired output (a coordination barrier),
and understanding how the code snippet or the put-together code
works (or the functions or the lines in the code snippet) works (an
understanding barrier).

Many prior tools for improving opportunistic code reuse from
the internet are aimed at helping people find relevant code exam-
ples easily [3]. Such tools may additionally capture the source of
the reused code, in case it needs to be revisited [13]. Still other
tools are suited towards expert programmers for whom reading
code is sufficient for comprehending it; these simply list candidate
snippets that a programmer can evaluate by reading (and users
seek additional information only when they need). However, in our
formative studies, we did not get the sense that finding relevant
code snippets was the biggest bottleneck; rather, the difficulty was
in understanding each snippet and how various snippets may be
combined to solve the task at hand.

Non-experts additionally need help understanding code. Previ-
ous work has explored summaries of code snippets [36], or inte-
grating additional information available on the web (e.g., examples
and explanations) as part of code search results [15], or enriching
webpages containing code snippets with comprehension tools [38].
During reuse, programmers don’t just look at code, but the context
in which the code is used: they look at examples of code use and
adapt the entire usage instance to their task’s context; Rosson calls

Tweaklt: Supporting End-User Programmers Who Transmogrify Code

this “reuse of uses” [30]. Community guidelines on websites such
as Stack Overflow recommend that code snippets are accompanied
with examples,! signalling the usefulness of examples in code reuse,
even for experts. Thus, the approach we took with TWeAKIT was
to improve the intelligibility of the code through its output, since
we are likely to be able to successfully run the code (as opposed to
code summarization or retrieval of additional information, which
would have variable rates of success).

Programmers might want to retrace their steps when working
in an opportunistic manner, and thus need support for fine-grained
backtracking [37], or runtime event-centric explanations (e.g., why
did or didn’t a method get invoked?) [23]. But existing debugging
tools don’t make it easy to inspect arbitrary statements, especially
for non-experts. Although traditional debugging tools offer sophisti-
cated ways of pausing code execution to inspect values, non-expert
programmers often do not know how to use them. Moreover, in
opportunistic programming, users cannot or do not want to invest
effort in learning, instead prioritising finishing the task at hand
in any way possible. Even expert programmers tend to use more
ad-hoc methods for debugging, e.g., print statements and code com-
menting, rather than using the debugger—which we postulate is due
to the high interaction costs of setting up a debugger and adding
breakpoints. Although rich in feedback, computational notebooks
suffer from similar pain points with high expertise requirements
and interactional costs [8, 14, 19]. TWEAKIT addresses this limita-
tion by allowing users to inspect output simply by placing their
cursor in the relevant piece of code.

3.3 Live programming

The importance of interactional costs to opportunistic end-user
programming cannot be understated. When code visualizations
are always-on, as opposed to manually triggered, users develop
and adopt unique strategies for code comprehension and naviga-
tion [26]. Let alone manual interaction costs—even slow output can
be an issue: in data analysis, a consciously imperceptible response
latency can unconsciously act as a significant deterrent for explo-
ration, reducing the user’s coverage of the data set, as well as the
rate at which they make observations and hypotheses [27].

Live programming environments allow users to edit a program
as it runs, or automatically recompiles and executes the program
as the user edits [32]. Such real-time, interactive feedback can be
beneficial support for novice end-user programmers. But as Ko et
al. found [24], sometimes people want to see what the “factory”
is producing, and at other times, they want to inspect what each
machine does and what each machine produced. Live programming
is typically concerned with rendering the output of the entire pro-
gram, and this is suited to understand what individual bits do when
writing code from scratch; but it is not very well suited for reusing
code, which requires the programmer to hypothesize potential edits,
edit the code and then see the live output to confirm the hypothe-
sis. Some live environments allow developers to inspect what the
compiler evaluated each statement to during live execution [1].
This interaction, like runtime event-centric explanations, is well
suited for debugging, but doesn’t directly address the problem of
understanding what a single statement or method call does, because

Thttps://stackoverflow.com/help/minimal-reproducible-example

CHI ’21, May 8-13, 2021, Yokohama, Japan

to do so requires the ability to compare the system state before
and after the statement was executed, not just the output of the
statement. As this was a priority for non-expert end users, we built
this into TWEAKIT’s comparison feature, which naturally extends
the cursor preview interaction to allow for ad-hoc comparisons
between arbitrary different steps of the program.

Live programming environments typically lack granularity, and
granular debugging tools typically lack liveness (in the sense that
they incur interaction costs to configure). Thus, the ability to in-
spect the output of individual code expressions with little or no
interactional cost is the core novelty in TWEAKIT’s interaction de-
sign. Although the individual ideas are not by themselves new,
their combination (motivated by our novel end-user scenario: code
tweaking by spreadsheet analysts) is.

4 FORMATIVE INTERVIEWS AND DESIGN
GOALS

We conducted interviews with 10 data analysts from a broad range
of industries: finance, biotechnology, software, real estate, medical
devices, environmental engineering, and IT services. All partici-
pants used formulas in a spreadsheet application like Microsoft
Excel daily. None of the participants were expected to use pro-
gramming for their work, and most participants (7/10) considered
themselves beginners at programming. In our interviews, we fo-
cused on tasks that analysts found difficult to complete using their
spreadsheet application, the workarounds they used to complete
their tasks, and their desires for improving their workflows. We
transcribed the interviews, then used thematic analysis to develop
and organize themes. These data analysts (F1-F10) provided several
insights that guided the design goals for TWEAKIT.

All ten analysts regularly encountered data manipulation tasks
that they felt lay beyond the capabilities of their spreadsheet appli-
cation. Under constant pressure to meet deadlines, analysts felt the
need to “just get it done somehow” (F1, F5). Thus, analysts edited
data and formulas manually (F1, F3, F4, F5, F7, F8, F10). They felt this
was “inefficient” (F2, F4), “annoying” (F3, F5), and “time-consuming”
(F1, F7), especially for recurring tasks like generating a weekly
report. To find better solutions for these tasks, all participants used
web search, which often produced simple code examples that lever-
aged software packages. However, participants did not know how
to begin using these code examples for their data since their spread-
sheet application did not provide a visible method for doing so. F5
lamented that she spent “hours” cleaning data every week when
“I know that in Python it’s just three lines of code, but I just don’t
know where to start [putting the code in my spreadsheet].” F2 had
experience using Python and used Python examples to automate
his data tasks, but reported that “my coworkers all want to use [my
script] but I definitely don’t want to help them install [Python and
its packages].” This feedback led to our first design goal:

D1. Code tweaking tools should enable users to paste and run
code with as little additional setup as possible.

Without a method to use code examples directly within their
spreadsheet, analysts turned to standalone coding tools like VBA
macros (F1, F7, F9, F10), Jupyter notebooks (F2), SQL (F5), and JMP
(F6, F8). However, analysts experienced disruptions in workflow
using these tools, reporting that tools forced them to remember how

https://stackoverflow.com/help/minimal-reproducible-example

CHI ’21, May 8-13, 2021, Yokohama, Japan

to use a “completely different user interface [than Excel’s]” (F2, F6,
F8). Analysts faced friction importing data, running the tool, then
exporting data every time “one little thing changes” in the sheet (F3,
F8). Workflow disruptions occurred even when using VBA macros,
a built-in scripting system in Excel. F1 explained that “the VBA
editor takes up your whole screen with code [...] when 'm working
with VBA, I can’t think in Excel anymore.” These observations led
to our second design goal:

D2. Code tweaking tools should embed themselves within work-
flows that are already familiar to users.

Code snippets from the Web presented challenges for reuse. An-
alysts reported that although code examples were readily available
online, these examples “never do exactly what I want” (F3, F9) and
“don’t work out of the box” (F2). Even if an example performed the
right calculation on toy data, analysts still had to edit the code to
operate on their spreadsheet data. Analysts attempted a variety of
code tweaks. For example, they edited column names (F2, F3, F5),
changed arguments to function calls (F6, F8, F9), and duplicated
lines (F3, F8, F9). Analysts described this process as “trial-and-error”
(F3), “guess-and-check” (F2), and “fiddling” with the code (F5).

Although analysts were sometimes able to tweak code success-
fully, they found it challenging to understand unfamiliar code. F3
explained that “I never took a VBA class, [...] so it’s hard to know
what [code] does what [change].” F1 added that “it’s scary to work
with [code] because it can mess up my data without me even real-
izing it” To overcome this challenge, analysts wished to introspect
code examples. F2 explained that “a blob of code is like a black box
[...] T have to break it into pieces to figure it out” F9 developed a
technique to send VBA output to an spreadsheet cell, explaining
that “it’s time-consuming, but I can at least narrow down which
[parts of code] aren’t right.”

Overall, analysts expressed a desire to tweak code but faced
barriers in understanding unfamiliar code examples and feared
making irreversible mistakes to their data. These observations led
to our third design goal:

D3. Code tweaking tools should reify unfamiliar code by showing
how changes in code cause changes in data.

5 SYSTEM DESIGN AND IMPLEMENTATION

TweAKIT is implemented as an extension to Microsoft Excel using
the Office JavaScript API. We modified a prototype version of Mi-
crosoft Excel implemented in TypeScript for ease of integration and
to allow user study participants to open a URL rather than install
software on their personal computers. 2

Opening the TWEAKIT sidebar initializes a Python interpreter
on the server that executes Python code for the remainder of the
open browser session. When a user pastes in Python code into the
scratchpad, TWEAKIT parses the Python code for package import
statements and attempts to install packages if not already installed
by running pip install with the package’s name in the code.
TweAKIT also attempts to automatically import packages based

2The Office JavaScript API is available to the public and allows extensions to read data,
write data, and draw shapes in an Excel sheet. While the online version of Excel used
for the TWEAKIT prototype is not publicly available, future extensions like TWEAKIT
could be implemented in pure JavaScript/Typescript, using the Office JS API in the
publicly available Excel for the Web.

Sam Lau, Sruti Srinivasa Ragavan, Ken Milne, Titus Barik, and Advait Sarkar

on a hard-coded list of canonical package abbreviations (e.g. np
for the numpy package). Finally, TWEAKIT checks for unmatched
parentheses and quotation marks in pasted code and attempts to fix
these errors by prepending or appending the missing marks to the
code. If the code still produces an error after these attempted fixes,
TweAKIT falls back to leaving the code in its originally pasted form.
While these heuristics are relatively simple, they are nevertheless
useful and handle a variety of common situations.

To implement output previewing, TWEAKIT parses the abstract
syntax tree (AST) of the Python code and keeps track of where
each expression is located in the code. Tweaklt uses the AST to find
expressions to evaluate. For example, if a line contains

df.query().groupby().mean()

and a user clicks on the groupby () subexpression, TweakIt uses
the AST to know to run query (), display the output of groupby (),
but not run mean() (Figure 3). TweaklIt’s AST parser skips control
flow statements like if/else and for loops, so these statements
do not generate output previews in the spreadsheet. This might
be addressed by incorporating additional program visualization
techniques like Projection Boxes [25].

[df.query('tip > 1').groupby('time').mean() J

s N

[df.query('tip > 1').groupby('time"') J [.mean() J

' N\

[df.query('tip = 1') J [.groupby('time") J

' N\

{ df J [.query('tip > 1') J

Figure 3: TWEAKIT uses the code’s abstract syntax tree (AST)
to decide which expression to execute. In this example, a
user has clicked on the groupby() call. TweAKIT finds the
closest parent that is a complete expression in the AST, high-
lights the expression in the code editor, and displays the re-
sult of the expression in the spreadsheet.

When the user moves the cursor by clicking or typing, TWEAKIT
finds the closest parent expression in the code AST that contains the
new current cursor location, runs all the lines above the expression
to reinitialize the program state, then runs the highlighted expres-
sion. TWEAKIT then displays the output of the Python interpreter
in the Excel grid through its TypeScript API, with special cases to
render Python collections and DataFrames as columns and tables.
This implementation executes lines multiple times to generate in-
termediate values so code with side effects like disk I/O might be
run multiple times unnecessarily. This limitation can be addressed
by caching previous results to avoid recalculations.

To determine where to place the output in the grid, TWEAKIT ap-
plies another simple heuristic: it looks for the closest blank column
to the right of the current Excel selection and places the output

Tweaklt: Supporting End-User Programmers Who Transmogrify Code

in that location. When the user highlights a different expression,
TweAKIT displays the new code output, then displays the old code
output to the right. Finally, when the user selects cells in Excel,
TwEAKIT extracts the data into a Python DataFrame named df so
that the user’s code can reference the df variable. TWEAKIT also
initializes variables for each column of the Excel selection; if the
user selection spans columns B and C in the sheet, TWEAKIT ini-
tializes Python variables named B and C to contain the selected
data in those columns. To execute code, TWEAKIT greedily runs the
Python code on the entire column of data as a pandas Series object.
If an error occurs, TWEAKIT will then to run the Python code once
for every value in in the column. If the code still errors, TweaklIt
doesn’t place any output into the sheet and instead displays the
error message beneath the code. For simple cases, this heuristic
allows the same code to work for both single cell and multiple cell
selections.

6 IN-LAB COMPARATIVE FIRST-USE STUDY

Our user study sought to understand how non-professional pro-
grammers used live output previews to edit and reuse existing code
snippets.

Participants. We used purposive sampling to recruit data an-
alysts through the UserTesting platform® and email. We looked
for people who used Excel on a daily basis, were not professional
programmers, yet still used programming as part of their work.
While formative study participants were not required to have any
programming background, in the user study we screened for partic-
ipants that used programs in their data workflows. In pilot studies,
we found that participants with no programming experience did
not successfully edit code examples within the study’s time limits.

Our final group of participants consisted of 14 data analysts
across 7 industries. Of these, seven self-reported having little or no
experience in programming with non-Python languages, and the
remainder reported having a lot of experience. 13 reported having
little or no Python experience, and one reported having a lot of
Python experience.

Tasks. We designed six tasks that are representative of real-
world code tweaking behaviour. All six tasks were based on actual
tasks that participants in our formative interviews reported needing
to do. Each task consisted of: a) a short textual description of the
objective of the task, b) input data to be processed in some way, c)
the exact desired output data, and d) a collection of Python code
snippets taken verbatim from Stack Overflow searches with key-
words from the task description. Participants selected, combined,
and modified code snippets to produce a script that transformed
the input data to the desired output. This was intended to be rep-
resentative of a real-world scenario where a data analyst with a
spreadsheet task looks to Stack Overflow for code that may help
them with their task—not all snippets are relevant and the solu-
tion usually requires the combination and modification of multiple
snippets.

Participants were allowed to search the web for documentation,
reference material, and additional code snippets. Participants were
allowed to author their own code from scratch—they were not
required to use the snippets, but in every instance of a successful

3 https://www.usertesting.com/

CHI ’21, May 8-13, 2021, Yokohama, Japan

task in our study participants used the snippets they were given.
Participants were not allowed to manually edit the input data or
their output data to complete the transformation, nor were they
allowed to use spreadsheet formulas: to be a valid solution, the
script needed to perform the entire data transformation in a self-
contained manner.

Protocol. We conducted a remote lab study in 3 phases: training,
tasks, and survey. In the training phase (approximately 15 minutes),
the experimenter guided the participant through a sample data ma-
nipulation task using both TWEAKIT and a baseline system that had
a button see the output of the entire snippet rather than TWEAKIT’s
live previews. The task phase was divided into two blocks of 20
minutes each: in one block only the baseline system was available,
and in the other only TWEAKIT was available. In each block par-
ticipants were given 3 tasks and asked to complete as many as
they could within 20 minutes. Although participants could work
on tasks in any order, most chose to attempt the tasks in the order
presented by the interface. Participants were asked to think aloud
during tasks. The experimenter answered questions about the task
goal and intervened to help participant recover from bugs in the
system implementation, but did not intervene otherwise. The order
of conditions and the assignment of tasks to conditions were both
balanced: half of the participants used TWEAKIT first and the other
half used the baseline first; each of the six tasks were assigned
an equal number of times to both TWEAKIT and the baseline over
the course of the study. After each 20-minute block, participants
completed a survey about how the tool helped them understand the
code. After both blocks were completed, participants completed an
additional closing survey, and the experimenter conducted a brief
interview on their experience using the two systems. On average,
the study took one hour and fifteen minutes to complete.

7 QUANTITATIVE RESULTS
7.1 Code reuse tasks

In total, participants in the baseline condition completed 15/42 tasks.
Participants achieved similar completion rates in the TWEAKIT
condition: they completed 13/42 tasks. This difference was not
identified to be statistically significant using Fisher’s exact test. The
low task completion rate can be explained by the difficulty of tasks—
the only participant who had experience using the pandas package
(P11) completed three out of the six tasks given. Four participants
(P8, P9, P12, P14) did not complete any tasks at all because they
repeatedly encountered bugs arising from unfamiliarity with the
APIs used in the code snippet.

Participants completed tasks in similar amounts of time in both
baseline and TWEAKIT conditions. Baseline participants completed
tasks using a mean of 14.1 minutes (0 = 5.24 min) per task and
TwEAKIT participants completed tasks using a mean of 13.7 minutes
(o = 5.31 min) per task. These differences were not identified to
be statistically significant using a t-test (t(13) = 0.23,p = .79).
However, we include this analysis of time taken only as additional
description of the difficulty of our tasks; owing to the variable
effects of a think-aloud protocol on timing, we do not draw any
conclusions on the direct effect of condition on task time.

https://www.usertesting.com/

CHI ’21, May 8-13, 2021, Yokohama, Japan

7.2 Usage of TwWEAKIT’s affordances

Participants used TWEAKIT to view a mean of 226 code outputs (o =
92.1). In contrast, participants in the baseline condition viewed a
mean of 27.6 code outputs (o = 15.0). This difference was significant
using a t-test (t(13) = 7.87,p < .001).

Participants found TWEAKIT’s affordances useful—11/14 reported
previewing output as “very useful” and 10/14 reported side-by-side
comparison of outputs as “very useful”. 9/14 participants responded
that TweAKIT was more useful than the baseline system for under-
standing code, which was statistically significant using a y? test
(¥?(2,n = 14) = 6.14,p < .05).

8 OQUALITATIVE RESULTS

An overview of the themes in our study is given in Table 1. The
following sections elaborate.

8.1 Guess-and-check as a desired workflow

All participants made heavy use of guesswork to complete their
tasks. Analysts made edits to code by guessing at what kinds of edits
might bring them closer to their goal, then checking their results by
examining code output. They described their process as “try-and-
test” (P11), “shooting from the hip” (P3), and “playing around” with
the code (P6, P9). Participants appeared to prefer this workflow for
pragmatic reasons. They felt that their workflow wasn’t “proper
coding” (P6) and that “there’s definitely more efficient code [for
this task]” (P10), but “if it works, who cares?” (P5). Some analysts
mentioned their workflow for these tasks differed from a workflow
they learned from programming courses, which stressed a top-
down approach of breaking down a task into subgoals, writing
pseudocode, then implementing the pseudocode (P10, P11). As one
participant stated, “it doesn’t matter what I want to do if I can’t find
the code to do it” (P12). The desire to guess their way to a solution
was a defining trait of our participants.

8.2 Strategies for understanding unfamiliar
code

However, participants’ reliance on guess-and-check presented unique
challenges for working with code examples. Using the metaphor
of finding a path through a maze, participants encountered many
forking paths and dead ends because of the large search space of
possible code edits. Participants described code examples as “over-
whelming” (P8) and they “didn’t know where to start” (P3, P14). To
narrow down their options, analysts adopted a variety of strategies
centered around understanding small pieces of code at a time. In the
absence of live output previews (baseline condition), participants
focused on visual attributes of the code—most commonly, they read
the code and looked for function names that appeared relevant
to their task (P1-P6, P8-P11, P14). One participant even used the
syntax highlighting as suggestions for what parts of the code to
edit: “the colors [from syntax highlighting] are speaking to me”
(P8). Only a few participants used web search to search for function
documentation; one explained that “I usually can’t understand [the
documentation] because I'm not used to [the jargon]” (P12). Instead,
participants explained that they picked lines out of the example
snippet using “a hunch” (P14), “intuition” (P7), and “a random guess,
to be honest” (P5).

Sam Lau, Sruti Srinivasa Ragavan, Ken Milne, Titus Barik, and Advait Sarkar

Without the live previews, all participants were shown how to
run the example snippet yet still seemed to perceive code read-
ing as more useful than running snippets. When probed further,
participants explained that the output of an entire snippet did not
seem to guide them towards what pieces of the code were most
useful: “you need to know the process rather than the outcome”
(P3). Some participants specifically manipulated the code to see
the results of smaller code pieces. For example, one participant
deleted the entire example snippet and incrementally added back
lines one by one to see the output of each line (P9), which generated
nearly identical outputs to TWEAKIT’s live previews for each line.
Another participant mentioned that “I know in python you can
print variables but that seems like extra work” (P1). As a whole,
participants wrestled with the perceived complexity of coding by
adopting ad-hoc strategies to understand individual expressions
and lines of code.

8.3 Using live previews and comparisons as
explanations

When available, participants favored using live output and compar-
ison over other strategies to understand code. They described the
ability to quickly see outputs of individual expressions as “much eas-
ier” (P1, P13), “so convenient” (P4), and “super, super helpful” (P9).
Participants also valued the “instantaneous” (P2) and “real-time”
(P3) nature of the interactions, explaining that the live previews
reduced friction and encouraged them to examine more lines of
code.

Participants treated live output previews and comparisons as
explanations of what the code did. To make use of output previews,
participants explicitly looked for visual similarities and differences
between the output and the code (P1-P7, P9-P14). For example, P7
explained that “the code finally clicked when I saw the value ABCD
in the code and then I saw that the table columns were also labeled
A, B, C, and D”” One participant described the previews as “a syn-
opsis” (P4). Another mentioned that the previews allowed them to
“analyze and digest” the code (P11). P3 looked up documentation
for function calls in the baseline condition but not in TwWeAKIT,
explaining that “honestly using Google didn’t cross my mind, be-
cause if there was something in line 6 I didn’t know, I could just
click on line 5 and compare the outputs.” To analysts, live output
previews and comparisons made code tweaking easier by making
code concrete—instead of guessing at an expression’s utility from
reading function names, they could directly examine its output.

8.4 Increasing confidence through exploration

Participants felt that their understanding of code increased as they
previewed and compared code outputs, even though most partici-
pants did not complete more tasks using TWEAKIT than using the
baseline system. P9 completed one task in each condition yet stated
that “I began to understand [the code] better throughout the 20
minutes with TWEAKIT whereas with [the baseline] I just felt more
and more confused as time went on”. P10 completed one fewer task
using TWEAKIT but still felt that “without TWeAKIT, I was blind [...]
I couldn’t understand any of the [example] code even though I got
something to work” Analysts also expressed that having the abil-
ity to compare previews would increase their confidence in future

Tweaklt: Supporting End-User Programmers Who Transmogrify Code

CHI ’21, May 8-13, 2021, Yokohama, Japan

Theme

Description

Representative Examples

Participants

Guess-and-check as a
desired workflow

Strategies for
understanding
unfamiliar code

Using live previews and
comparisons as
explanations

Increasing confidence
through exploration

Challenges in editing
code

Enthusiasm for using
code in day-to-day
work

Participants were pragmatic—they
sought working results via
guess-and-check over clean code.

To narrow the search space of
possible edits, participants wanted
to read, execute, and edit small
pieces of code.

Participants preferred live
previews and comparisons over
reading code, treating code
outputs as an explanation for what
the code did.

Participants tied confidence in
their ability to use code with their
ability to introspect and explore
code outputs.

Despite forming useful plans,
participants struggled to make
correct code edits.

Participants expressed enthusiasm
to leverage code for their personal
data tasks.

“I know it’s not ‘proper coding’, but it works
so 'm happy”

“I'm sure there are better ways of doing this,
but let’s move on”

“I'm reading this code to look for pieces I
can use, but nothing is sticking out to me””
“Is there a way to just see this specific thing?”

“Being able to click on single lines and see
the result in real-time is a lot more helpful
than just seeing the result [...] you need to
know the process.”

“Being able to compare two outputs let me
figure it out”

“I wasn’t even able to get close [with the
baseline], but with TWEAKIT I got a better
grasp of the code”

“Without TweakIT, I didn’t know where to
even begin [...] I was making random
guesses and things sometimes worked but I
didn’t know why”

“I know what I want to do but I keep
breaking the code.”

“I'm so close, I just don’t know how to make
the code do what I want”

“With Excel, it’s a lot of work to do this task
but Python does it instantly”

“I just know Python is really powerful.
There’s a lot more you can do with Python
compared to Excel”

P1-P14

P1, P3, P4, P6, P8, P9,
P10, P11, P13, P14

P1, P2, P3, P4, P5, P6,
P7, P9, P10, P11, P12,
P13, P14

P1, P2, P3, P4, P5, P6,
P8, P9, P10, P11, P13,
P14

P1-P14

P1,P3, P5,P6, P9, P10,
P11, P13, P14

Table 1: Summary of qualitative participant feedback, organized by themes.

coding tasks. P2 explained that comparing previews assured him
that he would be able to “figure out” code in the future and wished
for more time to complete the tasks in the user study because “I
was just starting to understand it”. In general, participants felt that
live output previews enabled them to explore and understand more
code, which increased their confidence to reuse code.

Analysts also used live previews to validate hypotheses they
formed while making guess-and-check edits to the code. P2 and
P12 mentioned that previews allowed them to check incremental
changes and backtrack quickly if needed. P6 described previews
as “a safety blanket” that encouraged him to try out edits without
fear that he would introduce data errors. Although TwEAKIT was
not intended to have learning outcomes, analysts described the
live previews as “a great teaching tool” (P11) and that “it helped
me learn Python” (P10). Overall, participants appeared to find pre-
view comparison useful for refining their mental models of their
programs.

8.5 Challenges in editing code

Although participants valued live previews for understanding code,
all participants still encountered challenges with making correct
code edits. Participants formed useful plans but struggled with im-
plementation. Most commonly, analysts were unaware of package-
specific syntax. For example, P12 tried to use df['file', 'size']
to select two columns in pandas rather than the proper df[[' file',
'size']]. In this regard, live previews were useful for catching
bugs but not for helping analysts find valid edits. Participants also
reported live previews as visually “distracting” or “disruptive” when
they repeatedly encountered errors (P1, P14). In many instances
this barrier completely halted participant progress.

8.6 Enthusiasm for using code in day-to-day
work
Participants were enthusiastic about leveraging code for tasks they

found tedious to complete in their spreadsheet applications. Consis-
tent with our formative interviews, analysts shared that they edit

CHI ’21, May 8-13, 2021, Yokohama, Japan

data and formulas manually for bespoke tasks they found formulas
ill-suited to address. For example, one analyst wanted to repeat a
formula except for every fifth cell of a spreadsheet column (P13).
Two other analysts mentioned that tasks in the user study were
similar to tasks they performed manually in Excel but found eas-
ier using the code in the task (P10, P14). Other analysts explained
that code worked better for larger datasets (P5), helped to avoid
common spreadsheet mistakes like skipping a cell (P9), offered ver-
satility through packages (P14), made analyses easier to repeat (P7),
and made getting help easier through websites like Stack Overflow
(P11). Analysts “couldn’t wait” for a future where they could reap
the benefits of code directly in their spreadsheets without needing
to invest time taking programming courses.

9 DISCUSSION
9.1 Supporting the workflows of data analysts

For our data analysts, code is one of many tools in the toolbox to get
the job done; they would rather complete a task than learn about
packages to generate plots in Python. To this end, our analysts used
their familiar spreadsheet applications as much as possible and only
sought code when they reached tasks they felt were highly difficult
to complete with their spreadsheets alone. Although analysts might
generally see value in learning programming concepts more deeply,
they encounter programs in the context of working on a specific
task, and thus demonstrate the “paradox of the active user” [7]—
they prefer actions that appear to make short-term progress on
their immediate task even when developing conceptual knowledge
might bring more long-term benefits. This suggests that tools to
support data analysts in opportunistic code reuse should embed
themselves within existing workflows and allow analysts to easily
see the effects of code on their data.

One theme from our investigation is that analysts encounter
bespoke tasks that the designers of their tools did not anticipate.
For example, one of our analysts dealt with input data that would
change the order of its columns every week, so he found and
tweaked a script to extract the data he needed regardless of its
position in the input sheet. The near-infinite variance in analysts’
task requirements suggests that creating a one-size-fits-all graphical
application for data processing is unlikely, as such an application
would require the tool designer to correctly predict every possi-
ble task a user might need. For this reason, allowing analysts to
leverage the versatility of code remains central to our tool design.
The variety of tasks that analysts face suggests that future tools to
help analysts make use of code should reify code rather than hide
it behind an interface.

9.2 Potential use cases in professional work

Although this paper focuses on data analysts who are not profes-
sional programmers, we postulate that TWeAakIT’s affordances for
live previewing and output comparison could benefit professionals
as well since programming experts also engage in opportunistic
code reuse [4]. To understand whether this hypothesis resonated
with professionals, we conducted an informal focus group with
product managers (n = 2) and software engineers (n = 3). They
were enthusiastic about using live output comparisons for code

Sam Lau, Sruti Srinivasa Ragavan, Ken Milne, Titus Barik, and Advait Sarkar

reuse and thought these affordances would also help data scien-
tists understand and maintain code written by colleagues. The
engineers explained that they also pasted and tweaked code when
they worked with unfamiliar software packages, and members of
the group shared mockups they had independently created for im-
plementing live output previews in other integrated development
environments and computational notebooks. They also pointed
out limitations in the TWEAKIT prototype for real-world use. For
example, it was not easy to use TWEAKIT to compare the outputs
of two large data tables since the user had to scroll up and down to
spot differences. To address this, they suggested displaying data vi-
sualizations instead of data tables as a code preview. The discussion
from the focus group and the existence of other preview-oriented
debugging tools for experts like OzCode* support the idea that en-
abling live output comparisons can benefit both novice and expert
programmers.

9.3 Limitations of TweAKIT’s affordances for
code reuse

Our investigation surfaced characteristics of opportunistic code
reuse that TWEAKIT did not address for data analysts. For example,
when code produced an error, TWEAKIT displayed the error mes-
sage from the Python interpreter verbatim. Our analysts often could
not decipher these error messages since the messages assumed an
understanding of programming concepts and vocabulary—for exam-
ple, what the Key in KeyError means. Although TWEAKIT attempts
to correct some errors that arise when code is pasted, future tools
might run code on a best-effort basis, similar to languages like Perl
and JavaScript, or provide a novice-friendly verbal explanation for
errors like Elm.

Our investigation also revealed that analysts sit in a valley of
struggle, sometimes manually editing data for days, weeks, and even
months before deciding to find and modify a code example. How
might we make coding a more desirable pathway for data analysts?
One approach is to use program-by-example and program synthesis
techniques to generate code examples as part of analysts’ workflow
[9, 20], then use TWEAKIT’s affordances to help analysts tweak and
apply these examples elsewhere in their work. Another approach
is to bring live output previews directly into the browser when
code examples arise from Web search, complementing previous
tools [38].

9.4 Emergent findings during TWEAKIT design

As we designed TWEAKIT, we added and removed features through-
out the prototyping process. One version of TWEAKIT contained
a lightweight code versioning feature that enabled users to revert
code to an older version and compare outputs between two ver-
sions of code. However, in our pilot studies this feature was rarely
used and participants did not find this more useful than using the
familiar undo functionality in their browser. Another version of
TweAKIT displayed an underline for the first code expression in
the snippet that errored. Although we hoped that this feature could
help users notice parts of code that needed editing, we found that
highlighting errors could also mislead users when a mistake in an
early line of code caused an error later on in the code. In our user

4https://0z-code.com/blog/net-c- tips/the-complete-ling- debugging-guide

https://oz-code.com/blog/net-c-tips/the-complete-linq-debugging-guide

Tweaklt: Supporting End-User Programmers Who Transmogrify Code

study, participants P1 and P2 had access to both versioning and
error highlighting features before we removed them for the remain-
ing participants, and we did not include observations pertaining to
these features in our qualitative analysis.

Analysts incidentally valued TWEAKIT as providing a safe en-
vironment for coding. Analysts perceived coding using TWEAKIT
as low risk because they could preview data changes before com-
mitting them to their spreadsheets, unlike running a script in VBA
that immediately mutated their spreadsheet. Although we did not
specifically design TWEAKIT to address this concern, this emergent
finding supports the idea that programming tools for data analysts
should allow them to edit and execute code without fear of making
accidental and irreversible changes to their data.

As a whole, TweakIt makes a familiar live interaction for code
introspection useful for data analysts who are not professional pro-
grammers. It accomplishes this by embedding itself within existing
workflows, placing code outputs directly in the spreadsheet, and
applying heuristics to execute code written for a single data value
on multiple data values.

10 CONCLUSION

Our formative study uncovered challenges that data analysts face
when attempting to opportunistically reuse code. To address this
gap, we designed TWEAKIT, a prototype tool to enable analysts
to reify the effects of code on their data through live output pre-
views and comparisons. Our user study found that analysts valued
TweAKIT and felt that its affordances empowered them to explore
and understand unfamiliar code. Overall, analysts were enthusiastic
to use TWEAKIT to transmogrify code.

REFERENCES

[1] Andrew P Black, Oscar Nierstrasz, Stéphane Ducasse, and Damien Pollet. 2010.

Pharo by example. Lulu. com.

Tracey Booth and Simone Stumpf. 2013. End-user experiences of visual and

textual programming environments for Arduino. In International symposium on

end user development. Springer, 25-39.

[3] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer. 2010.
Example-centric programming: integrating web search into the development
environment. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. 513-522.

[4] Joel Brandt, Philip] Guo, Joel Lewenstein, and Scott R Klemmer. 2008. Oppor-
tunistic programming: How rapid ideation and prototyping occur in practice. In
Proceedings of the 4th international workshop on End-user software engineering.
1-5.

[5] Julia Brich, Marcel Walch, Michael Rietzler, Michael Weber, and Florian Schaub.

2017. Exploring end user programming needs in home automation. ACM Trans-

actions on Computer-Human Interaction (TOCHI) 24, 2 (2017), 1-35.

Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beck-

with, Irwin Kwan, Anicia Peters, and William Jernigan. 2016. GenderMag: A

method for evaluating software’s gender inclusiveness. Interacting with Comput-

ers 28, 6 (2016), 760-787.

John M Carroll and Mary Beth Rosson. 1987. Paradox of the active user. In

Interfacing thought: Cognitive aspects of human-computer interaction. 80-111.

[8] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. [n.d.]. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (2020). 1-12.

[9] Ian Drosos, Titus Barik, Philip] Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1-12.

[10] James R Eagan and John T Stasko. 2008. The buzz: supporting user tailorability in

awareness applications. In Proceedings of the sigchi conference on human factors

in computing systems. 1729-1738.

Wai-Tat Fu and Wayne D Gray. 2004. Resolving the paradox of the active user:

Stable suboptimal performance in interactive tasks. Cognitive science 28, 6 (2004),

[2

=

l6

=

[7

[

[11

[12

(13]

(14]

=
&

[16

[17

[18

[19

™
=

[21]

[22]

(23]

[25

[26

[27

[28

[29

[30

[31

CHI 21, May 8-13, 2021, Yokohama, Japan

901-935.

Philip J. Guo, Sean Kandel, Joseph M. Hellerstein, and Jeffrey Heer. [n.d.]. Proac-
tive Wrangling: Mixed-Initiative End-User Programming of Data Transformation
Scripts. In Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology (2011). 65-74.

Bjorn Hartmann, Mark Dhillon, and Matthew K Chan. 2011. HyperSource:
bridging the gap between source and code-related web sites. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. 2207-2210.
Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.
[n.d.]. Managing Messes in Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (2019). 1-12.

Raphael Hoffmann, James Fogarty, and Daniel S Weld. 2007. Assieme: finding
and leveraging implicit references in a web search interface for programmers. In
Proceedings of the 20th annual ACM symposium on User interface software and
technology. 13-22.

Helge Kahler. 2001. Supporting collaborative tailoring. Ph.D. Dissertation. Roskilde
Universitetscenter, Department of Communication, Journalism and

Mary Beth Kery, Amber Horvath, and Brad A Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists.. In CHI, Vol. 10. 3025453-3025626.
Mary Beth Kery and Brad A Myers. 2017. Exploring exploratory programming.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). TEEE, 25-29.

Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. [n.d.]. The Story in the Notebook: Exploratory Data Science Using a
Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (2018). 1-11.

Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid Moves Between Code and
Graphical Work in Computational Notebooks. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 140-151.

Kimia Kiani, George Cui, Andrea Bunt, Joanna McGrenere, and Parmit K. Chilana.
[n.d.]. Beyond" One-Size-Fits-All" Understanding the Diversity in How Software
Newcomers Discover and Make Use of Help Resources. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (2019). 1-14.

Amy] Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
etal. 2011. The state of the art in end-user software engineering. ACM Computing
Surveys (CSUR) 43, 3 (2011), 1-44.

Amy J Ko and Brad A Myers. 2004. Designing the whyline: a debugging inter-
face for asking questions about program behavior. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 151-158.

Amy J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers in end-
user programming systems. In 2004 IEEE Symposium on Visual Languages-Human
Centric Computing. IEEE, 199-206.

Sorin Lerner. 2020. Projection Boxes: On-the-fly Reconfigurable Visualization for
Live Programming. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems. 1-7.

Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014. Addressing Misconceptions
about Code with Always-on Programming Visualizations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario,
Canada) (CHI ’14). Association for Computing Machinery, New York, NY, USA,
2481-2490. https://doi.org/10.1145/2556288.2557409

Zhicheng Liu and Jeffrey Heer. 2014. The effects of interactive latency on ex-
ploratory visual analysis. IEEE transactions on visualization and computer graphics
20, 12 (2014), 2122-2131.

Brad A Myers, Amy J Ko, and Margaret M Burnett. 2006. Invited research
overview: end-user programming. In CHI'06 extended abstracts on Human factors
in computing systems. 75-80.

Bonnie A Nardi. 1993. A small matter of programming: perspectives on end user
computing. MIT press.

Mary Beth Rosson and John M Carroll. 1996. The reuse of uses in Smalltalk
programming. ACM Transactions on Computer-Human Interaction (TOCHI) 3, 3
(1996), 219-253.

Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal, Charles Hill, Anita Sarma, David
Piorkowski, and Margaret Burnett. 2016. Foraging among an overabundance of
similar variants. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. 3509-3521.

Steven L Tanimoto. 1990. VIVA: A visual language for image processing. Journal
of Visual Languages & Computing 1, 2 (1990), 127-139.

Randall H Trigg and Susanne Bodker. 1994. From implementation to design:
tailoring and the emergence of systematization in CSCW. In Proceedings of the
1994 ACM conference on Computer supported cooperative work. 45-54.

April Y. Wang, Ryan Mitts, Philip J. Guo, and Parmit K. Chilana. [n.d.]. Mismatch
of Expectations: How Modern Learning Resources Fail Conversational Program-
mers. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (New York, NY, USA, 2018-04-21) (CHI ’18). Association for Computing
Machinery, 1-13. https://doi.org/10.1145/3173574.3174085

https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1145/3173574.3174085

CHI ’21, May 8-13, 2021, Yokohama, Japan

[35] Jeffrey Wong and Jason I Hong. 2007. Making mashups with marmite: towards

[36]

[37]

end-user programming for the web. In Proceedings of the SIGCHI conference on
Human factors in computing systems. 1435-1444.

Annie TT Ying and Martin P Robillard. 2013. Code fragment summarization. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering.
655-658.

YoungSeok Yoon, Brad A Myers, and Sebon Koo. 2013. Visualization of fine-
grained code change history. In 2013 IEEE Symposium on Visual Languages and

[38

Sam Lau, Sruti Srinivasa Ragavan, Ken Milne, Titus Barik, and Advait Sarkar

Human Centric Computing. IEEE, 119-126.

Xiong Zhang and Philip J. Guo. [n.d.]. DS.Js: Turn Any Webpage into an Example-
Centric Live Programming Environment for Learning Data Science. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology
(New York, NY, USA, 2017-10-20) (UIST ’17). Association for Computing Machin-
ery, 691-702. https://doi.org/10.1145/3126594.3126663

https://doi.org/10.1145/3126594.3126663

	Abstract
	1 Introduction
	2 Example Usage Scenario
	3 Background and Related Work
	3.1 End-user programming
	3.2 Opportunistic code reuse
	3.3 Live programming

	4 Formative Interviews and Design Goals
	5 System Design and Implementation
	6 In-lab Comparative First-Use Study
	7 Quantitative Results
	7.1 Code reuse tasks
	7.2 Usage of TweakIt's affordances

	8 Qualitative Results
	8.1 Guess-and-check as a desired workflow
	8.2 Strategies for understanding unfamiliar code
	8.3 Using live previews and comparisons as explanations
	8.4 Increasing confidence through exploration
	8.5 Challenges in editing code
	8.6 Enthusiasm for using code in day-to-day work

	9 Discussion
	9.1 Supporting the workflows of data analysts
	9.2 Potential use cases in professional work
	9.3 Limitations of TweakIt's affordances for code reuse
	9.4 Emergent findings during TweakIt design

	10 Conclusion
	References

