
Neural Methods for Effective,
Efficient, and Exposure-Aware

Information Retrieval

Bhaskar Mitra

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

December 17, 2020

2

3

I, Bhaskar Mitra, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Dedicated to Ma and Bapu

Abstract

Neural networks with deep architectures have demonstrated significant perfor-

mance improvements in computer vision, speech recognition, and natural language

processing. The challenges in information retrieval (IR), however, are different

from these other application areas. A common form of IR involves ranking of

documents—or short passages—in response to keyword-based queries. Effective

IR systems must deal with query-document vocabulary mismatch problem, by mod-

eling relationships between different query and document terms and how they indi-

cate relevance. Models should also consider lexical matches when the query con-

tains rare terms—such as a person’s name or a product model number—not seen

during training, and to avoid retrieving semantically related but irrelevant results.

In many real-life IR tasks, the retrieval involves extremely large collections—such

as the document index of a commercial Web search engine—containing billions of

documents. Efficient IR methods should take advantage of specialized IR data struc-

tures, such as inverted index, to efficiently retrieve from large collections. Given an

information need, the IR system also mediates how much exposure an information

artifact receives by deciding whether it should be displayed, and where it should be

positioned, among other results. Exposure-aware IR systems may optimize for ad-

ditional objectives, besides relevance, such as parity of exposure for retrieved items

and content publishers. In this thesis, we present novel neural architectures and

methods motivated by the specific needs and challenges of IR tasks.

Impact Statement

The research presented in this thesis was conducted while the author was employed

at Bing, a commercial web search engine. Many of the research questions inves-

tigated here have consequently been motivated by real world challenges in build-

ing large scale retrieval systems. The insights gained from these studies have in-

formed, and continues to influence, the design of retrieval models in both industry

and academia.

Duet was the first to demonstrate the usefulness of deep representation learning

models for document ranking. Since then, the academic community has continued

to build on those early results, culminating in large improvements in retrieval qual-

ity from neural methods over traditional IR approaches at the TREC 2019 Deep

Learning track. Many of these deep models have subsequently been deployed at

the likes of Bing and Google. Similarly, our foray into efficient neural architectures

is both of academic interest and critical to increasing the scope of impact of these

computation-heavy models.

Search systems do not just exist in laboratory environments but are inher-

ently sociotechnical instruments that mediate what information is accessible and

consumed. This presents enormous responsibility on these systems to ensure that

retrieved results are representative of the collections being searched, and that the

retrieval is performed in a manner fair to both content producers and consumers.

Lack of attention to these facets may lead to serious negative consequences—e.g.,

the formation of information filter bubbles or visible demographic bias in search

results. The capability to directly optimize for expected exposure may be key to

addressing some of these concerns.

10 Impact Statement

Finally, to accurately qualify the impact of our research, we must look beyond

published empirical and theoretical results for contributions. Science is not an in-

dividual endeavour, and therefore any evaluation of research must also encompass

the impact of the artifacts produced by said research on its immediate field of study

and the academic community around it. A more meaningful evaluation of our con-

tributions, therefore, requires juxtaposition of how the field of neural information

retrieval has evolved during the course of this research and have been supported

directly by our work. In 2016, when neural IR was still an emerging area, we or-

ganized the first workshop focused on this topic at the ACM SIGIR conference.

That year, approximately 8% of the published papers at SIGIR were related to this

topic. In contrast, this year at the same conference about 79% of the publications

employed neural methods. Our research has directly contributed to this momen-

tum in several ways—including, building standard task definition and benchmarks

in the form of MS MARCO and the TREC Deep Learning track, which has been

widely adopted as the primary benchmark by the community working on deep learn-

ing for search. More recently we have also released a large user behavior dataset,

called ORCAS, that may enable training even larger and more sophisticated neural

retrieval models. We have organized several workshops and tutorials to bring to-

gether researchers whose work cuts across information retrieval, natural language

processing, and machine learning domains to build a community around this topic.

Our early survey of neural IR methods also resulted in an instructive manuscript that

both summarized important progress and charted out key directions for the field.

Acknowledgements

It takes a proverbial village to teach the skills necessary to do good science and

become an independent researcher. So, when I pause and look back at my academic

journey thus far, I am filled with gratitude towards every person who professionally

and personally supported, mentored, and inspired me on this journey. This thesis is

as much a product of the last four years of my own research as it is the fruit of the

time and labor that others invested in me on the way.

I am grateful to my supervisor Emine Yilmaz not just for her mentorship and

guidance during my PhD but also for her initial encouragement to pursue a doc-

torate. I remember my apprehension about pursuing a part-time degree while em-

ployed full-time. Emine did not just believe that I could succeed in this endeavour,

but also helped me find the confidence to pursue it. My PhD journey would not

even have started without her support and guidance. I am grateful to her for plac-

ing that enormous trust in me and then guiding me with patience and kindness. I

thank her for the countless technical discussions and insights, and for all the close

collaboration including organizing the TREC Deep Learning track.

A few years before the start of my PhD journey, while I was still a ranking

engineer at Bing, I walked into Nick Craswell’s office one day and expressed my

interest to join his applied science team in Cambridge (UK) to “learn the ropes” for

how to do research. The trust Nick placed in me that day when he encouraged me

to pursue that dream, altered the course of my professional career. Seven years later,

I am still proud to be part of Nick’s team and grateful for having grown under his

mentorship. Nick has constantly encouraged and supported, and often gone out of

his way to do so, my dreams of pursuing a career in research. I co-authored my

12 Acknowledgements

first book with Nick. We co-organized the first deep learning workshop at SIGIR

together. We have collaborated on numerous projects and papers over the years.

His insightful comments and thoughtful feedback have always served as important

lessons for me on how to do good science.

I moved to Cambridge in the summer of 2013 with limited understanding of

what it takes to be a researcher or to publish. I am grateful that in those early

formative years of my research career, Milad Shokouhi, Filip Radlinkski, and Katja

Hofmann took me under their wings. I co-authored my first two peer reviewed

publications with the three of them. All the advice and lessons I received during

that time stuck with me and continues to influence and guide my research to this

day. I am grateful to all three of them for their patient and thoughtful mentorship.

I am indebted to Fernando Diaz for his invaluable mentorship over the years

and for the many critical lessons on doing good science and good scholarship. All

the projects or publications we have collaborated on have been incredibly instruc-

tive. Fernando continues to shape my research agenda and my personal vision of

what kind of a researcher I want to be. I want to thank Fernando for the enormous

trust that he placed in me by taking me under his wings. I have cherished him both

as a mentor and a collaborator, and hope for continued collaborations in the future.

David Hawking deserves a special mention in this thesis. I was fortunate to re-

ceive David’s mentorship around the time when I was still juggling personal doubts

on whether (and how) to do a PhD. His recommendations and guidance had a strong

influence on my eventual plans for the doctorate and even how I structure this the-

sis. David has made no secret of his eagerness for the day when he can finally

congratulate me on a successful completion of my PhD. In fact, he has expressed

that excitement since the day University College London (UCL) accepted my PhD

application. So, not only am I filled with immense gratitude for David’s guidance

in helping me realize this important professional milestone, but I am also excited

about finally celebrating this day with him that has been four years in the making.

Over the years, I have been privileged to collaborate with and receive coaching

from many other incredible members of the research community. Susan Dumais is

Acknowledgements 13

a pillar of the computer science community and I have long considered her both a

mentor and a role model. Rich Caruana is another incredible mentor and role model

whose passion, be it for science or sailing, is highly contagious. Over the years,

I have also benefited from valuable feedback and advice from Peter Bailey, Paul

Bennett, Bodo Billerbeck, Gabriella Kazai, Emre Kiciman, Widad Machmouchi,

Vanessa Murdock, Paul Thomas, and Ryen White.

I joined Microsoft straight after my undergraduate degree and spent the last 14

years working across different labs in India, USA, UK, and Canada. I cherished

all my colleagues across these teams. But two people, Himabindu Thota and Elbio

Abib, deserve special gratitude for their influential leadership and mentorship early

on in my career.

I have learnt important lessons from all my collaborators and academic col-

leagues, including but not limited to Bruno Abrahao, Amit Agarwal, Jaime Ar-

guello, Ahmed Hassan Awadallah, Payal Bajaj, Nicholas Belkin, Asia J. Biega,

Alexey Borisov, Daniel Campos, Nicola Cancedda, Ben Carterette, Jason Ingyu

Choi, Charles Clarke, Daniel Cohen, W. Bruce Croft, Li Deng, Maarten de Rijke,

Mostafa Dehghani, Laura Dietz, Shiri Dori-Hacohen, Michael D. Ekstrand, Ben-

jamin Fish, Emery Fine, Adam Ferguson, Jiafeng Guo, Jianfeng Gao, Gargi Ghosh,

Michael Golebiewski, Tereza Iofciu, Rosie Jones, Damien Jose, Surya Kallumadi,

Tom Kenter, Grzegorz Kukla, Jianxiang Li, Ruohan Li, Xiaodong Liu, Xue Liu,

Gord Lueck, Chen Ma, Rangan Majumder, Clemens Marschner, Rishabh Mehro-

tra, Piotr Mirowski, Eric Nalisnick, Federico Nanni, Sudha Rao, Navid Rekabsaz,

Roy Rosemarin, Mir Rosenberg, Corby Rosset, Frank Seide, Chirag Shah, Grady

Simon, Xia Song, Alessandro Sordoni, Luke Stark, Hussein Suleman, Rohail Syed,

Saurabh Tiwary, Christophe Van Gysel, Matteo Venanzi, Manisha Verma, Ellen

Voorhees, Haolun Wu, Chenyan Xiong, Dong Yu, and Hamed Zamani.

I would also like to thank UCL for awarding me the Deans Prize Scholarship,

and all the faculty and staff at UCL for their support. I am grateful to my secondary

supervisor David Barber and Jun Wang, who served as my internal examiner for

the first year viva and the transfer viva, for their invaluable feedback. A special

14 Acknowledgements

thanks goes out to Sarah Turnbull for her vital support in enabling me to pursue this

doctorate as a part-time student, and as a remote student for the final year.

I am thankful to Claudia Hauff and Mounia Lalmas, who served as examiners

for my final viva examination, for their invaluable feedback and advice that helped

me to significantly improve this manuscript.

I am grateful to Mona Soliman Habib and Kathleen McGrow for their vital

encouragement to pursue a doctorate long before I started on this journey.

Finally, my parents have sacrificed more towards my education and academic

training than I personally can in this lifetime. I am grateful for the gifts of patience,

kindness, and love that I received from them while growing up. My parents are

without doubt the two happiest people I have ever met and I am grateful that they

infected me (a little) with their undiluted enthusiasm for life. I thank them for their

love and support, but most importantly for teaching me what is important in life.

I want to conclude by acknowledging the unprecedented circumstances facing

the world at the time of writing this thesis. The world is still gripped with the coro-

navirus disease 2019 (COVID-19) pandemic. I am grateful to all the medical and

essential workers who are risking their lives daily to keep everyone safe and alive,

and I grieve with everyone who have lost loved ones during this pandemic. At the

same time, millions of voices are protesting on the streets calling for gender equality,

racial justice, immigration justice, and climate justice in the face of unprecedented

existential threats to our planet. Many of us who work in science and technology,

are reevaluating the impact and influence of our own work on society and the world.

These are uncertain times but also a historic moment when people around the world

are coming together in unprecedented numbers fighting to build a kinder and more

just world for everyone, and for that I am most grateful.

Contents

1 Introduction 23

1.1 Contributions . 26

1.2 Evaluation tasks . 28

1.2.1 Ad hoc retrieval . 28

1.2.2 Question-answering . 29

1.3 Notation . 30

1.4 Metrics . 31

2 Motivation 35

2.1 Desiderata of IR models . 35

2.1.1 Semantic matching . 36

2.1.2 Robustness to rare inputs 37

2.1.3 Robustness to variable length text 38

2.1.4 Efficiency . 38

2.1.5 Parity of exposure . 39

2.1.6 Sensitivity to context . 40

2.1.7 Robustness to corpus variance 40

2.2 Designing neural models for IR . 41

3 Background 45

3.1 IR Models . 45

3.1.1 Traditional IR models . 45

3.1.2 Anatomy of neural IR models 49

16 Contents

3.2 Unsupervised learning of term representations 52

3.2.1 A tale of two representations 52

3.2.2 Notions of similarity . 55

3.2.3 Observed feature spaces 57

3.2.4 Embeddings . 59

3.3 Term embeddings for IR . 65

3.3.1 Query-document matching 67

3.3.2 Query expansion . 74

3.4 Supervised learning to rank . 75

3.4.1 Input features . 76

3.4.2 Loss functions . 76

3.5 Deep neural networks . 87

3.5.1 Input text representations 89

3.5.2 Architectures . 89

3.5.3 Neural toolkits . 98

3.6 Deep neural models for IR . 98

3.6.1 Document auto-encoders 100

3.6.2 Siamese networks . 101

3.6.3 Interaction-based networks 103

3.6.4 Lexical matching networks 104

3.6.5 BERT . 105

3.7 Conclusion . 105

4 Learning to rank with Duet networks 107

4.1 The Duet network . 110

4.1.1 Local subnetwork . 112

4.1.2 Distributed subnetwork . 114

4.1.3 Optimization . 115

4.2 Experiments . 116

4.2.1 Data . 116

4.2.2 Training . 118

Contents 17

4.2.3 Baselines . 119

4.2.4 Evaluation . 122

4.3 Results . 123

4.4 Further improvements . 125

4.4.1 Duet on MS MARCO . 126

4.4.2 Duet on TREC Deep Learning track 130

4.5 Discussion . 135

4.6 Conclusion . 139

5 Retrieve, not just rerank, using deep neural networks 141

5.1 Query term independence assumption 142

5.2 Related work . 144

5.3 Model . 145

5.4 Experiments . 148

5.4.1 Task description . 148

5.4.2 Baseline models . 149

5.5 Results . 149

5.6 Conclusion . 151

6 Stochastic learning to rank for target exposure 153

6.1 Related work . 154

6.2 Expected exposure metrics . 155

6.3 Optimizing for target exposure . 158

6.3.1 Individual exposure parity 158

6.3.2 Group exposure parity . 160

6.4 Experiments . 160

6.4.1 Models . 160

6.4.2 Data . 162

6.4.3 Evaluation . 162

6.5 Results . 162

6.6 Conclusion . 163

18 Contents

7 Learning to Rank for Query Auto-Completion 165

7.1 Query Auto-Completion for Rare Prefixes 165

7.1.1 Related work . 166

7.1.2 Model . 168

7.1.3 Method . 169

7.1.4 Experiments . 171

7.1.5 Results . 172

7.1.6 Conclusion . 175

7.2 Session Context Modelling for Query Auto-Completion 175

7.2.1 Related work . 177

7.2.2 Model . 179

7.2.3 Experiments . 184

7.2.4 Features . 187

7.2.5 Results . 189

7.2.6 Discussion . 190

7.2.7 Conclusion . 195

8 Benchmarking for neural IR 197

8.1 TREC Deep Learning track . 198

8.2 Datasets . 201

8.3 Results and analysis . 202

8.4 Conclusion . 212

9 General Conclusions 215

9.1 A summary of our contributions 217

9.2 The Future of neural IR . 218

Appendices 221

A Published work 221

Bibliography 225

List of Figures

2.1 Zipfian distributions in search data 37

2.2 Document length distribution . 39

3.1 Anatomy of a neural IR model . 49

3.2 Taxonomy of different neural approaches to IR 50

3.3 Local and distributed representations of terms 52

3.4 Feature-based distributed representations 53

3.5 Geometric interpretation of vector space representations 55

3.6 Notions of similarity in vector representations 58

3.7 Analogies using vector algebra . 59

3.8 Architecture of the word2vec model 62

3.9 Architecture of the paragraph2vec model 66

3.10 Evidence of relevance from non-query terms 67

3.11 Strengths and weaknesses of term embedding based matching . . . 72

3.12 Global vs. query-specific embeddings in query expansion 73

3.13 A simple neural network . 87

3.14 Demonstration of the need for hidden layers 88

3.15 Input representations of text for DNNs 90

3.16 Shift-invariant neural architectures 92

3.17 Auto-encoder and Siamese Networks 95

3.18 Variational autoencoder . 96

3.19 Interaction matrix . 103

3.20 Lexical and semantic term matching for ranking 104

20 List of Figures

4.1 Word importance for the Duet . 108

4.2 Architecture of the Duet network 111

4.3 Interaction matrix of query-document exact matches 113

4.4 Effect of judged vs. random negatives on the Duet model 124

4.5 Duet with multiple fields (DuetMF) 132

4.6 Performance of Duet by segments 135

4.7 Principal component analysis of IR models 136

4.8 Effect of training data on the performance of Duet 138

5.1 Incorporating QTI assumption in black-box models 147

6.1 Optimizing for target exposure . 161

7.1 CDSSM architecture . 167

7.2 Candidate generation for QAC . 170

7.3 QAC performance by prefix popularity 174

7.4 Visualization similar intent transitions from search logs 180

7.5 Popularity of intent transitions in the search logs 182

7.6 CDSSM performance by query length 191

7.7 CDSSM performance by embedding size 192

7.8 Exploring or struggling? . 193

8.1 Growth of neural IR papers . 197

8.2 Comparison of nnlm, nn, and trad runs 204

8.3 Per query comparison for document retrieval task 206

8.4 Per query comparison for passage retrieval task 207

8.5 Visualizing inter-run similarity using t-SNE 208

8.6 Analysis of “fullrank” vs. “rerank” settings 209

8.7 Metrics agreement by group . 210

8.8 Metrics agreement for the document retrieval task 211

8.9 Metrics agreement for the passage retrieval task 212

9.1 Duckupine . 216

List of Tables

1.1 Notation . 31

3.1 Toy corpus of short documents . 56

3.2 Different notions of similarity in the word2vec embedding space . . 69

3.3 Different notions of similarity in the DSSM embedding space 102

4.1 Statistics of the datasets for the document ranking task 117

4.2 Performance of the Duet model on the document ranking task 123

4.3 Performance of Duet on TREC CAR 125

4.4 Duet on MS MARCO . 129

4.5 Duet on TREC 2019 Deep Learning track 134

5.1 Deep models with QTI assumption for re-ranking 150

5.2 Duet with QTI for full retrieval . 151

6.1 Optimizing for exposure parity . 163

7.1 Suffix recommendation based QAC 166

7.2 Typical and Topical CDSSM . 168

7.3 Popular query suffixes . 169

7.4 Results on QAC for rare prefixes 173

7.5 Clusters of intent transitions from search logs 181

7.6 Analogies using query embeddings 184

7.7 CDSSM results on session modelling for QAC 187

7.8 CDSSM performance by length of history 190

7.9 Win-loss analysis of CDSSM on session modelling for QAC 194

22 List of Tables

8.1 TREC 2019 Deep Learning track datasets 202

8.2 TREC 2019 Deep Learning track runs 202

Chapter 1

Introduction

Over the last decade, there have been dramatic improvements in performance in

computer vision, speech recognition, and machine translation tasks, witnessed in

research and in real-world applications [1–5]. These breakthroughs were largely fu-

elled by recent advances in neural network models, usually with multiple hidden lay-

ers, known as deep architectures combined with the availability of large datasets [6]

and cheap compute power for model training. Exciting novel applications, such

as conversational agents [7, 8], have also emerged, as well as game-playing agents

with human-level performance [9, 10]. Work has now begun in the information

retrieval (IR) community to apply these neural methods, leading to the possibility

of advancing the state of the art or even achieving breakthrough performance as in

these other fields.

Retrieval of information can take many forms [11]. Users can express their

information need in the form of a text query—by typing on a keyboard, by selecting

a query suggestion, or by voice recognition—or the query can be in the form of

an image, or in some cases the need can be implicit. Retrieval can involve ranking

existing pieces of content, such as documents or short-text answers, or composing

new responses incorporating retrieved information. Both the information need and

the retrieved results may use the same modality (e.g., retrieving text documents in

response to keyword queries), or be different (e.g., image search using text queries).

The information within the document text may be semi-structured, and the organi-

zation scheme may be shared between groups of documents in the collection—e.g.,

24 Chapter 1. Introduction

web pages from the same domain [12]. If the query is ambiguous, retrieval system

may consider user history, physical location, temporal changes in information, or

other context when ranking results. IR systems may also help users formulate their

intent (e.g., via query auto-completion or query suggestion) and can extract succinct

summaries of results that take the user’s query into account. Neural IR refers to the

application of shallow or deep neural networks to these retrieval tasks.

We note that many natural language processing (NLP) tasks exist that are not

IR. Machine translation of text from one human language to another is not an IR

task, because translating language and searching a corpus to satisfy a user’s infor-

mation need are different. However, translation could be used in an IR system, to

enable cross-language retrieval on a multilingual corpus [13]. Inferring attributes

of a named entity [14], from text or graph-structured data, is not an IR task in itself.

However, an IR system could use inferred entity attributes to enhance its perfor-

mance on IR tasks. In general, many NLP tasks do not involve information access

and retrieval, so are not IR tasks, but some can still be useful as part of a larger IR

system.

In this thesis, we focus on neural methods that employ deep architectures to

retrieve and rank documents in response to a query, an important IR task. A search

query may typically contain a few terms, while the document length, depending on

the scenario, may range from a few terms to hundreds of sentences or more. Neural

models for IR use vector representations of text, and usually contain a large num-

ber of parameters that need to be tuned. ML models with large set of parameters

typically benefit from large quantity of training data [15–19]. Unlike traditional

learning to rank (LTR) approaches [20] that train ML models over a set of hand-

crafted features, recent neural models for IR typically accept the raw text of a query

and document as input. Learning suitable representations of text also demands large-

scale datasets for training [21]. Therefore, unlike classical IR models, these neural

approaches tend to be data hungry, with performance that improves with more train-

ing data.

In other fields, the design of neural network models has been informed by

25

characteristics of the application and data. For example, the datasets and success-

ful architectures are quite different in visual object recognition, speech recognition,

and game playing agents. While IR shares some common attributes with the field

of NLP, it also comes with its own set of unique challenges. Effective IR systems

must deal with query-document vocabulary mismatch problem, by modeling rela-

tionships between different query and document terms and how they indicate rele-

vance. Models should also consider lexical matches when the query contains rare

terms—such as a person’s name or a product model number—not seen during train-

ing, and to avoid retrieving semantically related but irrelevant results. In many

real-life IR tasks, the retrieval involves extremely large collections—such as the

document index of a commercial Web search engine—containing billions of docu-

ments. Efficient IR methods should take advantage of specialized IR data structures,

such as inverted index, to efficiently retrieve from large collections. Given an in-

formation need, the IR system also mediates how much exposure an information

artifact receives by deciding whether it should be displayed, and where it should be

positioned, among other results. Exposure-aware IR systems may optimize for ad-

ditional objectives, besides relevance, such as parity of exposure for retrieved items

and content publishers.

In our work, we focus on methods using deep neural networks for document

ranking, and to a lesser extent other retrieval tasks. We identify key challenges and

principles which motivate our design of novel neural approaches to ranking. We

study these proposed methods with respect to retrieval quality, query response time,

and exposure disparity. In Section 1.1, we summarize our key contributions. The

remainder of this chapter is dedicated to describing the problem formulation. In

Section 1.2, we provide an overview of the IR tasks that we use for evaluation. In

Section 1.3, we describe a set of common notations that we use in the remainder of

this thesis. Finally, we describe relevant IR metrics in Section 1.4.

26 Chapter 1. Introduction

1.1 Contributions
In this thesis, we explore neural network based approaches to IR. This section sum-

marizes the key research contributions of this thesis by chapter. Where appropriate,

we also cite the publications that forms the basis of that chapter.

• Chapter 1-3 are based on the book by Mitra and Craswell [22]—and corre-

sponding tutorials [23–27]. The current chapter introduces key IR tasks, eval-

uation metrics, and mathematical notations that are referenced throughout in

this thesis. Chapter 2 presents our motivation for exploring neural IR methods.

Chapter 3 provides a survey of existing literature on neural and traditional

non-neural approaches to IR. Key concepts related to IR models and neural

representation learning are explained. These three chapters have no novel the-

oretical or algorithmic contributions, but provides a detailed overview of the

field that also serves as the background for the remaining sections.

• Chapter 4 is based on [21, 28–30] and emphasizes the importance of incor-

porating evidence based on both patterns of exact query term matches in the

document as well as the similarity between query and document text based

on learned latent representations for retrieval. We operationalize this princi-

ple by proposing a deep neural network architecture, called Duet, that jointly

learns two deep neural networks focused on matching using lexical and latent

representations of text, respectively. We benchmark the proposed model on:

(i) Bing document ranking task, (ii) TREC Complex Answer Retrieval task,

(iii) MS MARCO passage ranking task, and (iv) TREC 2019 Deep Learning

track document and passage ranking tasks and demonstrate that estimating

relevance by inspecting both lexical and latent matches performs better than

considering only one of those aspects for retrieval.

• Chapter 5 is based on [31] and studies neural methods in the context of

retrieval from the full collection, instead of just reranking. In particular, we

study the impact of incorporating the query term independence (QTI) assump-

tion in neural architectures. We find that incorporating QTI assumption in

1.1. Contributions 27

several deep neural ranking models results in minimal (or no) degradation

in ranking effectiveness. However, under the QTI assumption, the learned

ranking functions can be combined with specialised IR data structures, e.g.,

inverted index, for fast and scalable candidate generation in the first stage

of retrieval. We benchmark on: (i) MS MARCO passage ranking task and

(ii) TREC 2019 Deep Learning track to demonstrate that neural methods can

be employed for more effective but also efficient candidate generation.

• Chapter 6 is based on [32] and studies learning to rank with neural networks

in the context of stochastic ranking. Due to presentation bias, a static ranked

list of results may cause large difference in exposure of items with similar rel-

evance. We present a stochastic ranking framework that can optimize towards

exposure targets under different constraints—e.g., individual and group expo-

sure parity. While the original study [32] is a collaborative project focusing on

the expected exposure metric, this chapter summarizes our key contributions

related to the framework of model optimization for individual and groupwise

parity of expected exposure.

• Chapter 7, based on [33, 34], looks at the application of neural IR beyond

ad hoc retrieval—to the query auto-completion (QAC) task. The ranking

task, in case of QAC, poses challenges that are different from those in query-

document or query-passage matching. In this chapter, we study two applica-

tions of deep models for QAC: (i) Recommending completions for rare query

prefixes and (ii) modeling query reformulations for session context-aware

QAC.

• Chapter 8 summarizes findings from our recent efforts on large-scale bench-

marking of deep neural IR methods at TREC [35]. The TREC Deep Learning

track [35, 36] provides a strict blind evaluation for IR methods that take ad-

vantage of large supervised training datasets, and have been instrumental in

demonstrating the superior retrieval quality for many recent neural methods

proposed by the research community.

28 Chapter 1. Introduction

• Finally, in Chapter 9, we conclude with a discussion on the future of neural

IR research. In this chapter, we reflect on the progress we have already made

as a field and provide some personal perspectives on the road ahead.

1.2 Evaluation tasks
We focus on text retrieval in IR, where the user enters a text query and the system

returns a ranked list of search results. Search results may be passages of text or

full text documents. The system’s goal is to rank the user’s preferred search results

at the top. This problem is a central one in the IR literature, with well-understood

challenges and solutions.

Text retrieval methods for full text documents and for short text passages have

application in ad hoc retrieval systems and question answering systems, respectively.

We describe these two tasks in this section.

1.2.1 Ad hoc retrieval

Ranked document retrieval is a classic problem in information retrieval, as in the

main task of the Text Retrieval Conference [37], and performed by commercial

search engines such as Google, Bing, Baidu, and Yandex. TREC tasks may offer a

choice of query length, ranging from a few terms to a few sentences, whereas search

engine queries tend to be at the shorter end of the range. In an operational search

engine, the retrieval system uses specialized index structures to search potentially

billions of documents. The results ranking is presented in a search engine results

page (SERP), with each result appearing as a summary and a hyperlink. The engine

can instrument the SERP, gathering implicit feedback on the quality of search results

such as click decisions and dwell times.

A ranking model can take a variety of input features. Some ranking features

may depend on the document alone, such as how popular the document is with users,

how many incoming links it has, or to what extent document seems problematic ac-

cording to a Web spam classifier. Other features depend on how the query matches

the text content of the document. Still more features match the query against docu-

ment metadata, such as referred text of incoming hyperlink anchors, or the text of

1.2. Evaluation tasks 29

queries from previous users that led to clicks on this document. Because anchors

and click queries are a succinct description of the document, they can be a useful

source of ranking evidence, but they are not always available. A newly created doc-

ument would not have much link or click text. Also, not every document is popular

enough to have past links and clicks, but it still may be the best search result for

a user’s rare or tail query. In such cases, when text metadata is unavailable, it is

crucial to estimate the document’s relevance primarily based on its text content.

In the text retrieval community, retrieving documents for short-text queries by

considering the long body text of the document is an important challenge. These

ad hoc retrieval tasks have been an important part of the Text REtrieval Conference

(TREC) [38], starting with the original tasks searching newswire and government

documents, and later with the Web track1 among others. The TREC participants

are provided a set of, say fifty, search queries and a document collection containing

500-700K newswire and other documents. Top ranked documents retrieved for each

query from the collection by different competing retrieval systems are assessed by

human annotators based on their relevance to the query. Given a query, the goal of

the IR model is to rank documents with better assessor ratings higher than the rest of

the documents in the collection. In Section 1.4, we describe standard IR metrics for

quantifying model performance given the ranked documents retrieved by the model

and the corresponding assessor judgments for a given query.

1.2.2 Question-answering

Question-answering tasks may range from choosing between multiple choices (typ-

ically entities or binary true-or-false decisions) [39–42] to ranking spans of text or

passages [43–47], and may even include synthesizing textual responses by gather-

ing evidence from one or more sources [48, 49]. TREC question-answering exper-

iments [43] has participating IR systems retrieve spans of text, rather than docu-

ments, in response to questions. IBM’s DeepQA [47] system—behind the Watson

project that famously demonstrated human-level performance on the American TV

quiz show, “Jeopardy!”—also has a primary search phase, whose goal is to find

1http://www10.wwwconference.org/cdrom/papers/317/node2.html

http://www10.wwwconference.org/cdrom/papers/317/node2.html

30 Chapter 1. Introduction

as many potentially answer-bearing passages of text as possible. With respect to

the question-answering task, the scope of this thesis is limited to ranking answer

containing passages in response to natural language questions or short query texts.

Retrieving short spans of text pose different challenges than ranking docu-

ments. Unlike the long body text of documents, single sentences or short passages

tend to be on point with respect to a single topic. However, answers often tend to use

different vocabulary than the one used to frame the question. For example, the span

of text that contains the answer to the question “what year was Martin Luther King

Jr. born?” may not contain the term “year”. However, the phrase “what year” im-

plies that the correct answer text should contain a year—such as ‘1929’ in this case.

Therefore, IR systems that focus on the question-answering task need to model the

patterns expected in the answer passage based on the intent of the question.

The focus of this thesis is on ad hoc retrieval, and to a lesser extent on question-

answering. However, neural approaches have shown interesting applications to

other existing retrieval scenarios, including query recommendation [50], mod-

elling diversity [51], modelling user click behaviours [52], entity ranking [53, 54],

knowledge-based IR [55], and even optimizing for multiple IR tasks [56]. In addi-

tion, recent trends suggest that advancements in deep neural networks methods are

also fuelling emerging IR scenarios such as proactive recommendations [57–59],

conversational IR [60, 61], and multi-modal retrieval [62]. Neural methods may

have an even bigger impact on some of these other IR tasks. To demonstrate that

neural methods are useful in IR—beyond the document and passage ranking tasks—

we also present, in this thesis, a brief study on employing deep models for the QAC

task in Chapter 7.

1.3 Notation
We adopt some common notation for this thesis shown in Table 1.1. We use lower-

case to denote vectors (e.g., x⃗) and upper-case for tensors of higher dimensions

(e.g., X). The ground truth relq(d) in Table 1.1 may be based on either manual

relevance annotations or be implicitly derived from user behaviour on SERP (e.g.,

1.4. Metrics 31

Table 1.1: Notation used in this thesis.

Meaning Notation

Single query q
Single document d
Set of queries Q
Collection of documents D
Term in query q tq
Term in document d td
Full vocabulary of all terms T
Set of ranked results retrieved for query q Rq
Result tuple (document d at rank i) ⟨i,d⟩, where ⟨i,d⟩ ∈ Rq
Relevance label of document d for query q relq(d)
di is more relevant than d j for query q relq(di)> relq(d j), or di ≻q d j

Frequency of term t in document d t f (t,d)
Number of documents that contain term t d f (t)
Vector representation of text z v⃗z
Probability function for an event E p(E)

from clicks).

1.4 Metrics

A large number of IR studies [63–70] have demonstrated that users of retrieval

systems tend to pay attention mostly to top-ranked results. IR metrics, therefore,

focus on rank-based comparisons of the retrieved result set R to an ideal ranking

of documents, as determined by manual judgments or implicit feedback from user

behaviour data. These metrics are typically computed at a rank position, say k, and

then averaged over all queries in the test set. Unless otherwise specified, R refers to

the top-k results retrieved by the model. Next, we describe a few standard metrics

used in IR evaluations.

Precision and recall Precision and recall both compute the fraction of relevant doc-

uments retrieved for a query q, but with respect to the total number of documents in

the retrieved set Rq and the total number of relevant documents in the collection D,

respectively. Both metrics assume that the relevance labels are binary.

32 Chapter 1. Introduction

Precisionq =
∑⟨i,d⟩∈Rq relq(d)

|Rq|
(1.1)

Recallq =
∑⟨i,d⟩∈Rq relq(d)

∑d∈D relq(d)
(1.2)

Mean reciprocal rank (MRR) Mean reciprocal rank [71] is also computed over

binary relevance judgments. It is given as the reciprocal rank of the first relevant

document averaged over all queries.

RRq = max
⟨i,d⟩∈Rq

relq(d)
i

(1.3)

Mean average precision (MAP) The average precision [72] for a ranked list of

documents R is given by,

AvePq =
∑⟨i,d⟩∈Rq Precisionq,i × relq(d)

∑d∈D relq(d)
(1.4)

Where, Precisionq,i is the precision computed at rank i for the query q. The average

precision metric is generally used when relevance judgments are binary, although

variants using graded judgments have also been proposed [73]. The mean of the

average precision over all queries gives the MAP score for the whole set.

Normalized discounted cumulative gain (NDCG) There are a few different vari-

ants of the discounted cumulative gain (DCGq) metric [74] which can be used when

graded relevance judgments are available for a query q—say, on a five-point scale

between zero to four. One incarnation of this metric is as follows.

DCGq = ∑
⟨i,d⟩∈Rq

gainq(d)
log2(i+1)

(1.5)

1.4. Metrics 33

The ideal DCG (IDCGq) is computed the same way but by assuming an ideal rank

order for the documents up to rank k. The normalized DCG (NDCGq) is then given

by,

NDCGq =
DCGq

IDCGq
(1.6)

Normalized cumulative gain (NCG) A metric related to NDCG but suitable for

evaluating the quality of retrieval for first stage candidate generation methods is

NCG—i.e., NDCG without the position discounting.

CGq = ∑
⟨i,d⟩∈Rq

gainq(d) (1.7)

NCGq =
CGq

ICGq
(1.8)

NCG has been employed in the literature [35, 36, 75] to measure how much relevant

items are recalled as part of candidate generation without paying attention to the

exact order in which the candidates appear in the retrieved set.

Chapter 2

Motivation

We expect a good retrieval system to exhibit certain general attributes. We highlight

some of them in this chapter. The design of any neural methods for IR should

be informed by these desired properties. We operationalize these intuitions later

in Chapters 4-7. In this chapter, we also introduce a general taxonomy of neural

approaches for document ranking by categorizing them based on the step of the

retrieval process they influence. This discussion on a general taxonomy should serve

as a common lens through which we can inspect both existing neural IR approaches

as well as the new deep neural ranking models described in the rest of this thesis.

2.1 Desiderata of IR models
For any IR system, the relevance of the retrieved items to the input query is of

foremost importance. But to evaluate the effectiveness of an IR system in isolation

without considering critical dimensions, such as the efficiency of the system or its

robustness to collections with different properties, can be tantamount to a theoretical

exercise without practical usefulness. An IR system mediates what information its

users are exposed to and consume. It is, therefore, also important to quantify and

limit any systematic disparity that the retrieval system may inadvertently cause with

respect to exposure of information artifacts of similar relevance, or their publishers.

These concerns not only serve as yard sticks for comparing the different neural and

non-neural approaches but also guide our model designs. Where appropriate, we

connect these motivations to our contributions in this area, some of which form the

36 Chapter 2. Motivation

basis for subsequent chapters in this thesis.

2.1.1 Semantic matching

Most traditional approaches to ad hoc retrieval count repetitions of the query terms

in the document text. Exact term matching between query and document text, while

simple, serves as a foundation for many IR systems. Different weighting and nor-

malization schemes over these counts leads to a variety of TF-IDF models, such

as BM25 [76]. However, by only inspecting the query terms the IR model ignores

all the evidence of aboutness from the rest of the document. So, when ranking

for the query “Australia” only the occurrences of “Australia” in the document are

considered—although the frequency of other terms like “Sydney” or “kangaroo”

may be highly informative. In the case of the query “what channel are the seahawks

on today”, the query term “channel” provides hints to the IR model to pay attention

to the occurrences of “ESPN” or “Sky Sports” in the document text—none of which

appears in the query itself.

For IR tasks, such as QAC, the lexical similarity between the input (e.g., the

query prefix) and candidate items (e.g., the possible completions) is minimal. In

such scenarios, understanding the relationship between the query prefix and suffix

requires going beyond inspecting lexical overlap.

Semantic understanding, however, goes further than mapping query terms to

document terms [77]. A good IR model may consider the terms “hot” and “warm”

related, as well as the terms “dog” and “puppy”—but must also distinguish that

a user who submits the query “hot dog” is not looking for a “warm puppy” [78].

At the more ambitious end of the spectrum, semantic understanding would involve

logical reasoning by the IR system—so for the query “concerts during SIGIR” it as-

sociates a specific edition of the conference (the upcoming one) and considers both

its location and dates when recommending concerts nearby during the correct week.

These examples motivate that IR models should have some latent representations of

intent as expressed by the query and of the different topics in the document text—so

that inexact matching can be performed that goes beyond lexical term counting.

2.1. Desiderata of IR models 37

●

●

●

●

● ●

● ● ●

●●

●●

●●●●●

●●●●

●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●

●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6

log10(query ID)

lo
g

1
0
(q

u
e
ry

 f
re

q
u
e
n
c
y
)

(a) Distribution of query impressions

●

●

● ●

● ●

●

●

●

●●

●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●

●

●

●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●

●

●

●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6

log10(document ID)

lo
g

1
0
(d

o
c
u
m

e
n
t
fr

e
q
u
e
n
c
y
)

(b) Distribution of document clicks

Figure 2.1: A Log-Log plot of frequency versus rank for query impressions and document
clicks in the AOL query logs [79]. The plots highlight that these quantities
follow a Zipfian distribution.

2.1.2 Robustness to rare inputs

Query frequencies in most IR tasks follow a Zipfian distribution [80] (see Fig-

ure 2.1). In the publicly available AOL query logs [79], for example, more than

70% of the distinct queries are seen only once in the period of three months from

which the queries are sampled. In the same dataset, more than 50% of the distinct

documents are clicked only once. A good IR method must be able to retrieve these

infrequently searched-for documents and perform reasonably well on queries con-

taining terms that appear extremely rarely, if ever, in its historical logs.

Many IR models that learn latent representations of text from data often naively

assume a fixed size vocabulary. These models perform poorly when the query con-

sists of terms rarely (or never) seen during training. Even if the model does not

assume a fixed vocabulary, the quality of the latent representations may depend

heavily on how often the terms under consideration appear in the training dataset.

Exact matching models, like BM25 [76], on the other hand can precisely retrieve

documents containing rare terms.

Semantic understanding in an IR model cannot come at the cost of poor re-

trieval performance on queries containing rare terms. When dealing with a query

such as “pekarovic land company” the IR model will benefit from considering exact

matches of the rare term “pekarovic”. In practice an IR model may need to effec-

tively trade-off exact and inexact matching for a query term. However, the decision

38 Chapter 2. Motivation

of when to perform exact matching can itself be informed by semantic understand-

ing of the context in which the terms appear in addition to the terms themselves.

2.1.3 Robustness to variable length text

Depending on the task, the IR system may be expected to retrieve documents, pas-

sages, or even short sequences consisting of only a few terms. The design of a re-

trieval model for long documents is likely to share some similarities to a passage or

short text retrieval system, but also be different to accommodate distinct challenges

associated with retrieving long text. For example, the challenge of vocabulary mis-

match, and hence the importance of semantic matching, may be amplified when

retrieving shorter text. On the other hand, when matching the query against longer

text, it may be more informative to consider the positions of the matches, than in the

case of short text matching. When specifically dealing with long text, the model’s

compute and memory requirements may be significantly higher and require careful

design choices for mitigation.

Typical text collections contain documents of varied lengths (see Figure 2.2).

Even when constrained to document retrieval, a good IR system must be able to deal

with documents of different lengths without over-retrieving either long or short doc-

uments. Relevant documents may also contain irrelevant sections, and the relevant

content may either be localized, or spread over multiple sections in the document.

Document length normalization is well-studied in the context of IR models (e.g.,

pivoted length normalization [81]), and this existing research should inform the de-

sign of any new IR models.

2.1.4 Efficiency

Efficiency is one of the salient points of any retrieval system. A typical commer-

cial Web search engine may deal with tens of thousands of queries per second1—

retrieving results for each query from an index containing billions of documents.

Search engines typically involve specialised data structures, such as inverted in-

dex, and large multi-tier architectures—and the retrieval process generally consists

1http://www.internetlivestats.com/one-second/#google-band

http://www.internetlivestats.com/one-second/#google-band

2.1. Desiderata of IR models 39

0−
10

K

10
−2

0K

20
−3

0K

30
−4

0K

40
−5

0K

50
−6

0K

60
−7

0K

70
−8

0K

80
−9

0K

90
−1

00
K

10
0−

11
0K

11
0−

12
0K

12
0−

13
0K

13
0−

14
0K

14
0−

15
0K

15
0−

16
0K

16
0−

17
0K

17
0−

18
0K

18
0−

19
0K

19
0−

21
0K

21
0−

22
0K

22
0−

24
0K

24
0−

25
0K

25
0−

26
0K

0
2
0
0

4
0
0

6
0
0

8
0
0

Page length in bytes

N
u
m

b
e
r

o
f
a
rt

ic
le

s

Figure 2.2: Distribution of document length (in bytes) of Wikipedia featured articles
as of June 30, 2014. Source: https://en.wikipedia.org/wiki/
Wikipedia:Featured_articles/By_length.

of multiple stages of pruning the candidate set of documents [82, 83]. The IR

model at the bottom of this telescoping setup may need to sift through billions of

documents—while the model at the top may only need to re-rank between tens of

promising documents. The retrieval approaches that are suitable at one level of the

stack may be highly impractical at a different step—models at the bottom need to

be fast but mostly focus on eliminating irrelevant or junk results, while models at

the top tend to develop more sophisticated notions of relevance, and focus on dis-

tinguishing between documents that are much closer on the relevance scale. So far,

much of the focus on neural IR approaches have been limited to re-ranking top-n

documents which considerably constrains the impact of these methods.

2.1.5 Parity of exposure

IR systems mediate what information its users are exposed to. Under presentation

bias, a static ranking may disproportionately distribute exposure between items of

similar relevance. Exposure optimization has, therefore, been proposed as a means

of achieving fairness in ranking for individuals [84] or groups defined by sensitive

attributes such as gender or race [85]. Stochastic ranking policies that optimize

for individual or group parity of exposure in expectation may be more appropriate

under these settings.

https://en.wikipedia.org/wiki/Wikipedia:Featured_articles/By_length
https://en.wikipedia.org/wiki/Wikipedia:Featured_articles/By_length

40 Chapter 2. Motivation

2.1.6 Sensitivity to context

Retrieval in the wild can leverage many implicit and explicit context information.

The query “weather” may refer to the weather in Seattle or in London depending

on where the user is located. An IR model may retrieve different results for the

query “decorations” depending on the current season. The query “giants match

highlights” may be better disambiguated if the system knows whether the user is

a fan of baseball or American football, whether she is located on the East or the

West coast of USA, or if the model has knowledge of recent sport fixtures. In con-

versational IR systems, the correct response to the question “When did she become

the prime minister?” would depend on disambiguating the correct entity based on

the context of references made in the previous turns of the conversation. In proac-

tive retrieval scenarios [86–89], the retrieval can even be triggered based solely on

implicit context without any explicit query submission from the user. Relevance

in many applications is, therefore, situated in the user and task context, and is an

important consideration in the design of IR systems.

2.1.7 Robustness to corpus variance

An interesting consideration for IR models is how well they perform on corpora

whose distributions are different from the data that the model was trained on. Mod-

els like BM25 [76] have very few parameters and often demonstrate reasonable

performance “out of the box” on new corpora with little or no additional tuning of

parameters. Supervised deep learning models containing millions (or even billions)

of parameters, on the other hand, are known to be more sensitive to distributional

differences between training and evaluation data, and have been shown to be espe-

cially vulnerable to adversarial inputs [90]. The application of unsupervised term

embeddings on collections and tasks that are different from the original data the rep-

resentations were trained on is common in the literature. While these can be seen as

examples of successful transfer learning, we also find evidence [91] that term em-

beddings trained on collections distributionally closer to the test samples perform

significantly better.

Some of the variances in performance of deep models on new corpora is offset

2.2. Designing neural models for IR 41

by better retrieval on the test corpus that is distributionally closer to the training

data, where the model may have picked up crucial corpus specific patterns. For

example, it may be understandable if a model that learns term representations based

on the text of Shakespeare’s Hamlet is effective at retrieving passages relevant to a

search query from The Bard’s other works, but performs poorly when the retrieval

task involves a corpus of song lyrics by Jay-Z. However, the poor performances on

new corpus can also be indicative that the model is overfitting, or suffering from the

Clever Hans2 effect [92]. For example, an IR model trained on recent news corpus

may learn to associate “Theresa May” with the query “uk prime minister” and as a

consequence may perform poorly on older TREC datasets where the connection to

“John Major” may be more appropriate.

ML models that are hyper-sensitive to corpus distributions may be vulnerable

when faced with unexpected changes in distributions in the test data. This can be

particularly problematic when the test distributions naturally evolve over time due

to underlying changes in the user population or behaviour. The models may need to

be re-trained periodically or designed to be invariant to such changes.

While this list of desired attributes of an IR model is in no way complete, it serves as

a reference for comparing many of the neural and non-neural approaches described

in the rest of this thesis.

2.2 Designing neural models for IR
In the previous section, we discuss several important desiderata of IR models. These

expectations inform the design of neural architectures described in this thesis.

Machine learning models—including neural networks—are employed for

learning to rank [20] in IR, as we discuss in Section 3.4. However, unlike traditional

LTR methods that depend on manually crafted features, the focus of our work is on

neural ranking models that accept raw text as input—and focus on learning latent

representations of text appropriate for the ranking task. Learning good representa-

tions of text is key to effective semantic matching in IR and is a key ingredient for

2https://en.wikipedia.org/wiki/Clever_Hans

https://en.wikipedia.org/wiki/Clever_Hans

42 Chapter 2. Motivation

all methods proposed in Chapters 4-7.

Section 2.1.2 highlights the importance of exact matching when dealing with

rare terms. In Chapter 4 and Section 7.1, we operationalize this intuition and demon-

strate that neural methods that combine lexical and semantic matching achive more

robustness to rare inputs for different retrieval tasks.

An important IR task, in the context of this thesis, is ranking documents that

may be hundreds of sentences long. As far as we are aware, the Duet model—

described in Chapter 4—is the first to consider deep neural network based repre-

sentation learning to rank documents. The different shift-invariant architectures

discussed in Section 3.5.2 may also be appropriate for dealing with documents of

different lengths. In more recent work [93], we have specifically emphasized on

the challenges of dealing with long document text and demonstrated that without

careful design neural models can under-retrieve longer documents.

In most real IR tasks—such as Web search—retrieval involves collections with

billions of documents. In traditional IR, efficient data structures such as inverted-

index [94] or prefix-trees [95] are commonly employed. When designing neural

ranking models, it is important to consider how they may interact with traditional

IR data structures, such as inverted index. In Chapter 5, We propose a strategy that

allows using deep networks—in combination with standard inverted index—to re-

trieve from the full collection using predominantly offline precomputation without

sacrificing fast query response time. We show that this strategy generalizes effec-

tively to several recent state-of-the-art deep architectures for IR.

The learning to rank literature has traditionally focused on generating static

rankings of items given user intent. In Chapter 6, we argue that stochastic ranking

policies are crucial when optimizing for fair distribution of exposure over items (or

groups of items) of similar relevance. We demonstrate that learning to rank models

can be trained towards exposure parity objectives.

Neural models can incorporate side-information on the task or user context.

In Section 7.2, we explore neural representation learning in the context of session

modeling for more effective QAC.

2.2. Designing neural models for IR 43

Generalizing neural models across different corpora continues to be an impor-

tant open problem. Neural models with large number of learnable parameters risk

overfitting to the distributions observed in the training data. These models may un-

derperform when the properties of the test dataset is significantly different from the

training corpus. While we do not discuss this particular topic in this thesis, we refer

the interested reader to our recent work [96, 97] related to regularization of neural

ranking models.

Chapter 3

Background

In this chapter, we introduce the fundamentals of neural IR, in context of traditional

retrieval research, with visual examples to illustrate key concepts and a consistent

mathematical notation for describing key models. Section 3.1 presents a survey of

IR models. Section 3.2 introduces neural and non-neural methods for learning term

embeddings, without the use of supervision from IR labels, and with a focus on the

notion of similarity. Section 3.3 surveys some specific approaches for incorporating

such embeddings in IR. Section 3.4 introduces supervised learning to rank mod-

els. Section 3.5 introduces the fundamentals of deep models—including standard

architectures and toolkits—before Section 3.6 surveys some specific approaches for

incorporating deep neural networks (DNNs) in IR.

3.1 IR Models

3.1.1 Traditional IR models

In this section, we introduce a few of the traditional IR approaches. The decades

of insights from these IR models not only inform the design of our new neural

based approaches, but these models also serve as important baselines for compari-

son. They also highlight the various desiderata that we expect the neural IR models

to incorporate.

BM25 There is a broad family of statistical functions in IR that consider the number

of occurrences of each query term in the document—i.e., term-frequency (TF)—and

the corresponding inverse document frequency (IDF) of the same terms in the full

46 Chapter 3. Background

collection (as an indicator of the informativeness of the term). One theoretical basis

for such formulations is the probabilistic model of IR that yielded the BM25 [76]

ranking function.

BM25(q,d) = ∑
tq∈q

id f (tq) ·
t f (tq,d) · (k1 +1)

t f (tq,d)+ k1 ·
(

1−b+b · |d|
avgdl

) (3.1)

Where, avgdl is the average length of documents in the collection D, and k1 and

b are parameters that are usually tuned on a validation dataset. In practice, k1 is

sometimes set to some default value in the range [1.2,2.0] and b as 0.75. The id f (t)

is computed as,

id f (t) = log
|D|−d f (t)+0.5

d f (t)+0.5
(3.2)

BM25 aggregates the contributions from individual terms but ignores any phrasal

or proximity signals between the occurrences of the different query terms in the

document. A variant of BM25 [98, 99] also considers documents as composed of

several fields (such as, title, body, and anchor texts).

Language modelling (LM) In the language modelling based approach [100–102],

documents are ranked by the posterior probability p(d|q).

p(d|q) = p(q|d).p(d)
∑d̄∈D p(q|d̄).p(d̄)

(3.3)

∝ p(q|d).p(d) (3.4)

= p(q|d) , assuming p(d) is uniform (3.5)

= ∏
tq∈q

p(tq|d) (3.6)

p̂(E) is the maximum likelihood estimate (MLE) of the probability of event E , and

p(q|d) indicates the probability of generating query q by randomly sampling terms

3.1. IR Models 47

from document d. In its simplest form, we can estimate p(tq|d) by,

p(tq|d) =
t f (tq,d)

|d|
(3.7)

However, most formulations of language modelling based retrieval typically employ

some form of smoothing [102] by sampling terms from both the document d and

the full collection D. The two common smoothing methods are:

1. Jelinek-Mercer smoothing [103]

p(tq|d) =
(

λ
t f (tq,d)

|d|
+(1−λ)∑d̄∈D t f (tq, d̄)

∑d̄∈D |d̄|

)
(3.8)

2. Dirichlet Prior Smoothing [104]

p(tq|d) =
(

t f (tq,d)+µ ∑d̄∈D t f (tq, d̄)

∑d̄∈D |d̄|

)
/

(
|d|+µ

)
(3.9)

Both TF-IDF and language modelling based approaches estimate document rele-

vance based on the count of only the query terms in the document. The position of

these occurrences and the relationship with other terms in the document are ignored.

Translation models Berger and Lafferty [105] proposed an alternative method to

estimate p(tq|d) in the language modelling based IR approach (Equation 3.6), by

assuming that the query q is being generated via a “translation” process from the

document d.

p(tq|d) = ∑
td∈d

p(tq|td) · p(td|d) (3.10)

The p(tq|td) component allows the model to garner evidence of relevance from non-

query terms in the document. Berger and Lafferty [105] propose to estimate p(tq|td)

from query-document paired data similar to techniques in statistical machine transla-

tion [106, 107]—but other approaches for estimation have also been explored [108].

48 Chapter 3. Background

Dependence model None of the three IR models described so far consider proxim-

ity between query terms. To address this, Metzler and Croft [109] proposed a linear

model over proximity-based features.

DM(q,d) = (1−λow −λuw) ∑
tq∈q

log

(
(1−αd)

t f (tq,d)
|d|

+αd
∑d̄∈D t f (tq, d̄)

∑d̄∈D |d̄|

)

+λow ∑
cq∈ow(q)

log

(
(1−αd)

t f#1(cq,d)
|d|

+αd
∑d̄∈D t f#1(cq, d̄)

∑d̄∈D |d̄|

)

+λuw ∑
cq∈uw(q)

log

(
(1−αd)

t f#uwN(cq,d)
|d|

+αd
∑d̄∈D t f#uwN(cq, d̄)

∑d̄∈D |d̄|

) (3.11)

Where, ow(q) and uw(q) are the set of all contiguous n-grams (or phrases) and the

set of all bags of terms that can be generated from query q. t f#1 and t f#uwN are the

ordered-window and unordered-window operators from Indri [110]. Finally, λow

and λuw are the tuneable parameters of the model.

Pseudo relevance feedback (PRF) PRF-based methods—e.g., Relevance Models

(RM) [111, 112]—typically demonstrate strong performance at the cost of executing

an additional round of retrieval. The set of ranked documents R1 from the first round

of retrieval is used to select expansion terms to augment the query which is used to

retrieve a new ranked set of documents R2 that is presented to the user.

The underlying approach to scoring a document in RM is by computing the KL

divergence [113] between the query language model θq and the document language

model θd .

score(q,d) =− ∑
t∈T

p(t|θq)log
p(t|θq)

p(t|θd)
(3.12)

Without PRF,

p(t|θq) =
t f (t,q)
|q|

(3.13)

3.1. IR Models 49

query text

generate query
representation

doc text

generate doc
representation

estimate relevance

query
vector

doc
vector

point of query
representation

point of match

point of doc
representation

Figure 3.1: Document ranking typically involves a query and a document representation
steps, followed by a matching stage. Neural models can be useful either for
generating good representations or in estimating relevance, or both.

But under the RM3 [114] formulation the new query language model θ̄q is estimated

by,

p(t|θ̄q) = α
t f (t,q)
|q|

+(1−α) ∑
d∈R1

p(t|θd)p(d)∏̄
t∈q

p(t̄|θd) (3.14)

Besides language models, PRF based query expansion has also been explored in

the context of other retrieval approaches (e.g., [115, 116]). By expanding the query

using the results from the first round of retrieval PRF based approaches tend to be

more robust to the vocabulary mismatch problem plaguing many other traditional

IR methods.

3.1.2 Anatomy of neural IR models

Document ranking comprises of performing three primary steps—generate a repre-

sentation of the query that specifies the information need, generate a representation

of the document that captures the distribution over the information contained, and

match the query and the document representations to estimate their mutual rele-

50 Chapter 3. Background

query text doc text

generate manually designed features

deep neural network for matching

(a) Learning to rank using manually designed
features (e.g., Liu [20])

query text

generate query

term vector

doc text

generate doc

term vector

generate matching patterns

query

term vector

doc

term vector

deep neural network for matching

(b) Estimating relevance from patterns of exact
matches (e.g., [117])

query text

generate query

embedding

doc text

generate doc

embedding

cosine similarity

query

embedding

doc

embedding

(c) Learning query and document representations
for matching (e.g., [118, 119])

query text

query expansion

using embeddings

doc text

generate doc

term vector

query likelihood

query

term vector

doc

term vector

(d) Query expansion using neural embeddings
(e.g., [91, 120])

Figure 3.2: Examples of different neural approaches to IR. In (a) and (b) the neural network
is only used at the point of matching, whereas in (c) the focus is on learning ef-
fective representations of text using neural methods. Neural models can also be
used to expand or augment the query before applying traditional IR techniques,
as shown in (d).

3.2. Unsupervised learning of term representations 51

vance. All existing neural approaches to IR can be broadly categorized based on

whether they influence the query representation, the document representation, or in

estimating relevance. A neural approach may impact one or more of these stages

shown in Figure 3.1.

Neural networks are useful as learning to rank models as we will discuss in Sec-

tion 3.4. In these models, a joint representation of query and document is generated

using manually designed features and the neural network is used only at the point

of match to estimate relevance, as shown in Figure 3.2a. In Section 3.6.4, we will

discuss DNN models, such as [21, 117], that estimate relevance based on patterns

of exact query term matches in the document. Unlike traditional learning to rank

models, however, these architectures (shown in Figure 3.2b) depend less on manual

feature engineering and more on automatically detecting regularities in good match-

ing patterns. More recent deep learning methods, such as [121], consume query and

document as single concatenated sequence of terms, instead of representing them

as separate term vectors.

In contrast, many (shallow and deep) neural IR models depend on learning

useful low-dimensional vector representations—or embeddings—of query and doc-

ument text, and using them within traditional IR models or in conjunction with sim-

ple similarity metrics (e.g., cosine similarity). These models shown in Figure 3.2c

may learn the embeddings by optimizing directly for the IR task (e.g., [118]), or

in an unsupervised setting (e.g., [119]). Finally, Figure 3.2d shows IR approaches

where the neural models are used for query expansion [91, 120].

While the taxonomy of neural approaches described in this section is rather

simple, it does provide an intuitive framework for comparing the different neural

approaches in IR and highlights the similarities and distinctions between these dif-

ferent techniques.

52 Chapter 3. Background

banana

mango

dog

(a) Local representation

banana

mango

dog

fruit elongate ovatebarks has tail

(b) Distributed representation

Figure 3.3: Under local representations the terms “banana”, “mango”, and “dog” are dis-
tinct items. But distributed vector representations may recognize that “banana”
and “mango” are both fruits, but “dog” is different.

3.2 Unsupervised learning of term representations

3.2.1 A tale of two representations

Vector representations are fundamental to both information retrieval and machine

learning. In IR, terms are typically the smallest unit of representation for index-

ing and retrieval. Therefore, many IR models—both non-neural and neural—focus

on learning good vector representations of terms. Different vector representations

exhibit different levels of generalization—some consider every term as a distinct

entity while others learn to identify common attributes. Different representation

schemes derive different notions of similarity between terms from the definition of

the corresponding vector spaces. Some representations operate over fixed-size vo-

cabularies, while the design of others obviate such constraints. They also differ on

the properties of compositionality that defines how representations for larger units

of information, such as passages and documents, can be derived from individual

term vectors. These are some of the important considerations for choosing a term

representation suitable for a specific task.

Local representations Under local (or one-hot) representations, every term in a

fixed size vocabulary T is represented by a binary vector v⃗ ∈ {0,1}|T |, where only

one of the values in the vector is one and all the others are set to zero. Each position

in the vector v⃗ corresponds to a term. The term “banana”, under this representation,

is given by a vector that has the value one in the position corresponding to “banana”

and zero everywhere else. Similarly, the terms “mango” and “dog” are represented

by setting different positions in the vector to one. Figure 3.3a highlights that under

this scheme each term is a unique entity, and “banana” is as distinct from “dog” as

3.2. Unsupervised learning of term representations 53

banana

Doc 8Doc 3 Doc 12

(a) In-document features

banana

likeflies afruit

(b) Neighbouring-term features

banana

fruit-4 a-1flies-3 like-2 fruit+1

(c) Neighbouring-term w/ distance features

banana

nan#ba anana# ban

(d) Character-trigraph features

Figure 3.4: Examples of different feature-based distributed representations of the term “ba-
nana”. The representations in (a), (b), and (c) are based on external contexts
in which the term frequently occurs, while (d) is based on properties intrinsic
to the term. The representation scheme in (a) depends on the documents con-
taining the term while the scheme shown in (b) and (c) depends on other terms
that appears in its neighbourhood. The scheme (b) ignores inter-term distances.
Therefore, in the sentence “Time flies like an arrow; fruit flies like a banana”,
the feature “fruit” describes both the terms “banana” and “arrow”. However, in
the representation scheme of (c) the feature “fruit−4” is positive for “banana”,
and the feature “fruit+1” for “arrow”.

it is from “mango”. Terms outside of the vocabulary either have no representation

or are denoted by a special “UNK” symbol under this scheme.

Distributed representations Under distributed representations every term is rep-

resented by a vector v⃗ ∈ R|k|. v⃗ can be a sparse or a dense vector—a vector of

hand-crafted features or a latent representation in which the individual dimensions

are not interpretable in isolation. The key underlying hypothesis for any distributed

representation scheme, however, is that by representing a term by its attributes al-

lows for defining some notion of similarity between the different terms based on the

chosen properties. For example, in Figure 3.3b “banana” is more similar to “mango”

than “dog” because they are both fruits, but yet different because of other properties

that are not shared between the two, such as shape.

A key consideration in any feature based distributed representation is the

54 Chapter 3. Background

choice of the features themselves. One approach involves representing terms by

features that capture their distributional properties. This is motivated by the dis-

tributional hypothesis [122] that states that terms that are used (or occur) in sim-

ilar context tend to be semantically similar. Firth [123] famously purported this

idea of distributional semantics1 by stating “a word is characterized by the com-

pany it keeps”. However, the distribution of different types of context may model

different semantics of a term. Figure 3.4 shows three different sparse vector rep-

resentations of the term “banana” corresponding to different distributional feature

spaces—documents containing the term (e.g., LSA [124]), neighbouring terms in a

window (e.g., HAL [125], COALS [126], and [127]), and neighbouring terms with

distance (e.g., [128]). Finally, Figure 3.4d shows a vector representation of “banana”

based on the character trigraphs in the term itself—instead of external contexts in

which the term occurs. In Section 3.2.2 we will discuss how choosing different

distributional features for term representation leads to different nuanced notions of

semantic similarity between them. When the vectors are high-dimensional, sparse,

and based on observable features we refer to them as observed (or explicit) vector

representations [128]. When the vectors are dense, small (k ≪ |T |), and learnt from

data then we instead refer to them as latent vector spaces, or embeddings. In both

observed and latent vector spaces, several distance metrics can be used to define the

similarity between terms, although cosine similarity is commonly used.

sim(⃗vi, v⃗ j) = cos(⃗vi, v⃗ j) =
v⃗ ⊺

i v⃗ j

∥⃗vi∥∥⃗v j∥
(3.15)

Most embeddings are learnt from observed features, and hence the discussions in

Section 3.2.2 about different notions of similarity are also relevant to the embedding

models. In Section 3.2.3 and Section 3.2.4 we discuss observed and latent space rep-

resentations. In the context of neural models, distributed representations generally

1Readers should take note that while many distributed representations take advantage of distribu-
tional properties, the two concepts are not synonymous. A term can have a distributed representation
based on non-distributional features—e.g., parts of speech classification and character trigraphs in
the term.

3.2. Unsupervised learning of term representations 55

banana

mango
dog

Figure 3.5: A vector space representation of terms puts “banana” closer to “mango” be-
cause they share more common attributes than “banana” and “dog”.

refer to learnt embeddings. The idea of ‘local’ and ‘distributed’ representations has

a specific significance in the context of neural networks. Each concept, entity, or

term can be represented within a neural network by the activation of a single neuron

(local representation) or by the combined pattern of activations of several neurons

(distributed representation) [129].

Finally, with respect to compositionality, it is important to understand that dis-

tributed representations of items are often derived from local or distributed repre-

sentation of its parts. For example, a document can be represented by the sum of

the one-hot vectors or embeddings corresponding to the terms in the document. The

resultant vector, in both cases, corresponds to a distributed bag-of-terms represen-

tation. Similarly, the character trigraph representation of terms in Figure 3.4d is

simply an aggregation over the one-hot representations of the constituent trigraphs.

3.2.2 Notions of similarity

Any vector representation inherently defines some notion of relatedness between

terms. Is “Seattle” closer to “Sydney” or to “Seahawks”? The answer depends on

the type of relationship we are interested in. If we want terms of similar type to

be closer, then “Sydney” is more similar to “Seattle” because they are both cities.

However, if we are interested to find terms that co-occur in the same document or

passage, then “Seahawks”—Seattle’s football team—should be closer. The former

represents a typical, or type-based notion of similarity while the latter exhibits a

56 Chapter 3. Background

Table 3.1: A toy corpus of short documents that we consider for the discussion on different
notions of similarity between terms under different distributed representations.
The choice of the feature space that is used for generating the distributed rep-
resentation determines which terms are closer in the vector space, as shown in
Figure 3.6.

Sample documents

doc 01 Seattle map doc 09 Denver map
doc 02 Seattle weather doc 10 Denver weather
doc 03 Seahawks jerseys doc 11 Broncos jerseys
doc 04 Seahawks highlights doc 12 Broncos highlights
doc 05 Seattle Seahawks Wilson doc 13 Denver Broncos Lynch
doc 06 Seattle Seahawks Sherman doc 14 Denver Broncos Sanchez
doc 07 Seattle Seahawks Browner doc 15 Denver Broncos Miller
doc 08 Seattle Seahawks Ifedi doc 16 Denver Broncos Marshall

more topical sense of relatedness.

If we want to compare “Seattle” with “Sydney” and “Seahawks based on their

respective vector representations, then the underlying feature space needs to align

with the notion of similarity that we are interested in. It is, therefore, important

for the readers to build an intuition about the choice of features and the notion of

similarity they encompass. This can be demonstrated by using a toy corpus, such as

the one in Table 3.1. Figure 3.6a shows that the “in documents” features naturally

lend to a topical sense of similarity between the terms, while the “neighbouring

terms with distances” features in Figure 3.6c gives rise to a more typical notion of

relatedness. Using “neighbouring terms” without the inter-term distances as fea-

tures, however, produces a mixture of topical and typical relationships. This is

because when the term distances (denoted as superscripts) are considered in the fea-

ture definition then the document “Seattle Seahawks Wilson” produces the bag-of-

features {Seahawks+1,Wilson+2} for “Seattle” which is non-overlapping with the

bag-of-features {Seattle−1,Wilson+1} for “Seahawks”. However, when the feature

definition ignores the term-distances then there is a partial overlap between the bag-

of-features {Seahawks,Wilson} and {Seattle,Wilson} corresponding to “Seattle”

and “Seahawks”, respectively. The overlap increases when a larger window-size

over the neighbouring terms is employed pushing the notion of similarity closer to

3.2. Unsupervised learning of term representations 57

a topical definition. This effect of the windows size on the latent vector space was

reported by Levy and Goldberg [130] in the context of term embeddings.

Readers should note that the set of all inter-term relationships goes beyond the

two notions of typical and topical that we discuss in this section. For example, vec-

tor representations could cluster terms closer based on linguistic styles—e.g., terms

that appear in thriller novels versus in children’s rhymes, or in British versus Amer-

ican English. However, the notions of typical and topical similarities frequently

come up in discussions in the context of many IR and NLP tasks—sometimes under

different names such as Paradigmatic and Syntagmatic relations2 [132–135]—and

the idea itself goes back at least as far as Saussure [136–139].

3.2.3 Observed feature spaces

Observed feature space representations can be broadly categorized based on their

choice of distributional features (e.g., in documents, neighbouring terms with or

without distances, etc.) and different weighting schemes (e.g., TF-IDF, positive

pointwise mutual information, etc.) applied over the raw counts. We direct the

readers to [140, 141] which are good surveys of many existing observed vector

representation schemes.

Levy et al. [128] demonstrated that explicit vector representations are

amenable to the term analogy task using simple vector operations. A term anal-

ogy task involves answering questions of the form “man is to woman as king is to

____?”—the correct answer to which in this case happens to be “queen”. In NLP,

term analogies are typically performed by simple vector operations of the following

form followed by a nearest-neighbour search,

v⃗Seahawks − v⃗Seattle + v⃗Denver ≈ v⃗Broncos (3.16)

2Interestingly, the notion of Paradigmatic (typical) and Syntagmatic (topical) relationships show
up almost universally—not just in text. In vision, for example, the different images of “nose” are
typically similar to each other, while sharing topical relationship with images of “eyes” and “ears”.
Curiously, Barthes [131] extended the analogy to garments. Paradigmatic relationships exist between
items of the same type (e.g., different style of boots) and the proper Syntagmatic juxtaposition of
items from these different Paradigms—from hats to boots—forms a fashionable ensemble.

58 Chapter 3. Background

Seahawks

Denver

Broncos

Doc 02

Doc 01

Seattle

Doc 04

Doc 03

Doc 06

Doc 05

Doc 08

Doc 07

Doc 10

Doc 09

Doc 12

Doc 11

Doc 14

Doc 13

Doc 16

Doc 15

(a) “In-documents” features

Seahawks

Denver

Broncos

Denver

Seattle

Seattle

Broncos

Seahawks

weather

map

highlights

jerseys

Sherman

Wilson

Ifedi

Browner

Sanchez

Lynch

Marshall

Miller

(b) “Neighbouring terms” features

Seahawks

Denver

Broncos

Denver-1
Seattle-1

Seattle

Broncos+1
Seahawks+1

weather+1
map+1

highlights+1
jerseys+1

Wilson+2
Wilson+1

Sherman+2
Sherman+1

Browner+2
Browner+1

Ifedi+2
Ifedi+1

Lynch+2
Lynch+1

Sanchez+2
Sanchez+1

Miller+2
Miller+1

Marshall+2
Marshall+1

(c) “Neighbouring terms w/ distances” features

Figure 3.6: The figure shows different distributed representations for the four terms—
”Seattle”, “Seahawks”, “Denver”, and “Broncos”—based on the toy corpus in
Table 3.1. Shaded circles indicate non-zero values in the vectors—the darker
shade highlights the vector dimensions where more than one vector has a non-
zero value. When the representation is based on the documents that the terms
occur in then “Seattle” is more similar to “Seahawks” than to “Denver”. The
representation scheme in (a) is, therefore, more aligned with a topical no-
tion of similarity. In contrast, in (c) each term is represented by a vector of
neighbouring terms—where the distances between the terms are taken into
consideration—which puts “Seattle” closer to “Denver” demonstrating a typ-
ical, or type-based, similarity. When the inter-term distances are ignored, as
in (b), a mix of typical and topical similarities is observed. Finally, it is worth
noting that neighbouring-terms based vector representations leads to similari-
ties between terms that do not necessarily occur in the same document, and
hence the term-term relationships are less sparse than when only in-document
features are considered.

3.2. Unsupervised learning of term representations 59

Seahawks

Denver

Broncos

Seattle

Seahawks – Seattle + Denver

Denver

Seattle

Broncos

Seahawks

weather

map

highlights

jerseys

Sherman

Wilson

Ifedi

Browner

Sanchez

Lynch

Marshall

Miller

Figure 3.7: A visual demonstration of term analogies via simple vector algebra. The shaded
circles denote non-zero values. Darker shade is used to highlight the non-zero
values along the vector dimensions for which the output of v⃗Seahawks − v⃗Seattle +
v⃗Denver is positive. The output vector is closest to v⃗Broncos as shown in this toy
example.

It may be surprising to some readers that the vector obtained by the simple algebraic

operations v⃗Seahawks− v⃗Seattle+ v⃗Denver produces a vector close to the vector v⃗Broncos.

We present a visual intuition of why this works in practice in Figure 3.7, but we

refer the readers to [128, 142] for a more rigorous mathematical handling of this

subject.

3.2.4 Embeddings

While observed vector spaces based on distributional features can capture interest-

ing relationships between terms, they have one big drawback—the resultant repre-

sentations are highly sparse and high-dimensional. The number of dimensions, for

example, may be the same as the vocabulary size, which is unwieldy for most prac-

tical tasks. An alternative is to learn lower dimensional representations that retains

useful attributes from the observed feature spaces.

An embedding is a representation of items in a new space such that the

properties of—and the relationships between—the items are preserved. Goodfel-

low et al. [143] articulate that the goal of an embedding is to generate a simpler

representation—where simplification may mean a reduction in the number of di-

mensions, a decrease in the sparseness of the representation, disentangling the prin-

ciple components of the vector space, or a combination of these goals. In the

context of term embeddings, the explicit feature vectors—like those discussed in

60 Chapter 3. Background

Section 3.2.3—constitutes the original representation. An embedding trained from

these features assimilate the properties of the terms and the inter-term relationships

observable in the original feature space.

Common approaches for learning embeddings include either factorizing the

term-feature matrix (e.g.LSA [124]) or using gradient descent based methods that

try to predict the features given the term (e.g., [144, 145]). Baroni et al. [146] empir-

ically demonstrate that these feature-predicting models that learn lower dimensional

representations, in fact, also perform better than explicit counting based models on

different tasks—possibly due to better generalization across terms—although some

counter evidence the claim of better performances from embedding models have

also been reported in the literature [147].

The sparse feature spaces of Section 3.2.3 are easier to visualize and leads

to more intuitive explanations—while their latent counterparts may be more prac-

tically useful. Therefore, it may be useful to think sparse, but act dense in many

scenarios. In the rest of this section, we will describe some of these neural and

non-neural latent space models.

Latent Semantic Analysis (LSA) LSA [124] involves performing singular value

decomposition (SVD) [148] on a term-document (or term-passage) matrix X to ob-

tain its low-rank approximation [149]. SVD on X involves solving X =UΣV T ,

where U and V are orthogonal matrices and Σ is a diagonal matrix.3

X U Σ V⊺

(d⃗ j) (d⃗ j)

↓ ↓

(⃗t ⊺i)→



x1,1 . . . x1,|D|

...
. . .

...

x|T |,1 . . . x|T |,|D|


= (⃗t ⊺i)→




u⃗1


. . .


u⃗l




·


σ1 . . . 0
...

. . .
...

0 . . . σl

 ·



[
v⃗1

]
...[
v⃗l

]


(3.17)

3The matrix visualization is taken from https://en.wikipedia.org/wiki/Latent_
semantic_analysis.

https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Latent_semantic_analysis

3.2. Unsupervised learning of term representations 61

σ1, . . . ,σl , u⃗1, . . . , u⃗l , and v⃗1, . . . , v⃗l are the singular values, and the left and the right

singular vectors, respectively. The k largest singular values—and corresponding

singular vectors from U and V —is the rank k approximation of X (Xk = UkΣkV T
k)

and Σk⃗ti is the embedding for the ith term.

While LSA operate on a term-document matrix, matrix factorization based

approaches can also be applied to term-term matrices [126, 150, 151].

Probabilistic Latent Semantic Analysis (PLSA) PLSA [152] learns low-

dimensional representations of terms and documents by modelling their co-

occurrence p(t,d) as follows,

p(t,d) = p(d) ∑
c∈C

p(c|d)P(t|c) (3.18)

Where, C is the set of latent topics—and the number of topics |C| is a hyperparame-

ter of the model. Both p(c|d) and P(t|c) are modelled as multinomial distributions

and their parameters are typically learned using the EM algorithm [153]. After

learning the parameters of the model, a term ti can be represented as a distribution

over the latent topics [p(c0|ti), . . . , p(c|C|−1|ti)]. In a related approach called Latent

Dirichlet Allocation (LDA) [154], each document is represented by a Dirichlet prior

instead of a fixed variable.

Neural term embedding models are typically trained by setting up a predic-

tion task. Instead of factorizing the term-feature matrix—as in LSA—neural mod-

els are trained to predict the term from its features. The model learns dense low-

dimensional representations in the process of minimizing the prediction error. These

approaches are based on the information bottleneck method [155]—discussed more

in Section 3.5.2—with the low-dimensional representations acting as the bottleneck.

The training data may contain many instances of the same term-feature pair propor-

tional to their frequency in the corpus (e.g., word2vec [145]), or their counts can be

pre-aggregated (e.g., GloVe [156]).

62 Chapter 3. Background

Win Wout

ti ti+j

(a) Skip-gram

Win
Wout

t i
+
2

t i
+
1

t i
-
2

t i
-
1

t
i*

t
i

(b) Continuous bag-of-words (CBOW)

Figure 3.8: The (a) skip-gram and the (b) continuous bag-of-words (CBOW) architectures
of word2vec. The architecture is a neural network with a single hidden layer
whose size is much smaller than that of the input and the output layers. Both
models use one-hot representations of terms in the input and the output. The
learnable parameters of the model comprise of the two weight matrices Win and
Wout that corresponds to the embeddings the model learns for the input and the
output terms, respectively. The skip-gram model trains by minimizing the error
in predicting a term given one of its neighbours. The CBOW model, in contrast,
predicts a term from a bag of its neighbouring terms.

3.2. Unsupervised learning of term representations 63

Word2vec For word2vec [145, 157–160], the features for a term are made up of its

neighbours within a fixed size window over the text. The skip-gram architecture

(see Figure 3.8a) is a simple one hidden layer neural network. Both the input and

the output of the model are one-hot vectors and the loss function is as follows,

Lskip−gram =− 1
|S|

|S|

∑
i=1

∑
−c≤ j≤+c, j ̸=0

log(p(ti+ j|ti)) (3.19)

where, p(ti+ j|ti) =
exp((Wout⃗vti+ j)

⊺(Win⃗vti))

∑|T |
k=1 exp((Wout⃗vtk)

⊺(Win⃗vti))
(3.20)

S is the set of all windows over the training text and c is the number of neighbours

we want to predict on either side of the term ti. The denominator for the softmax

function for computing p(ti+ j|ti) sums over all the terms in the vocabulary. This

is prohibitively costly and in practice either hierarchical-softmax [161] or negative

sampling is employed, which we discuss more in Section 3.4.2. Note that the model

has two different weight matrices Win and Wout that constitute the learnable parame-

ters of the models. Win gives us the IN embeddings corresponding to the input terms

and Wout corresponds to the OUT embeddings for the output terms. Generally, only

Win is used and Wout is discarded after training. We discuss an IR application that

makes use of both the IN and the OUT embeddings in Section 3.3.1.

The continuous bag-of-words (CBOW) architecture (see Figure 3.8b) is similar

to the skip-gram model, except that the task is to predict the middle term given all

the neighbouring terms in the window. The CBOW model creates a single training

sample with the sum of the one-hot vectors of the neighbouring terms as input and

the one-hot vector v⃗ti—corresponding to the middle term—as the expected output.

Contrast this with the skip-gram model that creates 2× c samples by individually

pairing each neighbouring term with the middle term. During training, the skip-

gram model trains slower than the CBOW model [145] because it creates more

training samples from the same windows of text.

64 Chapter 3. Background

LCBOW =− 1
|S|

|S|

∑
i=1

log(p(ti|ti−c, . . . , ti−1, ti+1, . . . , ti+c)) (3.21)

Word2vec gained particular popularity for its ability to perform term analogies using

simple vector algebra, similar to what we discussed in Section 3.2.3. For domains

where the interpretability of the embeddings is important, Sun et al. [162] intro-

duced an additional constraint in the loss function to encourage more sparseness in

the learnt representations.

Lsparse−CBOW = Lsparse−CBOW −λ ∑
t∈T

∥⃗vt∥1 (3.22)

GloVe The skip-gram model trains on individual term-neighbour pairs. If we aggre-

gate all the training samples such that xi j is the frequency of the pair ⟨ti, t j⟩ in the

training data, then the loss function changes to,

Lskip−gram =−
|T |

∑
i=1

|T |

∑
j=1

xi jlog(p(t j|ti)) (3.23)

=−
|T |

∑
i=1

xi

|T |

∑
j=1

xi j

xi
log(p(t j|ti)) (3.24)

=−
|T |

∑
i=1

xi

|T |

∑
j=1

p̄(t j|ti)log(p(t j|ti)) (3.25)

=
|T |

∑
i=1

xiH(p̄(t j|ti), p(t j|ti)) (3.26)

H(. . .) is the cross-entropy error between the actual co-occurrence probability

p̄(t j|ti) and the one predicted by the model p(t j|ti). This is similar to the loss func-

tion for GloVe [156] if we replace the cross-entropy error with a squared-error and

apply a saturation function f (. . .) over the actual co-occurrence frequencies.

3.3. Term embeddings for IR 65

LGloVe =−
|T |

∑
i=1

|T |

∑
j=1

f (xi j)(log(xi j − v⃗ ⊺
wi⃗

vw j))
2 (3.27)

(3.28)

where,

f (x) =

(x/xmax)
α , ifx ≤ xmax

1, otherwise
(3.29)

GloVe is trained using AdaGrad [163]. Similar to word2vec, GloVe also generates

two different (IN and OUT) embeddings, but unlike word2vec it generally uses

the sum of the IN and the OUT vectors as the embedding for each term in the

vocabulary.

Paragraph2vec Following the popularity of word2vec [145, 157], similar neural

architectures [135, 164–168] have been proposed that trains on term-document co-

occurrences. The training typically involves predicting a term given the ID of a

document or a passage that contains the term. In some variants, as shown in Fig-

ure 3.9, neighbouring terms are also provided as input. The key motivation for

training on term-document pairs is to learn an embedding that is more aligned with

a topical notion of term-term similarity—which is often more appropriate for IR

tasks. The term-document relationship, however, tends to be more sparse [169]—

including neighbouring term features may compensate for some of that sparsity. In

the context of IR tasks, Ai et al. [167, 168] proposed a number of IR-motivated

changes to the original Paragraph2vec [164] model training—including, document

frequency based negative sampling and document length based regularization.

3.3 Term embeddings for IR

Traditional IR models use local representations of terms for query-document match-

ing. The most straight-forward use case for term embeddings in IR is to enable

66 Chapter 3. Background

Wd,in Wt,out

dj ti

ti+2ti+1ti-2 ti-1

Wt,in

Figure 3.9: The paragraph2vec architecture as proposed by Le and Mikolov [164] trains
by predicting a term given a document (or passage) ID containing the term.
By trying to minimize the prediction error, the model learns an embedding for
the term as well as for the document. In some variants of the architecture,
optionally the neighbouring terms are also provided as input—as shown in the
dotted box.

inexact matching in the embedding space. In Section 2.1, we argued the importance

of inspecting non-query terms in the document for garnering evidence of relevance.

For example, even from a shallow manual inspection, it is possible to conclude that

the passage in Figure 3.10a is about Albuquerque because it contains “metropoli-

tan”, “population”, and “area” among other informative terms. On the other hand,

the passage in Figure 3.10b contains “simulator”, “interpreter”, and “Altair” which

suggest that the passage is instead more likely related to computers and technology.

In traditional term counting based IR approaches these signals are often ignored.

Unsupervised term embeddings can be incorporated into existing IR ap-

proaches for inexact matching. These approaches can be broadly categorized as

those that compare the query with the document directly in the embedding space;

3.3. Term embeddings for IR 67

Albuquerque is the most populous city in the U.S. state of New Mexico. The
high-altitude city serves as the county seat of Bernalillo County, and it is sit-
uated in the central part of the state, straddling the Rio Grande. The city pop-
ulation is 557,169 as of the July 1, 2014 population estimate from the United
States Census Bureau, and ranks as the 32nd-largest city in the U.S. The Al-
buquerque metropolitan statistical area (or MSA) has a population of 907,301
according to the United States Census Bureau’s most recently available esti-
mate for 2015.

(a) About Albuquerque
Allen suggested that they could program a BASIC interpreter for the device;
after a call from Gates claiming to have a working interpreter, MITS requested
a demonstration. Since they didn’t actually have one, Allen worked on a sim-
ulator for the Altair while Gates developed the interpreter. Although they de-
veloped the interpreter on a simulator and not the actual device, the interpreter
worked flawlessly when they demonstrated the interpreter to MITS in Albu-
querque, New Mexico in March 1975; MITS agreed to distribute it, marketing
it as Altair BASIC.

(b) Not about Albuquerque

Figure 3.10: Two passages both containing exactly a single occurrence of the query term
“Albuquerque”. However, the passage in (a) contains other terms such as “pop-
ulation” and “area” that are relevant to a description of the city. In contrast,
the terms in passage (b) suggest that it is unlikely to be about the city, and
only mentions the city potentially in a different context.

and those that use embeddings to generate suitable query expansion candidates from

a global vocabulary and then perform retrieval based on the expanded query. We

discuss both these classes of approaches in the remainder of this section.

3.3.1 Query-document matching

One strategy for using term embeddings in IR involves deriving a dense vector

representation for the query and the document from the embeddings of the indi-

vidual terms in the corresponding texts. The term embeddings can be aggregated

in different ways, although using the average word (or term) embeddings (AWE)

is quite common [119, 164, 170–174]. Non-linear combinations of term vectors—

such as using Fisher Kernel Framework [175]—have also been explored, as well as

other families of aggregate functions of which AWE has been shown to be a special

case [176].

The query and the document embeddings themselves can be compared using a

variety of similarity metrics, such as cosine similarity or dot-product. For example,

68 Chapter 3. Background

sim(q,d) = cos(⃗vq, v⃗d) =
v⃗ ⊺

q v⃗d

∥⃗vq∥∥⃗vd∥
(3.30)

where, v⃗q =
1
|q| ∑

tq∈q

v⃗tq

∥⃗vtq∥
(3.31)

v⃗d =
1
|d| ∑

td∈d

v⃗td
∥⃗vtd∥

(3.32)

An important consideration here is the choice of the term embeddings that is

appropriate for the retrieval scenario. While, LSA [124], word2vec [157], and

GloVe [156] are commonly used—it is important to understand how the notion of

inter-term similarity modelled by a specific vector space may influence its perfor-

mance on a retrieval task. In the example in Figure 3.10, we want to rank documents

that contains related terms—such as “population” or “area”—higher. These terms

are topically similar to the query term “Albuquerque”. Intuitively, a document about

“Tucson”—which is typically similar to “Albuquerque”—is unlikely to satisfy the

user intent. The discussion in Section 3.2.2 on how input features influence the

notion of similarity in the learnt vector space is relevant here.

Models, such as LSA [124] and Paragraph2vec [164], that consider term-

document pairs generally capture topical similarities in the learnt vector space.

On the other hand, word2vec [157] and GloVe [156] embeddings may incorpo-

rate a mixture of topical and typical notions of relatedness. The inter-term re-

lationships modelled in these latent spaces may be closer to type-based similari-

ties when trained with short window sizes or on short text, such as on keyword

queries [119, 130].

In Section 3.2.4, we note that the word2vec model learns two different

embeddings—IN and OUT—corresponding to the input and the output terms. In

retrieval, if a query contains a term ti then—in addition to the frequency of occur-

rences of ti in the document—we may also consider the presence of a different

term t j in the document to be a supporting evidence of relevance if the pair of

terms ⟨ti, t j⟩ frequently co-occurs in the collection. As shown in Equation 3.19,

3.3. Term embeddings for IR 69

Table 3.2: Different nearest neighbours in the word2vec embedding space based on whether
we compute IN-IN, OUT-OUT, or IN-OUT similarities between the terms. The
examples are from [119, 172] where the word2vec embeddings are trained on
search queries. Training on short query text, however, makes the inter-term
similarity more pronouncedly typical (where, “Yale” is closer to “Harvard” and
“NYU”) when both terms are represented using their IN vectors. In contrast, the
IN-OUT similarity (where, “Yale” is closer to “faculty” and “alumni”) mirrors
more the topical notions of relatedness.

yale seahawks
IN-IN OUT-OUT IN-OUT IN-IN OUT-OUT IN-OUT
yale yale yale seahawks seahawks seahawks

harvard uconn faculty 49ers broncos highlights
nyu harvard alumni broncos 49ers jerseys

cornell tulane orientation packers nfl tshirts
tulane nyu haven nfl packers seattle
tufts tufts graduate steelers steelers hats

in the skip-gram model this probability of co-occurrence p(t j|ti) is proportional to

(Wout⃗vt j)
⊺(Win⃗vti)—i.e., the dot product between the IN embeddings of ti and the

OUT embeddings of t j. Therefore, Nalisnick et al. [172] point out that when us-

ing word2vec embeddings for estimating the relevance of a document to a query,

it is more appropriate to compute the IN-OUT similarity between the query and

the document terms. In other words, the query terms should be represented using

the IN embeddings and the document terms using the OUT embeddings. Table 3.2

highlights the difference between IN-IN or IN-OUT similarities between terms.

The proposed Dual Embedding Space Model (DESM)4 [119, 172] estimates

the query-document relevance as follows,

DESMin−out(q,d) =
1
|q| ∑

tq∈q

v⃗ ⊺
tq,in⃗vd,out

∥⃗vtq,in∥∥⃗vd,out∥
(3.33)

v⃗d,out =
1
|d| ∑

td∈d

v⃗td ,out

∥⃗vtd ,out∥
(3.34)

4The dual term embeddings trained on Bing queries is available for download at https://www.
microsoft.com/en-us/download/details.aspx?id=52597

https://www.microsoft.com/en-us/download/details.aspx?id=52597
https://www.microsoft.com/en-us/download/details.aspx?id=52597

70 Chapter 3. Background

An alternative to representing queries and documents as an aggregate of their term

embeddings is to incorporate the term representations into existing IR models, such

as the ones we discussed in Section 3.1. Zuccon et al. [108] proposed the Neural

Translation Language Model (NTLM) that uses the similarity between term embed-

dings as a measure for term-term translation probability p(tq|td) in Equation 3.11.

p(tq|td) =
cos(⃗vtq, v⃗td)

∑t∈T cos(⃗vt , v⃗td)
(3.35)

On similar lines, Ganguly et al. [177] proposed the Generalized Language Model

(GLM) which extends the Language Model based approach in Equation 3.9 to,

p(d|q) = ∏
tq∈q

(
λ

t f (tq,d)
|d|

+α
∑td∈d (sim(⃗vtq, v⃗td) · t f (td,d))

∑td1∈d ∑td2∈d sim(⃗vtd1
, v⃗td2

) · |d|2

+β
∑t̄∈Nt (sim(⃗vtq, v⃗t̄) ·∑d̄∈D t f (t̄, d̄))

∑td1∈Nt ∑td2∈Nt sim(⃗vtd1
, v⃗td2

) ·∑d̄∈D |d̄| · |Nt |

+(1−α −β −λ)∑d̄∈D t f (tq, d̄)

∑d̄∈D |d̄|

)
(3.36)

Where, Nt is the set of nearest-neighbours of term t. Ai et al. [168] incorporate

paragraph vectors [164] into the query-likelihood model [100].

Another approach, based on the Earth Mover’s Distance (EMD) [178], in-

volves estimating similarity between pairs of documents by computing the mini-

mum distance in the embedding space that each term in the first document needs

to travel to reach the terms in the second document. This measure, commonly re-

ferred to as the Word Mover’s Distance (WMD), was originally proposed by Wan

et al. [179, 180], but used WordNet and topic categories instead of embeddings for

defining the distance between terms. Term embeddings were later incorporated into

the model by Kusner et al. [181, 182]. Finally, Guo et al. [183] incorporated sim-

ilar notion of distance into the Non-linear Word Transportation (NWT) model that

3.3. Term embeddings for IR 71

estimates relevance between a a query and a document. The NWT model involves

solving the following constrained optimization problem,

max ∑
tq∈q

log
(

∑
td∈u(d)

f (tq, td) ·max
(
cos(⃗vtq , v⃗td),0

)id f (tq)+b
)

(3.37)

subject to f (tq, td)≥ 0, ∀tq ∈ q, td ∈ d (3.38)

and ∑
tq∈q

f (tq, td) =
t f (td)+µ ∑d̄∈D t f (tq,d̄)

∑d̄∈D |d̄|

|d|+µ
, ∀td ∈ d (3.39)

where, id f (t) =
|D|−d f (t)+0.5

d f (t)+0.5
(3.40)

u(d) is the set of all unique terms in document d, and b is a constant.

Another term-alignment based distance metric was proposed by Kenter and

de Rijke [184] for computing short-text similarity. The design of the saliency-

weighted semantic network (SWSN) is motivated by the BM25 [76] formulation.

swsn(sl,ss) = ∑
tl∈sl

id f (tl) ·
sem(tl,ss) · (k1 +1)

sem(tl,ss)+ k1 ·
(

1−b+b · |ss|
avgsl

) (3.41)

where, sem(t,s) = max
t̄∈s

cos(⃗vt , v⃗t̄) (3.42)

Here ss is the shorter of the two sentences to be compared, and sl the longer sen-

tence.

Figure 3.11 highlights the distinct strengths and weaknesses of matching using local

and distributed representations of terms for retrieval. For the query “Cambridge”, a

local representation (or exact matching) based model can easily distinguish between

the passage on Cambridge (Figure 3.11a) and the one on Oxford (Figure 3.11b).

However, the model is easily duped by a non-relevant passage that has been arti-

ficially injected with the term “Cambridge” (Figure 3.11c). The embedding space

based matching, on the other hand, can spot that the other terms in the passage pro-

72 Chapter 3. Background

the city of cambridge is a university city and the county town of cambridgeshire , england
. it lies in east anglia , on the river cam , about 50 miles (80 km) north of london . according to the united kingdom

census 2011 , its population was 123867 (including 24488 students) . this makes cambridge the second largest city in

cambridgeshire after peterborough , and the 54th largest in the united kingdom . there is archaeological evidence of

settlement in the area during the bronze age and roman times ; under viking rule cambridge became an important

trading centre . the first town charters were granted in the 12th century , although city status was not conferred until 1951 .

(a) Passage about the city of Cambridge

oxford is a city in the south east region of england and the county town of oxfordshire . with a population of 159994 it is

the 52nd largest city in the united kingdom , and one of the fastest growing and most ethnically diverse . oxford has a broad

economic base . its industries include motor manufacturing , education , publishing and a large number of information

technology and sciencebased businesses , some being academic offshoots . the city is known worldwide as the home of the university

of oxford , the oldest university in the englishspeaking world . buildings in oxford demonstrate examples of every english architectural

period since the arrival of the saxons , including the mid18thcentury radcliffe camera . oxford is known as the city of dreaming spires , a term

coined by poet matthew arnold .

(b) Passage about the city of Oxford

the cambridge (giraffa camelopardalis) is an african eventoed ungulate mammal , the tallest living terrestrial animal and

the largest ruminant . its species name refers to its camellike shape and its leopardlike colouring . its chief distinguishing characteristics are its extremely long neck and

legs , its hornlike ossicones , and its distinctive coat patterns . it is classified under the family giraffidae , along with its closest extant relative , the okapi . the

nine subspecies are distinguished by their coat patterns . the scattered range of giraffes extends from chad in the north to south africa in

the south , and from niger in the west to somalia in the east . giraffes usually inhabit savannas , grasslands , and open woodlands .

(c) Passage about giraffes, but ’giraffe’ is replaced by ’Cambridge’

Figure 3.11: A visualization of IN-OUT similarities between terms in different passages
with the query term “Cambridge”. The visualization reveals that, besides the
term “Cambridge”, many other terms in the passages about both Cambridge
and Oxford have high similarity to the query term. The passage (c) is adapted
from a passage on giraffes by replacing all the occurrences of the term “gi-
raffe” with “cambridge”. However, none of the other terms in (c) are found to
be relevant to the query term. An embedding based approach may be able to
determine that passage (c) is non-relevant to the query “Cambridge”, but fail
to realize that passage (b) is also non-relevant. A term counting-based model,
on the other hand, can easily identify that passage (b) is non-relevant but may
rank passage (c) incorrectly high.

3.3. Term embeddings for IR 73

(a) Global embedding (b) Local embedding

Figure 3.12: A two-dimensional visualization of term embeddings when the vector space
is trained on a (a) global corpus and a (b) query-specific corpus, respectively.
The grey circles represent individual terms in the vocabulary. The white circle
represents the query “ocean remote sensing” as the centroid of the embeddings
of the individual query terms, and the light grey circles correspond to good
expansion terms for this query. When the representations are query-specific
then the meaning of the terms are better disambiguated, and more likely to
result in the selection of good expansion terms.

vide clear indication that the passage is not about a city, but fails to realize that the

passage about Oxford (Figure 3.11b) is inappropriate for the same query.

Embedding based models often perform poorly when the retrieval is per-

formed over the full document collection [119]. However, as seen in the ex-

ample of Figure 3.11, the errors made by embedding based models and exact

matching models may be different—and the combination of the two is often pref-

fered [119, 152, 168, 177]. Another technique is to use the embedding based model

to re-rank only a subset of the documents retrieved by a different—generally an

exact matching based—IR model. The chaining of different IR models where

each successive model re-ranks a smaller number of candidate documents is called

Telescoping [82]. Telescoping evaluations are common in the neural IR litera-

ture [21, 117–119, 185] and the results are representative of performances of these

models on re-ranking tasks. However, as Mitra et al. [119] demonstrate, good per-

formances on re-ranking tasks may not be indicative how the model would perform

if the retrieval involves larger document collections.

74 Chapter 3. Background

3.3.2 Query expansion

Instead of comparing the query and the document directly in the embedding space,

an alternative approach is to use term embeddings to find good expansion candidates

from a global vocabulary, and then retrieving documents using the expanded query.

Different functions [91, 120, 186] have been proposed for estimating the relevance

of candidate terms to the query—all of them involves comparing the candidate term

individually to every query term using their vector representations, and then aggre-

gating the scores. For example, [91, 120] estimate the relevance of candidate term

tc as,

score(tc,q) =
1
|q| ∑

tq∈q
cos(⃗vtc , v⃗tq) (3.43)

Term embedding based query expansion on its own performs worse than pseudo-

relevance feedback [120]. But like the models in the previous section, shows better

performances when used in combination with PRF [186].

Diaz et al. [91] explored the idea of query-specific term embeddings and found

that they are more effective in identifying good expansion terms than a global rep-

resentation (see Figure 3.12). The local model proposed by Diaz et al. [91] incor-

porate relevance feedback in the process of learning the term embeddings—a set of

documents is retrieved for the query and a query-specific term embedding model is

trained. This local embedding model is then employed for identifying expansion

candidates for the query for a second round of document retrieval.

Term embeddings have also been explored for re-weighting query terms [187] and

finding relevant query re-writes [165], as well as in the context of other IR tasks

such as cross-lingual retrieval [171] and entity retrieval [53, 54]. In Section 3.6, we

will discuss neural network models with deeper architectures and their applications

to retrieval.

3.4. Supervised learning to rank 75

3.4 Supervised learning to rank
Learning to rank (LTR) for IR uses training data relq(d), such as human relevance

labels and click data, to train towards an IR objective. Unlike traditional IR ap-

proaches, these models typically have large number of learnable parameters that

require many training samples to be tuned [16]. LTR models represent a rankable

item—e.g., a query-document pair—as a feature vector x⃗ ∈ Rn. The ranking model

f : x⃗ → R is trained to map the vector to a real-valued score such that for a given

query more relevant documents are scored higher and some chosen rank-based met-

ric is maximized. The model training is said to be end-to-end if the parameters of

f are learned all at once rather than in parts, and if the vector x⃗ contains simple fea-

tures rather than models. Liu [20] categorizes the different LTR approaches based

on their training objectives.

• In the pointwise approach, the relevance information relq(d) is in the form of

a numerical value associated with every query-document pair with input vec-

tor x⃗q,d . The numerical relevance label can be derived from binary or graded

relevance judgments or from implicit user feedback, such as a clickthrough

rate. A regression model is typically trained on the data to predict the numer-

ical value relq(d) given x⃗q,d .

• In the pairwise approach, the relevance information is in the form of pref-

erences between pairs of documents with respect to individual queries (e.g.,

di ≻q d j). The ranking problem in this case reduces to that of a binary classifi-

cation to predict the more relevant document.

• Finally, the listwise approach involves directly optimizing for a rank-based

metric such as NDCG—which is more challenging because these metrics are

often not continuous (and hence not differentiable) with respect to the model

parameters.

Many machine learning models—including support vector machines [188],

neural networks [189], and boosted decision trees [190]—have been employed over

76 Chapter 3. Background

the years for the LTR task, and a correspondingly large number of different loss

functions have been explored.

3.4.1 Input features

Traditional LTR models employ hand-crafted features [20] for representing query-

document pairs in x⃗. The design of these features typically encodes key IR insights

and belong to one of the three categories.

• Query-independent or static features (e.g., incoming link count and document

length)

• Query-dependent or dynamic features (e.g., BM25)

• Query-level features (e.g., query length)

In contrast, in recently proposed neural LTR models the deep architecture

is responsible for feature learning5 from simple vector representations of the in-

put which may resemble the schemes described in Section 3.5.1 (e.g., [118])

or the interaction-based representations that we discuss later in Section 3.6.3

(e.g., [21, 192]). These features, learnt from the query and document texts, can

be combined with other features that may not be possible to infer from the content,

such as document popularity [193].

3.4.2 Loss functions

In ad hoc retrieval, the LTR model needs to rank the documents in a collection D in

response to a query. When training a neural model for this task, the ideal ranking

of documents for a query q from the training dataset can be determined based on

the relevance labels relq(d) associated with each document d ∈ D. In the pointwise

approach, the neural model is trained to directly estimate relq(d), which can be a

numeric value or a categorical label.

5In the literature, when the model is responsible for feature learning the task is sometimes catego-
rized as “learning to match” [77, 191]. However, from a machine learning viewpoint, this distinction
between whether x⃗ is a vector of hand-engineered features or a vector encoding of query-document
text makes little difference to the LTR formulation described here. We, therefore, avoid making this
distinction in favor of a more general definition.

3.4. Supervised learning to rank 77

Regression loss Given x⃗q,d , the task of estimating the relevance label relq(d) can

be cast as a regression problem, and a standard loss function—such as the square

loss—can be employed.

Lsquared = ∥relq(d)− s(⃗xq,d)∥2 (3.44)

Where, s(⃗xq,d) is the score predicted by the model and relq(d) can either be the

value of the relevance label [194] or the one-hot representation when the label is

categorical [195].

Classification loss When the relevance labels in the training data are categorical, it

makes more sense to treat the label prediction problem as a multiclass classification.

The neural model under this setting, estimates the probability of a label y given x⃗q,d .

The probability of the correct label yq,d (= relq(d)) can be obtained by the softmax

function,

p(yq,d|q,d) = p(yq,d |⃗xq,d) =
eγ·s
(⃗

xq,d ,yq,d

)
∑y∈Y eγ·s(⃗xq,d ,y)

(3.45)

The softmax function normalizes the score of the correct label against the set of all

possible labels Y . The cross-entropy loss can then be applied [196] as follows,

Lclassification =−log
(

p(yq,d|q,d)
)
=−log

(eγ·s
(⃗

xq,d ,yq,d

)
∑y∈Y eγ·s(⃗xq,d ,y)

)
(3.46)

However, a ranking model does not need to estimate the true relevance label accu-

rately as long as it ranks the relevant documents D+ over all the other candidates in

D. Typically, only a few documents from D are relevant to q. If we assume a binary

notion of relevance, then the problem is similar to multi-label classification—or,

multiclass classification if we assume a single relevant document d+ per query—

78 Chapter 3. Background

where the candidate documents are the classes. Next, we discuss loss functions

for LTR models that tries to predict the relevant document by maximizing p(d+|q).

Note that this is different from the classification loss in Equation 3.46 which maxi-

mizes p(yq,d|q,d).

Contrastive loss In representation learning models, a relevant document should be

closer to the query representation than a non-relevant document. The contrastive

loss [197, 198]—common in image retrieval—learns the model parameters by min-

imizing the distance between a relevant pair, while increasing the distance between

dissimilar items.

LContrastive(q,d,yq,d) = yq,d ·Lpos(distq,d) (3.47)

+(1− yq,d) ·Lneg(distq,d) (3.48)

Contrastive loss assumes that the relevance label yq,d ∈ {0,1} is binary. For each

training sample, either Lpos or Lneg is applied over the distance distq,d as predicted

by the model. In particular, Hadsell et al. [198] use the following formulation of

this loss function.

LContrastive(q,d,yq,d) = yq,d ·
1
2
(
max(0,m−distq,d)

)2 (3.49)

+(1− yq,d) · (distq,d)2 (3.50)

Where, m is a margin.

Cross-Entropy loss over documents The probability of ranking d+ over all the

other documents in the collection D is given by the softmax function,

p(d+|q) = eγ·s
(

q,d+
)

∑d∈D eγ·s(q,d) (3.51)

3.4. Supervised learning to rank 79

The cross-entropy (CE) loss then maximizes the difference between scores gener-

ated by the model for relevant and less relevant documents.

LCE(q,d+,D) =−log
(

p(d+|q)
)

(3.52)

=−log
(eγ·s

(
q,d+
)

∑d∈D eγ·s(q,d)

)
(3.53)

However, when D is the full collection then computing the softmax (i.e. the de-

nominator in Equation 3.53) is prohibitively expensive. Coincidentally, the CE loss

is also useful for non-IR tasks, such as language modelling [144, 145], where the

model needs to predict a single term from a large vocabulary given its neighbours

as input. Several different approaches have been proposed in the LM literature to

address this computational complexity that is relevant to our discussion. We briefly

describe some of these strategies here.

Hierarchical softmax Instead of computing p(d+|q) directly, Goodman [199]

groups the candidates D into a set of classes C, and then predicts the correct class

c+ given q followed by predicting d+ given ⟨c+,q⟩.

p(d+|q) = p(d+|c+,x) · p(c+|q) (3.54)

The computational cost in this modified approach is a function of |C|+ |c+| which is

typically much smaller than |D|. Further computational efficiency can be achieved

by employing a hierarchy of such classes [161, 200]. The hierarchy of classes is typ-

ically based on either similarity between candidates [145, 201, 202], or frequency

binning [203]. Zweig and Makarychev [204] and Grave et al. [205] have explored

strategies for building the hierarchy that directly minimizes the computational com-

plexity.

Importance sampling (IS) An alternative to computing the exact softmax, is to

approximately estimate it using sampling based approaches. Note, that we can re-

80 Chapter 3. Background

write Equation 3.53 as follows,

LCE(q,d+,D) =−log
(eγ·s

(
q,d+
)

∑d∈D eγ·s(q,d)

)
(3.55)

=−γ · s
(
q,d+

)
+ log ∑

d∈D
eγ·s(q,d) (3.56)

To train a neural model using back-propagation, we need to compute the gradient

∇θ of the loss LCE with respect to the model parameters θ ,

∇θLCE(q,d+,Y) =−γ∇θ · s
(
q,d+

)
+∇θ log ∑

d∈D
eγ·s(q,d) (3.57)

=−γ∇θ · s
(
q,d+

)
+

∇θ ∑d∈D eγ·s(q,d)

∑d∈D eγ·s(q,d) (3.58)

=−γ∇θ · s
(
q,d+

)
+

∑d∈D ∇θ eγ·s(q,d)

∑d∈D eγ·s(q,d) (3.59)

=−γ∇θ · s
(
q,d+

)
+

∑d∈D γ · eγ·s(q,d)∇θ s(q,d)

∑d∈D eγ·s(q,d) (3.60)

=−γ∇θ · s
(
q,d+

)
+ γ ∑

d∈D

eγ·s(q,d)

∑d∈D eγ·s(q,d)∇θ s(q,d) (3.61)

=−γ∇θ · s
(
q,d+

)
+ γ ∑

d∈D
p(d|q)∇θ s(q,d) (3.62)

As Senécal and Bengio [206] point out, the first component of the gradient

γ∇θ s
(
q,d+

)
is the positive reinforcement to the model for the correct candidate

d+ and the second component γ ∑d∈D p(d|q)∇θ s(q,d) is the negative reinforcement

corresponding to all the other (incorrect) candidates. The key idea behind sampling

based approaches is to estimate the second component without computing the costly

sum over the whole candidate set. In IS [207–210], Monte-Carlo method is used to

estimate the second component.

Noise Contrastive Estimation (NCE) In NCE [211–213], the task is modified to

that of a binary classification. The model is trained to distinguish a sample drawn

from a true distribution p(d|q) from a sample drawn from a noisy distribution p̃(d).

3.4. Supervised learning to rank 81

The training data contains k noisy samples for every true sample. Let, E and Ē

indicate that a sample is drawn from the true and the noisy distributions, respectively.

Then,

p(E |q,d) = p(d|q)
p(d|q)+ k× p̃(d)

(3.63)

p(Ē |q,d) = k× p̃(d)
p(d|q)+ k× p̃(d)

(3.64)

We want our model to learn the true distribution p(d|q). Remember, that according

to our model,

p(d|q) = eγ·s(q,d)

∑d̄∈D eγ·s(q,d̄)
(3.65)

=
eγ·s(q,d)

z(q)
(3.66)

A key efficiency trick involves setting z(q) to 1 [212–214]. Therefore,

p(d|q) = eγ·s(q,d) (3.67)

Putting Equation 3.67 back in Equation 3.63 and 3.64.

p(E |q,d) = eγ·s(q,d)

eγ·s(q,d)+ k× p̃(d)
(3.68)

p(Ē |q,d) = k× p̃(d)
eγ·s(q,d)+ k× p̃(d)

(3.69)

Finally, the NCE loss is given by,

82 Chapter 3. Background

LNCE =− ∑
⟨x,d+⟩

(
log p(E |x,d+)+

k

∑
i=1

log p(Ē |x,y−i)
)

(3.70)

=− ∑
⟨x,d+⟩

(
log

eγ·s(q,d+)

eγ·s(q,d+)+ k× p̃(d+)
+

k

∑
i=1

log
k× p̃(y−i)

eγ·s(q,d−
i)+ k× p̃(y−i)

)
(3.71)

Note, that the outer summation iterates over all the positive ⟨x,d+⟩ pairs in the

training data.

Negative sampling (NEG) Mikolov et al. [157] modify the NCE loss by replacing

k× p̃(d) with 1 in Equation 3.68 and 3.69.

p(E |q,d) = eγ·s(q,d)

eγ·s(q,d)+1
(3.72)

=
1

1+ e−γ·s(q,d) (3.73)

p(Ē |q,d) = 1
1+ eγ·s(q,d) (3.74)

which changes the NCE loss to the NEG loss.

LNEG =− ∑
⟨x,d+⟩

(
log

1
1+ e−γ·s(q,d+)

+
k

∑
i=1

log
1

1+ eγ·s(q,d−
i)

)
(3.75)

BlackOut Related to both IS and NCE, is BlackOut [215]. It is an extension of the

DropOut [216] method that is often employed to avoid over-fitting in neural models

with large number of parameters. DropOut is typically applied to the input or hidden

layers of the network and involves randomly dropping a subset of the neural units

and their corresponding connections. BlackOut applies the same idea to the output

layer of the network for efficiently computing the loss. We refer readers to [215] for

more rigorous discussions on the relationship between IS, NCE, and DropOut.

3.4. Supervised learning to rank 83

For document retrieval Huang et al. [118] approximate the cross-entropy loss of

Equation 3.53 by replacing D with D′—where, D′ = {d+}∪D− and D− is a fixed

number of randomly sampled candidates. Mitra et al. [21] use a similar loss func-

tion but focus on the document re-ranking task where the neural model needs to

distinguish the relevant documents from less relevant (but likely not completely

non-relevant) candidates. Therefore, in their work the re-ranking model is trained

with negative examples which comprise of documents retrieved by an existing IR

system but manually judged as less relevant, instead of being sampled uniformly

from the collection. IS, NCE, NEG, and these other sampling based approaches

approximate the comparison with the full collection based on a sampled subset. For

additional notes on these approaches, we refer the readers to [217–219].

In a typical retrieval scenario, however, multiple documents may be relevant to

the same query q, and the notion of relevance among this set of documents D+ may

be further graded. Some LTR approaches consider pairs of documents for the same

query and minimize the average number of inversions in ranking—i.e., di ≻q d j but

d j is ranked higher than di. The pairwise loss employed in these approaches has the

following form [220],

Lpairwise = ϕ(si − s j) (3.76)

where, some possible choices for ϕ include,

• Hinge function ϕ(z) = max(0,1− z) [221, 222]

• Exponential function ϕ(z) = e−z [223]

• Logistic function ϕ(z) = log(1+ e−z) [189]

RankNet loss RankNet [189] is a pairwise loss function that has been a common

choice for training neural LTR models and was also for many years an industry

favourite, such as at the commercial Web search engine Bing.6 Under the RankNet
6https://www.microsoft.com/en-us/research/blog/

ranknet-a-ranking-retrospective/

https://www.microsoft.com/en-us/research/blog/ranknet-a-ranking-retrospective/
https://www.microsoft.com/en-us/research/blog/ranknet-a-ranking-retrospective/

84 Chapter 3. Background

loss, the model is trained on triples ⟨q,di,d j⟩ consisting of a query q and a pair of

documents di and d j with different relevance labels—such that di is more relevant

than d j (i.e., di ≻q d j)—and corresponding feature vectors ⟨⃗xi, x⃗ j⟩. The model f :

Rn → R, typically a neural network but can also be any other machine learning

model whose output is differentiable with respect to its parameters, computes the

scores si = f (⃗xi) and s j = f (⃗x j), where ideally si > s j. Given the scores ⟨si,s j⟩, the

probability that di would be ranked higher than d j is given by,

pi j ≡ p(si > s j)≡
1

1+ e−σ(si−s j)
(3.77)

Where, the constant σ determines the shape of the sigmoid. During training, the

probability of ranking di higher than d j for q is maximized. Let Si j ∈ {−1,0,+1}

be the true preference label between di and d j for the training sample— denoting di

is less, equal, or more relevant than d j, respectively. Then the desired probability of

ranking di over d j is given by p̄i j =
1
2(1+Si j). The cross-entropy loss L between

the desired probability p̄i j and the predicted probability pi j is given by,

L =−p̄i jlog(pi j)− (1− p̄i j)log(1− pi j) (3.78)

=
1
2
(1−Si j)σ(si − s j)+ log(1+ e−σ(si−s j)) (3.79)

= log(1+ e−σ(si−s j)) if, di ≻q d j(Si j = 1) (3.80)

Note that L is differentiable with respect to the model output si and hence the model

can be trained using gradient descent. We direct the interested reader to [224] for

more detailed derivations for computing the gradients for RankNet.

Readers should note the obvious connection between the CE loss described pre-

viously and the RankNet loss. If in the denominator of Equation 3.53, we only sum

over a pair of relevant and non-relevant documents then it reduces to the logistic-

loss function of RankNet described in Equation 3.80. So, at the level of a single

3.4. Supervised learning to rank 85

training sample, the key distinction between the two is whether we compare the rel-

evant document to a single less relevant candidate or the full collection. However,

in case of RankNet, it is important to consider how the pairs are sampled as the

training is influenced by their distribution.

The key limitation of pairwise objective functions is that the rank inversion of any

pair of documents is considered equally harmful. This is, however, generally untrue

for most IR metrics where a significantly large penalty is associated with inversions

at the top rank positions. For example, consider two different result lists for the

same query—result list A ranks two relevant documents at position one and 50,

while result list B ranks the same two relevant documents at positions three and

40. While the result set A has more rank inversions compared to result set B (48

vs. 40), it would fare better on typical IR metrics, such as NDCG. Therefore, to

optimize for a rank-based metric we need to incorporate listwise objectives—that

are sensitive to these differences—in our model training. However, the rank-based

metrics are generally non-continuous and non-differentiable, which makes them

difficult to incorporate in the loss function.

LambdaRank loss Burges et al. [225] make two key observations: (i) the gradient

should be bigger for pairs of documents that produce a bigger impact in NDCG by

swapping positions, and (ii) to train a model we don’t need the costs themselves,

only the gradients (of the costs w.r.t model scores). This leads to the LambdaRank

loss which weights the gradients from the RankNet loss by the NDCG delta that

would result from swapping the rank position of the pair of documents.

λLambdaRank = λRankNet · |∆NDCG| (3.81)

This formulation of LambdaRank can optimize directly for NDCG [226, 227], and

any other IR measure by incorporating the corresponding delta change in Equa-

tion 3.81.

86 Chapter 3. Background

ListNet and ListMLE loss The probability of observing a particular rank order can

be estimated from the individual document scores using different models [228–230].

For example, according to the Luce model [228], given four items {d1,d2,d3,d4}

the probability of observing a particular rank-order, say [d2,d1,d4,d3], is given by:

p(π|s) = ϕ(s2)

ϕ(s1)+ϕ(s2)+ϕ(s3)+ϕ(s4)
× ϕ(s1)

ϕ(s1)+ϕ(s3)+ϕ(s4)

× ϕ(s4)

ϕ(s3)+ϕ(s4)

(3.82)

Where, π is a particular permutation and ϕ is a transformation (e.g., linear, expo-

nential, or sigmoid) over the score si corresponding to item di. Using this model,

we can compute the probability distribution over all possible permutations based on

the model scores and the ground truth labels. The K-L divergence between these

two distributions gives us the ListNet loss [231].

However, computing the probability distribution over all possible permutations

is computationally expensive, even when restricted to only the top-K items. The

ListMLE loss [232] instead computes the probability of the ideal permutation based

on the ground truth. However, with categorical labels more than one ideal permuta-

tion may be possible which should be handled appropriately.

Many of the challenges discussed in this section are common to both retrieval tasks

as well as multiclass and multilabel classification with extremely large number of

classes—often referred to as extreme classification [233–235]. Ad hoc retrieval can

be posed as an extreme classification task under a binary notion of relevance and a

fixed collection constraint. New loss functions (e.g. the spherical loss family [236–

238]) have been explored for these large scale classification tasks which may be

relevant for neural retrieval research. The problem of learning from sparse biased

labels [239, 240] is also an important challenge in these frameworks. Finally, deep

neural models for LTR with large number of parameters may require large train-

ing data for supervised learning. Alternative training schemes—e.g., using weak

supervision signals [241, 242] or adversarial learning [96, 243]—are emerging.

3.5. Deep neural networks 87

forward pass

backward pass

W1 W2

input actual

output

loss

expected

output

(a) A neural network with a single hidden layer.

non-linearity

(tanh)
input

linear

transform

(W1, b1)

non-linearity

(tanh)

linear

transform

(W2, b2)

actual output

forward pass

backward pass

expected

output

loss

(b) The same neural network viewed as a chain of computational steps.

Figure 3.13: Two different visualizations of a feed-forward neural network with a single
hidden layer. In (a), the addition of the bias vector and the non-linearity func-
tion is implicit. Figure (b) shows the same network but as a sequence of com-
putational nodes. Most neural network toolkits implement a set of standard
computational nodes that can be connected to build more sophisticated neural
architectures.

3.5 Deep neural networks
Deep neural network models consist of chains of tensor operations. The tensor

operation can range from parameterized linear transformations (e.g., multiplication

with a weight matrix, or the addition of a bias vector) to elementwise application of

non-linear functions, such as tanh or rectified linear units (ReLU) [244–246]. Fig-

ure 3.13 shows a simple feed-forward neural network with fully-connected layers.

For an input vector x⃗, the model produces the output y⃗ as follows,

y⃗ = tanh(W2 · tanh(W1 · x⃗+ b⃗1)+ b⃗2) (3.83)

The model training involves tuning the parameters W1, b⃗1, W2, and b⃗2 to minimize

the loss between the expected output and the output predicted by the final layer.

88 Chapter 3. Background

Input features Hidden layers
Label

surface kerberos book library H1 H2

1 0 1 0 1 0 ✓
1 1 0 0 0 0 ✗
0 1 0 1 0 1 ✓
0 0 1 1 0 0 ✗

library booksurface kerberos

+0.5 +0.5

-1

-1 -1

-1

+1 +1

+0.5 +0.5

H1 H2

Figure 3.14: Consider a toy binary classification task on a corpus of four short texts—
“surface book”, “kerberos library”, “library book”, and “kerberos surface”—
where the model needs to predict if the text is related to computers. The first
two texts—“Surface Book” and “kerberos library”—are positive under this
classification, and the latter two negative. The input feature space consists
of four binary features that indicate whether each of the four terms from the
vocabulary is present in the text. The table shows that the specified classes are
not linearly separable with respect to the input feature space. However, if we
add couple of hidden nodes, as shown in the diagram, then the classes can be
linearly separated with respect to the output of the hidden layer.

The parameters are usually trained discriminatively using backpropagation [247–

249]. During forward-pass each layer generates an output conditioned on its input,

and during backward pass each layer computes the error gradient with respect to its

parameters and its inputs.

The design of a DNN typically involves many choices of architectures and

hyper-parameters. Neural networks with as few a single hidden layer—but with suf-

ficient number of hidden nodes—can theoretically approximate any function [250].

In practice, however, deeper architectures—sometimes with as many as 1000 lay-

ers [251]—have been shown to perform significantly better than shallower networks.

For readers who are less familiar with neural network models, we present a simple

example in Figure 3.14 to illustrate how hidden layers enable these models to cap-

ture non-linear relationships. We direct readers to [252] for further discussions on

how additional hidden layers help.

The rest of this section is dedicated to the discussion of input representations

and standard architectures for deep neural models.

3.5. Deep neural networks 89

3.5.1 Input text representations

Neural models that learn representations of text take raw text as input. A key con-

sideration is how the text should be represented at the input layer of the model.

Figure 3.15 shows some of the common input representations of text.

Some neural models [210, 253–255] operate at the character-level. In these

models, each character is typically represented by a one-hot vector. The vector

dimensions—referred to as channels—in this case equals the number of allowed

characters in the vocabulary. These models incorporate the least amount of prior

knowledge about the language in the input representation—for example, these mod-

els are often required to learn about tokenization from scratch by treating space as

just another character in the vocabulary. The representation of longer texts, such as

sentences, can be derived by concatenating or summing the character-level vectors

as shown in Figure 3.15a.

The input text can also be pre-tokenized into terms—where each term is repre-

sented by either a sparse vector or using pre-trained term embeddings (Figure 3.15d).

Terms may have a one-hot (or local) representation where each term has an unique

ID (Figure 3.15b), or the term vector can be derived by aggregating one-hot vectors

of its constituting characters (or character n-graphs) as shown in Figure 3.15c. If

pre-trained embeddings are used for term representation, then the embedding vec-

tors can be further tuned during training or kept fixed.

Similar to character-level models, the term vectors are further aggregated (by

concatenation or sum) to obtain the representation of longer chunks of text, such as

sentences. While one-hot representations of terms (Figure 3.15b) are common in

many NLP tasks, historically pre-trained embeddings (e.g., [256, 257]) and charac-

ter n-graph based representations (e.g., [21, 118]) are more commonplace in IR.

3.5.2 Architectures

In this section, we describe few standard neural architectures commonly used in

IR. For broader overview of neural architectures and design patterns please refer

to [2, 143, 247].

90 Chapter 3. Background

d o g s h a v e o w n e r s c a t s h a v e s t a f f

o
n
e
-h

o
t

ve
ct

o
rs

concatenate

ch
a
n

n
e
ls

[chars x channels]

(a) Character-level input

d o g s h a v e o w n e r s c a t s h a v e s t a f f

o
n
e
-h

o
t

ve
ct

o
rs

concatenate

sum sum sum sum sum sum

ch
a
n

n
e
ls

[words x channels]

(b) Term-level input w/ bag-of-characters per term

d o g s # # h a v e # # o w n e r s # # c a t s # # h a v e # # s t a f f

o
n
e
-h

o
t

ve
ct

o
rs

concatenate or sum

sum sum sum sum sum sum

ch
a
n

n
e
ls

[words x channels] or [1 x channels]

(c) Term-level input w/ bag-of-trigraphs per term

d o g s h a v e o w n e r s c a t s h a v e s t a f f

p
re

-t
ra

in
e
d

e
m

b
e
d

d
in

g
s

concatenate or sum

ch
a
n

n
e
ls

[words x channels] or [1 x channels]

(d) Term-level input w/ pre-trained term embeddings

Figure 3.15: Examples of different representation strategies for text input to deep neural
network models. The smallest granularity of representation can be a character
or a term. The vector can be a sparse local representation, or a pre-trained
embedding.

3.5. Deep neural networks 91

Shift-invariant neural operations Convolutional [1, 246, 258, 259] and recur-

rent [260–263] architectures are commonplace in many deep learning applications.

These neural operations are part of a broader family of shift-invariant architectures.

The key intuition behind these architectures stem from the natural regularities ob-

servable in most inputs. In vision, for example, the task of detecting a face should

be invariant to whether the image is shifted, rotated, or scaled. Similarly, the mean-

ing of an English sentence should, in most cases, stay consistent independent of

which part of the document it appears in. Therefore, intuitively a neural model

for object recognition or text understanding should not learn an independent logic

for the same action applied to different parts of the input space. All shift-invariant

neural operations fundamentally employ a window-based approach. A fixed size

window moves over the input space with fixed stride in each step. A (typically

parameterized) function—referred to as a kernel, or a filter, or a cell—is applied

over each instance of the window. The parameters of the cell are shared across all

the instances of the input window. The shared parameters not only imply a smaller

number of total parameters in the model, but also more supervision per parameter

per training sample due to the repeated application.

Figure 3.16a shows an example of a cell being applied on a sequence of terms—

with a window size of three terms—in each step. A common cell implementation

involves multiplying with a weight matrix—in which case the architecture in Fig-

ure 3.16a is referred as convolutional. An example of a cell without any parameters

is pooling—which consists of aggregating (e.g., by computing the max or the aver-

age per channel) over all the terms in the window. Note, that the length of the input

sequence can be variable in both cases and the length of the output of a convolu-

tional (or pooling) layer is a function of the input length. Figure 3.16b shows an

example of global pooling—where the window spans over the whole input—being

applied on top of a convolutional layer. The global pooling strategy is common for

generating a fixed size output from a variable length input.7

In convolution or pooling, each window is applied independently. In con-

7It may be obvious, but worth pointing out, that a global convolutional layer is exactly the same
as a fully-connected layer.

92 Chapter 3. Background

output

(a) Convolution or pooling

co
n
v
o
lu
ti
o
n

p
o
o
li
n
g

output

(b) Convolution w/ global pooling

output

(c) Recurrent

output

(d) Recursive or tree

output

k0

v0

q kn

vn

a0
an

ono0

ki

vi

oi

ai

(e) Attention

k1

v1

qi kn

vn

a1
an

ono1

ki

vi

oi

ai

outputnoutputioutput1

(f) Self-attention

Figure 3.16: Standard shift-invariant neural architectures including convolutional neural
networks (CNN), recurrent neural networks (RNN), pooling layers, tree-
structured neural networks, attention layer, and self-attention layer.

trast, in the recurrent architecture of Figure 3.16e the cell not only considers the

input window but also the output of the previous instance of the cell as its input.

Many different cell architectures have been explored for recurrent neural networks

3.5. Deep neural networks 93

(RNN)—although Elman network [264], Long Short-Term Memory (LSTM) [263],

and Gated Recurrent Unit (GRU) [265, 266] are commonly used. RNNs are typi-

cally applied to sequences but can also be useful for two (and higher) dimensional

inputs [267].

One consideration when using convolutional or recurrent layers is how the win-

dow outputs are aggregated. Convolutional layers are typically followed by pooling

or fully-connected layers that perform a global aggregation over all the window in-

stances. While a fully-connected layer is aware of each window position, a global

pooling layer is typically agnostic to it. However, unlike a fully-connected layer,

a global max-pooling operation can be applied to a variable size input. Where a

global aggregation strategy may be less appropriate (e.g., long sequences), recur-

rent networks with memory [268–270] and/or attention [40, 271–274] may be use-

ful. Figure 3.16e shows tree-structured (or recursive) neural networks [275–279]

where the same cell is applied at multiple levels in a tree-like hierarchical fashion

resulting in a recursive aggregation strategy.

Finally, attention mechanisms—in particular, self-attention [280]—have

demonstrated remarkable usefulness for many NLP and IR tasks. In a typical

attention setting, we have a set of n items that we can attend over and an input

context, and we produce a probability distribution {a1, . . . ,ai, . . . ,an} of attending

to each item as a function of similarity between a learned representation q of the

context and learned representations ki of the items. The final output o is the ag-

gregate of learned value vi corresponding to each item weighted by their attention

probabilities.

o =
n

∑
i

ϕ(q,ki)

∑n
j ϕ(q,k j)

× vi (3.84)

In self-attention, we repeat the above process n times treating one of the n items

themselves as the context in each case. Self-attention layers have been operational-

ized in Transformer-based [280] architectures, e.g., BERT [281].

94 Chapter 3. Background

Auto-encoders The autoencoder architecture [248, 282, 283] is based on the infor-

mation bottleneck method [155]. The goal is to learn a compressed representation

x⃗ ∈ Rk of items from their higher-dimensional vector representations v⃗ ∈ RK , such

that k ≪ K. The model has an hour-glass shape as shown in Figure 3.17a and is

trained by feeding in the high-dimensional vector inputs and trying to re-construct

the same representation at the output layer. The lower-dimensional middle layer

forces the encoder part of the model to extract the minimal sufficient statistics of v⃗

into x⃗, such that the decoder part of the network can reconstruct the original input

back from x⃗. The model is trained by minimizing the reconstruction error between

the input v⃗ and the actual output of the decoder v⃗′. The squared-loss is commonly

employed.

Lautoencoder (⃗v, v⃗′) = ∥⃗v− v⃗′∥2 (3.85)

Siamese networks Siamese networks were originally proposed for comparing fin-

gerprints [284] and signatures [285]. Yih et al. [286] later adapted the same archi-

tecture for comparing short texts. The siamese network, as seen in Figure 3.17b,

resembles the autoencoder architecture (if you squint hard enough)—but unlike the

latter is trained on pairs of inputs ⟨input1, input2⟩. The architecture consists of two

models (model1 and model2) that project input1 and input2, respectively, to v⃗1 and

v⃗2 in a common latent space. A pre-defined metric (e.g., cosine similarity) is used

to then compute the similarity between v⃗1 and v⃗2. The model parameters are opti-

mized such that v⃗1 and v⃗2 are closer when the two inputs are expected to be similar,

and further away otherwise.

One possible loss function is the logistic loss. If each training sample consist

of a triple ⟨v⃗q, v⃗d1, v⃗d2⟩, such that sim(v⃗q, v⃗d1) should be greater than sim(v⃗q, v⃗d2),

then we minimize,

3.5. Deep neural networks 95

input output

embedding

encode decode

(a) Autoencoder

input1 input2

embedding1

model1

similarity
function

embedding2

model2

(b) Siamese network

Figure 3.17: Both (a) the autoencoder and (b) the Siamese network architectures are de-
signed to learn compressed representations of inputs. In an autoencoder the
embeddings are learnt by minimizing the self-reconstruction error, whereas
a Siamese network focuses on retaining the information that is necessary for
determining the similarity between a pair of items (say, a query and a docu-
ment).

96 Chapter 3. Background

input output

σ

encode

sample

sampled
embedding

decode

μ

Figure 3.18: Instead of directly generating an encoded representation, variational autoen-
coders sample the latent vector from the generated vector of means µ and stan-
dard deviations σ . This local variation forces the model to learn a smoother
and more continuous latent space.

Lsiamese(v⃗q, v⃗d1, v⃗d2) = log
(

1+ e−γ(sim(v⃗q,v⃗d1)−sim(v⃗q,v⃗d2))
)

(3.86)

Where, γ is a constant that is often set to 10. Typically, both the models—model1

and model2—share identical architectures, but can also choose to share the same pa-

rameters. In image retrieval, the contrastive loss [197, 198] is also used for training

Siamese networks.

It is important to note that, unlike the autoencoder, the minimal sufficient statis-

tics retained by a Siamese network is dictated by which information it deems impor-

tant for determining the similarity between the paired items.

Variational autoencoders (VAE) In Variational autoencoders [287, 288], the en-

coder part of the network generates two separate vectors—the vector of means µ

and the vector of standard deviations σ . The latent representation x⃗ of the input is

then generated by sampling a random variable xi with mean µi and standard devia-

tion σi along each of the k latent dimensions.

3.5. Deep neural networks 97

x⃗ = [x0 ∼ N(µ0,σ2
0), . . . ,xi ∼ N(µi,σ2

i), . . . ,xk−1 ∼ N(µk−1,σ2
k−1)] (3.87)

By sampling the latent representation, we expose the decoder to a certain degree of

local variations in its input that should force the model to learn a smoother continu-

ous latent space. The VAE is trained by jointly minimizing the reconstruction loss—

similar to vanilla autoencoders—and an additional component to the loss function

which is the KL-divergence between the latent variable xi and a unit gaussian.

LVAE = Lreconstruction +LKL−divergence (3.88)

= ∥⃗v− v⃗′∥2 +
k

∑
i

σ2
i +µ2

i − log(σi)−1 (3.89)

Without the LKL−divergence component the model can learn very different µ for dif-

ferent classes of inputs and minimize the λ to be arbitrarily small such that the

learnt latent space is no longer smooth or continuous. Readers should note that the

sampling step is non-differentiable, but the model can be trained using the “repa-

rameterization trick” proposed by Kingma and Welling [287].

An important application of VAE is for the synthesis of new items (e.g., im-

ages [289] or text [290]) not observed in the training collection. Another class

of techniques for synthesis includes the Generative Adversarial Networks.

Generative Adversarial Networks (GAN) Goodfellow et al. [291] proposed a

framework for training generative models under an adversarial setting. GANs typi-

cally consist of two separate neural networks—a generator network and a discrimi-

nator network. The goal of the generator network is to synthesize new (fake) items

that mimic similar distributions as items that exist in the training collection. The

goal of the discriminator network is to correctly distinguish between a true item and

an item produced by the generator. The generator is trained to maximize the prob-

ability of the discriminator wrongly classifying the true and the generated item—

98 Chapter 3. Background

which corresponds to a minimax two-player game.

3.5.3 Neural toolkits

In recent years, the advent of numerous flexible toolkits [292–299] has had a cat-

alytic influence on the area of neural networks. Most of the toolkits define a set

of common neural operations that—like Lego8 blocks—can be composed to build

complex network architectures. Each instance of these neural operations or com-

putation nodes can have associated learnable parameters that are updated during

training, and these parameters can be shared between different parts of the network

if necessary. Every computation node under this framework must implement the

appropriate logic for,

• computing the output of the node given the input (forward-pass)

• computing the gradient of the loss with respect to the inputs, given the gradi-

ent of the loss with respect to the output (backward-pass)

• computing the gradient of the loss with respect to its parameters, given the

gradient of the loss with respect to the output (backward-pass)

A deep neural network, such as the one in Figure 3.13 or ones with much

more complex architectures (e.g., [251, 300, 301]), can then be specified by chain-

ing instances of these available computation nodes, and trained end-to-end on large

datasets using backpropagation over GPUs or CPUs. In IR, various application in-

terfaces [302, 303] bind these neural toolkits with existing retrieval/indexing frame-

works, such as Indri [110]. Refer to [304] for a comparison of different neural

toolkits based on their speed of training using standard performance benchmarks.

3.6 Deep neural models for IR
Traditionally, deep neural network models have much larger number of learnable

parameters than their shallower counterparts. A DNN with a large set of parameters

can easily overfit to smaller training datasets [305]. Therefore, during model design

8https://en.wikipedia.org/wiki/Lego

https://en.wikipedia.org/wiki/Lego

3.6. Deep neural models for IR 99

it is typical to strike a balance between the number of model parameters and the size

of the data available for training. Data for ad hoc retrieval mainly consists of,

• Corpus of search queries

• Corpus of candidate documents

• Ground truth—in the form of either explicit human relevance judgments or

implicit labels (e.g., from clicks)—for query-document pairs

While both large scale corpora of search queries [79, 306] and documents [307–

309] are publicly available for IR research, the amount of relevance judgments

that can be associated with them are often limited outside of large industrial re-

search labs—mostly due to user privacy concerns. We note that we are interested in

datasets where the raw text of the query and the document is available. Therefore,

this excludes large scale public labelled datasets for learning-to-rank (e.g., [310])

that don’t contain the textual contents.

The proportion of labelled and unlabelled data that is available influences the

level of supervision that can be employed for training these deep models. Most of

the models we covered in Section 3.3 operate under the data regime where large

corpus of documents or queries is available, but limited (or no) labelled data. Un-

der such settings where no direct supervision or relevance judgments is provided,

typically an unsupervised approach is employed (e.g., using auto-encoding [311]

or masked language modeling [281]). The unlabelled document (or query) corpus

is used to learn good text representations, and then these learnt representations are

incorporated into an existing retrieval model or a query-document similarity metric.

If small amounts of labelled data are available, then that can be leveraged to train

a retrieval model with few parameters that in turn uses text representations that is

pre-trained on larger unlabelled corpus. Examples of such semi-supervised training

includes models such as [117, 192, 256]. In contrast, fully-supervised models—

e.g., [21, 28, 118, 312, 313]—optimize directly for the target task by training on

large number of labelled query-document pairs.

100 Chapter 3. Background

It is also useful to distinguish between deep neural models that focus on

ranking long documents, from those that rank short texts (e.g., for the question-

answering task, or for document ranking where the document representation is

based on a short text field like title). The challenges in short text ranking are

somewhat distinct from those involved in the ad hoc retrieval task [314]. When

computing similarity between pairs of short-texts, vocabulary mismatches are more

likely than when the retrieved items contain long text descriptions [315]. Neural

models that perform matching in a latent space tend to be more robust towards the

vocabulary mismatch problem compared to lexical term-based matching models.

On the other hand, documents with long body texts may contain mixture of many

topics and the query matches may be spread over the whole document. A neural

document ranking model must effectively aggregate the relevant matches from dif-

ferent parts of a long document. In the rest of this section, we discuss several neural

architectures and approaches to document ranking.

3.6.1 Document auto-encoders

Salakhutdinov and Hinton [311] proposed Semantic Hashing—one of the earliest

deep neural models for ad hoc retrieval. The model is a deep autoencoder trained

under unsupervised setting on unlabelled document collection. The model consid-

ers each document as a bag-of-terms and uses one-hot vector representation for the

terms—considering only top two thousand most frequent terms in the corpus af-

ter removing stopwords. Salakhutdinov and Hinton [311] first pre-train the model

layer-by-layer, and then train it further end-to-end for additional tuning. After fine

tuning the output of the model are thresholded to generate binary vector encoding

of the documents. Given a search query, a corresponding hash is generated, and the

relevant candidate documents quickly retrieved that match the same hash vector. A

standard IR model can then be employed to rank between the selected documents.

Semantic hashing is an example of a document encoder based approach to IR.

Variational autoencoders have also been explored [316] on similar lines. While vo-

cabulary sizes of few thousand distinct terms may be too small for most practical IR

tasks, a larger vocabulary or a different term representation strategy—such as the

3.6. Deep neural models for IR 101

character trigraph based representation of Figure 3.15c—may be considered in prac-

tice. Another shortcoming of the autoencoder architecture is that it minimizes the

document reconstruction error which may not align well with the goal of the target

IR task. A better alternative may be to train on query-document paired data where

the choice of what constitutes as the minimal sufficient statistics of the document is

influenced by what is important for determining relevance of the document to likely

search queries. In line with this intuition, we next discuss the Siamese architecture

based models.

3.6.2 Siamese networks

In recent years, several deep neural models based on the Siamese architecture have

been explored especially for short text matching. The Deep Semantic Similar-

ity Model (DSSM) [118] is one such architecture that trains on query and docu-

ment title pairs where both the pieces of texts are represented as bags-of-character-

trigraphs. The DSSM architecture consists of two deep models—for the query and

the document—with all fully-connected layers and cosine distance as the choice of

similarity function in the middle. Huang et al. [118] proposed to train the model on

clickthrough data where each training sample consists of a query q, a positive docu-

ment d+ (a document that was clicked by a user on the SERP for that query), and a

set of negative documents D− randomly sampled with uniform probability from the

full collection. The model is trained my minimizing the cross-entropy loss,

Ldssm(q,d+,D−) =−log
(eγ·cos

(⃗
q,d⃗+
)

∑d∈D eγ·cos
(⃗

q,d⃗
)) (3.90)

where, D = {d+}∪D− (3.91)

While, DSSM [118] employs deep fully-connected architecture for the query and

the document models, more sophisticated architectures involving convolutional

layers [185, 257, 317, 318], recurrent layers [319, 320], and tree-structured net-

works [278] have also been explored. The similarity function can also be parameter-

102 Chapter 3. Background

Table 3.3: Comparing the nearest neighbours for “seattle” and “taylor swift” in the CDSSM
embedding spaces when the model is trained on query-document pairs vs. query
prefix-suffix pairs. The former resembles a topical notion of similarity between
terms while the latter is more typical in the definition of inter-term similarities.

seattle taylor swift
Query-Document Prefix-Suffix Query-Document Prefix-Suffix

weather seattle chicago taylor swift.com lady gaga
seattle weather san antonio taylor swift lyrics meghan trainor

seattle washington denver how old is taylor swift megan trainor
ikea seattle salt lake city taylor swift twitter nicki minaj

west seattle blog seattle wa taylor swift new song anna kendrick

ized and implemented as additional layers of the neural network as in [312]. Most

of these models have been evaluated on the short text matching task, but Mitra et al.

[21] recently reported meaningful performances on the long document ranking task

from models like DSSM [118] and CDSSM [185] under telescoping evaluation. Mi-

tra et al. [21] also show that sampling the negative documents uniformly from the

collection is less effective to using documents that are closer to the query intent but

judged as non-relelvant by human annotators in similar evaluation settings.

Notions of similarity It is important to emphasize that our earlier discussion in Sec-

tion 3.2.2 on different notions of similarity between terms that can be learnt by shal-

low embedding models is also relevant in the context of these deeper architectures.

In the case of Siamese networks, such as the convolutional-DSSM (CDSSM) [185],

the notion of similarity being modelled depends on the choice of the paired data

that the model is trained on. When the CDSSM is trained on query and document

title pairs [185] then the notion of similarity is more topical in nature. Mitra and

Craswell [34] trained the same CDSSM architecture on query prefix-suffix pairs

which, in contrast, captures a more typical notion of similarity, as shown in Ta-

ble 7.2. In a related work, Mitra [33] demonstrated that the CDSSM model when

trained on session-query pairs is amenable to vector-based text analogies.

3.6. Deep neural models for IR 103

interaction matrix

neural network
q

u
e
ry

document

Figure 3.19: Schematic view of an interaction matrix generated by comparing windows of
text from the query and the document. A deep neural network—such as a
CNN—operates over the interaction matrix to find patterns of matches that
suggest relevance of the document to the query.

v⃗things to do in london − v⃗london + v⃗new york ≈ v⃗new york tourist attractions (3.92)

v⃗university of washington − v⃗seattle + v⃗denver ≈ v⃗university of colorado (3.93)

v⃗new york + v⃗newspaper ≈ v⃗new york times (3.94)

By modelling different notions of similarity these deep neural models tend to be

more suitable for other IR tasks, such as query auto-completion [34] or session-

based personalization [33].

3.6.3 Interaction-based networks

Siamese networks represent both the query and the document using single embed-

ding vectors. Alternatively, we can individually compare different parts of the query

with different parts of the document, and then aggregate these partial evidences

of relevance. Especially, when dealing with long documents—that may contain a

mixture of many topics—such a strategy may be more effective than trying to rep-

resent the full document as a single low-dimensional vector. Typically, in these

approaches a sliding window is moved over both the query and the document text

and each instance of the window over the query is compared (or “interacts”) against

104 Chapter 3. Background

The President of the United States of America (POTUS) is the elected head of state and head of
government of the United States. The president leads the executive branch of the federal government
and is the commander in chief of the United States Armed Forces. Barack Hussein Obama II (born
August 4, 1961) is an American politician who is the 44th and current President of the United States.
He is the first African American to hold the office and the first president born outside the continental
United States.

(a) Lexical model
The President of the United States of America (POTUS) is the elected head of state and head of
government of the United States. The president leads the executive branch of the federal government
and is the commander in chief of the United States Armed Forces. Barack Hussein Obama II (born
August 4, 1961) is an American politician who is the 44th and current President of the United States.
He is the first African American to hold the office and the first president born outside the continental
United States.

(b) Semantic model

Figure 3.20: Analysis of term importance for estimating the relevance of a passage to the
query “United States President” by a lexical and a semantic deep neural net-
work model. The lexical model only considers the matches of the query terms
in the document but gives more emphasis to earlier occurrences. The seman-
tic model is able to extract evidence of relevance from related terms such as
“Obama” and “federal”.

each instance of the window over the document text (see Figure 3.19). The terms

within each window can be represented in different ways including, one-hot vectors,

pre-trained embeddings, or embeddings that are updated during the model training.

A neural model (typically convolutional) operates over the generated interaction

matrix and aggregates the evidence across all the pairs of windows compared.

The interaction matrix based approach have been explored both for short text

matching [256, 257, 321–324], as well as for ranking long documents [21, 192, 325,

326].

3.6.4 Lexical matching networks

Much of the explorations in neural IR models have focused on learning good rep-

resentations of text. However, these representation learning models tend to per-

form poorly when dealing with rare terms and search intents. In Section 2.1.2, we

highlighted the importance of modelling rare terms in IR. Based on similar moti-

vaions, Guo et al. [117] emphasized the importance of modelling lexical matches

using deep neural networks, and proposed to use histogram-based features in their

DNN model to capture lexical notion of relevance. Neural models that focus on lex-

ical matching typically have fewer parameters, and can be trained under small data

3.7. Conclusion 105

regimes—unlike their counterparts that focus on learning representations of text.

3.6.5 BERT

BERT-based [281] architectures have recently demonstrated significant perfor-

mance improvements on retrieval tasks [35, 36]. The model architecture comprises

of stacked Transformer [280] layers. The query and document are concatenated and

then tokenized as a single sequence of subword terms for input. The relevance esti-

mation task is cast as a binary classification problem—i.e., given a query-document

pair predict if they are relevant or nonrelevant—although other training objectives

have also been explored [327].

3.7 Conclusion
We surveyed a large body work in this section. We introduced the fundamentals

of traditional IR models and representation learning with neural networks. We pre-

sented some of the recent (shallow and deep) neural approaches for document rank-

ing and question-answer matching. Readers should note that this is an active area

for research, and new architectures and learning methods are continuously emerg-

ing. So, it is likely that by the time this thesis is published, many of the methods

described here may have already been superseded by more recent and advanced

methods. In the subsequent chapters of this thesis, we will cover our contributions

in the form of new neural models and approaches for some of these IR tasks.

Chapter 4

Learning to rank with Duet networks

In traditional Web search, the query consists of only few terms but the body text of

the documents may typically have tens or hundreds of sentences. In the absence of

click information, such as for newly-published or infrequently-visited documents,

the body text can be a useful signal to determine the relevance of the document

for the query. Therefore, extending existing neural text representation learning ap-

proaches to long body text for document ranking is an important challenge in IR.

However, as was noted previously [328], despite the recent surge in interests to-

wards applying deep neural networks (DNN) for retrieval, their success on ad hoc

retrieval tasks has been rather limited. Some papers [120, 192] report worse per-

formance of neural embedding models when compared to traditional term-based

approaches, such as BM25 [76].

Traditional IR approaches consider terms as discrete entities. The relevance of

the document to the query is estimated based on, amongst other factors, the number

of matches of query terms in the document, the parts of the document in which the

matches occur, and the proximity between the matches. In contrast, latent semantic

analysis (LSA) [124], probabilistic latent semantic analysis (PLSA) [152] and latent

Dirichlet allocation (LDA) [154, 329] learn low-dimensional vector representations

of terms, and match the query against the document in the latent semantic space. In

Section 2.1, we emphasized the importance of both lexical and latent matching in

IR. Lexical matching can be particularly important when the query terms are new

or rare. On the other hand, matches between learned latent representations of query

108 Chapter 4. Learning to rank with Duet networks

The President of the United States of
America (POTUS) is the elected head of
state and head of government of the United
States. The president leads the executive
branch of the federal government and is
the commander in chief of the United
States Armed Forces. Barack Hussein
Obama II (born August 4, 1961) is an
American politician who is the 44th and
current President of the United States. He
is the first African American to hold the of-
fice and the first president born outside the
continental United States.

(a) Local subnetwork

The President of the United States of
America (POTUS) is the elected head of
state and head of government of the United
States. The president leads the executive
branch of the federal government and is
the commander in chief of the United
States Armed Forces. Barack Hussein
Obama II (born August 4, 1961) is an
American politician who is the 44th and
current President of the United States. He
is the first African American to hold the of-
fice and the first president born outside the
continental United States.

(b) Distributed subnetwork

Figure 4.1: Visualizing the drop in the local and the distributed subnetwork’s retrieval score
by individually removing each of the passage terms for the query “united states
president”. Darker green signifies a bigger drop. The local subnetwork uses
only exact term matches. The distributed subnetwork uses matches based on a
learned representation.

and document are important for addressing the vocabulary mismatch problem.

Retrieval models can be classified based on what representations of text they

employ at the point of matching the query against the document. At the point of

match, if each term is represented by a unique identifier (local representation [129])

then the query-document relevance is a function of the pattern of occurrences of the

exact query terms in the document. However, if the query and the document text is

first projected into a continuous latent space, then it is their distributed representa-

tions that are compared. Along these lines, Guo et al. [117] classify recent DNNs

for short-text matching as either interaction-focused [256, 257, 321] or representa-

tion-focused [118, 185, 257, 312, 317]. They claim that IR tasks are different from

NLP tasks, and that it is more important to focus on exact matching for the former

and on learning text embeddings for the latter. Mitra et al. [119], on the other hand,

claim that models that compare the query and the document in the latent semantic

space capture a different sense of relevance than models that focus on exact term

matches, and therefore the combination of the two is more favourable. Our work

is motivated by the latter intuition that it is important to match the query and the

document using both local and distributed representations of text. We propose a

109

novel ranking model comprised of two separate DNNs that model query-document

relevance using local and distributed representations, respectively. The two DNNs,

referred to henceforth as the local subnetwork and the distributed subnetwork, are

jointly trained as part of a single model, that we name as the Duet network because

the two subnetworks co-operate to achieve a common goal. Figure 4.1 demonstrates

how each subnetwork models the same document given a fixed query. While the

local subnetwork captures properties like exact match position and proximity, the

distributed subnetwork detects synonyms (e.g., ‘Obama’), related terms (e.g., ‘fed-

eral’), and even well-formedness of content (e.g., ‘the’, ‘of’).1

In this chapter, we show that the combination of the two DNNs not only out-

performs the individual subnetworks, but also demonstrates large improvements

over traditional baselines and other previously proposed models based on DNNs

on the document ranking task. Unlike other previous work [120, 192], our model

significantly outperforms classic IR approaches by using a DNN to learn text repre-

sentation.

Deep neural network models are known to benefit from large training data,

achieving state-of-the-art performance in areas where large scale training corpora

are available [2, 210]. Some of the lack of positive results from neural models in

ad hoc retrieval is likely due to the scarce public availability of large quantity of

training data necessary to learn effective representations of text. In Section 4.5, we

will present some analysis on the effect of training data on the performance of these

DNN models. In particular, we found that–unsurprisingly–the performance of the

distributed model improves drastically in the presence of more data. Unlike some

previous work [118, 185, 317] that train on clickthrough data with randomly sam-

pled documents as negative examples, we train our model on human-judged labels.

Our candidate set for every query consists of documents that were retrieved by the

commercial search engine Bing, and then labelled by crowdsourced judges. We

found that training with the documents that were rated non-relevant by the human

judges as the negative examples is more effective than randomly sampling negative

1While surprising, this last property is important for detecting quality web content [330].

110 Chapter 4. Learning to rank with Duet networks

examples from the corpus.

In Section 4.4 we present additional improvements to the Duet network bench-

marked on the MS MARCO passage ranking task [48] and TREC 2019 Deep Learn-

ing track [35].

To summarize, the key contributions of this chapter are:

1. We propose a novel Duet network that jointly learns two deep neural networks

that match query and document based on their lexical similarity and similarity

in their learned latent representations, respectively.

2. We demonstrate that Duet out-performs previous state-of-the-art neural and

traditional non-neural baselines.

3. We demonstrate that training with documents judged as non-relevant as the

negative examples is more effective than randomly sampling them from cor-

pus.

4. We report additional improvement to the original Duet network evaluated on

two recently released public benchmarks with sufficiently large training data.

4.1 The Duet network
Figure 4.2 provides a detailed schematic view of the Duet network. The distributed

subnetwork projects the query and the document text into an embedding space be-

fore matching, while the local subnetwork operates over an interaction matrix com-

paring every query term to every document term. The final score under the Duet

setting is the sum of scores from the local and the distributed subnetworks,

Duet(q,d) = Duet local(q,d)+Duet distrib(q,d) (4.1)

Where both the query and the document are considered as ordered list of terms,

q = [tq1, . . . , tq|q|] and d = [td1, . . . , td|d|]. Each query term tq and document term td is

represented by a m× 1 vector where m is the input representation of the text (e.g.,

4.1. The Duet network 111

Interaction Featurizer

1000 x 10

(binary)

Convolution (1000 x 1)

300 x 10

Fully Connected

300

Fully Connected

300

Dropout

300

Fully Connected

1

N-graph Featurizer

2000 x 10

(counts)

Convolution (2000 x 3)

300 x 8

Max Pooling (1 x 8)

300

Fully Connected

300

N-graph Featurizer

2000 x 1000

(counts)

Convolution (2000 x 3)

300 x 998

Max Pooling (1 x 100)

300 x 899

Convolution (300 x 1)

300 x 899

Hadamard Product

300 x 899

Fully Connected

300

Fully Connected

300

Dropout

300

Fully Connected

1

Sum

Query DocumentQueryDocument

local model distributed model

Figure 4.2: The Duet network is composed of the local subnetwork (left) and the distributed
subnetwork (right). The local subnetwork takes an interaction matrix of query
and document terms as input, whereas the distributed subnetwork learns em-
beddings of the query and the document text before matching. The parameters
of both subnetworks are optimized jointly during training. Hyperparameters
such as nhidden and npool shown as in the document ranking task.

112 Chapter 4. Learning to rank with Duet networks

the number of terms in the vocabulary for the local subnetwork). The query q and

the document d is, in turn, represented by the matrices Xq and Xd , respectively.

Xq =




v⃗tq1


. . .


v⃗tq|q|




, Xd =




v⃗td1


. . .


v⃗td|d|




(4.2)

We fix the length of the inputs across all the queries and the documents such that we

consider only the first nq terms in the query and the first nd terms in the document.

If either the query or the document is shorter than these target dimensions, then

the input vectors are padded with zeros. The truncation of the document body text

to the first nd terms is performed only for our subnetwork and its variants, but not

for the baseline models. For all the neural and the non-neural baseline models we

consider the full body text.

4.1.1 Local subnetwork

Match positions of the query terms in the document not only reflect where poten-

tially the relevant parts of the document are localized (e.g., title, first paragraph,

closing paragraph) but also how clustered the individual query term matches are

with each other. Figure 4.3 shows the position of matches on two different queries

and a sample of relevant and non-relevant documents. In the first query, we see that

the query term matches in the relevant document are much more clustered than in

the non-relevant documents. We observe this behaviour also in the second query but

in addition notice that the clustered matches are localized near the beginning of the

relevant document. Match proximity serves as a foundation for traditional methods

such as sequential dependence models [109].

The local subnetwork estimates document relevance based on patterns of exact

matches of query terms in the document. To this end, each term is represented by

its one-hot encoding in a mlocal-dimensional space, where mlocal is the size of the

4.1. The Duet network 113

Query: big deal derby carpet

✓

✗

✗

✓
✗
✗

Query: rosario trainer

1 1000
Document terms

rosario
trainer

rosario
trainer

rosario
trainer

Big
Deal

Derby
carpet

Big
Deal

Derby
carpet

Big
Deal

Derby
carpet

Figure 4.3: Visualizing patterns of query term matches in documents. Query terms are laid
out along the vertical axis, and the document terms along the horizontal axis.
The short vertical lines correspond to exact matches between pairs of query and
document terms. For both queries, the first document was rated relevant by a
human judge and the following two as non-relevant. The query term matches in
the relevant documents are observed to be more clustered, and more localized
near the beginning of the document.

vocabulary. The subnetwork then generates the nd × nq binary matrix X = X ⊺
d Xq,

capturing every exact match (and position) of query terms in the document. This in-

teraction matrix is similar to the visual representation of term matches in Figure 4.3,

and captures both the exact term matches and the match positions. It is also similar

to the indicator matching matrix proposed previously by Pang et al. [256]. While

the interaction matrix X perfectly captures every query term match in the document,

it does not retain any information about the actual terms themselves. Therefore, the

local subnetwork cannot learn term-specific properties from the training corpus, nor

model interactions between dissimilar terms.

The interaction matrix X is first passed through a convolutional layer with

nhidden filters, a kernel size of nd ×1, and a stride of 1. The output Zi corresponding

to the ith convolutional window over X is a function of the match between the tqi

term against all the terms in the document,

114 Chapter 4. Learning to rank with Duet networks

Zi = tanh
(

Xi
⊺ ·W

)
(4.3)

Where Xi is the row i of X , tanh is performed elementwise, and the nd × nhidden

matrix W contains the learnable parameters of the convolutional layer. The output

Z of the convolutional layer is a matrix of dimension nhidden×nq. The output of the

convolutional layer is then passed through two fully-connected layers, a dropout

layer, and a final fully-connected layer that produces a single real-valued output.

All the nodes in the local subnetwork uses the hyperbolic tangent function for non-

linearity.

4.1.2 Distributed subnetwork

The distributed subnetwork learns dense lower-dimensional vector representations

of the query and the document text, and then computes the positional similarity

between them in the learnt embedding space. Instead of one-hot encoding of terms,

as in the local subnetwork, we use a character n-graph based representation of each

term in the query and document. Our n-graph based input encoding is motivated

by the trigraph encoding proposed by Huang et al. [118], but unlike their approach

we don’t limit our input representation to n-graphs of a fixed length. For each term,

we count all the n-graphs present for 1 ≤ n ≤ nmaxgraph. We then use this n-graph

frequency vector of length mdistrib to represent the term.

Instead of directly computing the interaction between the mdistrib × nq matrix

Xq and the mdistrib×nd matrix Xd , we first learn a series of nonlinear transformations

to the character-based input. For both the query and the document, the first step is

convolution. The mdistrib × nwindow convolution window has filter size of nhidden.

It projects nwindow consecutive terms to a nhidden-dimensional vector, then takes a

stride by 1 position, and projects the next nwindow terms, and so on. For the query,

the convolution step generates a tensor of dimensions nhidden × (nq − nwindow + 1).

For the document, it generates one of dimensions nhidden × (nd −nwindow +1).

Following this, we conduct a max-pooling step. For the query the pooling

4.1. The Duet network 115

kernel dimensions are 1 × (nq − nwindow + 1). For the document, it is 1 × npool .

Thus, we get one nhidden-dimensional embedding v⃗q for the query and a nhidden ×

(nd − nwindow − npool + 2) matrix X̃d for the document. The document matrix X̃d

can be interpreted as (nd − nwindow − npool + 2) separate embeddings, each corre-

sponding to different equal-sized spans of text within the document. Our choice of

a window-based max-pooling strategy, instead of global max-pooling as employed

by CDSSM [317], is motivated by the fact that the window-based approach allows

the model to distinguish between matches in different parts of the document. As

posited in the previous section, a model that is aware of match positions may be

more suitable when dealing with long documents, especially those containing mix-

ture of many different topics.

The output of the max-pooling layer for the query is then passed through a

fully-connected layer. For the document, the nhidden × (nd − nwindow − npool + 2)

dimensional matrix output is operated on by another convolutional layer with filter

size of nhidden, kernel dimensions of nhidden ×1, and a stride of 1. The combination

of these convolutional and max-pooling layers enable the distributed subnetwork to

learn suitable representations of text for effective inexact matching.

To perform the matching, we conduct the element-wise or Hadamard product

between the embedded document matrix and the extended or broadcasted query

embedding,

X̃ = (v⃗q v⃗q︸ ︷︷ ︸
(nd−nwindow−npool+2) times

)◦ X̃d (4.4)

After this, we pass the matrix through fully connected layers, and a dropout layer

until we arrive at a single score. Like the local subnetwork, we use hyperbolic

tangent function here for non-linearity.

4.1.3 Optimization

Each training sample consists of a query q, a relevant document d+ and a set of non-

relevant documents D− = {d0, . . . ,dnneg}. We use a softmax function to compute

116 Chapter 4. Learning to rank with Duet networks

the posterior probability of the positive document given a query based on the score.

p(d+|q) = eDuet(q,d+)

∑d∈D eDuet(q,d)
(4.5)

where, D = {d+}∪D− (4.6)

We maximize the log likelihood log p(d+|q) using stochastic gradient descent.

4.2 Experiments
We conduct three experiments on a document ranking task to test: (1) the effec-

tiveness of the Duet network compared to the local and distributed subnetworks

separately, (2) the effectiveness of the Duet network compared to existing baselines

for content-based web ranking, and (3) the effectiveness of training with judged

negative documents compared to random negative documents.

In addition, we also evaluate the effectiveness of the Duet model on the TREC

Complex Answer Retrieval (TREC CAR) task [331]. In this section, we detail both

the experiment setup and the corresponding baseline implementations.

4.2.1 Data

Document ranking task The training dataset consist of 199,753 instances in the

format described in Section 4.2.2. The queries in the training dataset are randomly

sampled from Bing’s search logs from a period between January 2012 and Septem-

ber 2014. Human judges rate the documents on a five-point scale (perfect, excellent,

good, fair, and bad). The document body text is retrieved from Bing’s Web docu-

ment index. We use proprietary parsers for extracting the body text from raw HTML

content. All query and document text are normalized by down-casing and removing

all non-alphanumeric characters.

We consider two different test sets, both sampled from Bing search logs. The

weighted set consist of queries sampled per their frequency in the search logs. Thus,

frequent queries are well-represented in this dataset. Queries are sampled between

October 2014 and December 2014. The unweighted set consist of queries sampled

4.2. Experiments 117
Table 4.1: Statistics of the three test sets randomly sampled from Bing’s search logs for

the document ranking task. The candidate documents are generated by querying
Bing and then rated using human judges.

queries documents docs per query

training 199,753 998,765 5
weighted test 7,741 171,302 24.9
unweighted test 6,808 71,722 10.6

uniformly from the entire population of unique queries. The queries in this samples

remove the bias toward popular queries found in the weighted set. The unweighted

queries are sampled between January 2015 and June 2015.

Because all of our datasets are derived from sampling real query logs and be-

cause queries naturally repeat, there is some overlap in queries between the training

and testing sets. Specifically, 14% of the testing queries in the weighted set occurr

in the training set, whereas only 0.04% of the testing queries in the unweighted set

occurr in the training set. We present both results for those who may be in environ-

ments with repeated queries (as is common in production search engines) and for

those who may be more interested in cold start situations or tail queries. Table 4.1

summarizes statistics for the two test sets.

TREC Complex Answer Retrieval task The goal of TREC CAR task is to, given

a document title and a section heading from the same document as a query, retrieve

and rank passages from a provided collection. In order to support this task, the

TREC CAR organizers present a large training set derived from English Wikipedia.

The mediawiki format of articles is parsed to extract the title, the section headings,

and the corresponding passages. The collection is filtered to exclude pages which

belong to frequent categories, such as people and events, and articles with less than

five sections are discarded.

For each heading, we construct a set that includes all passages from the page

(in random order) as well as the same amount of passages randomly drawn from

other pages. On average this process yields a mean of 35 passages per section

which includes: (1) passages from the correct section, (2) passages from the same

page, but from different sections, or (3) passages from other pages. The retrieval

118 Chapter 4. Learning to rank with Duet networks

involves ranking the correct passages (1) higher than the passages from the wrong

section or article (2 and 3). We split the dataset for training and testing at a 4:1 ratio.

4.2.2 Training

Besides the architecture (Figure 4.2), our model has the following free parameters:

(1) the maximum order of the character-based representation for the distributed sub-

network nmaxgraph, (2) the maximum number of query terms nq and document terms

nd considered by the model, (3) the convolutional filter size nhidden and window

size nwindow, (4) the windows size for max-pooling on the document input for the

distributed subnetwork npool , (5) the number of negative documents to sample at

training time nneg, (6) the dropout rate, and (7) the learning rate..

We use a maximum order of five for our character n-graphs in the distributed

subnetwork. Instead of using the full 62,193,780-dimensional vector, we only con-

sider the top 2,000 most frequent n-graphs, resulting in 36 unigraphs (a-z and 0-9),

689 bigraphs, 1149 trigraphs, 118 4-graphs, and eight 5-graphs.

For both the document ranking and the TREC CAR tasks we limit the maxi-

mum number of query terms nq to 10, and fix the window size of the convolution

nwindow to 3. The dropout rate is also set to 0.20 for both.

For the document ranking task, we consider the first 1000 terms in the doc-

ument. Correspondingly, the max-pooling window size npool is fixed at 100, and

nhidden is set to 300. When training our model, we sample four negative documents

for every relevant document. More precisely, for each query we generated a max-

imum of one training sample of each form, (1) One excellent document with four

fair documents (2) One excellent document with four bad documents (3) One good

document with four bad documents.

Pilot experiments showed that treating documents judged as fair or bad as the

negative examples result in significantly better performance, than when the model

is trained with randomly sampled negatives. For training, we discard all documents

rated as perfect because a large portion of them fall under the navigational intent,

which can be better satisfied by historical click based ranking signals. When dealing

with long documents, it is necessary to use a small minibatch size of 8 to fit the

4.2. Experiments 119

whole data in GPU memory.

For TREC CAR, the average size of passages is significantly smaller than the

documents in the previous ranking task. So we consider the first 100 terms in ev-

ery passage and set npool and nhidden to 10 and 64, respectively. Because of the

(1) smaller size of the input, (2) the smaller number of model parameters, as well as

(3) the use of single negative documents, we increase the minibatch size to 1024.

Finally, we choose 0.01 and 0.001 as the learning rates for the two tasks, re-

spectively, based on corresponding validation sets. We implement our model using

CNTK [293] and train the model with stochastic gradient descent based optimiza-

tion (with automatic differentiation) on a single GPU.2

4.2.3 Baselines

Document ranking task Exact term matching is effectively performed by many

classic information retrieval models. We used the Okapi BM25 [76] and query

likelihood (QL) [100] models as representative of this class of model. We use Indri3

for indexing and retrieval.

Match positions are handled by substantially fewer models. Metzler’s depen-

dence model (DM) [109] provides an inference network approach to modeling term

proximity. We use the Indri implementation for our experiments.

Inexact term matching received both historic and modern treatments in the

literature. Deerwester et al. [124] originally presented latent semantic analysis

(LSA) as a method for addressing vocabulary mismatch by projecting terms and

documents into a lower-dimension latent space. The dual embedding space model

(DESM) [119, 172] computes a document relevance score by comparing every term

in the document with every query term using pre-trained term embeddings. We

used the same pre-trained term embeddings dataset that the authors made publicly

available online for download4. These embeddings, for approximately 2.8M terms,

were previously trained on a corpus of Bing queries. In particular, we use the

2A CNTK implementation of Duet is available at https://github.com/bmitra-msft/
NDRM/blob/master/notebooks/Duet.ipynb under the MIT license.

3http://www.lemurproject.org/indri/
4https://www.microsoft.com/en-us/download/details.aspx?id=52597

https://github.com/bmitra-msft/NDRM/blob/master/notebooks/Duet.ipynb
https://github.com/bmitra-msft/NDRM/blob/master/notebooks/Duet.ipynb
http://www.lemurproject.org/indri/
https://www.microsoft.com/en-us/download/details.aspx?id=52597

120 Chapter 4. Learning to rank with Duet networks

DESMIN-OUT model, which was reported to have the best performance on the re-

trieval task, as a baseline here.

Both the deep structured semantic model (DSSM) [118] and its convolutional

variant CDSSM [317] consider only the document title for matching with the query.

While some negative results have been reported for title-based DSSM and CDSSM

on the ad hoc document retrieval tasks [117, 192], we include document-based vari-

ants appropriately retrained on the same set of positive query and document pairs

as our model. As with the original implementation we choose the non-relevant

documents for training by randomly sampling from the document corpus. For the

CDSSM model, we concatenate the trigraph hash vectors of the first n terms of the

body text followed by a vector that is a sum of the trigraph hash vectors for the

remaining terms. The choice of n is constrained by memory requirements, and we

pick 499 for our experiments.

The DRMM model [117] uses a DNN to perform term matching, with few hun-

dred parameters, over histogram-based features. The histogram features, computed

using exact term matching and pre-trained term embeddings based cosine similari-

ties, ignoring the actual position of matches. We implemented the DRMMLCH×IDF

variant of the model on CNTK [293] using term embeddings trained on a corpus of

341,787,174 distinct sentences randomly sampled from Bing’s Web index, with a

corresponding vocabulary of 5,108,278 terms. Every training sample for our model

is turned into four corresponding training samples for DRMM, comprised of the

query, the positive document, and each one of the negative documents. This guaran-

tees that both models observed the exact same pairs of positive and negative docu-

ments during training. We adopted the same loss function as proposed by Guo et al.

[117].

TREC Complex Answer Retrieval task We rank results using Okapi BM25 [76]

with k1=1.2 and b=0.75. Porter stemming is applied to a Lucene 6.4.1 index and the

query.

In addition, we experiment with three different query expansion approaches

(terms, entities, and passages) and three vector space representations of queries and

4.2. Experiments 121

documents (tf-idf, GloVe embeddings, and RDF2Vec embeddings). Each of the

possible combinations (e.g., term-expansion + tf-idf vectors, or passage-expansion

+ term embedding vectors) defines a query representation. Results are ranked ac-

cording to the cosine similarity between the vector representations of the query and

the document.

We experiment with three different query expansion approaches:

• Expansion terms (RM). Feedback terms are derived using pseudo relevance

feedback and the relevance model [112]. We use Galago’s implementation5

which is based on a Dirichlet smoothed language model for the feedback run.

We achieve the best performance by expanding the query with top 10 terms

extracted from the top 10 feedback documents.

• Expansion entities. We also expand the query using supporting entities re-

trieved by a search for the query. Best performance is achieved using 10

entities for expansion.

• Passage Rocchio. Inspired by the work of Banerjee and Mitra [332], we re-

trieve other passages, which have identical section heading to the heading

part of our query, from the portion of the dataset reserved for training. For

example, given a query such as “United States demographic”, with respect

to the entity United States, we collect supporting passages from the pages of

other entities (e.g.„ United Kingdom), that fall under the section titled “De-

mographics”. Headings are processed with tokenisation, stopword and digit

removal, and stemming. We are able to retrieve at least one supporting pas-

sage for one-third of our queries. We obtain best performance from expanding

the query with 5 passages.

We investigate three vector representation schemes for the query and the passage:

• Local representation. Each term in the vocabulary is represented by a one-hot

vector. Queries and passages are represented as bag of terms, where the term

frequencies are weighted by TF-IDF and are logarithmic L2-normalised.

5lemurproject.org/galago.php

122 Chapter 4. Learning to rank with Duet networks

• Term Embeddings. Under this scheme, each term is represented by their corre-

sponding pre-trained GloVE [156] embeddings. The query and passage vec-

tors are obtained by averaging the term embeddings—with TF-IDF weight-

ing.

v⃗q =
1
|q| ∑

tq∈u(q)
tf-idf(tq) · v⃗tq

where, u(d) is the set of unique words in query q.

• Entity Embeddings. Queries and documents are represented as their men-

tioned DBpedia entities, using the entity linker TagMe [333]—with default

parameters. We obtain latent vector representations v⃗e of each linked entity

e using pre-computed RDF2Vec entity embeddings [334]. Query and pas-

sage representation is obtained from weighted average of these entity vectors.

Entity vectors are weighted based on inlink and outlink statistics from the

2015-04 DBpedia Data Set [335].

v⃗q =
1

|{e ∈ ent(q)}| ∑
e∈ent(q)

link(e) · v⃗e

where, ent(d) is the set of entities in query q.

Additionally, we combine the ranking-score of these different baselines with

supervised machine learning [336]. We train a linear model using RankLib 6 opti-

mized for MAP, trained with coordinate ascent.

4.2.4 Evaluation

For the document ranking task, we report the normalized discounted cumulative

gain (NDCG) metric computed at positions one and ten. All performance metrics

are averaged over queries for each run. Whenever testing for significant differences

in performance, we used the paired t-test with a Bonferroni correction. For the

TREC CAR task, we report MRR, R-Prec, and MAP numbers for all the models.

6lemurproject.org/ranklib.php

4.3. Results 123
Table 4.2: Performance on the document ranking task. All Duet runs significantly outper-

formed our local and distributed model (p < 0.05). All Duet runs also outper-
formed non-neural and neural baselines. The difference between the Duet model
and the best performing baseline per dataset and position (italics) is statistically
significant (p < 0.05). The best NDCG performance on each dataset and posi-
tion is highlighted in bold.

Weighted Unweighted
NDCG@1 NDCG@10 NDCG@1 NDCG@10

Non-neural baselines
LSA 22.4 44.2 31.9 62.7
BM25 24.2 45.5 34.9 63.3
DM 24.7 46.2 35.0 63.4
QL 24.6 46.3 34.9 63.4

Neural baselines
DRMM 24.3 45.2 35.6 65.1
DSSM 25.8 48.2 34.3 64.4
CDSSM 27.3 48.2 34.3 64.0
DESM 25.4 48.3 35.0 64.7

Our models
Local model 24.6 45.1 35.0 64.4
Distributed model 28.6 50.5 35.2 64.9
Duet model 32.2 53.0 37.8 66.4

4.3 Results
Document ranking task Table 4.2 reports NDCG based evaluation results on two

test datasets for our model and all the baseline models. Our main observation is that

Duet performs significantly better than the individual local and distributed models.

This supports our underlying hypothesis that matching in a latent semantic space

can complement exact term matches in a document ranking task, and hence a com-

bination of the two is more appropriate. Note that the NDCG numbers for the local

and the distributed subnetworks correspond to when these DNNs are trained indi-

vidually, but for Duet the two DNNs are trained together as part of a single neural

network.

Among the baseline models, including both traditional and neural network

based models, CDSSM and DESM achieve the highest NDCG at position one and

ten, respectively, on the weighted test set. On the unweighted test set DRMM is our

best baseline model at both rank positions. Duet demonstrates significant improve-

ments over all these baseline models on both test sets and at both NDCG positions.

124 Chapter 4. Learning to rank with Duet networks

46

48

50

52

local distributed joint

judged
random

(a) Weighted set

64.5

65.0

65.5

66.0

local distributed joint

judged
random

(b) Unweighted set

Figure 4.4: Duet demonstrates significantly better NDCG performance (p < 0.05) on both
test sets when trained with judged non-relevant documents as the negative ex-
amples, instead of randomly sampling them from the document corpus. The dis-
tributed subnetwork also shows statistically significant NDCG gain (p < 0.05)
on the weighted set, and a non-statistically significant NDCG gain on the un-
weighted set.

We also test our independent local and distributed models against their con-

ceptually closest baselines. Because our local model captures both matching and

proximity, we compared performance to dependence models (DM). While the per-

formance in terms of NDCG@1 is statistically indistinguishable, both NDCG@10

results are statistically significant (p < 0.05). We compared our distributed model

to the best neural model for each test set and metric. We found no statistically

significant difference except for NDCG@10 for the weighted set.

We were interested in testing our hypotheses that training with labeled negative

documents is superior to training with randomly sampled documents presumed to

be negative. We conducted an experiment training with negative documents follow-

ing each of the two protocols. Figure 4.4 shows the results of these experiments. We

found that, across all our models, using judged nonrelevant documents was more ef-

fective than randomly sampling documents from the corpus and considering them

as negative examples. Very recently, Xiong et al. [337] have presented similar evi-

dence on the importance of sampling negative documents that are closer in relevance

to the query than documents sampled from the collection at uniform probability, and

operationalized the idea in the form of active metric learning [338–340].

TREC Complex Answer Retrieval task Results are presented in table 4.3. Not

all query expansion approaches and vector space representations methods improve

4.4. Further improvements 125

Table 4.3: Duet outperforms (statistically significant at p < 0.05) the best baseline model
(italics) on the TREC Complex Answer Retrieval task. The best performances
are highlighted in bold for each metric.

MRR R-Prec MAP
bm25
query only 0.409 0.232 0.320
tf-idf (cs)
query only 0.383 0.212 0.350
query + RM1 0.384 0.205 0.324
query + Rocchio 0.466 0.286 0.400
GloVe (cs)
query only 0.387 0.210 0.329
query + RM1 0.339 0.177 0.289
query + Rocchio 0.410 0.236 0.349
RDF2Vec (cs)
entity-query only 0.369 0.200 0.313
ent-query + ent-RM1 0.377 0.208 0.320
ent-query + ent-Rocchio 0.375 0.206 0.316
Learning to Rank
all (cs) scores 0.475 0.290 0.412
Duet
query only 0.553 0.359 0.470

over the BM25 baseline. The most promising results—among the baseline methods

which employ cosine similarity as a ranking function—are obtained when the query

is expanded with supporting textual paragraphs. This is an interesting finding that

reconfirms the results of previous work on the automatic generation of Wikipedia

articles based on its structural information [332, 341]. The learning to rank model

is our best performing baseline. Duet yields a substantial improvement over all pre-

sented approaches, including a 47% improvement in MAP over the BM25 baseline

and a 14% improvement over the learning to rank model.

4.4 Further improvements
In follow up work, we explore several additional modifications to the original Duet

architecture and demonstrate through an ablation study that incorporating these

changes results in significant improvements on passage ranking. We evaluate the

modified Duet model on the MS MARCO passage ranking task [48] and the TREC

126 Chapter 4. Learning to rank with Duet networks

Deep Learning track [35]. In the context of the document ranking task at TREC,

we further modify the architecture to incorporate multiple-field representation of

documents.

4.4.1 Duet on MS MARCO

In this section, we briefly describe several modifications to the Duet architecture in

the context of passage ranking. A public implementation of the updated Duet model

using PyTorch [342] is available online7.

1. Word embeddings. We replace the character level n-graph encoding in the

input of the distributed subnetwork with word embeddings. We see significant

reduction in training time given a fixed number of minibatches and a fixed

minibatch size. This change primarily helps us to train on a significantly

larger amount of data under fixed training time constraints. We initialize the

word embeddings using pre-trained GloVe [156] embeddings before training

Duet.

2. Inverse document frequency weighting. In contrast to some of the other

datasets on which Duet has been previously evaluated [21, 28], the MS

MARCO dataset contains a relatively larger percentage of natural language

queries and the queries are considerably longer on average. In traditional IR

models, the inverse document frequency (IDF) [343] of a query term provides

an effective mechanism for weighting the query terms by their discriminative

power. In the original Duet architecture, the input to the local subnetwork

corresponding to a query q and a document d is a binary interaction matrix

X ∈ R|q|×|d| defined as follows:

Xi j =

1, if qi = d j

0, otherwise
(4.7)

7https://github.com/dfcf93/MSMARCO/blob/master/Ranking/
Baselines/Duet.ipynb

https://github.com/dfcf93/MSMARCO/blob/master/Ranking/Baselines/Duet.ipynb
https://github.com/dfcf93/MSMARCO/blob/master/Ranking/Baselines/Duet.ipynb

4.4. Further improvements 127

We incorporate IDF in Duet by weighting the interaction matrix by the IDF of

the matched terms. We adopt the Robertson-Walker definition of IDF [344]

normalized to the range [0,1].

X ′
i j =

IDF(qi), if qi = d j

0, otherwise
(4.8)

IDF(t) =
log(N/nt)

log(N)
(4.9)

Where, N is the total number of passages in the collection and nt is the number

of passages in which the term t appears at least once.

3. Non-linear combination of local and distributed subnetworks. Zamani

et al. [345] show that when combining different subnetworks in a neural rank-

ing model, it is more effective if each subnetwork produce a vector output

that are further combined by additional multi-layer perceptrons (MLP). In the

original Duet, the local and the distributed subnetwork produce a single score

that are linearly combined. In our updated architecture, both subnetworks

produce a vector that are further combined by an MLP—with two hidden

layers—to generate the estimated relevance score.

4. Rectifier Linear Units (ReLU). We replace the Tanh non-linearities in the

original Duet with ReLU [346] activations.

5. Bagging. We observe some additional improvements from combining multi-

ple Duet models—trained with different random seeds and on different ran-

dom sample of the training data—using bagging [347].

Experiments We evaluate the proposed modifications to Duet on the recently re-

leased MS MARCO passage ranking task [48]. The task requires a model to rank

128 Chapter 4. Learning to rank with Duet networks

approximately thousand passages for each query. The queries are sampled from

Bing’s search logs, and then manually annotated to restrict them to questions with

specific answers. A BM25 [76] model is employed to retrieve the top thousand can-

didate passages for each query from the collection. For each query, zero or more

candidate passages are deemed relevant based on manual annotations. The ranking

model is evaluated on this passage re-ranking task using the mean reciprocal rank

(MRR) metric [71]. Participants are required to submit the ranked list of passages

per query for a development (dev) set and a heldout (eval) set. The ground truth

annotations for the development set are available publicly, while the corresponding

annotations for the evaluation set are heldout to avoid overfitting. A public leader-

board8 presents all submitted runs from different participants on this task.

The MS MARCO task provides a pre-processed training dataset—called

“triples.train.full.tsv”—where each training sample consists of a triple ⟨q, p+, p−⟩,

where q is a query and p+ and p− are a pair of passages, with p+ being more rele-

vant to q than p−. Similar to the original Duet, we employ the cross-entropy with

softmax loss to learn the parameters of our network M :

L = Eq,p+,p−∼θ [ℓ(Mq,p+ −Mq,p−)] (4.10)

where, ℓ(∆) = log(1+ e−σ ·∆) (4.11)

Where, Mq,p is the relevance score for the pair ⟨q, p⟩ as estimated by the model

M . Note, that by considering a single negative passage per sample, our loss is

equivalent to the RankNet loss [189].

We use the Adam optimizer with default parameters and a learning rate of

0.001. We set σ in Equation 5.8 to 0.1 and dropout rate for the model to 0.5. We

trim all queries and passages to their first 20 and 200 words, respectively. We restrict

our input vocabulary to the 71,486 most frequent terms in the collection and set the

size of all hidden layers to 300. We use minibatches of size 1024 and train the model

for 1024 minibatches. Finally, for bagging we train eight different Duet networks

8http://www.msmarco.org/leaders.aspx

http://www.msmarco.org/leaders.aspx

4.4. Further improvements 129

Table 4.4: Comparison of the different Duet variants and other state-of-the-art approaches
from the public MS MARCO leaderboard. The update Duet benefits signifi-
cantly from the modifications proposed in this paper.

Model MRR@10
Dev Eval

Other approaches
BM25 0.165 0.167
Single CKNRM [348] model 0.247 0.247
Ensemble of 8 CKNRM [348] models 0.290 0.271
IRNet (a proprietary deep neural model) 0.278 0.281
BERT [121] 0.365 0.359
Duet variants
Single Duet w/o IDF weighting for interaction matrix 0.163 -
Single Duet w/ Tanh non-linearity (instead of ReLU) 0.179 -
Single Duet w/o MLP to combine local and distributed scores 0.208 -
Single Duet 0.243 0.245
Ensemble of 8 Duet networks 0.252 0.253

with different random seeds and on different samples of the training data. We train

and evaluate our models using a Tesla K40 GPU—on which it takes a total of only

1.5 hours to train each single Duet model and to evaluate it on both dev and eval

sets.

Results Table 4.4 presents the MRR@10 corresponding to all the Duet variants we

evaluated on the dev set. The updated Duet with all the modifications described

in Section 4.4.1 achieves an MRR@10 of 0.243. We perform an ablation study

by leaving out one of the three modifications—(i) IDF weighting for interaction

matrix, (ii) ReLU non-linearity instead of Tanh, and (iii) LP to combine local and

distributed scores,—out at a time. We observe a 33% degradation in MRR by not

incorporating the IDF weighting alone. It is interesting to note that the Github im-

plementations9 of the KNRM [349] and CKNRM [348] models also indicate that

their MS MARCO submissions incorporated IDF term-weighting—potentially indi-

cating the value of IDF weighting across multiple architectures. Similarly, we also

observe a 26% degradation in MRR by using Tanh non-linearity instead of ReLU.

Using a linear combination of scores from the local and the distributed subnetwork

9https://github.com/thunlp/Kernel-Based-Neural-Ranking-Models

130 Chapter 4. Learning to rank with Duet networks

instead of combining their vector outputs using an MLP results in 14% degradation

in MRR. Finally, we observe a 3% improvement in MRR by ensembling eight Duet

networks using bagging. We also submit the individual Duet model and the ensem-

ble of eight Duets for evaluation on the heldout set and observe similar numbers.

We include the MRR numbers for other non-Duet based approaches that

are available on the public leaderboard in Table 4.4. As of writing this paper,

BERT [281] based approaches—e.g., [121]—are outperforming other approaches

by a significant margin. Among the non-BERT based approaches, a proprietary

deep neural network—called IRNet—currently demonstrates the best performance

on the heldout evaluation set. This is followed, among others, by an ensemble

of CKNRM [348] models and the single CKNRM model. The single Duet model

achieves comparable MRR to the single CKNRM model on the eval set. The ensem-

ble of Duets, however, performs slightly worse than the ensemble of the CKNRM

models on the same set.

4.4.2 Duet on TREC Deep Learning track

The deep learning track at TREC 2019 makes large training datasets—suitable for

traininig deep models with large number of learnable parameters—publicly avail-

able in the context of a document ranking and a passage ranking tasks. We bench-

mark Duet on both tasks.

In the context of the document ranking task, we adapt Duet to ingest a “mul-

tiple field” view of documents, based on findings from Zamani et al. [345]. We

refer to this new architecture as Duet with Multiple Fields (DuetMF). We also com-

bine the relevance estimates from DuetMF with several other traditional and neural

retrieval methods in a learning-to-rank (LTR) [20] framework.

For the passage ranking task, we submit a single run based on an ensemble

of eight Duet models. The architecture and the training scheme resembles that

described in Section 4.4.1.

TREC 2019 deep learning track The TREC 2019 deep learning track introduces:

(i) a document retrieval task and (ii) a passage retrieval task. For both tasks,

participants are provided a set of candidates—100 documents and 1000 passages,

4.4. Further improvements 131

respectively—per query that should be ranked. Participants can choose to either

rerank provided candidates or retrieve from the full collection.

For the passage retrieval task, the track reuses the set of 500K+ manually-

assessed binary training labels released as part of the Microsoft Machine Reading

COmprehension (MS MARCO) challenge [48]. For the document retrieval task,

the passage-level labels are transferred to their corresponding source documents—

producing a training dataset of size close to 400K labels.

For evaluation, a shared test set of 200 queries is provided for both tasks, of

which two different overlapping set of 43 queries were later selected for manual

NIST assessments corresponding to the two tasks.

Full details of all datasets is available on the track website10 and in the track

overview paper [35].

Duet with Multiple Fields (DuetMF). Zamani et al. [345] study neural ranking

models in the context of documents with multiple fields. In particular, they make

the following observations:

Obs. 1: It is more effective to summarize the match between query and individual doc-

ument fields by a vector—as opposed to a single score—before aggregating

to estimate full document relevance to the query.

Obs. 2: It is better to learn different query representations corresponding to each doc-

ument field under consideration.

Obs. 3: Structured dropout (e.g., field-level dropout) is effective for regularization

during training.

We incorporate all of these ideas in the updated Duet network as shown in Fig. 4.5.

Documents in the deep learning track dataset contains three text fields:

(i) URL, (ii) title, and (iii) body. We employ Duet to match the query against each

individual document fields. In line with Obs. 1 from [345], the field-specific Duet

outputs a vector instead of a single score. We do not share the parameters of Duet

10https://microsoft.github.io/TREC-2019-Deep-Learning/

https://microsoft.github.io/TREC-2019-Deep-Learning/

132 Chapter 4. Learning to rank with Duet networks

generate
embedding

doc URL text

interaction matrix

q
u

er
y

te
xt

generate
embedding 1

local sub-model
distributed sub-

model

hadamard product

sum w/ local sub-
model dropout

aggregate

generate
embedding

doc title text

interaction matrix

generate
embedding 2

hadamard product

generate
embedding

doc body text

interaction matrix

hadamard product
generate

embedding 3

local sub-model
distributed sub-

model

sum w/ local sub-
model dropout

aggregate

local sub-model
distributed sub-

model

sum w/ local sub-
model dropout

aggregate

sum w/ field-level dropout

aggregate

Figure 4.5: The modified Duet (DuetMF) that considers multiple document fields.

between the field-specific instances based on Obs. 2. Following Obs. 3, we intro-

duce structured dropouts at different stages of the model. We randomly dropout

each of the local subnetworks for 50% of the training samples. Similarly, we also

dropout different combinations of field-level subnetworks uniformly at random—

taking care that at least one field-level model is always retained.

We consider the first 20 terms for queries and for document URLs and ti-

tles. For document body text, we consider the first 2000 terms. Similar to Sec-

tion 4.4.1, we employ pretrained word embeddings as the input text representation

for the distributed subnetworks. We train the word embeddings using a standard

word2vec [157] implementation in FastText [350] on a combination of the MS

MARCO document corpus and training queries.

The query and document field embeddings are learned by deep convolutional-

pooling layers. We set the hidden layer size at all stages of the model to 300

and dropout rate for different layers to 0.5. For training, we employ the RankNet

loss [189] over < q,dpos,dneg > triples and the Adam optimizer [351]—with a mini-

batch size of 128 and a learning rate of 0.0001 for training. We sample dneg uni-

4.4. Further improvements 133

formly at random from the top 100 candidates provided that are not positively la-

beled. When employing structured dropout, the same sub-models are masked for

both dpos and dneg.

In light of the recent success of large pretrained language models—

e.g., [121]—we also experiment with an unsupervised pretraining scheme us-

ing the MS MARCO document collection. The pretraining is performed over

< qpseudo,dpos,dneg >—where dpos and dneg are randomly sampled from the col-

lection and a pseudo-query qpseudo is generated by picking the URL or the title of

dpos randomly (with equal probability) and masking the corresponding field on the

document side for both dpos and dneg. We see faster convergence during supervised

training when the DuetMF model is pretrained in this fashion on the MS MARCO

document collection. We posit that a more formal study should be performed in the

future on pretraining Duet networks on large collections, such as Wikipedia and the

BookCorpus [352].

In addition to the independent Duet model, we train a neural LTR model

with two hidden layers—each with 1024 hidden nodes. The LTR run reranks a

set of 100 document candidates retrieved by query likelihood (QL) [100] with

Dirichlet smoothing (µ = 1250) [104]. Several ranking algorithms based on neu-

ral and inference networks act as features: (i) DuetMF, (ii) Sequential Depen-

dence Model (SDM) [109], and (iii) Pseudo-Relevance Feedback (PRF) [111, 112],

(iv) BM25, [76], and (v) Dual Embedding Space Model (DESM) [119, 172].

We employ SDM with an order of 3, combine weight of 0.90, ordered

window weight of 0.034, and an unordered window weight of 0.066 as our

base candidate scoring function. We use these parameters to retrieve from

the target corpus as well as auxiliary corpora of English language Wikipedia

(enwiki-20180901-pages-articles-multistream.xml.bz2), LDC

Gigaword (LDC2011T07). For PRF, initial retrievals—from either of the target,

wikipedia, or gigaword corpora—adopted the SDM parameters above, however are

used to rank 75-word passages with a 25-word overlap. These passages are then

interpolated using the top m passages and standard relevance modeling techniques,

134 Chapter 4. Learning to rank with Duet networks

Table 4.5: Official TREC 2019 Deep Learning track results. The recall metric is computed
at position 100 for the document retrieval task and at position 1000 for the pas-
sage retrieval task.

Run description Subtask MRR NDCG@10 MAP Recall
Document retrieval task
LTR w/ DuetMF fullrank 0.876 0.578 0.237 0.368
DuetMF model rerank 0.810 0.533 0.229 0.387
Passage retrieval task
Ensemble of 8 Duets rerank 0.806 0.614 0.348 0.694

from which we select the top 50 words to use as an expanded query for the final

ranking of the target candidates. We do not explicitly adopt RM3 [114] because

our LTR model implicitly combines our initial retrieval score and score from the

expanded query. All code for the SDM and PRF feature computation is available at

https://github.com/diazf/indri.

We evaluate two different BM25 models with hyperparameters < k1 = 0.9,b =

0.4 > and < k1 = 3.44,b = 0.87 >.

Corresponding to each of the DuetMF, SDM, PRF, and BM25 runs we generate

two features based on the score and the rank that the model predicts for a document

w.r.t. the target query.

We generate eight features by comparing the query against two different docu-

ment fields (title and body) and using different DESM similarity estimates (INxIN,

INxOUT, OUTxIN, OUTxOUT).

We add couple of features based on query length and domain quality—where

the latter is defined simply as a ratio between how often documents from a given

domain appear in the positively labeled training data and in the overall document

collection.

Finally, for the passage ranking task, we adopt the exact same model and train-

ing procedure from Section 4.4.1. Our final submission is an ensemble of eight

Duet networks.

Table 4.5 summarizes the official evaluation results for all three runs.

https://github.com/diazf/indri

4.5. Discussion 135

42

44

46

48

50

52

54

1 2 3 4 5+

local
dist.
duet

(a) Model performance by query length

42

44

46

48

50

52

54

frequent rare unseen

local
dist.
duet

(b) Model performance by term rarity

Figure 4.6: NDCG performance of different models by length of query and how rare the
rarest query term is in the training data. For the rare term analysis, we place all
query terms into one of five categories based on their occurrence counts in the
training data. Then we then categorize each query in the test dataset based on
the frequency of the rarest term belongs in the query. We include a category for
queries with at least one term which has no occurrences in the training data.

4.5 Discussion
Our results demonstrated that our joint optimization of local and distributed subnet-

works provides substantial improvement over several state-of-the-art baselines. Al-

though the independent models were competitive with existing baselines, the com-

bination provided a significant boost.

We also confirm that using judged negative documents should be used when

available. We speculate that training with topically-similar (but non-relevant) docu-

ments allows the model to better discriminate between the documents provided by

an earlier retrieval stage that are closer to each other w.r.t. relevance. This sort of

staged ranking, first proposed by Cambazoglu et al. [353], is now a common web

search engine architecture.

In Section 4.2.3 we described our baseline models according to which of the

properties of effective retrieval systems they incorporate. It is reasonable to expect

that models with certain properties are better suited to deal with certain segments

of queries. For example, the relevant Web page for the query “what channel are

the seahawks on today” may contain the name of the actual channel (e.g.„ “ESPN”

or “FOX”) and the actual date for the game, instead of the terms “channel” or “to-

day”. A retrieval model that only counts repetitions of query terms is likely to

retrieve less relevant documents for this query – compared to a model that con-

136 Chapter 4. Learning to rank with Duet networks

BM25

QL
DM

LSA

DSSM
CDSSM

DESM

DRMM

local
dist.

duet

Figure 4.7: Principal component analysis of models based on retrieval performance across
testing queries. Models using exact term matches (△), proximity (◦), and inex-
act matches (▽) are presented. Our models are presented as black squares.

siders “ESPN” and “FOX” to be relevant document terms. In contrast, the query

“pekarovic land company”, which may be considered as a tail navigational intent, is

likely to be better served by a retrieval model that simply retrieves documents con-

taining many matches for the term “pekarovic”. A representation learning model is

unlikely to have a good representation for this rare term, and therefore may be less

equipped to retrieve the correct documents. These anecdotal examples agree with

the results in in Table 4.2 that show that on the weighted test set all the neural mod-

els whose main focus is on learning distributed representations of text (Duet model,

distributed model, DESM, DSSM, and CDSSM) perform better than the models

that only look at patterns of term matches (local model and DRMM). We believe

that this is because the DNNs can learn better representations for more frequent

queries, and perform particularly well on this segment. Figure 4.6 provides further

evidence towards this hypothesis by demonstrating that the distributed model has a

larger NDCG gap with the local model for queries containing more frequent terms,

and when the number of terms in the query is small. The Duet model , however,

is found to perform better than both the local and the distributed models across all

these segments.

To better understand the relationship of our models to existing baselines, we

compared the per-query performance amongst all models. We conjecture that simi-

lar models should perform similarly for the same queries. We represented a retrieval

4.5. Discussion 137

model as a vector where each position of the vector contains the performance of the

model on a different query. We randomly sample two thousand queries from our

weighted test set and represent all ranking models as vectors of their NDCG values

against these two thousand queries. We visualized the similarity between models

by projecting using principal component analysis on the set of performance vectors.

The two-dimensional projection of this analysis is presented in Figure 4.7. The fig-

ure largely confirms our intuitions about properties of retrieval models. Models that

use only local representation of terms are closer together in the projection, and fur-

ther away from models that learn distributed representations of text. Interestingly,

the plot does not distinguish between whether the underlying model is based on a

neural network based or not – with neural networks of different retrieval properties

appearing in each of the three clusters.

Another interesting distinction between deep neural models and traditional ap-

proaches is the effect of the training data size on model performance. BM25 has

very few parameters and can be applied to new corpus or task with almost no train-

ing. On the other hand, DNNs like ours demonstrate significant improvements when

trained with larger datasets. Figure 4.8 shows that the effect of training data size

particularly pronounced for Duet and the distributed subnetwork that learns repre-

sentations of text. The trends in these plots indicate that training on even larger

datasets may result in further improvements in model performance over what is

reported here. We believe this should be a promising direction for future work.

A last consideration when comparing these models is runtime efficiency. Web

search engines receive tens of thousands of queries per second. Running a deep

neural model on raw body text at that scale is a hard problem. The local subnetwork

of our model operates on the term interaction matrix that should be reasonable to

generate using an inverted index. For the distributed model, it is important to note

that the 300×899 dimensional matrix representation of the document, that is used

to compute the Hadamard product with the query, can be pre-computed and stored

as part of the document cache. At runtime, only the Hadamard product and the

subsequent part of the network needs to be executed. Such caching strategies, if

138 Chapter 4. Learning to rank with Duet networks
4

2
4

4
4

6
4

8
5

0
5

2

●
●

● ●
● ● ●

●

●

● ●

●
●

●
●

●
●

●
● ● ● ●

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

Same # of total samples
Same # of epochs
QL baseline

Number of training samples per epoch

O
ve

ra
ll

N
D

C
G

@
1

0

(a) Local subnetwork

4
2

4
4

4
6

4
8

5
0

5
2

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

● ●

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

Same # of total samples
Same # of epochs
QL baseline

Number of training samples per epoch

O
ve

ra
ll

N
D

C
G

@
1

0

(b) Distributed subnetwork

4
2

4
4

4
6

4
8

5
0

5
2

●

● ●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

Same # of total samples
Same # of epochs
QL baseline

Number of training samples per epoch

O
ve

ra
ll

N
D

C
G

@
1

0

(c) Duet

Figure 4.8: We study the performance of our model variants when trained with different
size datasets. For every, dataset size we train two models – one for exactly
one epoch and another one with multiple epochs such that the total number of
training samples seen by the model during training is 131,072.

4.6. Conclusion 139

employed effectively, can mitigate large part of the runtime cost of running a DNN

based document ranking model at scale. In Chapter 5, we will revisit the question

of runtime efficiency, but in the context of a family of neural IR models.

4.6 Conclusion
We propose a novel ranking model composed of two separate deep subnetworks, one

that matches using local representation of text, and another that learns distributed

representation before matching. The Duet of these two subnetworks achieve better

performance compared to the sub-models individually on the document ranking and

passage ranking tasks—as well as significant improvements over other neural and

traditional non-neural baselines. Our analysis indicate that the improvements over

traditional methods are more substantial in the presence of larger training datasets.

Chapter 5

Retrieve, not just rerank, using deep

neural networks

In response to short text queries, search engines attempt to retrieve the top few

relevant results by searching through collections containing billions of documents

[354], often under a second [355]. Response time is a key consideration in web

search. Even a 100ms latency has been shown to invoke negative user reactions

[356, 357]. To achieve such short response times, these systems typically distribute

the collection over multiple machines that can be searched in parallel [358]. Special-

ized data structures—such as inverted indexes [359, 360]—are used to dramatically

cut down the number of documents required to be evaluated for any specific query.

The index organization and query evaluation strategies, in particular, trade-off re-

trieval effectiveness and efficiency during the candidate generation stage. However,

unlike in late stage re-ranking where machine learning (ML) models are common-

place [20, 361], the candidate generation frequently employs traditional retrieval

models with few learnable parameters.

Query evaluation using state-of-the-art deep neural ranking models require

time and resource intensive computations. Typically these models also require both

query and document as input to inspect the interactions between query and doc-

ument terms. The study of these neural ranking methods have, therefore, been

largely limited to late stage re-ranking. Efficient retrieval using these complex ma-

chine learned relevance estimators is an important challenge [362].

142 Chapter 5. Retrieve, not just rerank, using deep neural networks

Recently, a few different attempts [363–365] have been made to leverage neu-

ral methods for retrieval over large collections. All of these studies focus on neu-

ral methods that compute the latent representations of documents independent of

the query. This allows the document embeddings to be precomputed. At query

evaluation time, only the query embedding is computed by evaluating the corre-

sponding portion of the deep neural model. This is followed by an approximate

nearest-neighbour search over the collection—using the precomputed document

embeddings. This approaches typically achieve significantly poorer retrieval per-

formance compared to traditional IR methods—and generally need to be combined

with classical IR functions [363, 364].

In this chapter, we describe a different approach—that assumes query term

independence—to leverage state-of-the-art neural ranking models for retrieval over

the full collection. Based on our initial study, we posit there the is significant op-

portunity to use neural methods in combination with impact-ordered inverted index

[366–368]. These data structures employ score quantization for efficient retrieval.

In the second half of this chapter, we propose a method to learn appropriate quanti-

zation schemes that optimize for retrieval effectiveness.

5.1 Query term independence assumption

Many traditional IR ranking functions [76, 100–102, 105] and early word embed-

ding based IR methods [172, 177, 184] manifest the query-term independence

(QTI) property—i.e., the documents can be scored independently w.r.t. each query

term, and then the scores accumulated. Given a document collection, these term-

document scores can be precomputed [367]. Specialized IR data structures, such as

inverted indexes [359, 360], in combination with clever organization strategies (e.g.,

impact-ordering [366–368]) can take advantage of the simplicity of the accumula-

tion function (typically a linear sum) to aggressively prune the set of documents

that need to be assessed per query. This dramatically speeds up query evaluations

enabling fast retrieval from large collections, containing billions of documents.

Recent deep neural architectures—such as BERT [121], Duet (see Chapter 4),

5.1. Query term independence assumption 143

and CKNRM [348]—have demonstrated state-of-the-art performance on several IR

tasks [22, 35]. However, the superior retrieval effectiveness comes at the cost of

evaluating deep models with tens of millions to hundreds of millions of parameters

at query evaluation time. In practice, this limits the scope of these models to late

stage re-ranking.

Like traditional IR models, we can incorporate the QTI assumption into the

design of the deep neural model—which would allow offline precomputation of

all term-document scores. The query evaluation then involves only their linear

combination—alleviating the need to run the computation intensive deep model at

query evaluation time. We can further combine these precomputed machine-learned

relevance estimates with an inverted index, to retrieve from the full collection. This

significantly increases the scope of potential impact of neural methods in the re-

trieval process. We study this approach in this work. Of course, by operating

independently per query term, the ranking model has access to less information

compared to if it has the context of the full query. Therefore, we expect the ranking

model to show some loss in retrieval effectiveness under this assumption. However,

we trade this off with the expected gains in efficiency of query evaluations and the

ability to retrieve, and not just re-rank, using deep models.

The efficiency benefits of our proposed approach is two-fold. First and fore-

most, incorporating the QTI assumption allows for the deep model evaluations to be

performed at document indexing time, instead of at query evaluation time. While

query evaluation has strict response time constraints [355–357], IR systems gener-

ally have more leeway dealing with heavy computation during the offline indexing

process. Furthermore, the offline evaluation provides additional flexibility to group

samples into large batches and can take advantage of large-scale parallelization by

distributing the workload over large clusters of machines. Secondly, the computa-

tion complexity involved in exhaustively evaluating every document in a collection

D with respect to a set of queries Q for a typical deep ranking models, that operate

over individual query-document pairs, is O(|D| × |Q|). For models that incorpo-

rate the QTI assumption, the compute complexity changes to O(|D|× |T |), where

144 Chapter 5. Retrieve, not just rerank, using deep neural networks

T is the vocabulary of all indexed terms. While this may not look like an obvious

improvement over the O(|D|× |Q|) complexity, we note that rarely do we need to

evaluate the document exhaustively with respect to every term in the vocabulary. In

fact, we can rewrite the complexity for query term independent ranking models as

O(|D| × k), where k is the maximum number of terms that are practically impor-

tant to evaluate for any given document. We posit that k ≪ |T | and that we can

employ efficient methods, including simple heuristics, to preselect candidate terms

for a given document. The compute complexity can be further improved if, say, the

costliest part of the model—e.g., the document encoder—needs to be evaluated only

once per document and then only a small overhead is incurred for each of the k candi-

date terms. In that case, the compute complexity may be closer to O(|D|). A similar

motivation has recently been operationalized in the Conformer-Kernel [369, 370]

and DeepCT [371] architectures that incorporate the QTI assumption.

In this study, we incorporate the QTI assumption into three state-of-the-art neu-

ral ranking models—BERT, Duet, and CKNRM—and evaluate their effectiveness

on the MS MARCO passage ranking task [48]. We surprisingly find that the two of

the models suffer no statistically significant adverse affect w.r.t. ranking effective-

ness on this task under the query term independence assumption. While the perfor-

mance of BERT degrades under the strong query term independence assumption—

the drop in MRR is reasonably small and the model maintains a significant perfor-

mance gap compared to other non-BERT based approaches. We conclude that at

least for a certain class of existing neural IR models, incorporating query term inde-

pendence assumption may result in significant efficiency gains in query evaluation

at minimal (or no) cost to retrieval effectiveness.

5.2 Related work

Several neural IR methods—e.g., [117, 172, 177, 184]—already operate under

query term independence assumption. However, recent performance breakthroughs

on many IR tasks have been achieved by neural models [21, 121, 256, 257, 348]

that learn latent representations of the query or inspect interaction patterns between

5.3. Model 145

query and document terms. In this work, we demonstrate the potential to incor-

porate query term independence assumption in these recent representation learning

and interaction focused models.

Some neural IR models [118, 311, 372] learn (dense low-dimensional or sparse

high-dimensional) vector representations of document that can be computed inde-

pendently of the query. The query-document relevance is then estimated as sim-

ple similarity functions (e.g., cosine or dot-product) of the learned representations.

These models are also amenable to precomputation of document representations

and fast retrieval using approximate nearest neighbor search [373]—or even tra-

ditional IR data structures [365]. However, these approaches do not work when

the model architecture incorporates early interactions between query and document

representations—e.g., [21, 121, 192, 348]. The approach proposed in this study

allows for interactions between individual query terms and documents.

5.3 Model

IR functions that assume QTI observe the following general form:

Sq,d = ∑
t∈q

st,d (5.1)

Where, s ∈ R|V |×|C|
≥0 is the set of positive real-valued scores as estimated by the

relevance model corresponding to documents d ∈ C in collection C w.r.t. to terms

t ∈ V in vocabulary V —and Sq,d denotes the aggregated score of document d w.r.t.

to query q. For example, in case of BM25 [76]:

st,d = idft ·
tftd · (k1 +1)

tftd + k1 ·
(

1−b+b · |d|
avgdl

) (5.2)

Where, tf and idf denote term-frequency and inverse document frequency,

respectively—and k1 and b are the free parameters of the BM25 model.

146 Chapter 5. Retrieve, not just rerank, using deep neural networks

Deep neural models for ranking, in contrast, do not typically assume QTI. In-

stead, they learn complex matching functions to compare the candidate document

to the full query. The parameters of such a model ϕ is typically learned discrimina-

tively by minimizing a loss function of the following form:

L = Eq∼θq, d+∼θd+ ,d−∼θd−
[ℓ(∆q,d+,d−)] (5.3)

where, ∆q,d+,d− = ϕq,d+ −ϕq,d− (5.4)

We use d+ and d− to denote a pair of relevant and non-relevant documents, re-

spectively, w.r.t. query q. The instance loss ℓ in Equation 5.8 can take different

forms—e.g., ranknet [189] or hinge [221].

ℓranknet(∆q,d+,d−) = log(1+ e−σ ·∆q,d+,d−) (5.5)

ℓhinge(∆q,d+,d−) = max{0,ε −∆q,d+,d−} (5.6)

Given a neural ranking model ϕ , we define Φ—the corresponding model under the

QTI assumption—as:

Φq,d = ∑
t∈q

ϕt,d (5.7)

The new model Φ preserves the same architecture as ϕ but estimates the relevance

of a document independently w.r.t. each query term, as shown in Figure 5.1.

The parameters of Φ are learned using the modified loss:

L = Eq∼θq, d+∼θd+ ,d−∼θd−
[ℓ(δq,d+,d−)] (5.8)

where, δq,d+,d− = ∑
t∈q

ϕt,d+ −ϕt,d− (5.9)

5.3. Model 147

score

(a) Any arbitrary relevance model

score

(b) Same relevance model with QTI assumption

Figure 5.1: A visual representation of incorporating QTI assumption into any relevance
model. We treat the model in (a) as a black-box and re-visualize the same
model under QTI assumption in (b).

Given collection C and vocabulary V , we precompute ϕt,d for all t ∈ V and d ∈

C. In practice, the total number of combinations of t and d may be large but we

can enforce additional constraints on which ⟨t,d⟩ pairs to evaluate, and assume

no contributions from remaining pairs. During query evaluation, we can lookup

the precomputed score ϕt,d without dedicating any additional time and resource to

evaluate the deep ranking model. We employ an inverted index, in combination

with the precomputed scores, to perform retrieval from the full collection using the

learned relevance function Φ. We note that several IR data structures assume that

ϕt,d be always positive which may not hold for any arbitrary neural architecture.

But this can be rectified1 by applying a rectified linear unit [346] activation on the

1Pun intended.

148 Chapter 5. Retrieve, not just rerank, using deep neural networks

model’s output.

5.4 Experiments

5.4.1 Task description

We study the effect of the QTI assumption on deep neural IR models in the context

of the MS MARCO passage ranking task [48]. We find this ranking task to be suit-

able for this study for several reasons. Firstly, with one million question queries

sampled from Bing’s search logs, 8.8 million passages extracted from web docu-

ments, and 400,000 positively labeled query-passage pairs for training, it is one of

the few large datasets available today for benchmarking deep neural IR methods.

Secondly, the challenge leaderboard2—with 18 entries as of March 3, 2019—is a

useful catalog of approaches that show state-of-the-art performance on this task.

Conveniently, several of these high-performing models include public implementa-

tions for the ease of reproducibility.

Two comparable benchmarks include the TREC CAR [28, 374] and the Google

Natural Questions [375] datasets. However, we note that the queries in the former

dataset are synthetically generated—from Wikipedia page titles and section head-

ings. The latter dataset was released fairly recently and does not list many IR meth-

ods that have been evaluated on that benchmark—limiting our options to select ap-

propriate baselines for the study. Therefore, we adopt the MS MARCO benchmark

for this work.

The MS MARCO passage ranking task comprises of one thousand passages

per query that the IR model, being evaluated, should re-rank. Corresponding to ev-

ery query, one or few passages have been annotated by human editors as containing

the answer relevant to the query. The rank list produced by the model is evalu-

ated using the MRR metric against the ground truth annotations. We use the MS

MARCO training dataset to train all baseline and treatment models, and report their

performance on the publicly available development set which we consider—and

hereafter refer to—as the test set for our experiments. This test set contains about

2http://www.msmarco.org/leaders.aspx

http://www.msmarco.org/leaders.aspx

5.5. Results 149

seven thousand queries which we posit is sufficient for reliable hypothesis testing.

Note that the thousand passages per query were originally retrieved using

BM25 from a collection that is provided as part of the MS MARCO dataset. This

allows us to also use this dataset in a retrieval setting—in addition to the re-ranking

setting used for the official challenge. We take advantage of this in our study.

5.4.2 Baseline models

We begin by identifying models listed on the MS MARCO leaderboard that can

serve as baselines for our work. We only consider the models with public implemen-

tations. We find that a number of top performing entries—e.g., [121]—are based on

recently released large scale language model called BERT [281]. The BERT based

entries are followed in ranking by Duet and CKNRM. Therefore, we limit this study

to BERT, Duet, and CKNRM.

BERT Nogueira and Cho [121] report state-of-the-art retrieval performance on the

MS MARCO passage re-ranking task by fine tuning BERT [281] pretrained models.

In this study, we reproduce the results from their paper corresponding to the BERT

Base model and use it as our baseline. Under the term independence assumption,

we evaluate the BERT model once per query term—wherein we input the query

term as sentence A and the passage as sentence B.

Duet We employ the Duet variant described in Section 4.4.1 for this study.

CKNRM The CKNRM model [348] combines kernel pooling based soft match-

ing [349] with a convolutional architecture for comparing n-grams. CKNRM uses

kernel pooling to extract ranking signals from interaction matrices of query and pas-

sage n-grams. Under the query term independence assumption, the model considers

one query term at a time—i.e., the interactions between individual query unigrams

and passage n-grams. We use a public implementation3 of the model in our study.

5.5 Results
Table 5.1 compares the BERT, the Duet, and the CKNRM models trained under

the query term independence assumption to their original counterparts on the pas-

3https://github.com/thunlp/Kernel-Based-Neural-Ranking-Models

https://github.com/thunlp/Kernel-Based-Neural-Ranking-Models

150 Chapter 5. Retrieve, not just rerank, using deep neural networks

Table 5.1: Comparing ranking effectiveness of BERT, Duet, and CKNRM with the query
independence assumption (denoted as “Term ind.”) with their original counter-
parts (denoted as “Full”). The difference between the median MRR for “full”
and “term ind.” models are not statistically significant based on a student’s t-test
(p < 0.05) for Duet and CKNRM. The difference in MRR is statistically signif-
icant based on a student’s t-test (p < 0.05) for BERT (single run). The BM25
baseline (single run) is included for reference.

Model MRR@10
Mean (± Std. dev) Median

BERT
Full 0.356 0.356
Term ind. 0.333 0.333
Duet
Full 0.239 (±0.002) 0.240
Term ind. 0.244 (±0.002) 0.244
CKNRM
Full 0.223 (±0.004) 0.224
Term ind. 0.222 (±0.005) 0.221
BM25 0.167 0.167

sage re-ranking task. During this study, we observed some variance in relevance

metrics corresponding to different training runs for the CKNRM model using dif-

ferent random seeds. To control for this variance we train eight different clones

of the CKNRM model and report mean and median MRR. Similarly, the metrics

corresponding to the Duet model is based on five separate training runs, although

we observe negligible variance in the context of this architecture. For the BERT

based models, due to long training time we only report results based on a single

training and evaluation run. As table 5.1 shows, we observe no statistically signif-

icant difference in effectiveness from incorporating the query term independence

assumptions in either Duet or CKNRM. The query term independent BERT model

performs slightly worse than its original counterpart on MRR but the performance is

still superior to other non-BERT based approaches listed on the public leaderboard.

Note that all three models emphasize on early interactions between query and doc-

ument representations—unlike other prior work [118, 372] where the interaction is

limited to the final stage. Under the QTI assumption, we allow early interaction

between individual query terms and document, but delay the full query-document

5.6. Conclusion 151

Table 5.2: Comparing Duet (with QTI assumption) and BM25 under the full retrieval set-
tings. The differences in recall and MRR between Duet (term ind.) and BM25
are statistically significant according to student’s t-test (p < 0.01).

Model Recall@1000 MRR@10
BM25 0.80 0.169
BM25 + Duet 0.80 0.212
Duet (term ind.) 0.85 0.218

interaction till the end. Our observation that delaying the query-document interac-

tion has no significant impact on effectiveness of these interaction-based models is

a key finding of this study.

We posit that models with query term independence assumption—even when

slightly less effective compared to their full counterparts—are likely to retrieve bet-

ter candidate sets for re-ranking. To substantiate this claim, we conduct a small-

scale retrieval experiment based on a random sample of 395 queries from the test

set. We use the Duet model with the query term independence assumption to pre-

compute the term-passage scores constrained to (i) the term appears at least once in

the passage, and (ii) the term does not appear in more than 5% of the passage col-

lection. Table 5.2 compares Duet and BM25 on their effectiveness as a first stage

retrieval method in a potential telescoping setting [82]. We observe a 6.25% im-

provement in recall@1000 from Duet over the BM25 baseline. To perform similar

retrieval from the full collection using the full Duet model, unlike its query-term-

independent counterpart, is prohibitive because it involves evaluating the model on

every passage in the collection against every incoming query.

5.6 Conclusion
The emergence of compute intensive ranking models, such as BERT, motivates re-

thinking how these models should be evaluated in large scale IR systems. The

approach proposed in this paper moves the burden of model evaluation from the

query evaluation stage to the document indexing stage. This may have further con-

sequences on computational efficiency by allowing batched model evaluation that

more effectively leverages GPU (or TPU) parallelization.

152 Chapter 5. Retrieve, not just rerank, using deep neural networks

This preliminary study is based on three state-of-the-art deep neural models

on a public passage ranking benchmark. The original design of all three models—

BERT, Duet, and CKNRM—emphasize on early interactions between query and

passage representations. However, we observe that limiting the interactions to pas-

sage and individual query terms has reasonably small impact on their effectiveness.

These results are promising as they support the possibility of dramatically speed-

ing up query evaluation for some deep neural models, and even employing them

to retrieve from the full collection. The ability to retrieve—and not just re-rank—

using deep models has significant implications for neural IR research. Any loss in

retrieval effectiveness due to incorporating strong query term independence assump-

tions may be further recovered by additional stages of re-ranking in a telescoping

approach [82].

This study is focused on the passage ranking task. The trade-off between effec-

tiveness and efficiency may be different for document retrieval and other IR tasks.

Traditional IR methods in more complex retrieval settings—e.g., when the docu-

ment is represented by multiple fields [99]—also observe the query term indepen-

dence assumption. So, studying the query term independence assumption in the

context of corresponding neural models—e.g., [345]—may also be appropriate. We

note these as important future directions for our research.

The findings from this study may also be interpreted as pointing to a gap in our

current state-of-the-art neural IR models that do not take adequate advantage of term

proximity signals for matching. This is another finding that may hold interesting

clues for IR researchers who want to extract more retrieval effectiveness from deep

neural methods.

Chapter 6

Stochastic learning to rank for target

exposure

Retrieval systems mediate what information users are exposed to and consume. A

typical large collection may contain several documents that are relevant, albeit to

varying degrees, to a user’s query. Because users rarely inspect all retrieved results

exhaustively, the IR system must prioritize what documents are exposed more than

others to maximize the chances of user satisfaction. The need for this prioritiza-

tion is often operationalized by formulating retrieval as a ranking task, as we have

also assumed in previous chapters. Consequently, this assumption that the system

produces a ranked list of results is often also baked into the design of many infor-

mation access interfaces. A common form of presentation involves displaying a

vertical (or sometimes horizontal) result list. Even sophisticated visual interfaces,

such as grid layouts, or non-visual interaction modes, as in the case of voice-based

search, may assume that the backend retrieval system returns a ranked list of results

which determines how prominently they should be displayed. Across these differ-

ent modalities, the probability that the user inspects a certain result depends on its

display position [69, 376] and size [377] among other factors, which in turn may be

determined by the document’s rank in the results list.

A static ordering by estimated relevance makes sense if we assume: (i) the

IR system is only concerned about satisfying the user performing the search, and

(ii) all relevant documents are equivalent from the user’s perspective and therefore

154 Chapter 6. Stochastic learning to rank for target exposure

the user’s interests are best served by ordering retrieved documents strictly by their

estimated relevance. In many real-life IR scenarios, however, the system must also

care about document and producer-side fairness [84, 85, 378]. For example, in web

search we may want the IR system to give equal exposure to documents of com-

parable relevance—which may directly impact their monetization and other value

that producers can extract from content exposure. When documents correspond to

different demographics like gender or race—e.g., candidate profiles on a job appli-

cation website—parity of exposure across demographics may be important from

fairness and legal concerns. In scenarios where the system produces a ranking of

service providers, such as booking a hotel or hailing a ride [379], distributing ex-

posure across multiple providers may be necessary to avoid producer starvation or

overload. When retrieved documents have comparable relevance but contain differ-

ent information, then balanced exposure may increase diversity of consumption and

help mitigate phenomenon like filter bubbles [380].

In these scenarios, a single fixed ranking makes less sense. Instead, it may

be more meaningful for the system to present different randomized permutations

of comparably relevant documents to distribute exposure more fairly among them.

Such stochastic ranking policies provide a framework for optimizing how exposure

is distributed in expectation. In Chapters 4 and 5, we adopted the narrow view

that it is sufficient to learn a relevance model whose estimates are appropriate for

generating single static ordering of results. In contrast, in this chapter we shift

our focus to optimizing models that produce relevance estimates appropriate for

generating different permutations of results that minimizes the deviation of expected

exposure from a specified target distribution. Our main contribution here is to adapt

the learning to rank [20] framework for direct optimization towards target exposure.

6.1 Related work

In the learning to rank [20] literature, several optimization objectives have been pro-

posed that can be broadly categorized into: (i) pointwise, (ii) pairwise, and (iii) list-

wise loss functions. Because the exposure of a document is a function of its rank in

6.2. Expected exposure metrics 155

the result list, our optimization goals are better served by the listwise formulation.

Several listwise loss functions [231, 232] operationalize the idea of deriving the

probability of a rank ordering given the score distribution over documents using the

Plackett-Luce model [228, 229]. It is noteworthy, that enumerating all distinct docu-

ment permutations can be computationally challenging even for a moderately sized

set of candidates. More recently, Bruch et al. [381] demonstrated a mechanism for

sampling rankings from the Plackett-Luce distribution using the reparameterization

trick [351] that is amenable to gradient-based optimization. Their approach involves

adding independently drawn noise samples from the Gumbel distribution [382] and

then deriving the approximate rank of the document following the method proposed

by Qin et al. [383] and Wu et al. [384]. While not developed in the context of de-

ploying stochastic ranking models, we adopt a similar methodology herein in our

framework.

Our work is at the intersection of learning to rank optimization and expected

exposure metrics. For the latter, we operationalize the framework proposed by Diaz

et al. [32]. In Section 6.2, we provide a brief primer on this topic.

6.2 Expected exposure metrics
Given an information need q, Diaz et al. [32] define the expected exposure εd of

document d as:

εd = Eσ∼πq [µ(d|σ)] (6.1)

Where, σ is a ranking of documents in the collection, sampled from πq, a probability

distribution over all possible permutations of documents conditioned on q. We use

µ(d|σ) to denote the conditional probability of exposure of document d given rank-

ing σ . To compute µ(d|σ), we can adopt any arbitrary user behavior model [385]

that defines how the user interacts with the presented rank list. For example, the

rank-biased precision (RBP) [386] metric assumes that a user’s probability of visit-

ing a position decreases exponentially with rank.

156 Chapter 6. Stochastic learning to rank for target exposure

µRBP(d|σ) = γ(ρσ ,d−1) (6.2)

Where, ρσ ,d is the rank of the document d in σ—and γ is the patience parameter

that controls how deep in the ranking the user is likely inspect. We adopt this RBP

user behavior model in this study but note that this analysis can be easily extended

to more elaborate browsing models like the cascade model [387].

Plugging in the RBP user-model into Equation 6.1 we get:

εd = Eσ∼πq

[
γ(ρσ ,d−1)

]
(6.3)

Diaz et al. [32] further define a metric that quantifies the deviation between the

expected exposure vector ε corresponding to all documents in the collection under

a retrieval system from a specified target distribution ε∗:

EE(π,q) = ∥ε − ε∗∥2
2 (6.4)

= ∥ε∥2
2︸︷︷︸

EE-D

−2ε⊺ε∗︸ ︷︷ ︸
EE-R

+∥ε∗∥2
2 (6.5)

Equation 6.5 factorizes the expected exposure metric into expected exposure dispar-

ity (EE-D) and expected exposure relevance (EE-R). EE-D measures the inequity

in exposure distribution over all documents which we want to minimize when op-

timizing the parameters of the ranking policy. In contrast, EE-R quantifies how

much of the exposure is on relevant documents which a good ranking policy should

maximize. This leads to a natural trade-off between disparity (EE-D) and relevance

(EE-R) which often relates to the degree of randomization applied by a stochastic

policy. A deterministic policy may achieve the highest relevance at the cost of high

disparity. Similarly, a policy that randomly samples documents from the collection

with uniform probability achieves lowest disparity but also lowest relevance. In

6.2. Expected exposure metrics 157

our experiments, we plot a disparity-relevance curve by controlling the degree of

randomization and report the area under this curve (EE-AUC).

The target exposure ε∗ specifies the ideal behaviour we desire from our re-

trieval system. One way to compute this is by assuming some oracle ranking policy.

For example, in this work we adopt the principle of equal expected exposure defined

by Diaz et al. [32] as:

Given a fixed information need, no item should be exposed (in expecta-

tion) more or less than any other item of the same relevance.

Under this ideal policy, documents always appear in ranking above other docu-

ments of lower grades, and documents in the same grade are permuted with uniform

probability. Let mg be the number of documents with relevance grade g and m>g

the number of documents with relevant grade strictly larger than g. Given an RBP

browsing model, the optimal exposure for a document d with grade g is,

ε∗d =
1

mg
∑

ρ∈[1,mg]

γ(ρ+m>g) (6.6)

=
γm>g · (1− γmg)

mg(1− γ)
(6.7)

We refer the readers to the original paper for more detailed derivation and discussion

of this individual exposure parity target.

If we associate the documents in our collection with a set A of k attributes,

then we can also define a group notion of exposure parity. These attributes may

reflect, for example, demographic information about the content producer or some

topical grouping by content. Let A be a n× k binary matrix mapping each of the

n documents in the collection to their group identity. We can then compute the

total exposure for all documents with an attribute as ξ = A⊺ε . We recover equal

exposure across groups, by enforcing ξ to be uniform. We can replace ε with ξ in

Equation 6.4 to define as a measure of equal exposure across groups. Other notions

of demographic and group fairness can be similarly derived.

158 Chapter 6. Stochastic learning to rank for target exposure

6.3 Optimizing for target exposure

Following the Plackett-Luce model [228, 229], given some arbitrary score distribu-

tion y over documents, we can sample different rankings by iteratively sampling

documents without replacement based on the following softmax distribution.

PPL(d|q) =
exp(yd)

∑d̄ exp(yd̄)
(6.8)

Under the assumption of binary relevance and a perfect relevance estimator,

Plackett-Luce randomization should perform optimally. However, learning to rank

models are not perfect estimators of relevance. Therefore, we believe there should

be some advantage to optimizing directly for expected exposure. We leverage recent

results in optimization of relevance-based objectives computed over a distribution

over rankings [381]. Our results can be seen as an extension of this framework to

individual and group exposure objectives.

We focus on a shared model architecture with varying loss functions in order

to measure differences due to the objective alone, instead of artifacts resulting from

the functional form of the models. We begin by describing how we optimize for ex-

pected exposure before proceeding to our experiment design and empirical results.

6.3.1 Individual exposure parity

Although optimizing for pointwise or pairwise loss has been well-studied in the

information retrieval community, directly optimizing for a metric based on a distri-

bution over rankings has received less attention.

We begin by defining an appropriate loss function for our model. Turning to

Equation 6.5, we can drop the constant term and add a hyperparameter to trade-off

disparity and relevance,

ℓλ (ε,ε∗) = λ∥ε∥2
2 − (1−λ)ε⊺ε∗ (6.9)

Where ε∗ is based on graded relevance.

6.3. Optimizing for target exposure 159

Let fθ : D → R be a document scoring function parameterized by θ . Given

a query, y is a n× 1 vector of document scores for the entire collection such that,

yd = fθ (d). Using a Plackett-Luce model, we can translate the raw scores into

sampling probabilities as in Equation 6.8. This allows us to construct a ranking σ

by sampling documents sequentially. Unfortunately, this sampling process is non-

differentiable and, therefore, prohibitive to a large class of models, including those

that learn by gradient descent. We address this by adopting the method proposed

by Bruch et al. [381]. To construct a sampled ranking σ , we reparameterize the

probability distribution by adding independently drawn noise samples G from the

Gumbel distribution [382] to y and sorting documents by the “noisy” probability

distribution p̃,

p̃(di) =
exp(ydi +Gi)

∑d j∈D exp
(
yd j +G j

) (6.10)

Where Gi is sample from the Gumbel distribution.

Gi =− log(− logUi) (6.11)

U ∼ Uniform(0,1) (6.12)

Given the perturbed probability distribution p̃, we compute each document’s smooth

rank [383, 384] as,

σd = ∑
d′∈D/d

(
1+ exp

(
p̃(d)− p̃(d′)

τ

))−1

(6.13)

The smooth rank is sensitive to the temperature τ [388]. At high temperatures

the smooth rank is a poor approximation of the true rank and at low temperatures

may result in vanishing gradients. To rectify this issue, we employ the straight-

through estimator [389] to compute the true ranks in forward pass but differentiate

160 Chapter 6. Stochastic learning to rank for target exposure

the gradients with respect to the smooth ranks during backpropagation.

Using the estimated ranks and a specified user model we compute the exposure

for each document. For example, assuming RBP as the user model the exposure

of document d from a single ranking σ is given by εd = γ(ρσ ,d−1). We compute

expected exposure by averaging over ntrain different rankings—each generated by

independently sampling different Gumbel noise in Equation 6.10.

We use this expected exposure vector ε in Equation 6.9 to compute the loss

that we minimize through gradient descent, as shown in Figure 6.1. The relevance

grades are not used for training beyond computing target exposure. We set τ in

Equation 6.13 to 0.1.

6.3.2 Group exposure parity

We can also adapt this model to optimize fpr group-level exposure parity. To do so,

we replace ∥ε∥2
2 with ∥ξ∥2

2 in Equation 6.9 to define an optimization objective that

trades-off relevance and group parity.

ℓgroup,λ = λ∥ξ∥2
2 − (1−λ)ε⊺ε∗ (6.14)

This loss function assumes that the ideal policy distributes exposure equally across

all groups. Optimization objectives corresponding to other group exposure criteria

can be derived similarly in future work.

6.4 Experiments

6.4.1 Models

We restrict our choice of baselines to neural networks so that the exposure-based

optimization can be compared to baseline ranking loss functions with respect to the

same model. Our base model consists of a fully-connected neural network with

two hidden layers of size 256 nodes per layer and rectified linear unit for activation

function. We choose a learning rate of 0.001 and a dropout rate of 0.1 and perform

early-stopping for all models based on validation sets. Baseline stochastic rankings

6.4. Experiments 161

a
d

d
 i
n
d

e
p

e
n
d

e
n
tl
y

sa
m

p
le

d
 G

u
m

b
e
l n

o
is

e

n
e
u
ra

l s
co

ri
n
g

fu
n
ct

io
n

co
m

p
u
te

 s
m

o
o

th

ra
n
k

va
lu

e

co
m

p
u
te

 e
xp

o
su

re

u
si

n
g

 u
se

r
m

o
d

e
l

co
m

p
u
te

 l
o

ss
 w

it
h

ta
rg

e
t

e
xp

o
su

re

co
m

p
u
te

 a
ve

ra
g

e

e
xp

o
su

re
it
e
m

s
ta

rg
e
t

e
xp

o
su

re

Fi
gu

re
6.

1:
To

sa
m

pl
e

m
ul

tip
le

ra
nk

in
gs

pr
op

or
tio

na
lt

o
th

e
so

ft
m

ax
di

st
ri

bu
tio

n
ov

er
do

cu
m

en
ts

co
re

s,
w

e
fir

st
ad

d
in

de
pe

nd
en

tly
sa

m
pl

ed
no

is
e

fr
om

th
e

G
um

be
ld

is
tr

ib
ut

io
n

to
th

e
sc

or
es

an
d

th
en

es
tim

at
e

co
rr

es
po

nd
in

g
sm

oo
th

ra
nk

va
lu

es
.

W
e

th
en

co
m

pu
te

ex
po

su
re

of
ea

ch
do

cu
m

en
t

fo
ra

gi
ve

n
ra

nk
in

g
ba

se
d

on
a

pr
es

el
ec

te
d

us
er

m
od

el
.N

ex
t,

w
e

es
tim

at
e

th
e

ex
pe

ct
ed

ex
po

su
re

of
a

do
cu

m
en

tb
y

av
er

ag
in

g
ac

ro
ss

m
ul

tip
le

ra
nk

in
gs

.F
in

al
ly

,w
e

co
m

pu
te

th
e

lo
ss

be
tw

ee
n

th
e

pr
ed

ic
te

d
an

d
th

e
ta

rg
et

ex
pe

ct
ed

ex
po

su
re

ve
ct

or
s,

w
hi

ch
ca

n
be

th
en

m
in

im
iz

ed
us

in
g

gr
ad

ie
nt

-b
as

ed
m

et
ho

ds
as

ev
er

y
st

ep
in

th
e

ab
ov

e
pr

oc
es

s
is

di
ff

er
en

tia
bl

e.

162 Chapter 6. Stochastic learning to rank for target exposure

are derived by employing Plackett-Luce sampling over two deterministic policies

(pointwise and pairwise models) with varying softmax temperatures to obtain dif-

ferent trade-off points between disparity and relevance. We set ntrain to 20 for our

model and ntest to 50 for all models.

We consider three training objectives in our experiments. The pointwise

model [194] minimizes the squared error between the model prediction and true

relevance. The pairwise model [189] minimizes misclassified preferences using a

cross-entropy loss. The expected exposure model minimizes the loss in Equation

6.9 and, in our group parity experiments, Equation 6.14.

6.4.2 Data

Our experiments use the MSLR-WEB10k dataset [390], a learning-to-rank dataset

containing ten thousand queries. We perform five-fold cross validation (60/20/20

split between training, validation, and testing sets). Each query-document pair is

represented by a 136-dimensional feature vector and graded according to relevance

on a five-point scale.

For the group parity experiments, as there are no obvious appropriate group

attributes in the MSLR-WEB10k dataset, we discretize the PageRank feature in the

ranges <1000, 1000–10000, and ≥10000 and treat it as a group attribute. The choice

of using discretized PageRank as a group attribute is rather arbitrary, but we confirm

that this discretization scheme is reasonable as roughly 70% of the queries have at

least one document corresponding to each group with a relevance grade greater than

one.

6.4.3 Evaluation

We use a γ = 0.50 for all of our experiments, as consistent with standard TREC

evaluation protocol. RBP is evaluated at depth 20.

6.5 Results
We present the results of our experiments in Table 6.1. In terms of expected expo-

sure, we do not observe a difference in performance between pointwise and pairwise

6.6. Conclusion 163

Table 6.1: Results for optimizing towards individual and group parity using different rank-
ing objectives. We report average EE-AUC for both tasks and highlight the best
performance for each in bold. Optimizing directly for individual and group par-
ity using our proposed method achieves best performance in both cases.

Loss function AUC
Individual parity Group parity

Pointwise loss 0.229 0.112
Pairwise loss 0.229 0.108
Our methods
Expected exposure loss (Eqn. 6.9) 0.238 0.141
Group parity loss (Eqn. 6.14) 0.178

models. However, directly optimizing for expected exposure resulted in a 3.9% im-

provement in EE-AUC over the pointwise and pairwise models. We confirm that

the difference in EE-AUC follows a normal distribution and accordingly perform

a paired student’s t-test to check their statistical significance. The EE-AUC differ-

ences between our proposed method and the baselines are statistically significant

(p < 0.01).

In terms of group parity, we observe a difference in performance between point-

wise and pairwise models. Moreover, directly optimizing for expected exposure

results in improved performance while directly optimizing for group parity further

boosts performance. The gap in EE-AUC between all pairs of models are statisti-

cally significant (p < 0.01).

These results, while based on a limited study, indicate that direct optimization

for expected exposure metrics is both viable in the learning to rank framework as

well as useful for optimization under fairness constraints.

6.6 Conclusion
An exposure-based view of retrieval explicitly codifies the role that IR systems play

as intermediary in two-sided marketplaces consisting of users seeking information

and documents (or their producers). Stochastic ranking policies allow for more bal-

anced distribution of exposure over multiple rankings. In this work, we demonstrate

that these policies can be directly optimized to reduce deviation from specified tar-

get exposure distribution. While our work is grounded in parity of individual and

164 Chapter 6. Stochastic learning to rank for target exposure

group exposure, the framework described is flexible enough to incorporate any ar-

bitrary target exposure policy beyond fairness constraints—e.g., based on topical

diversity considerations or to maximize monetization in the context of paid search.

Our definition of target exposure in this work is based on a universal notion

of relevance. If the relevance of a document instead changes based on the searcher

(i.e., personalization) or other context (e.g., location), then our framework needs to

be appropriately extended. Exposure can also be nuanced by user attributes. For ex-

ample in commercial searches, exposure to users with an intent to purchase may be

weighted differently than to users who may be casually browsing. We believe that

there is a rich space for exploring different extensions of our proposed framework.

Deploying stochastic ranking policies may also come with its own unique chal-

lenges. For example, randomized rankings may have unintended consequences on

the system’s caching mechanisms. It may also make it harder for users to re-find

information [391] they have previously discovered for a query. More detailed stud-

ies are also necessary to understand the differential impact of stochastic policies on

queries of varying difficulty, especially on queries for which the model’s relevance

estimates are highly uncertain.

Chapter 7

Learning to Rank for Query

Auto-Completion

In this chapter, we discuss the application of deep architectures to the query auto-

completion task that presents different challenges than ad hoc retrieval. Query auto-

completion helps the user of a search system to formulate their information request

by recommending queries based on their partially typed query. The query auto-

completion system typically considers the user history, the task context the location

and temporal context, and other information to make more relevant recommenda-

tion. The ranking task, in case of query auto-completion, therefore, involves rank-

ing either query suffixes or full query candidates in response to a query prefix. In

this chapter, we discuss work in which we employ deep neural networks for that

ranking task.

7.1 Query Auto-Completion for Rare Prefixes
As users enter their query into the search box, most modern search engines provide

a ranked list of query suggestions based on the current prefix already typed by the

user. In a typical approach used by many query auto-completion (QAC) systems,

candidate queries are identified by doing an exact prefix lookup against a fixed set

of popular queries, using a data structure such as a prefix tree [95]. The candidates

are then ranked by their expected likelihood, which is typically computed as a func-

tion of its past popularity (commonly referred to as the MostPopularCompletion

166 Chapter 7. Learning to Rank for Query Auto-Completion

Table 7.1: Synthetic QAC candidates generated by the suffix-based approach and ranked
using only the CDSSM similarity feature. The CDSSM model projects both the
prefix and the suffix to a common 128-dimensional space allowing us to rank
according to prefix-suffix cosine similarity. One of the lower quality synthetic
candidates "cheapest flights from seattle to airport" is ranked seventh in the sec-
ond list.

what to cook with chicken and broccoli and
what to cook with chicken and broccoli and bacon
what to cook with chicken and broccoli and noodles
what to cook with chicken and broccoli and brown sugar
what to cook with chicken and broccoli and garlic
what to cook with chicken and broccoli and orange juice
what to cook with chicken and broccoli and beans
what to cook with chicken and broccoli and onions
what to cook with chicken and broccoli and ham soup

cheapest flights from seattle to
cheapest flights from seattle to dc
cheapest flights from seattle to washington dc
cheapest flights from seattle to bermuda
cheapest flights from seattle to bahamas
cheapest flights from seattle to aruba
cheapest flights from seattle to punta cana
cheapest flights from seattle to airport
cheapest flights from seattle to miami

(MPC) model [392]). Such a system can only suggest queries with enough historic

popularity to make it into the prefix tree.

We propose an additional candidate generation strategy for QAC by mining

popular query suffixes. Candidate suffixes are popular n-grams that appear at the

ends of queries. By appending such n-grams suffixes to a user’s query prefix we

can generate synthetic suggestion candidates that have never been observed in the

historical query logs. Table 7.1 contains examples of such suggestions. We further

propose a supervised framework for ranking these synthetic queries alongside the

traditional full-query suggestion candidates. We also explore new ranking signals

in this framework, based on the query n-gram statistics and a deep CDSSM [317].

7.1.1 Related work

Most modern browsers, search engines, text editors and command shells implement

some form of an auto-completion feature to aid users in faster text entry. In Web

search, pre-computed auto-completion systems are popular, where the suggestions

7.1. Query Auto-Completion for Rare Prefixes 167

W1 W2 W3 W4 Wn-2

50K 50K 50K 50K 50K

Wn-1 Wn

50K 50K

300 300 300

max max max

300

32

…

…

…

Term vector

Letter tri-gram layer

Convolutional matrix

Convolutional layer

Max pooling operation

Max pooling layer

Output layer

…

Figure 7.1: Architecture of the CDSSM. The model has an input layer that performs the
word hashing, a convolutional layer, a max pooling layer, and an output layer
that produces the final semantic vector representation of the query.

are typically filtered by exact prefix matching from a pre-selected set of candidates

and ranked according to past popularity. Ranking suggestions by past frequency

is commonly referred to as the MostPopularCompletion (MPC) model and can be

regarded as a maximum likelihood approximator [392]. Given a prefix p and a set

of all unique queries Q from the search logs,

MPC(p) = argmax
q̄∈pc(p)

lf(q̄)
∑qi∈Q lf(qi)

(7.1)

pc returns the set of queries that qualify as completions for the query q and lf is the

frequency of the query in the search logs.

Language modelling based approaches for sentence completion have been stud-

ied in the context of e-mail and document authoring[393–396]. In Web search,

White and Marchionini [397] and Fan et al. [398] proposed models for term rec-

ommendations to aid users in their query formulation process. Bhatia et al. [399]

extracted frequently occurring phrases from document corpus and used them to gen-

168 Chapter 7. Learning to Rank for Query Auto-Completion

Table 7.2: Comparing the nearest neighbours for "seattle" and "taylor swift" in the CDSSM
embedding spaces when the model is trained on query-document pairs vs. query
prefix-suffix pairs. The former resembles a Topical notion of similarity between
terms, while the latter is more Typical in the definition of inter-term similarities.

seattle taylor swift
Query-Document Prefix-Suffix Query-Document Prefix-Suffix

weather seattle chicago taylor swift.com lady gaga
seattle weather san antonio taylor swift lyrics meghan trainor

seattle washington denver how old is taylor swift megan trainor
ikea seattle salt lake city taylor swift twitter nicki minaj

west seattle blog seattle wa taylor swift new song anna kendrick

erate suggestion candidates in the absence of a query log. Duan and Hsu [400] have

studied the problem of online spelling correction for query auto-completion and

Hawking and Griffiths [401] have explored mechanisms for generating query sug-

gestions in the enterprise settings. Our proposed approach generates synthetic query

suggestion candidates by combining the input prefix with popular query suffixes to

augment the regular full-query QAC suggestions. Within our proposed supervised

framework, we explore CDSSM [185, 317] as a ranking signal.

7.1.2 Model

For document retrieval, Shen et al. [317] demonstrated that discriminatively train-

ing a deep neural network model with a convolutional-pooling structure on click-

through data can be effective for modelling query-document relevance. We adopt

the CDSSM by training on a prefix-suffix pairs dataset (instead of query-document

titles). The training data for the CDSSM is generated by sampling queries from the

search logs and splitting each query at every possible word boundary. For exam-

ple, from the query "breaking bad cast" we generate the two pairs ("breaking", "bad

cast") and ("breaking bad", "cast"). The architecture shown in Figure 7.1 is used on

both the prefix and the suffix side of the CDSSM model.

It is important to emphasize that our earlier discussion in Section 3.2.2 on dif-

ferent notions of similarity between terms that can be learnt by shallow embedding

models is also relevant in the context of these deeper architectures. In the case of

CDSSM [185], the notion of similarity being modelled depends on the choice of

7.1. Query Auto-Completion for Rare Prefixes 169

Table 7.3: Most popular query suffixes extracted from the publicly available AOL logs.

Top suffixes Top 2-word suffixes Top 3-word suffixes

com for sale federal credit union
org yahoo com new york city
net myspace com in new york
gov google com or no deal
pictures new york disney channel com
lyrics real estate my space com
edu of america in new jersey
sale high school homes for sale
games new jersey department of corrections
florida space com chamber of commerce
for sale aol com bath and beyond
us s com in las vegas

the paired data that the model is trained on. When the CDSSM is trained on query

and document title pairs [185] then the notion of similarity is more Topical in na-

ture. However, when the same CDSSM architecture is trained on query prefix-suffix

pairs—as described in this section—it captures a more Typical notion of similarity,

as shown in Table 7.2.

7.1.3 Method

We propose two key ideas in this section. Firstly, we generate synthetic query sug-

gestion candidates for QAC using popular query suffixes. We then introduce n-gram

and CDSSM based features in a supervised learning setting to rank these synthetic

suggestions alongside the full-query suggestion candidates.

Candidate Generation From every query in the search engine logs we generate all

possible n-grams from the end of the query. For example, from the query "bank of

america" we generate the suffixes "america", "of america" and "bank of america".

By aggregating across all queries we identify the most popular suffixes. Table 7.3

shows the most frequently observed query suffixes in the publicly available AOL

logs [79].

Next, for a given prefix we extract the end-term as shown in Figure 7.2. We

match all the suffixes that start with the end-term from our precomputed set. These

selected suffixes are appended to the prefix to generate synthetic suggestion candi-

dates. For example, the prefix "cheap flights fro" is matched with the suffix "from

170 Chapter 7. Learning to Rank for Query Auto-Completion

cheapest flight fro End-term: “fro”

cheapest flight from End-term: “from”

cheapest flight from End-term: “from ”

cheapest flight from n End-term: “n”

Figure 7.2: Examples of fully or partially typed end-terms extracted from the input pre-
fixes. The end-term is used for selecting the set of candidate suffixes for the
generation of synthetic query suggestions.

seattle" to generate the candidate "cheap flights from seattle". Note that many of

these synthetic suggestion candidates are likely to not have been observed by the

search engine before.

We merge these synthetic suggestions with the set of candidates selected from

the list of historically popular queries. This combined set of candidates is used for

ranking as we will describe in Sec 7.1.4.

Ranking Features For every prefix and suggestion candidate (synthetic or previ-

ously observed), we compute a set of common features for the supervised rank-

ing model. We describe these features in this section, focusing on the n-gram and

CDSSM features that we propose for this setting.

• N-gram based features. Given a candidate suggestion q, we compute features

based on the frequency of n-grams fngrami of different lengths (for i = 1 to 6).

fngrami = ∑
g∈ngi(q)

lf(g) (7.2)

where, ngi(q) is the set of all n-grams in query q of length i. lf(g) is the

observed frequency of the n-gram g in the historical query logs. These n-

gram features model the likelihood that the candidate suggestion is generated

by the same language model as the queries in the search logs.

• CDSSM based features. Given a prefix p and a suggestion candidate c, we

extract a normalized prefix p̄ by removing the end-term from the prefix. Then

7.1. Query Auto-Completion for Rare Prefixes 171

a normalized suffix s̄ is extracted by removing p̄ from the query c. Then

we use the trained CDSSM model to project the normalized prefix and the

normalized suffix to a common 128-dimensional space and compute a fcdssm

feature.

fcdssm(p̄, s̄) = cosine(⃗vp̄, v⃗s̄) =
v⃗ ⊺

p̄ v⃗s̄

∥⃗v p̄∥∥⃗vs̄∥
(7.3)

where v⃗p̄ and v⃗s̄ are the CDSSM vector outputs corresponding to p̄ and s̄,

respectively. Table 7.1 shows examples of synthetic suggestion candidates

ranked by the fcdssm feature alone.

• Other features. Other features used in our model includes the frequency of

the candidate query in the historical logs, length based features (length of the

prefix, the suffix and the full suggestion in both characters and words) and a

boolean feature that indicates whether the prefix ends with a space character.

7.1.4 Experiments

Our experiment setup is based on the learning to rank framework proposed by Shok-

ouhi [402]. We generate all possible prefixes1 from each query impression to use

for training, validation and testing. For each prefix we identify the set of candi-

date suggestions as described in Section 7.1.3. We associate a positive relevance

judgment with the candidate that matches the original query from which the prefix

was extracted. To accurately measure the coverage impact of our approach we re-

tain all prefix impressions where the submitted query is not in the list of candidates

available for ranking.

We train LambdaMART [403] models for ranking the suggestions using fea-

tures described in Section 7.1.3. We limit our ranking task to instances where the

prefix contains at least one complete word, since completions with very short pre-

fixes is already well solved by our popularity-based features and we are focusing on

rare prefixes. We always train 300 trees (with early stopping using a validation set)

1Mitra et al. [68] showed that users use QAC more at word boundaries but for simplicity we
sample the prefixes with equal probability.

172 Chapter 7. Learning to Rank for Query Auto-Completion

and evaluate the model performances on the test set using the mean reciprocal rank

(MRR) metric.

We conduct all our experiments on the publicly available AOL query logs [79]

and reproduce the same results on the large-scale query logs of the Bing search

engine. We refer to these two datasets hereafter as the AOL testbed and the Bing

testbed, respectively.

The query impressions on both the testbeds are divided into four temporally

separate partitions (background, training, validation and test). On the AOL testbed

we use all the data from 1 March, 2006 to 30 April, 2006 as the background data. We

sample queries from the next two weeks for training, and from each of the following

two weeks for validation and test, respectively. On the Bing testbed we sample data

from the logs from April, 2015 and use the first week of data for background, the

second week for training, the third for validation and the fourth for testing. We

normalize all the queries in each of these datasets by removing any punctuation

characters and converting them to lower case.

For candidate generation, both the list of popular queries and suffixes are

mined from the background portion of the two testbeds. We use 724,340 and

1,040,674 distinct queries on the AOL testbed and the Bing testbed, respectively,

as the set of full-query candidates. We evaluate our approach using 10K and 100K

most frequent suffixes. We limit the number of full-query candidates per prefix to

ten and compute the final reciprocal rank by considering only the top eight ranked

suggestions per model. Finally, the CDSSM models are trained using 44,558,631

and 212,854,198 prefix-suffix pairs on the AOL and the Bing testbeds, respectively.

7.1.5 Results

Table 7.4 summarizes the experiment results and clearly demonstrates the improve-

ments from the synthetic suggestion over the MPC model. All the LambdaMART

models with different feature sets when combined with the suffix-based candidates

show an improved MRR over the popularity based baseline. The models however

perform no better, and in most cases worse, compared to the MPC baseline when

only the full-query based candidates are considered. This is expected as the models

7.1. Query Auto-Completion for Rare Prefixes 173

Table 7.4: Comparison of all models on the AOL and the Bing testbeds. Due to the propri-
etary nature of the Bing dataset, we only report MRR improvements relative to
the MPC model for this testbed. Statistically significant differences by the t-test
(p < 0.01) are marked with "*". Top three highest MRR values per testbed are
bolded.

AOL Bing
Models MRR % Improv. % Improv.

Full-query based candidates only
MostPopularCompletion 0.1446 - -
LambdaMART Model (fngrami = no, fcdssm = no) 0.1445 -0.1 -1.7*
LambdaMART Model (fngrami = yes, fcdssm = no) 0.1427 -1.4* -1.2*
LambdaMART Model (fngrami = no, fcdssm = yes) 0.1445 -0.1 -1.2*
LambdaMART Model (fngrami = yes, fcdssm = yes) 0.1432 -1.0* -1.5*

Full-query based candidates + Suffix based candidates (Top 10K suffixes)
MostPopularCompletion 0.1446 - -
LambdaMART Model (fngrami = no, fcdssm = no) 0.2116 +46.3* +32.8*
LambdaMART Model (fngrami = yes, fcdssm = no) 0.2326 +60.8* +42.6*
LambdaMART Model (fngrami = no, fcdssm = yes) 0.2249 +55.5* +40.1*
LambdaMART Model (fngrami = yes, fcdssm = yes) 0.2339 +61.7* +43.8*

Full-query based candidates + Suffix based candidates (Top 100K suffixes)
MostPopularCompletion 0.1446 - -
LambdaMART Model (fngrami = no, fcdssm = no) 0.2105 +45.5* +39.9*
LambdaMART Model (fngrami = yes, fcdssm = no) 0.2441 +68.7* +54.2*
LambdaMART Model (fngrami = no, fcdssm = yes) 0.2248 +55.4* +48.9*
LambdaMART Model (fngrami = yes, fcdssm = yes) 0.2453 +69.6* +55.3*

are trained with the suffix-based candidates in the training data.

The models with the fcdssm feature perform better than the corresponding mod-

els without the feature across all experiments. However, in general the fngrami fea-

tures seems to be showing higher improvements compared to the CDSSM based

feature. We hypothesize that the fcdssm feature is less precise than the fngrami fea-

tures. For example, we can see in Table 7.1 that the CDSSM based feature ranks a

suffix highly that generates a semantically meaningless query suggestion "cheapest

flight from seattle to airport". While "airport" is a location that you can take a flight

to, in the context of the given prefix it is clearly an inappropriate suggestion. It is

possible that the prefix-suffix pairs based training of the CDSSM can be further im-

proved. We believe that this is an important area for future investigations given that

the CDSSM holds certain other advantages over n-gram models. For example, the

174 Chapter 7. Learning to Rank for Query Auto-Completion

MPC

LambdaMART

O
ve

ra
ll

Fre
qu

en
t

R
ar

e

U
ns

ee
n

0.14

0.25

0.28 0.29 0.29

0.33

0.00

0.18

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

M
R

R

Figure 7.3: MRR improvements by historical popularity of the input prefix on the AOL
testbed. The LambdaMART model uses n-gram and fcdssm features and in-
cludes suffix-based suggestion candidates. Any prefix in the top 100K most
popular prefixes from the background data is considered as Frequent. There
are 7622, 6917 and 14,135 prefix impressions in the Frequent, Rare and Un-
seen segments, respectively. All reported differences in MRR with the MPC
model are statistically significant by the t-test (p < 0.01).

CDSSM has limited storage requirements2, and because of the word hashing tech-

nique the CDSSM may be more robust to morphological variations and spelling

errors in the input prefix compared to the n-gram based models.

Figure 7.3 analyses the improvements by segmenting the prefixes based on

their historical popularity. The improvements from the suffix-based candidates are

expectedly higher for the rarer prefixes. Interestingly, the absolute MRR values for

both models are higher for rare prefixes than for the frequent ones. One factor in

this is that rare prefixes tend to be longer and therefore more specific, giving fewer

candidates to rank and making it easier to achieve good MRR.

2The CDSSM model itself needs to be stored in memory but has no data storage requirements,
unlike the n-gram models.

7.2. Session Context Modelling for Query Auto-Completion 175

7.1.6 Conclusion

We proposed a novel candidate generation technique for query auto-completion by

mining and ranking popular query suffixes. Our empirical study shows that this is

an effective strategy for significantly improving MRR for rare and unseen prefixes.

The supervised ranking framework proposed in this paper is generic and can be

employed in any QAC system that combines multiple sources of candidates. We

described features based on n-gram language models and convolutional neural net-

works with demonstrable improvements.

While we have shown significant improvements in MRR using synthetic candi-

date generation, we have not measured how often this approach generates semanti-

cally meaningless synthetic suggestions and have not quantified the effect of show-

ing synthetic suggestions to search users. A user study on this aspect is left as

future work. There is also further scope for exploring other language models (such

as recurrent neural networks) in the context of this task.

7.2 Session Context Modelling for Query Auto-

Completion
Short-term user history provides useful cues about the user intent that an IR system

can consider to improve the relevance of retrieved results [404]. In QAC systems,

in particular, when only a few characters have been entered the search engine has

little understanding of the actual information need of the user and the generic sug-

gestions provided by a non-contextual QAC system typically perform poorly [392].

The high ambiguity associated with short prefixes makes QAC a particularly inter-

esting candidate for leveraging any additional information available about the user’s

current task. The same study also showed that 49% of Web searches are preceded

by a different search which can be used to gain additional insights into the user’s

current information need.

The majority of previous work [405, 406] on using short-term user history

for search personalization has been focused on modelling the topical relevance of

the candidate results (documents or query suggestions) to the previous queries and

176 Chapter 7. Learning to Rank for Query Auto-Completion

viewed documents in the same search session. Using such implicit feedback has

been shown to be a very attractive strategy for improving retrieval performance

when the user intent is ambiguous. For example, knowing that the user’s previous

query was "guardians of the galaxy" can help to inform a QAC system to promote

the query "imdb" in ranking over "instagram" when the user has just typed "i" in the

search box. Query reformulation behaviours within search sessions have also been

studied but are mostly limited to taxonomy based classifications [407, 408] and mod-

els based on syntactic changes [409]. A quick study of a sample of Bing’s search

engine logs reveal that users frequently search for "san francisco 49ers" and "san

francisco weather" immediately after searching for "san francisco". Similarly, the

query "detroit" is often followed by the queries "detroit lions" and "detroit weather".

Intuitively, "san francisco" → "san francisco 49ers" represents a similar shift in

user’s intent as "detroit" → "detroit lions". We can see many such frequently occur-

ring patterns of reformulations in large scale search logs. Modelling these reformu-

lations using lexical matching alone is difficult. For example, we understand that

"movies" → "new movies" is not the same intent shift as "york" → "new york" even

though in both cases the same term was added to both the queries by the user. On

the other hand, "london" → "things to do in london" and "new york" → "new york

tourist attractions" are semantically similar although the two reformulations involve

the addition of completely disjoint sets of new terms to the queries.

In text processing, Mikolov et al. [158] demonstrated that the distributed rep-

resentation of words learnt by continuous space language models are surprisingly

good at capturing syntactic and semantic relationships between the words. Simple

algebraic operations on the word vectors have been shown to produce intuitive re-

sults. For example, v⃗king− v⃗man+ v⃗woman results in a vector that is in close proximity

to v⃗queen. In Section 7.2.2, we show that the embeddings learnt by CDSSM [317]

exhibit similar favourable properties and hence provide an intuitive mechanism to

represent query reformulations as the offsets between query vectors.

Our empirical study, described in Section 7.2.3, demonstrate that the vector

representations of queries and reformulations can be useful for capturing session

7.2. Session Context Modelling for Query Auto-Completion 177

context for the retrieval of query suggestions. The CDSSM is trained to map queries

(and documents) with similar intents to the same neighbourhood in the semantic

space. Therefore they are suitable for measuring the topical similarity between can-

didate suggestions and the user’s recent queries. In addition, our experiments show

that the vector representation of the reformulation, from the user’s previous query to

the candidate suggestion, can also be a useful signal for predicting the relevance of

the suggestion. We present our results in Section 7.2.5 that demonstrate that session

context features based on these vector representations can significantly improve the

QAC ranking over the supervised ranking baseline proposed by Shokouhi [402].

The main contributions of the work described in this section are,

• Demonstrating that query reformulations can be represented as low-

dimensional vectors which map syntactically and semantically similar query

changes close together in the embedding space.

• Using features based on the distributed representations of queries and refor-

mulations to improve upon a supervised ranking baseline for session context-

aware QAC ranking. Our experiments on the large-scale query logs of the

Bing search engine and the publicly available AOL query logs [79] show that

these features can improve MRR by more than 10% on these testbeds.

• Demonstrating that CDSSM trained on session query pairs performs signifi-

cantly better for the contextual QAC ranking task compared to the CDSSM

model trained on clicked query-document pairs.

Next, we review related work that are relevant to this study.

7.2.1 Related work

In Web search, Bennett et al. [404] investigated the impact of short-term and long-

term user behaviour on relevance prediction, and showed that short-term user his-

tory becomes more important as the session progresses. Li et al. [410] evaluated

DSSM and CDSSM for modelling session context for Web search. Besides the pri-

mary IR task, QAC as opposed to Web ranking, our work differs from this study

178 Chapter 7. Learning to Rank for Query Auto-Completion

by going beyond computing the topical similarity using the existing models and ex-

plicitly modelling query reformulations as vectors. We also show the benefits of

optimizing a CDSSM model directly for capturing session context by training on

session query pairs.

Yan et al. [411] proposed an approach that maps queries and clicks to latent

search intents represented using Open Directory Project3 categories for making

context-aware query recommendations. Cao et al. [406] and Liao et al. [412] have

explored session context using latent concept clusters from click-through bipartite

graphs, while Guo et al. [413] represented the user’s previous queries using a reg-

ularized topic model. Zhang et al. [414] proposed a task-centric click model for

characterizing user behaviour within a single search session. Cao et al. [415] learnt

a variable length Hidden Markov Model from large scale search logs, whereas Boldi

et al. [416] studied random walks on query-flow graphs for improved recommenda-

tions.

Previous studies on the relationships between neighbouring queries from a

search session have been mostly focused on categorizing the reformulations based

on broad manually defined taxonomies (e.g., generalization, specialization, error

correction and parallel move) [417] or understanding the user goals behind com-

mon actions (e.g., addition, removal or substitution of terms) [418]. Motivated by

the broad manually identified reformulation categories Xiang et al. [419] and Jiang

et al. [420] designed simple features for supervised retrieval models. Finally, Guan

et al. [409] use reinforcement learning for modifying term weights in response to

the observed modifications made to the query by the user.

While clearly using session context for Web search is a well-studied topic,

context-sensitive query auto-completion has been discussed less thoroughly in the

literature. Weber and Castillo [421] and Shokouhi [402] showed how query distri-

butions change across different user demographics and argued that QAC systems

based on personalization features can significantly outperform popularity-based

baselines. Ranking suggestions based on temporal context has also been explored

3http://www.dmoz.org/

7.2. Session Context Modelling for Query Auto-Completion 179

[422, 423].

The two QAC related studies most relevant to our work have been done by

Shokouhi [402] and Kharitonov et al. [424]. To capture short-term context, Shok-

ouhi [402] relied on letter n-gram matches between the previous queries and the

candidates, and trained a supervised ranking model for combining them with MPC

and other non-contextual and user demographic features. Kharitonov et al. [424]

proposed a unified framework for contextualizing and diversifying the ranking of

QAC suggestions. Their empirical evaluations show that by considering the user’s

previous query alone more than 96% of the improvements can be achieved, as com-

pared to additionally considering the document examination history and diversifica-

tion context. Given the previous query, their proposed model computes the expected

probability of a given completion as follows,

p(q1|q0) = p(c = 0|q0)p(q1)+ p(c = 1|q0)p(q1|c = 1,q0) (7.4)

Where c is an indicator variable whose value is 1 if the user continues the current

task, and 0 otherwise. The two primary components of the above equation are P(q1)

and P(q1|c = 1,q0), which correspond to the probability of observing the query q1

globally and in the context of the query q0, respectively, in the query logs.

For our evaluation, we implement the supervised ranking framework proposed

by Shokouhi and include the n-gram similarity, the query frequency and the query

pairwise frequency features among others as described in Section 7.2.3.

7.2.2 Model

We adopt the CDSSM architecture proposed by Shen et al. [317] for our study.

Unless specified otherwise, for all models in this paper the window size for the

convolutional layer is set to three and the dimensions of the output vector to 32.

The training data for the CDSSM models consists of source-target text pairs.

The original DSSM [118] and CDSSM [317] models were trained on clickthrough

data which consists of pairs of queries and document titles, corresponding to clicked

180 Chapter 7. Learning to Rank for Query Auto-Completion

−2 −1 0 1 2

−
1
.5

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

seattle
denver

san francisco new york

chicago

seattle seahawks
denver broncos

san francisco 49ers
new york giants

chicago bears

seattle times

denver post
san francisco chronicle

new york times

chicago tribune

Figure 7.4: A two-dimensional PCA projection of the 32 dimensional CDSSM output vec-
tors shows how intuitively similar intent transitions, represented by the directed
edges, are automatically modelled in the embedding space. The CDSSM model
used for this illustration is trained on the symmetric session pairs dataset.

results.

In addition to clickthrough data, we also train the CDSSM models on sampled

pairs of queries from search logs that were observed in succession during user ses-

sions. In the rest of this paper, we refer to this as the session pairs dataset. For a

pair of observed queries q1 and q2, if the dataset includes both the ordering q1 → q2

and q2 → q1 then we refer to it as the symmetric session pairs dataset, otherwise as

asymmetric. The symmetric session pairs data is further randomly sub-sampled by

half to keep the count of the training pairs in both the datasets comparable.

The session pairs datasets are extracted from the exact same user sessions from

which the clickthrough data is generated. While this does not imply that the actual

count of training pairs in these two types of datasets are equal, it does make the

comparison more meaningful as it assumes the same amount of raw log data is ex-

amined for training both the types of models. In practice, however, we did observe

the data sizes to be comparable across all three datasets during this study.

All the CDSSM models in this study are trained using mini-batch based

stochastic gradient descent, as described by Shen et al. [317]. Each mini-batch

consists of 1024 training samples (source-target pairs) and for each positive pair

100 negative targets are randomly sampled from the data for that source that were

7.2. Session Context Modelling for Query Auto-Completion 181

Table 7.5: k-means clustering of 65K in-session query pairs observed in search logs. Exam-
ples from five of the top ten biggest clusters shown here. The first and the second
clusters contain examples where the follow up query is a different formulation
of the exact same intent. The third and the fourth clusters contain examples of
narrowing intent, in particular the fourth cluster contains reformulations where
the additional specification is based on location disambiguation. Finally, the last
cluster contains examples of intent jumps across tasks.

soundcloud → www.soundcloud.com
coasthills coop → www.coasthills.coop

american express → www.barclaycardus.com login
duke energy bill pay → www.duke-energy.com pay my bill

cool math games → www.coolmath.com
majesty shih tzu → what is a majesty shih tzu
hard drive dock → what is a hard drive dock

lugia in leaf green → where is lugia in leaf green
red river log jam → what is th red river log jam

prowl → what does prowl mean
rottweiler → rottweiler facebook

sundry → sundry expense
elections → florida governor race 2014
pleurisy → pleurisy shoulder pain

elections → 2014 rowan county election results
cna classes → cna classes in lexington tennessee

container services inc → container services ringgold ga
enclosed trailers for sale → enclosed trailers for sale north carolina

firewood for sale → firewood for sale in asheboro nc
us senate race in colorado → us senate race in georgia

siol → facebook
cowboy bebop → facebook

mr doob → google
great west 100 west 29th → facebook

avatar dragons → youtube

not originally paired.

The CDSSM models project the queries to an embedding space with fixed

number of dimensions. The semantic similarity between two queries q1 and q2 in

this semantic space is defined by,

Sim(q1,q2) = cosine(⃗vq1 , v⃗q2) =
v⃗ ⊺

q1⃗vq2

∥⃗vq1∥∥⃗vq2∥
(7.5)

Where v⃗q1 and v⃗q2 are the CDSSM vector outputs corresponding to the two queries,

182 Chapter 7. Learning to Rank for Query Auto-Completion

0.0 − 0.1

0.1 − 0.2

0.2 − 0.3

0.3 − 0.4

0.4 − 0.5

0.5 − 0.6

0.6 − 0.7

0.0 0.2 0.4 0.6 0.8 1.0

new york → things to do in new york things to do in new york → new york

C
o

s
in

e
 S

im
ila

ri
ty

 B
in

s

Ratio of Counts

0.0 − 0.1

0.1 − 0.2

0.2 − 0.3

0.3 − 0.4

0.4 − 0.5

0.5 − 0.6

0.6 − 0.7

0.0 0.2 0.4 0.6 0.8 1.0

fcebook → facebook facebook → fcebook

C
o

s
in

e
 S

im
ila

ri
ty

 B
in

s

Ratio of Counts

Figure 7.5: Visualization of the cosine similarity scores of a given reformulation with re-
spect to a set of 100,000 other reformulations randomly sampled from Bing’s
logs. The similarity scores are binned and the ratio of the counts are shown
above. The counts corresponding to bins with cosine similarity greater than 0.7
were too small, hence excluded.

respectively. A close examination of the CDSSM output vectors reveal that the

learnt distributed representations hold useful information about inter-query relation-

ships. Figure 7.4 illustrates how the offset vectors between pairs of queries, rep-

resented by the directed edges, are directionally similar in the embedding space

for similar intent transitions. This matches the observations made by Mikolov et al.

[145] on continuous space language models for text processing, and gives us an intu-

itively understandable representation of query reformulations as their offset vectors

in the embedding space. More specifically, we define the reformulation from query

q1 to q2 as,

7.2. Session Context Modelling for Query Auto-Completion 183

ref(q1,q2) = v⃗q2 − v⃗q1 =
v⃗q2

∥⃗vq2∥
−

v⃗q1

∥⃗vq1∥
(7.6)

Where v⃗q1 and v⃗q2 are the CDSSM vector embeddings of the two queries, respec-

tively. This explicit vector representation provides a framework for studying fre-

quently occurring query reformulation patterns. To illustrate this, we randomly

sample approximately 65K pairs of queries that were observed in succession in

Bing’s logs. For each pair, we compute the offset vector using a CDSSM model.

We then run a simple k-means clustering (k = 100) and examine the top clusters.

Example reformulations from five of the biggest clusters are shown in Table 7.5.

A further study of these reformulation vectors can reveal important insights

about user behaviour, such as the popularity of certain reformulation patterns. For

example, we randomly sampled 100,000 adjacent pairs of queries from Bing’s logs

that were observed in search sessions. Our analysis show that there are more pairs

similar to the narrowing reformulation "new york" → "things to do in new york"

in the sampled set, than its inverse. Similarly, the misspelling "fcebook" followed

by "facebook" is a more commonly observed pattern than the other way around, as

illustrated in Figure 7.5.

Next, we list qualitative examples in Table 7.6 to demonstrate the predictive

aspect of these reformulation vectors. Similar to the analogy based test proposed by

Mikolov et al. [145], these examples show that we can obtain intuitively understand-

able results by performing simple algebraic operations in the embedding space. For

example, we compute the vector sum of the projections (normalized to their unit

norm) of the queries "new york" and "newspaper".

v⃗target = v⃗newyork + v⃗newspaper =
v⃗newyork

∥⃗vnewyork∥
+

v⃗newspaper

∥⃗vnewspaper∥
(7.7)

Then from a fixed set of candidates we find the query whose embedding has the

highest cosine similarity with v⃗target . For our analysis we picked the top one mil-

184 Chapter 7. Learning to Rank for Query Auto-Completion

Table 7.6: Examples of simple syntactic and semantic relationships in the query embedding
space. The nearest neighbour search is performed on a candidate set of one
million most popular queries from one day of Bing’s logs.

Query vector Nearest neighbour
v⃗chicago + v⃗newspaper v⃗chicago suntimes

v⃗new york + v⃗newspaper v⃗new york times

v⃗san francisco + v⃗newspaper v⃗la times

v⃗beyonce + v⃗pictures v⃗beyonce images

v⃗beyonce + v⃗videos v⃗beyonce videos

v⃗beyonce + v⃗net worth v⃗jaden smith net worth

v⃗www.facebook.com − v⃗facebook + v⃗twitter v⃗www.twitter.com

v⃗www.facebook.com − v⃗facebook + v⃗gmail v⃗www.googlemail.com

v⃗www.facebook.com − v⃗facebook + v⃗hotmail v⃗www.hotmail.xom

v⃗how tall is tom cruise − v⃗tom cruise + v⃗tom selleck v⃗how tall is tom selleck

v⃗how old is gwen stefani − v⃗gwen stefani + v⃗meghan trainor v⃗how old is meghan trainor

v⃗how old is gwen stefani − v⃗gwen stefani + v⃗ariana grande v⃗how old is ariana grande 2014

v⃗university of washington − v⃗seattle + v⃗chicago v⃗chicago state university

v⃗university of washington − v⃗seattle + v⃗denver v⃗university of colorado

v⃗university of washington − v⃗seattle + v⃗detroit v⃗northern illinois university

lion most popular queries from one day of Bing’s logs as the candidate set. In

this query set, the closest query vector to v⃗target corresponds to the query "new

york times". Similarly, the nearest neighbour search for v⃗how old is gwen stefani −

v⃗gwen stefani + v⃗meghan trainor yields a vector close to v⃗how old is meghan trainor. These ex-

amples show that the vector representation captures simple syntactic as well as se-

mantic relationships. We intentionally also include some examples where the near-

est neighbour search yields unexpected results (e.g., v⃗beyonce+ v⃗net worth) to highlight

that these predictions are often noisy.

7.2.3 Experiments

Our empirical evaluations are based on the learning to rank framework proposed by

Shokouhi [402] for personalized query auto-completions. In this setup, we learn

a supervised ranking model based on training data generated from implicit user

feedback. The output of the CDSSM models, described in the previous section, are

7.2. Session Context Modelling for Query Auto-Completion 185

used to generate additional features for this supervised ranking model. The baseline

ranking model (henceforth referred to simply as the baseline model) contains both

the non-contextual and the (non-CDSSM based) contextual features. We compare

all models using the MRR metric, and the study is repeated on two different testbeds

to further confirm the validity of the results.

Testbeds We conduct our experiments on a large scale search query dataset sampled

from the logs of the Bing search engine. We also reproduce our results using the

publicly available AOL query logs [79]. In the rest of this paper we refer to these

two datasets as the Bing testbed and the AOL testbed, respectively.

• Bing testbed Bing’s logs contain a record of all the queries submitted by its

users associated with the corresponding anonymized user IDs, timestamps

and any clicked Web results4 (the URL and the displayed title). We sampled

queries from these logs for the duration of the last week of October, 2014 and

use this as the background data, for computing the feature values and training

the CDSSM models. From the first week of November, we sampled 175,392

queries from two consecutive days for training the supervised ranking models,

and from the following two individual days we sampled 79,000 queries for

validation and 74,663 queries for testing, respectively.

• AOL testbed This dataset contains queries sampled between 1 March, 2006

and 31 May, 2006. For each query, the data includes an anonymized user ID

and a timestamp. If a result was clicked then the rank of the clicked item

and the domain portion of its URL are also included. In aggregate, the data

contains 16,946,938 query submissions and 36,389,567 document clicks by

657,426 users.

We consider all queries before 1 May, 2006 as the background data. All

queries from the next two weeks of data are used for training the supervised

ranking models, and the remaining two sets, consisting of one week of data

each, is used for validation and testing, respectively.

4For impressions with multiple clicked results we consider only the last clicked document.

186 Chapter 7. Learning to Rank for Query Auto-Completion

To have a separation of users in training and test datasets, on both the testbeds

we use only the users with even user IDs for training and validation, and those with

odd numbered user IDs for testing. Also, in all the datasets the queries are lower-

cased and the punctuations are removed.

Learning to rank To generate the training, the validation and the test sets we sam-

ple query impressions from the corresponding portions of the logs. For each query

impression, a prefix is generated by splitting the query at a randomly selected posi-

tion5. For each prefix a positive relevance judgment is assigned to the suggestion

candidate that matches the final submitted query and all the others are labelled as

irrelevant.

The training data collected in the above process consists of labelled prefix-

query pairs. With respect to the choice of learning-to-rank algorithms, we chose

LambdaMART [403], a boosted tree version of LambdaRank [425], that won the

Yahoo! Learning to Rank Challenge (2010) [426] and is considered as one of the

state-of-the-art learning algorithms. We train 500 trees across all our experiments

with the same set of fixed parameters tuned using standard training and validation

on separate sets.

We consider the top 10 million most popular queries in the background data

as the pre-computed list of suggestion candidates and filter out all the impressions

where the final submitted query is not present in this list. For each impression in

the training, the validation and the test sets we retain a maximum of 20 sugges-

tion candidates - the submitted query as the positive candidate and 19 other most

frequently observed queries from the background data that starts with the same pre-

fix, as the negative examples. Furthermore, for each impression up to 10 previous

queries from the same session are made available for computing the session context

features. Similar to other previous work [427, 428] we define the end of a session

by a 30 minute window of user inactivity.

For our final evaluation we report the Mean Reciprocal Rank of the submitted

query averaged over all sampled impressions on each of the two testbeds.

5The prefixes in our study are strictly shorter than the original query and limited to no more than
30 characters in length.

7.2. Session Context Modelling for Query Auto-Completion 187

Table 7.7: Comparison of QAC ranking models trained with CDSSM based features against
the MPC model and the supervised baseline ranker model. All the reported MRR
improvements are statistically significant by the t-test (p < 0.01) over the MPC
baseline and the baseline model. Additionally, corresponding to each of the dif-
ferent CDSSM models, the ranking model containing both the similarity and the
reformulation features shows statistically significant (p< 0.01) improvements in
MRR over the model containing only the similarity features on both the testbeds.
The three highest MRR improvements per testbed are shown in bold below.

Bing AOL
Models % Improv. MRR % Improv.

Baselines
MostPopularCompletion - 0.5110 -
Baseline Model +48.6 0.7983 +56.2

CDSSM (query-document pairs)
All features +55.9 - -
Reformulation features +54.3 - -
Similarity features +55.3 - -

CDSSM (Asymmetric session query pairs)
All features +58.0 0.8775 +71.7
Reformulation features +57.4 0.8747 +71.2
Similarity features +54.2 0.8580 +67.9

CDSSM (Symmetric session query pairs)
All features +59.0 0.8801 +72.2
Reformulation features +57.2 0.8744 +71.1
Similarity features +55.8 0.8636 +69.0

7.2.4 Features

The baseline contextual and non-contextual features, as well as the features based

on the CDSSM outputs are described in this section.

• Non-contextual features The MostPopularCompletion (MPC) model is one of

the baselines for our study. We also use the output of this model as a feature

for the supervised ranking model. Other non-contextual features include the

prefix length (in characters), the suggestion length (in both characters and

words), the vowels to alphabets ratio in the suggestion, and a boolean feature

indicating whether the suggestion contains numeric characters.

• N-gram similarity features We compute the character n-gram similarity (n=3)

between the suggestion candidate and the previous queries from the same user

session. This is an implementation of the short history features described by

Shokouhi [402]. A maximum of 10 previous queries are considered.

188 Chapter 7. Learning to Rank for Query Auto-Completion

• Pairwise frequency feature From the background data, we generate the top

10 million most popular adjacent pairs of queries observed in search sessions.

For a given impression, the previous query and the suggestion candidate pair

is matched against this dataset and the corresponding frequency count is used

as the feature value. If no matches are found, then the feature value is set to

zero.

• CDSSM topical similarity features The CDSSM models are trained as de-

scribed in Section 7.2.2 using the background portion of the data on each

testbed. The cosine similarity between the CDSSM vectors corresponding

to the suggestion candidate and a maximum of previous 10 queries from the

same session are computed and used as 10 distinct features in the QAC rank-

ing model.

Training on the session query pairs data produces a pair of pre-post CDSSM

models. When trained on the asymmetric data, the pre- model is used for

projecting the user’s previous queries and the post- model is used for project-

ing the suggestion candidates for the cosine similarity computation. For the

symmetric data however, both the pre- and the post- models are equivalent,

and hence we use only the pre- model in our experiments.

The AOL logs contains only the domain portion of the clicked results. Hence

we are unable to get the corresponding document titles. Therefore we only

train the session pairs based CDSSM models on this testbed and report those

results in this paper.

• CDSSM reformulation features We compute the n-dimensional (n=32) vector

representation of the reformulation from the previous query to the suggestion

candidate. The raw values from this vector are used as n distinct features into

the supervised ranking model. For both the session pair based models, the

pre- model is used for projecting the suggestion candidates, as well as the

previous query.

7.2. Session Context Modelling for Query Auto-Completion 189

7.2.5 Results

Table 7.7 compares the results of training the supervised QAC ranking model with

the different CDSSM based session context features. Due to the proprietary nature

of Bing’s data, we report only relative improvements of each of the models over the

MPC baseline for this testbed. On the AOL testbed, however, we report both the

absolute MRR values and the relative improvements for all the models.

On both the testbeds, the baseline model which also contains session context

features (the n-gram similarity and the pairwise frequency) shows a large improve-

ment over the MPC baseline, which is expected. All the models trained with the

CDSSM based contextual features show further statistically significant improve-

ments over the baseline model. Both the CDSSM models trained on session pairs

perform better than the models trained on clickthrough data, with the model trained

on the symmetric session pairs performing slightly better overall. Table 7.9 lists ex-

amples of cases from one of the test sets where the ranking model with the CDSSM

based contextual features perform better compared to both the baselines.

The supervised ranking models trained with both the CDSSM based similarity

features and the CDSSM based reformulation features perform better than the corre-

sponding models trained with the similarity features alone. The improvements are

statistically significant and demonstrate the additional information provided by the

reformulation features to the ranking model over the CDSSM based similarity fea-

tures. The reformulation features perform particularly superior when the CDSSM

model has been trained on the session pairs dataset.

Table 7.8 shows the impact of considering different number of previous queries

in the session for computing the CDSSM based similarity features. The results indi-

cate that considering the previous query alone achieves most of the improvements

observed from these similarity features.

We also compare the improvements from the different models based on the

length of the input prefixes. Bar-Yossef and Kraus [392] have previously reported

that non-contextual QAC systems generally perform poorly when the user has typed

only a few characters due to the obvious ambiguity in user intent. Figure 7.6 illus-

190 Chapter 7. Learning to Rank for Query Auto-Completion

Table 7.8: Comparison of QAC ranking models with CDSSM similarity features computed
considering different maximum number of previous queries in the same session.
The results show that most of the improvements from short-term history similar-
ity features can be achieved by considering just the immediately previous query.

Bing AOL
Models % Improv. MRR % Improv.

Baselines
MostPopularCompletion - 0.5110 -
Baseline Model +48.6 0.7983 +56.2

CDSSM (Symmetric session query pairs)
Previous 1 query +55.2 0.8631 +68.9
Previous 3 queries +56.1 0.8639 +69.1
Previous 5 queries +56.1 0.8642 +69.1
Previous 10 queries +55.8 0.8636 +69.0

trates this behaviour on the AOL testbed. Both the supervised ranking models, the

baseline and the model with the CDSSM features, show significantly large improve-

ments over the MPC baseline on short prefixes. After the user has typed a few more

characters in the search box, the set of suggestion candidates reduce significantly

and the performance of the MPC model improves. Therefore the improvements on

the longer prefixes are smaller for both the supervised ranking models. The super-

vised ranking model with the CDSSM features, however, show statistically signif-

icant better MRR compared to both the MPC baseline and the supervised baseline

ranking model on all the prefix length based segments. Finally, Figure 7.7 shows

that better MRR can be achieved by training the CDSSM model with a higher num-

ber of output dimensions.

7.2.6 Discussion

We demonstrated significant improvements in the query auto-completion ranking

task using the CDSSM based session context features. We now discuss potential

implications of these vector representations on session modelling and list some of

the assumptions and limitations of the evaluation framework used in this study.

Implications for session modelling The distributed representation of queries and

query reformulations provides an interesting framework for thinking about sessions

and task context. The sequence of queries (and documents) in a search session can

7.2. Session Context Modelling for Query Auto-Completion 191

Long

Medium

Short

All

0.0 0.2 0.4 0.6 0.8 1.0

MPC Baseline CLSM

0.91

0.84

0.82

0.84

0.74

0.6

0.9

0.85

0.28

0.87

0.8

0.51

MRR

Figure 7.6: Comparison of the MPC model, the baseline ranker model and the experimental
ranker model with the CDSSM based features (the CDSSM model considered
here is trained on symmetric session pairs with all features) across different
prefix lengths on the AOL testbed. Prefixes less than 4 characters are consid-
ered as short, 4 to 10 characters as medium, and greater than 10 characters as
long. Both the supervised ranking models contain contextual features (CDSSM
based or otherwise) and hence show large improvements on the short prefixes
where the ambiguity is maximum. Across all prefix lengths the model with
CDSSM based features out-perform the baseline ranking model. All reported
differences in MRR are statistically significant by the t-test (p < 0.01).

be considered as a directed path in the embedding space. What are the common

attributes shared by these session paths? What properties of these paths vary de-

pending on the type of the user task or information need? These are examples of

research questions that may be interesting to study under the distributed representa-

tion framework. Hassan et al. [429], for example, studied long search sessions and

compared user behaviours when the user is struggling in their information task to

when they are exploring. Features based on the CDSSM projections of queries and

documents, such as the types of user reformulations in the session and the similarity

between submitted queries and viewed documents, can be explored to improve the

192 Chapter 7. Learning to Rank for Query Auto-Completion

5
0

5
5

6
0

6
5

7
0

●
●

● ●

●

2
3

2
4 2

5
2

6 2
7

Dimensions

%
 M

R
R

 I
m

p
ro

v
.
o
ve

r
M

P
C

Figure 7.7: Evaluation of the impact of training the CDSSM models with different number
of dimensions. Except for the pair of CDSSM models trained with 32 and 64
dimensions, all other reported differences in MRR are statistically significant
by the t-test (p < 0.01).

prediction accuracy for such session classification tasks.

In this paper we have examined individual query reformulations. Studying

reformulation chains may teach us further about how user intents evolve during

a session and support the design of future models for session search. For example,

White and Huang [430] have explored the value of search trails, over the origins and

the destinations. While we have only examined the representation of queries and

reformulations in this paper, CDSSM also allows for documents to be represented in

the same embedding space. A unified study of queries, reformulations and viewed

(searched or browsed) documents using the vector representation framework is an

area for future work.

In the query change retrieval model (QCM) proposed by Guan et al. [409], we

can explore using the reformulation vectors for representing the user agent’s actions.

Similarly, we may be able to gain further insights by conducting a similar study as

Hollink et al. [418] by examining query changes under the vector representation

framework.

7.2. Session Context Modelling for Query Auto-Completion 193

Exploring

Struggling

1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A
v
g

.
q

u
e

ry
 s

im
ila

ri
ty

Figure 7.8: Average similarity between the first five queries to the first query in search ses-
sions annotated by crowdsourcing judges as exploring or struggling. The simi-
larity was computed using the distributed representation learnt by the CDSSM
model trained on the symmetric session query pairs data. All differences are
statistically significant at the p < 0.05 level according to a two-tailed t-test.

Generating a distributed representation of users based on their search and other

online activities is also an interesting problem. Other potential directions for future

studies using the vector framework includes examining how query reformulations

differ based on the search expertise of the user and the kind of device the search is

performed on.

Assumptions and limitations We have based our empirical study on the supervised

ranking framework proposed by Shokouhi [402]. In doing so, we inherit some of

the assumptions in the designs of that framework. Firstly, we assume that the user

has a pre-determined query in mind for input and would be satisfied if it appears

in the QAC suggestions list. However Hofmann et al. [69] have shown that due

to the high examination bias towards top-ranked results, sub-optimal QAC ranking

can negatively affect the quality of the query submitted by the user. As many Web

search engines implement some form of an auto-completion feature, it is likely that

194 Chapter 7. Learning to Rank for Query Auto-Completion

Table 7.9: Examples from the win-loss analysis on one of the test sets. For a given prefix
and the previous query from the same user session, the top ranked suggestion
by the different models are shown below. The actual submitted query is denoted
by the checkmark (✓). The CDSSM features include both the similarity and
the reformulation features and the CDSSM model is trained on the symmetric
session pairs dataset.

Previous query the fighter airline tickets
Prefix amer amer
MPC american express american express
Supervised baseline american express american express
Supervised \w CDSSM Features american psycho movie ✓

Previous query usairways 2007 toyota yaris
Prefix us us
MPC us elections 2014 predictions us elections 2014 predictions
Supervised baseline usps.com usaa
Supervised \w CDSSM Features usairways.com ✓ used cars ✓

those QAC systems influenced the actual query observed in the logs. We ignore this

effect in the generation of our training and test sets.

The generation of the prefixes also assumes that each query was typed com-

pletely by the user in a strictly left-to-right progression and the user is equally likely

to examine and engage with the QAC system after each character is typed. In prac-

tice, however, users are often aided in the query formulation process (partially or

completely) by various features of the search engine, such as QAC or related query

recommendations. Users also often correct already entered text during the query

formulation process. In these cases the generation of all possible prefixes from the

submitted query does not accurately reflect the actual prefixes typed by the user.

Li et al. [431] and Mitra et al. [68] have also shown that user engagement with

QAC varies with different factors such as whether the user is at a word boundary or

the distance of the next character to be typed on the keyboard. This suggests that

prefixes should be sampled with different importance depending on the likelihood

that the user would examine the QAC suggestions for that prefix. Li et al. [431] pro-

posed a two-dimensional click model for QAC, demonstrating that in the presence

of keystroke level logging of QAC sessions the click model can be used to filter out

7.2. Session Context Modelling for Query Auto-Completion 195

prefix impressions with low expected probability of examination. However, as the

testbeds we consider for this study do not all have the keystroke level granularity of

records, we do not pursue this line of experimentation.

Lastly, Shokouhi [402] generates all the possible prefixes of each query in the

log data. This results in an obvious over-representation of long prefixes in the gen-

erated datasets. To avoid this issue we extract a single prefix per query by splitting

at a random position within the query.

Despite the different underlying assumptions, the framework proposed by

Shokouhi [402] provides a reasonable setup to learn a baseline context-aware rank-

ing model for QAC, and hence we adopt it for this study.

7.2.7 Conclusion

We have demonstrated that the distributed representation of queries by the CDSSM

holds useful information about inter-query relationships. The reformulation vec-

tors exhibit regularities that makes them interesting for modelling session context

for query suggestion tasks. Our experiments show that using features based on the

reformulation vectors improves MRR for QAC ranking over using features based

on the query vectors alone. The best improvements, however, are achieved by

the combination of features based on both these vector representations. We have

also demonstrated that training the latent semantic models on session query pairs

produces further improvements over the model trained on query-document pairs.

While the biggest improvements are observed on short prefixes, the ranking model

containing the CDSSM based features perform better than the supervised ranking

baseline on all the prefix length based segments. We have also studied the effects of

considering different number of previous queries within the session for context and

the number of dimensions used to represent the query and reformulation vectors

on the model performance. While we evaluate these models on the query auto-

completion ranking task, the features we described in this paper may also be useful

for generating context sensitive related query recommendations and query rewriting.

Furthermore, by projecting documents to this same embedding space, future studies

may be able to extend these contextual features to document ranking in Web search.

196 Chapter 7. Learning to Rank for Query Auto-Completion

Lastly, the reformulation vectors provide an interesting framework for studying

sessions and intent progressions. We anticipate that these distributed representations

of queries, documents and reformulations will become more frequently used as tools

for future studies on search personalization and session search.

Chapter 8

Benchmarking for neural IR

Neural IR is an emerging field. In recognition of the significant impact of deep

learning on other application areas, we organized a workshop titled Neu-IR [328,

432] (pronounced “new IR”) at SIGIR 2016. The purpose was to provide a forum

for new and early work relating to deep learning and other neural approaches to IR,

and discuss the main challenges facing this line of research. Since then, research

publication in the area has been increasing (see Figure 8.1 and [433]), along with

relevant workshops [434–436], tutorials [23–26, 437], and plenary talks [438, 439].

2014 2015 2016 2017 2018 2019 2020

1 %
4 %

8 %

23 %

42 %

58 %

79 %

0
20

40
60

80
10

0

Year

%
 o

f S
IG

IR
 p

ap
er

s
re

la
te

d
to

 n
eu

ra
l I

R

Figure 8.1: The percentage of neural IR papers at the ACM SIGIR conference—as deter-
mined by a manual inspection of the papers—shows a clear trend in the growing
popularity of the field.

198 Chapter 8. Benchmarking for neural IR

While there has been significant interest in deep learning for ad-hoc rank-

ing [22], the work till recently has largely been done with small data, propri-

etary data or synthetic data. With small data, there has been some discussion

about whether deep learning methods really outperform strong traditional IR base-

lines [440]. Using a proprietary set of document ranking data with 200,000 training

queries we beat a traditional IR baseline in 2017, as reported in Chapter 4, but it

was impossible for others to follow up on the work without a data release. Dietz

et al. [374] have a TREC task with enough training data to investigate such findings,

but on synthetic rather than human-labeled data.

Since significant questions remain about baselines and the required volume of

human-labeled data, we initiated an effort to benchmark IR models in the presence

of large scale training data at TREC 2019. TREC provides a good forum to study

such issues. The IR community can submit strong baselines at TREC and there is

a blind one-shot evaluation to avoid overfitting. We present our findings from the

TREC 2019 Deep Learning track [35] in this Chapter.

8.1 TREC Deep Learning track

The TREC 2019 Deep Learning Track has two tasks: Document retrieval and pas-

sage retrieval. Each task has a dataset that is new to TREC, although the passage

task is similar to the MS MARCO passage ranking leaderboard [48], but with a

new test set in the TREC version with more comprehensive labeling. Both tasks

are ad-hoc retrieval, meaning that there is a fixed document set, and the goal of the

information retrieval system is to respond to each new query with results that would

satisfy the querying user’s information need. Ad-hoc retrieval is a very common

scenario in real-world search applications and in TREC.

The main goals of the track are: (i) To provide large reusable datasets for

training and evaluation of deep learning and traditional ranking methods in a large

training data regime, (ii) To perform a rigorous blind single-shot evaluation, where

test labels don’t even exist until after all runs are submitted, to compare different

ranking methods, and (iii) To study this in both a traditional TREC setup with end–

8.1. TREC Deep Learning track 199

to-end retrieval and in a re-ranking setup that matches how some models may be

deployed in practice.

The track has two tasks: Document retrieval and passage retrieval. Participants

were allowed to submit up to three runs per task, although this was not strictly

enforced. Participants were provided with an initial set of 200 test queries, then

NIST later selected 43 queries during the pooling and judging process, based on

budget constraints and with the goal of producing a reusable test collection. The

same 200 queries were used for submissions in both tasks, while the selected 43

queries for each task were overlapping but not identical.

When submitting each run, participants also indicated what external data, pre-

trained models and other resources were used, as well as information on what style

of model was used. Below we provide more detailed information about the docu-

ment retrieval and passage retrieval tasks, as well as the datasets provided as part of

these tasks.

Document retrieval task The first task focuses on document retrieval—with two

subtasks: (i) Full retrieval and (ii) top-100 reranking.

In the full retrieval subtask, the runs are expected to rank documents based on

their relevance to the query, where documents can be retrieved from the full doc-

ument collection provided. This subtask models the end-to-end retrieval scenario.

Note, although most full retrieval runs had 1000 results per query, the reranking runs

had 100, so to make the MAP and MRR results more comparable across subtasks

we truncated full retrieval runs by taking the top-100 results per query by score.

In the reranking subtask, participants were provided with an initial ranking

of 100 documents, giving all participants the same starting point. The 100 were

retrieved using Indri [110] on the full corpus with Krovetz stemming and stopwords

eliminated. Participants were expected to rerank the candidates w.r.t. their estimated

relevance to the query. This is a common scenario in many real-world retrieval

systems that employ a telescoping architecture [82, 83]. The reranking subtask

allows participants to focus on learning an effective relevance estimator, without the

need for implementing an end-to-end retrieval system. It also makes the reranking

200 Chapter 8. Benchmarking for neural IR

runs more comparable, because they all rerank the same set of 100 candidates.

For judging, NIST’s pooling was across both subtasks, and they also identified

additional documents for judging via classifier. Further, for queries with many rele-

vant documents, additional documents were judged. These steps were carried out to

identify a sufficiently comprehensive set of relevant results, to allow reliable future

dataset reuse. Judgments were on a four-point scale:

[3] Perfectly relevant: Document is dedicated to the query, it is worthy of being

a top result in a search engine.

[2] Highly relevant: The content of this document provides substantial informa-

tion on the query.

[1] Relevant: Document provides some information relevant to the query, which

may be minimal.

[0] Irrelevant: Document does not provide any useful information about the

query.

Passage retrieval task Similar to the document retrieval task, the passage retrieval

task includes (i) a full retrieval and (ii) a top-1000 reranking tasks.

In the full retrieval subtask, given a query, the participants were expected to

retrieve a ranked list of passages from the full collection based on their estimated

likelihood of containing an answer to the question. Participants could submit up to

1000 passages per query for this end-to-end retrieval task.

In the top-1000 reranking subtask, 1000 passages per query query were pro-

vided to participants, giving all participants the same starting point. The sets of

1000 were generated based on BM25 retrieval with no stemming as applied to the

full collection. Participants were expected to rerank the 1000 passages based on

their estimated likelihood of containing an answer to the query. In this subtask, we

can compare different reranking methods based on the same initial set of 1000 can-

didates, with the same rationale as described for the document reranking subtask.

For judging, NIST’s pooling was across both subtasks, and they also identified

additional passages for judging via classifier. Further, for queries with many rel-

8.2. Datasets 201

evant passages, additional passages were judged. These steps were carried out to

identify a sufficiently comprehensive set of relevant results, to allow reliable future

dataset reuse. Judgments were on a four-point scale:

[3] Perfectly relevant: The passage is dedicated to the query and contains the

exact answer.

[2] Highly relevant: The passage has some answer for the query, but the answer

may be a bit unclear, or hidden amongst extraneous information.

[1] Related: The passage seems related to the query but does not answer it.

[0] Irrelevant: The passage has nothing to do with the query.

8.2 Datasets
Both tasks have large training sets based on human relevance assessments, derived

from MS MARCO. These are sparse, with no negative labels and often only one

positive label per query, analogous to some real-world training data such as click

logs.

In the case of passage retrieval, the positive label indicates that the passage

contains an answer to a query. In the case of document retrieval, we transferred

the passage-level label to the corresponding source document that contained the

passage. We do this under the assumption that a document with a relevant passage

is a relevant document, although we note that our document snapshot was generated

at a different time from the passage dataset, so there can be some mismatch. Despite

this, in the document retrieval task machine learning models seem to benefit from

using the labels, when evaluated using NIST’s non-sparse, non-transferred labels.

This suggests the transferred document labels are meaningful for our TREC task.

The passage corpus is the same as in MS MARCO passage retrieval leader-

board. The document corpus is newly released for use in TREC. Each document

has three fields: (i) URL, (ii) title, and (iii) body text.

Table 8.1 provides descriptive statistics for the datasets. More details about the

datasets—including directions for download—is available on the TREC 2019 Deep

202 Chapter 8. Benchmarking for neural IR

Table 8.1: Summary of statistics on TREC 2019 Deep Learning Track datasets.

Document retrieval Passage retrieval
File description # of records # of records
Collection 3,213,835 8,841,823
Train queries 367,013 502,939
Train qrels 384,597 532,761
Validation queries 5,193 6,980
Validation qrels 5,478 7,437
Test queries 200 → 43 200 → 43

Table 8.2: Summary of statistics of runs for the two retrieval tasks at the TREC 2019 Deep
Learning Track.

Document retrieval Passage retrieval
Number of groups 10 11
Number of total runs 38 37
Number of runs w/ category: nnlm 15 18
Number of runs w/ category: nn 12 8
Number of runs w/ category: trad 11 11
Number of runs w/ category: rerank 10 11
Number of runs w/ category: fullrank 28 26

Learning Track website1. Interested readers are also encouraged to refer to [48] for

details on the original MS MARCO dataset.

8.3 Results and analysis
Submitted runs A total of 15 groups participated in the TREC 2019 Deep Learning

Track, with an aggregate of 75 runs submitted across both tasks.

Based run submission surveys, we classify each run into one of three cate-

gories:

• nnlm: if the run employs large scale pre-trained neural language models,

such as BERT [281] or XLNet [441]

• nn: if the run employs some form of neural network based approach—e.g.,

Duet or using word embeddings [350]—but does not fall into the “nnlm” cat-

egory

1https://microsoft.github.io/TREC-2019-Deep-Learning/

https://microsoft.github.io/TREC-2019-Deep-Learning/

8.3. Results and analysis 203

• trad: if the run exclusively uses traditional IR methods like BM25 [76] and

RM3 [114].

We placed 33 (44%) runs in the “nnlm” category (32 using BERT and one using

XLNet), 20 (27%) in the “nn” category, and the remaining 22 (29%) in the “trad”

category.

We further categorize runs based on subtask:

• rerank: if the run reranks the provided top-k candidates, or

• fullrank: if the run employs their own phase 1 retrieval system.

We find that only 21 (28%) submissions fall under the “rerank” category—while

the remaining 54 (72%) are “fullrank”. Table 8.2 breaks down the submissions by

category and task.

We also encouraged some participants to run strong traditional IR baselines,

and submit them as additional runs under the “BASELINE” group.

Overall results Our main metric in both tasks is Normalized Discounted Cumu-

lative Gain (NDCG)—specifically, NDCG@10, since it makes use of our 4-level

judgments and focuses on the first results that users will see. To analyse if any of

the fullrank runs recall more relevant candidates in phase 1 compared to those pro-

vided for the reranking subtask, we also report Normalized Cumulative Gain (NCG)

at rank 100 and 1000 for the document and passage ranking tasks, respectively. We

choose to report NCG because it discriminates between recalling documents with

different positive relevance grades and is a natural complement to NDCG, our main

metric. Although NCG is not officially supported by trec_eval, we confirm that it

correlates strongly with the recall metric for these analysed runs.

Deep learning vs. traditional ranking methods An important goal of this track is

to compare the performance of different types of model, using large human-labeled

training sets, for the core IR task of ad-hoc search. Indeed this is the first time a

TREC-style blind evaluation has been carried out to compare state-of-the-art neural

and traditional IR methods.

204 Chapter 8. Benchmarking for neural IR

0.4

0.5

0.6

0.7

0.8

0.9

ND
CG

@
10

best nnlm run

best nn run

best trad run

nnlm
nn
trad

(a) Document retrieval task

0.4

0.5

0.6

0.7

0.8

0.9

ND
CG

@
10

best nnlm run

best nn run

best trad run

nnlm
nn
trad

(b) Passage retrieval task

Figure 8.2: NDCG@10 results, broken down by run type. Runs of type “nnlm”, meaning
they use language models such as BERT, performed best on both tasks. Other
neural network models “nn” and non-neural models “trad” had relatively lower
performance. More iterations of evaluation and analysis would be needed to
determine if this is a general result, but it is a strong start for the argument that
deep learning methods may take over from traditional methods in IR applica-
tions.

Figure 8.2a plots the NDCG@10 performance of the different runs for the doc-

ument retrieval task, broken down by model type. In general, runs in the category

“nnlm” outperform the “nn” runs, which outperform the “trad” runs. The best per-

forming run of each category is indicated, with the best “nnlm” and “nn” models

outperforming the best “trad” model by 29.4% and 14.8% respectively.

The passage retrieval task reveals similar pattern. In Figure 8.2b, the gap be-

tween the best “nnlm” and “nn” runs and the best “trad” run is larger, at 37.4% and

23.7% respectively. One explanation for this could be that vocabulary mismatch

between queries and relevant results is more likely in short text, so neural methods

that can overcome such mismatch have a relatively greater advantage in passage

retrieval. Another explanation could be that there is already a public leaderboard,

albeit without test labels from NIST, for the passage task. Some TREC participants

may have submitted neural models multiple times to the public leaderboard, and are

well practiced for the passage ranking task.

In query-level win-loss analysis for the document retrieval task (Figure 8.3)

the best “nnlm” model outperforms the best “trad” run on 36 out of 43 test queries

(i.e., 83.7%). Passage retrieval shows a similar pattern in Figure 8.4. Neither task

has a large class of queries where the “nnlm” model performs worse. However,

8.3. Results and analysis 205

more iterations of rigorous blind evaluation with strong “trad” baselines, plus more

scrutiny of the benchmarking methods, would be required to convince us that this

is true in general.

Next, we analyze the runs by representing each run as a vector of 43

NDCG@10 scores. In this vector space, two runs are similar if their NDCG vectors

are similar, meaning they performed well and badly on the same queries. Using

t-SNE [442] we then plot the runs in two dimensions, which gives us a visualization

where similar runs will be closer together and dissimilar results further apart. This

method of visualizing inter-model similarity was first proposed by Mitra et al. [21]

and we employ it to generate the plots in Figure 8.5.

On both document and passage retrieval tasks, the runs appear to be first clus-

tered by group—see Figures 8.5b and 8.5d. This is expected, as different runs from

the same group are likely to employ variations of the same approach. In Figures 8.5a

and 8.5c, runs also cluster together based on their categorization as “nnlm”, “nn”,

and “trad”.

End-to-end retrieval vs. reranking. Our datasets include top-k candidate result

lists, with 100 candidates per query for document retrieval and 1000 candidates per

query for passage retrieval. Runs that simply rerank the provided candidates are

“rerank” runs, whereas runs that perform end-to-end retrieval against the corpus,

with millions of potential results, are “fullrank” runs. We would expect that a “full-

rank” run should be able to find a greater number of relevant candidates than we

provided, achieving higher NCG@k. A multi-stage “fullrank” run should also be

able to optimize the stages jointly, such that early stages produce candidates that

later stages are good at handling.

According to Figure 8.6, “fullrank” did not achieve much better NDCG@10

performance than “rerank” runs. While it was possible for “fullrank” to achieve

better NCG@k, it was also possible to make NCG@k worse, and achieving signifi-

cantly higher NCG@k does not seem necessary to achieve good NDCG@10.

Specifically, for the document retrieval task, the best “fullrank” run achieves

only 0.9% higher NDCG@10 over the best “rerank’ run. For the passage retrieval

206 Chapter 8. Benchmarking for neural IR

0.0 0.2 0.4 0.6 0.8 1.0
NDCG@10

how is the weather in jamaica
who is robert gray

what is famvir prescribed for
difference between rn and bsn

what is a active margin
difference between a mcdouble and a double cheeseburger

types of dysarthria from cerebral palsy
how to find the midsegment of a trapezoid

example of monotonic function
medicare's definition of mechanical ventilation

lps laws definition
how long is life cycle of flea
is cdg airport in main paris

do goldfish grow
definition of a sigmet

causes of left ventricular hypertrophy
right pelvic pain causes

what is theraderm used for
anthropological definition of environment

hydrogen is a liquid below what temperature
when was the salvation army founded

tracheids are part of _____.
axon terminals or synaptic knob definition

what is physical description of spruce
cost of interior concrete flooring

define visceral?
what is wifi vs bluetooth

causes of military suicide
definition declaratory judgment

what is durable medical equipment consist of
how are some sharks warm blooded
what is an aml surveillance analyst

what is the most popular food in switzerland
why did the us volunterilay enter ww1

what can contour plowing reduce
what types of food can you cook sous vide

rsa definition key
how many liberty ships were built in brunswick

what are the social determinants of health
what is the daily life of thai people

who formed the commonwealth of independent states
exons definition biology

how long to hold bow in yoga

nnlm
trad

Figure 8.3: Comparison of the best “nnlm” and “trad” runs on individual test queries for the
document retrieval task. Queries are sorted by difference in mean performance
between “nnlm” and “trad”runs. Queries on which “nnlm” wins with large
margin are at the top.

8.3. Results and analysis 207

0.0 0.2 0.4 0.6 0.8 1.0
NDCG@10

how is the weather in jamaica
causes of left ventricular hypertrophy
when was the salvation army founded

how long is life cycle of flea
what are the social determinants of health

rsa definition key
right pelvic pain causes

what is theraderm used for
what is an aml surveillance analyst

difference between a mcdouble and a double cheeseburger
anthropological definition of environment

causes of military suicide
hydrogen is a liquid below what temperature

does legionella pneumophila cause pneumonia
what is famvir prescribed for

axon terminals or synaptic knob definition
definition declaratory judgment

definition of a sigmet
what is the daily life of thai people

why did the us volunterilay enter ww1
lps laws definition

cost of interior concrete flooring
what is wifi vs bluetooth

is cdg airport in main paris
what is physical description of spruce

tracheids are part of _____.
what types of food can you cook sous vide

do goldfish grow
what is a active margin

how are some sharks warm blooded
what can contour plowing reduce

what is durable medical equipment consist of
medicare's definition of mechanical ventilation

who formed the commonwealth of independent states
types of dysarthria from cerebral palsy

how to find the midsegment of a trapezoid
what are the three percenters?
example of monotonic function

exons definition biology
what is the most popular food in switzerland

difference between rn and bsn
define visceral?

who is robert gray

nnlm
trad

Figure 8.4: Comparison of the best “nnlm” and “trad” runs on individual test queries for the
passage retrieval task. Queries are sorted by difference in mean performance
between “nnlm” and “trad”runs. Queries on which “nnlm” wins with large
margin are at the top.

208 Chapter 8. Benchmarking for neural IR

latent dimension 1

la
te

nt
 d

im
en

sio
n

2
nn
nnlm
trad

(a) By model type on document re-
trieval task

latent dimension 1

la
te

nt
 d

im
en

sio
n

2

BASELINE
BITEM_DL
CCNU_IRGroup
CMU
IDST
Microsoft
TU-Vienna
UCAS
h2oloo
srchvrs
uogTr

(b) By group name on document re-
trieval task

latent dimension 1

la
te

nt
 d

im
en

sio
n

2

nn
nnlm
trad

(c) By model type on passage retrieval
task

latent dimension 1

la
te

nt
 d

im
en

sio
n

2

BASELINE
Brown
CCNU_IRGroup
ICTNET
IDST
Microsoft
TREMA-UNH
TU-Vienna
TUA1
h2oloo
srchvrs
udel_fang

(d) By group name on passage retrieval
task

Figure 8.5: Visualizing inter-run similarity using t-SNE. Each run is represented by a
43-dimensional vector of NDCG@10 performance on corresponding 43 test
queries. The 43-dimensional vector is then reduced to two-dimensions and plot-
ted using t-SNE. Runs that are submitted by the same group generally cluster
together. Similarly, “nnlm”, “nn”, and “trad” runs also demonstrate similarities.

task, the difference is 3.6%.

The best NCG@100 for the document retrieval task is achieved by a well-

tuned combination of BM25 [76] and RM3 [114] on top of document expansion

using doc2query [443]—which improves by 22.9% on the metric relative to the set

of 100 candidates provided for the reranking task. For the passage retrieval task, the

best NCG@1000 is 20.7% higher than that of the provided reranking candidate set.

Given this was the first ever Deep Learning Track at TREC, we are not yet

seeing a strong advantage of “fullrank” over “rerank”. However, we hope that as the

body of literature on neural methods for phase 1 retrieval (e.g., [31, 345, 363, 443])

8.3. Results and analysis 209

0.4

0.5

0.6

0.7

0.8

0.9

ND
CG

@
10

best fullrank run
best rerank run

fullrank
rerank

(a) NDCG@10 for runs on the document re-
trieval task

0.4

0.5

0.6

0.7

0.8

0.9

ND
CG

@
10

best fullrank run
best rerank run

fullrank
rerank

(b) NDCG@10 for runs on the passage retrieval
task

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NC
G@

10
0

fullrank
rerank

(c) NCG@100 for runs on the document retrieval
task

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NC
G@

10
00

fullrank
rerank

(d) NCG@1000 for runs on the passage retrieval
task

Figure 8.6: Analyzing the impact of “fullrank” vs. “rerank” settings on retrieval perfor-
mance. Figure (a) and (b) show the performance of different runs on the doc-
ument and passage retrieval tasks, respectively. Figure (c) and (d) plot the
NCG@100 and NCG@1000 metrics for the same runs for the two tasks, re-
spectively. The runs are ordered by their NDCG@10 performance along the
x-axis in all four plots. We observe, that the best run under the “fullrank” set-
ting outperforms the same under the “rerank” setting for both document and
passage retrieval tasks—although the gaps are relatively smaller compared to
those in Figure 8.2. If we compare Figure (a) with (c) and Figure (b) with (d),
we do not observe any evidence that the NCG metric is a good predictor of
NDCG@10 performance.

grows, we would see a larger number of runs with deep learning as an ingredient

for phase 1 in future editions of this TREC track.

NIST labels vs. Sparse MS MARCO labels. Our baseline human labels from MS

MARCO often have one known positive result per query. We use these labels for

training, but they are also available for test queries. Although our official evaluation

uses NDCG@10 with NIST labels, we now compare this with reciprocal rank (RR)

using MS MARCO labels, and MRR using NIST labels. Our goal is to understand

how changing the labeling scheme and metric affects the overall results of the track,

210 Chapter 8. Benchmarking for neural IR

0.45 0.50 0.55 0.60 0.65 0.70
NDCG@10

0.25

0.30

0.35

0.40

0.45

0.50

RR
 (M

S)

group
IDST
h2oloo
TU-Vienna
UCAS
uogTr
Microsoft
srchvrs
CMU
BASELINE
CCNU_IRGroup
BITEM_DL

(a) Document retrieval task.

0.45 0.50 0.55 0.60 0.65 0.70 0.75
NDCG@10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

RR
 (M

S)

group
IDST
h2oloo
Brown
TUA1
udel_fang
TU-Vienna
ICTNET
srchvrs
Microsoft
BASELINE
CCNU_IRGroup
TREMA-UNH

(b) Passage retrieval task.

Figure 8.7: Metrics agreement scatter plot, broken down by group. MRR (MS) is recipro-
cal rank calculated with the sparse MS MARCO labels, while NDCG@10 is
calculated using NIST labels.

8.3. Results and analysis 211

0.25

0.30

0.35

0.40

0.45

0.50

RR
 (M

S)

0.75

0.80

0.85

0.90

0.95

1.00

RR

 = 0.68

0.2 0.4 0.6
RR (MS)

0.50

0.55

0.60

0.65

0.70

0.75

ND
CG

@
10

 = 0.69

0.8 1.0
RR

 = 0.73

0.4 0.6 0.8
NDCG@10

neural
nnlm
nn
trad

Figure 8.8: Metrics agreement analysis, broken down by model type, for the document
retrieval task. Kendall correlation (τ) indicates agreement between metrics on
system ordering. MRR (MS) is calculated using MS MARCO sparse labels,
while MRR and NDCG@10 are calculated using NIST labels.

but if there is any disagreement we believe the NDCG results are more valid, since

they evaluate the ranking more comprehensively and a ranker that can only perform

well on labels with exactly the same distribution as the training set is not robust

enough for use in real-world applications, where real users will have opinions that

are not necessarily identical to the preferences encoded in sparse training labels.

In Figure 8.8 and 8.9, We observe general agreement between results using

MS MARCO and NIST labels–i.e., runs that perform well on MS MARCO-style

evaluation also tends to achieve good performance when evaluated under traditional

TREC settings, and vice versa. This is good news, validating the MS MARCO

leaderboard results are at least somewhat indicative of results that are found with

pooled judging.

212 Chapter 8. Benchmarking for neural IR

0.2

0.3

0.4

0.5
RR

 (M
S)

0.6

0.7

0.8

0.9

RR

 = 0.82

0.2 0.4
RR (MS)

0.5

0.6

0.7

0.8

ND
CG

@
10

 = 0.68

0.6 0.8 1.0
RR

 = 0.77

0.4 0.6 0.8
NDCG@10

neural
nnlm
nn
trad

Figure 8.9: Metrics agreement analysis, broken down by model type, for the passage re-
trieval task. Kendall correlation (τ) indicates agreement between metrics on
system ordering. MRR (MS) is calculated using MS MARCO sparse labels,
while MRR and NDCG@10 are calculated using NIST labels.

8.4 Conclusion
The TREC 2019 Deep Learning Track introduced two large training datasets, for

a document retrieval task and a passage retrieval task, generating two ad hoc test

collections with good reusability. For both tasks, in the presence of large training

data, non-neural network runs were outperformed by neural network runs. Among

the neural approaches, the best-performing runs tended to use transfer learning, em-

ploying a pretrained language model such as BERT. In future it will be interesting

to confirm and extend these results, understanding what mix of data and multi-stage

training lead to the best overall performance.

We compared reranking approaches to end-to-end retrieval approaches, and

there was not a huge difference, with some runs performing well in both regimes.

This is another result that would be interesting to track in future, since we would

8.4. Conclusion 213

expect that end-to-end retrieval should perform better if it can recall documents that

are unavailable in a reranking subtask.

In the first year of the track there were not many non-neural runs, so it would

be important in subsequent year’s track to see more runs of all types, to further

understand the relative performance of different approaches. Although the test col-

lections are of high quality, meaning that they are likely to give meaningful results

when reused, overfitting can still be a problem if the test set is used multiple times

during the development of a new retrieval approach. The most convincing way to

show that a new approach is good is to submit TREC runs. There is no chance of

overfitting, or any kind of repeated testing, because the test labels are not generated

until after the submission deadline. Through a combination of test collection reuse

(from past years) and blind evaluation (submitting runs) the Deep Learning Track

is offering a framework for studying ad hoc search in the large data regime.

Chapter 9

General Conclusions

হাঁস িছল, সজাƯ, (বâাকরণ মািন না),

হেয় Ȳগল 'হাঁসজাƯ' Ȳকমেন তা জািন না ৷

Was a duck, porcupine (to grammar I bow not)

Became Duckupine, but how I know not.

— Sukumar Ray, Khichuri

(Translation by Prasenjit Gupta)

Unlike traditional IR methods, where relevance is estimated largely by counting

occurrences of query terms in document text, the neural methods described in this

thesis focus on learning useful text representations guided by optimization objec-

tives that correspond to tasks such as ranking and language modeling. Based on

the empirical evidence presented in this thesis—and the substantial body of neu-

ral IR literature that has been emerging over the recent years—it is safe to con-

clude that these representation learning methods are able to demonstrate sizeable

improvements over traditional IR methods in the presence of large training corpora.

Ongoing new research efforts in this area may be concerned with further improving

result quality (effectiveness) while lowering compute and memory costs (efficiency),

and even coming up with more elaborate measures of successful retrieval outcomes

(e.g., exposure-based metrics) that these models can be optimized towards.

However, this emerging family of neural methods may be causing more funda-

mental shifts in the field of IR. For example, we argue that after at least two decades

216 Chapter 9. General Conclusions

Figure 9.1: Sukumar Ray’s illustration of a ``হাঁসজাƯ'' (pronounced: “haashjaru”) or a duck-
upine, a fictional animal from his poem “Khichuri”.

of largely unsuccessful attempts at leveraging models and artifacts from NLP to im-

prove IR tasks [444–448], we are now witnessing surprisingly huge benefits from

applications of deep NLP models in retrieval. These new NLP artifacts, however,

are not in the form thesauri or parts of speech tags, but rather in the form of pre-

trained language models and latent text representations. While, these black box

language models may pick up certain linguistic regularities from training on large

corpora, it is also possible, if not likely, that these learned latent representations

encode relationships and attributes that are very different to our own notion of lin-

guistic properties. By simply modeling observed regularities in unlabeled corpora,

a language model may in fact learn that “duck” and “porcupine” are similar given

they appear in similar contexts—such as, “how much does a duck weigh?” and

“how much does a porcupine weigh?”. If our goal is to maximize some averaged

relevance metrics for a query autocompletion task, it may indeed be reasonable that

“duck” and “porcupine” have similar latent representations. Similarly, the latent

space may be able to encode seemingly nonsensical concepts such as a “duckupine”

even if it has no meaningful counterpart in the real world, except may be in literary

fiction (see Figure 9.1).

This poses an interesting challenge for the research community. While, we

are reasonably good at measuring how effective these black box models are at im-

proving retrieval, it is significantly harder to articulate exactly what knowledge and

9.1. A summary of our contributions 217

world view these models encode (and do not encode), and even more difficult to

quantify the progress the IR community is making with regards to better under-

standing of retrieval tasks from the application of these models. This is not to imply

that the learned latent representations must be perfectly interpretable to qualify as

scientific progress, but rather we are making a case for viewing the contributions of

neural IR through a much broader lens that encourages its usage to aid the develop-

ment of new IR theory and improved understanding of retrieval tasks.

On that note, we conclude this thesis by summarize the contribution of our

own work, as described in the earlier chapters, in Section 9.1, and identifying key

future challenges and opportunities for the field in Section 9.2.

9.1 A summary of our contributions

This thesis summarizes a substantial body of work on neural methods for text re-

trieval. We ground our contributions by presenting a thorough survey of the field.

We highlight the challenges that are unique to IR and use them to motivate novel

learning approaches and model architectures.

We begin with Duet—a neural model that gathers evidence of a document’s

relevance to a query by inspecting patterns of query term matches in the document

as well as learning latent query and document representation for matching. The

proposed model achieves state-of-the-art performance on several public and propri-

etary benchmarks—on IR tasks that involve ranking long text documents or short

passages. The performance of the model is particularly promising when large quan-

tities of examples are available for training.

The scope of impact of neural IR models is limited, if restricted only to late

stage re-ranking. Therefore, we incorporate a query term independence assumption

to re-design the Duet model. The re-architected model is amenable to full pre-

computation while retaining all the effectiveness of the original Duet architecture.

This opens the opportunity to employ deep neural models, like Duet and BERT-

based ranking, for efficient retrieval from the full collection.

While, learning to rank methods traditionally focus on producing a static rank-

218 Chapter 9. General Conclusions

ing, we also explore an optimization strategy for stochastic ranking. We argue that

in real world retrieval systems, it makes sense to measure and optimize towards ex-

pected exposure of retrieved items, in the pursuit of fairness and diversity related

outcomes.

We demonstrate the usefulness of deep neural network based approaches to IR

tasks beyond document and passage retrieval, such as query auto-completion and

session modeling. Finally, we initiate a large-scale benchmarking effort for neural

IR methods at TREC and report our key findings.

The body of work described in this thesis was not conducted in isolation. We con-

ducted several other studies, in collaboration, focused on neural IR that we do not de-

scribe here. These efforts focused on exploring schemes for explicit regularization

[96, 97] during model training, studying reinforcement learning based approaches

to retrieval [75], designing neural ranking models for structured documents [345],

prototyping proactive retrieval systems [58], and even contributing to general pur-

pose neural toolkits [293].

9.2 The Future of neural IR
An ideal IR model would be able to infer the meaning of a query from context.

Given a query about the Prime Minister of UK, for example, it may be obvious

from context whether it refers to John Major or Teresa May—perhaps due to the

time period of the corpus, or it may need to be disambiguated based on other con-

text such as the other query terms or the user’s short or long-term history. If the

model learns a representation that encodes this context, perhaps making Prime Min-

ister close to Teresa May in a latent space, it is like a library. To scale to a large

corpus, this memorization would need to cover a massive number of connections

between entities and contexts, which could potentially be limited by model capac-

ity. Memorization could also cause update problems, for example if there is a new

Prime Minister but the model and most documents still refer to the old one. To avoid

these problems, another design could avoid memorizing connections in the corpus,

and instead perform some per-query process that reads the corpus and perhaps even

9.2. The Future of neural IR 219

reasons about the content, like a librarian.

Many of the breakthroughs in deep learning have been motivated by the needs

of specific application areas. Convolutional neural networks, for example, are com-

monly employed by the vision community, whereas recurrent architectures find

more applications in speech recognition and NLP. It is likely that the specific nature

of IR tasks and data will inform our choice of neural architectures and drive us to-

wards new designs. Future IR explorations may also be motivated by developments

in related areas, such as NLP. Neural architectures that have been evaluated on non-

IR tasks [449–453] can be investigated in the retrieval context. New methods for

training neural IR models—e.g., using reinforcement [75, 454, 455] or adversar-

ial learning [96, 243]—may also emerge as important directions for future explo-

rations. In particular, large scale unsupervised training of language models—e.g.,

BERT [281]—have already demonstrated significant jump in retrieval performance

on public benchmarks [35].

However, given the pace at which the area of deep learning is growing, in terms

of the number of new architectures and training regimes, we should be wary of the

combinatorial explosion of trying every model on every IR task. We should not

disproportionately focus on maximizing quantitative improvements and in the pro-

cess, neglect theoretical understanding and qualitative insights. It would be a bad

outcome for the field if these explorations do not grow our understanding of the fun-

damental principles of machine learning and information retrieval. Neural models

should not be the hammer that we try on every IR task, or we may risk reducing

every IR task to a nail.1 Rather, these new models should also be the lens through

which researchers gain new insights into the underlying principles of IR tasks. This

may imply that sometimes we prefer neural models that, if not interpretable, then

at least are amenable to analysis and interrogation. We may elicit more insights

from simpler models while more sophisticated models may achieve state-of-the-art

performances. As a community, we may need to focus on both to achieve results

that are both impactful as well as insightful.

1https://en.wikipedia.org/wiki/Law_of_the_instrument

https://en.wikipedia.org/wiki/Law_of_the_instrument

220 Chapter 9. General Conclusions

IR also has a role in the context of the ambitions of the machine learning

community. Retrieval is key to many one-shot learning approaches [456, 457].

Ghazvininejad et al. [458] proposed to “search” external information sources in

the process of solving complex tasks using neural networks. The idea of learning

local representations proposed by Diaz et al. [91] may be applicable to non-IR tasks.

While we look at applying neural methods to IR, we should also look for opportuni-

ties to leverage IR techniques as part of—or in combination with—neural and other

machine learning models.

We must also renew our focus on the fundamentals, including benchmarking

and reproducibility. An important prerequisite to enable the “neural IR train” to

steam forward is to build shared public resources—e.g., large scale datasets for train-

ing and evaluation, and repository of shared model implementations—and to ensure

that appropriate bindings exist (e.g., [302, 303]) between common IR frameworks

and toolkits from the neural network community. At the time of writing this the-

sis, we just concluded the first ever TREC track on deep learning based approaches

to IR using the MS MARCO [48] dataset. We hope that these datasets and others

would assume the same critical role in fueling neural IR progress as the ImageNet

database [459] in the computer vision community.

The emergence of new IR tasks also demands rethinking many of our existing

metrics. The metrics that may be appropriate for evaluating document ranking sys-

tems may be inadequate when the system generates textual answers in response to

information seeking questions. In the latter scenario, the metric should distinguish

between whether the response differs from the ground truth in the information con-

tent or in phrasing of the answer [49, 460, 461]. As multi-turn interactions with

retrieval systems become more common, the definition of task success will also

need to evolve accordingly. A good Neural IR research agenda should not only

focus on novel techniques, but also encompass all these other aspects.

Appendix A

Published work

The first three chapters of this thesis has been separately published as the following

peer-reviewed book.

1. Bhaskar Mitra and Nick Craswell. An introduction to neural information retrieval.

Foundations and Trends® in Information Retrieval, Now Publishers, 2018.

In addition, Bhaskar Mitra published the following papers, listed in reverse chrono-

logical order, that forms the broader foundation of this PhD:

2. Jaime Arguello, Adam Ferguson, Emery Fine, Bhaskar Mitra, Hamed Zamani, and

Fernando Diaz. Tip of the Tongue Known-Item Retrieval: A Case Study in Movie

Identification. In Proc. CHIIR, 2021 (to appear).

3. Fernando Diaz, Bhaskar Mitra, Michael Ekstrand, Asia J. Biega, and Ben Carterette.

Evaluating Stochastic Rankings with Expected Exposure. In Proc. CIKM, 2020.

Best long paper nominee.

4. Hamed Zamani, Bhaskar Mitra, Everest Chen, Gord Lueck, Fernando Diaz, Paul

Bennett, Nick Craswell, and Susan Dumais. Analyzing and Learning from User

Interactions for Search Clarification. In Proc. SIGIR, ACM, 2020.

5. Sebastian Hofstätter, Hamed Zamani, Bhaskar Mitra, Nick Craswell, and Allan

Hanbury. Local Self-Attention over Long Text for Efficient Document Retrieval. In

Proc. SIGIR, ACM, 2020.

6. Emine Yilmaz, Nick Craswell, Bhaskar Mitra, and Daniel Campos. On the Relia-

bility of Test Collections to Evaluating Systems of Different Types. In Proc. SIGIR,

ACM, 2020.

222 Appendix A. Published work

7. Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M.

Voorhees. Overview of the TREC 2020 deep learning track. In Proc. TREC, 2020.

8. Bhaskar Mitra, Sebastian Hofstätter, Hamed Zamani, and Nick Craswell.

Conformer-Kernel with Query Term Independence at TREC 2020 Deep Learning

Track. In Proc. TREC, 2020.

9. Nick Craswell, Daniel Campos, Bhaskar Mitra, Emine Yilmaz and Bodo Billerbeck.

ORCAS: 18 Million Clicked Query-Document Pairs for Analyzing Search. In Proc.

CIKM, 2020.

10. Corby Rosset, Bhaskar Mitra, Chenyan Xiong, Nick Craswell, Xia Song, and

Saurabh Tiwary. An Axiomatic Approach to Regularizing Neural Ranking Models.

In Proc. SIGIR, ACM, 2019.

11. Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M.

Voorhees. Overview of the TREC 2019 deep learning track. In Proc. TREC, 2019.

12. Bhaskar Mitra and Nick Craswell. Duet at TREC 2019 Deep Learning Track. In

Proc. TREC, 2019.

13. Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh Tiwary.

Neural Ranking Models with Multiple Document Fields. In Proc. WSDM, ACM,

2018.

14. Daniel Cohen, Bhaskar Mitra, Katja Hofmann, and W. Bruce Croft. Cross Domain

Regularization for Neural Ranking Models Using Adversarial Learning. In Proc.

SIGIR, ACM, 2018. Best short paper.

15. Corby Rosset, Damien Jose, Gargi Ghosh, Bhaskar Mitra, and Saurabh Tiwary.

Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In

Proc. SIGIR, ACM, 2018.

16. Surya Kallumadi, Bhaskar Mitra, and Tereza Iofciu. A Line in the Sand: Recom-

mendation or Ad-hoc Retrieval? In Proc. RecSys Challenge, ACM, 2018.

17. Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Learning to match using local

and distributed representations of text for web search. In Proc. WWW, 2017.

18. Christophe Van Gysel, Bhaskar Mitra, Matteo Venanzi, Roy Rosemarin, Grzegorz

Kukla, Piotr Grudzien, and Nicola Cancedda. Reply With: Proactive Recommenda-

tion of Email Attachments. In Proc. CIKM, ACM, 2017.

19. Federico Nanni, Bhaskar Mitra, Matt Magnusson, and Laura Dietz. A benchmark

223

for complex answer retrieval. In Proc. ICTIR, ACM, 2017.

20. Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Luandri: a Clean Lua Interface

to the Indri Search Engine. In Proc. SIGIR, ACM, 2017.

21. Navid Rekabsaz, Bhaskar Mitra, Mihai Lupu, and Allan Hanbury. Toward Incor-

poration of Relevant Documents in word2vec. In Proc. Second Neu-IR workshop

(SIGIR), ACM, 2017.

22. Fernando Diaz, Bhaskar Mitra, and Nick Craswell. Query expansion with locally-

trained word embeddings. In Proc. ACL, 2016.

23. Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and Rich Caruana. Improving docu-

ment ranking with dual word embeddings. In Proc. WWW, 2016.

24. Bhaskar Mitra, Grady Simon, Jianfeng Gao, Nick Craswell, and Li Deng. A Pro-

posal for Evaluating Answer Distillation from Web Data. In Proc. Second WebQA

Workshop (SIGIR), ACM, 2016.

25. Bhaskar Mitra. Exploring session context using distributed representations of

queries and reformulations. In Proc. SIGIR, ACM, 2015.

26. Bhaskar Mitra and Nick Craswell. Query auto-completion for rare prefixes. In Proc.

CIKM, ACM, 2015.

27. Katja Hofmann, Bhaskar Mitra, Filip Radlinski, and Milad Shokouhi. An Eye-

tracking Study of User Interactions with Query Auto Completion. In Proc. CIKM,

ACM, 2014.

28. Bhaskar Mitra, Milad Shokouhi, Filip Radlinski, and Katja Hofmann. On User

Interactions with Query Auto-Completion. In Proc. SIGIR, ACM, 2014.

29. Amit Agarwal, Eldar Akchurin, Chris Basoglu, Guoguo Chen, Scott Cyphers, Jasha

Droppo, Adam Eversole, Brian Guenter, Mark Hillebrand, Xuedong Huang, Zhiheng

Huang, Vladimir Ivanov, Alexey Kamenev, Philipp Kranen, Oleksii Kuchaiev, Wolf-

gang Manousek, Avner May, Bhaskar Mitra, Olivier Nano, Gaizka Navarro, Alexey

Orlov, Marko Padmilac, Hari Parthasarathi, Baolin Peng, Alexey Reznichenko,

Frank Seide, Michael L. Seltzer, Malcolm Slaney, Andreas Stolcke, Huaming Wang,

Kaisheng Yao, Dong Yu, Yu Zhang, Geoffrey Zweig. An Introduction to Computa-

tional Networks and the Computational Network Toolkit. Microsoft Technical Re-

port MSR-TR-2014112, 2014.

BIBLIOGRAPHY 225

Bibliography
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Proc. NIPS, pages

1097–1105, 2012.

[2] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[3] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mo-

hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen,

Tara N Sainath, et al. Deep neural networks for acoustic modeling in speech

recognition: The shared views of four research groups. Signal Processing

Magazine, IEEE, 29(6):82–97, 2012.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473, 2014.

[5] Li Deng, Dong Yu, et al. Deep learning: methods and applications. Founda-

tions and Trends® in Signal Processing, 7(3–4):197–387, 2014.

[6] Alexander Wissner-Gross. Datasets over algorithms. Edge. com. Retrieved,

8, 2016.

[7] Oriol Vinyals and Quoc Le. A neural conversational model. ICML Deep

Learning Workshop, 2015. arXiv:1506.05869.

[8] Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng

Ji, Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan.

A neural network approach to context-sensitive generation of conversa-

tional responses. In Proceedings of NAACL-HLT, pages 196–205, 2015.

arXiv:1506.06714.

[9] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep

neural networks and tree search. Nature, 529(7587):484–489, 2016.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

226 BIBLIOGRAPHY

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-

jeland, Georg Ostrovski, et al. Human-level control through deep reinforce-

ment learning. Nature, 518(7540):529–533, 2015.

[11] Ryen W White. Interactions with search systems. Cambridge University

Press, 2016.

[12] Rupesh Rasiklal Mehta, Sree Hari Nagaralu, Anjana Das, and Bhaskar Mi-

tra. Utilization of features extracted from structured documents to improve

search relevance, July 22 2014. US Patent 8,788,436.

[13] Douglas W Oard and Anne R Diekema. Cross-language information retrieval.

Annual Review of Information Science and Technology (ARIST), 33:223–56,

1998.

[14] Bhaskar Mitra, Elbio Renato Abib, Fabio Eigi Imada, and Yu Jiao. Inferring

entity attribute values, November 22 2016. US Patent 9,501,503.

[15] Eric Brill. Processing natural language without natural language process-

ing. In International Conference on Intelligent Text Processing and Compu-

tational Linguistics, pages 360–369. Springer, 2003.

[16] Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and

Chris Burges. Optimisation methods for ranking functions with multiple

parameters. In Proc. CIKM, pages 585–593. ACM, 2006.

[17] Anand Rajaraman. More data usually beats better algorithms. Datawocky

Blog, 2008.

[18] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effec-

tiveness of data. IEEE Intelligent Systems, 24(2):8–12, 2009.

[19] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revis-

iting unreasonable effectiveness of data in deep learning era. In 2017 IEEE

International Conference on Computer Vision (ICCV), pages 843–852. IEEE,

2017.

[20] Tie-Yan Liu. Learning to rank for information retrieval. Foundation and

Trends in Information Retrieval, 3(3):225–331, March 2009.

[21] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Learning to match using

BIBLIOGRAPHY 227

local and distributed representations of text for web search. In Proc. WWW,

pages 1291–1299, 2017.

[22] Bhaskar Mitra and Nick Craswell. An introduction to neural information

retrieval. Foundations and Trends® in Information Retrieval, 2018.

[23] Bhaskar Mitra and Nick Craswell. Neural text embeddings for information

retrieval. In Proc. WSDM, pages 813–814. ACM, 2017.

[24] Tom Kenter, Alexey Borisov, Christophe Van Gysel, Mostafa Dehghani,

Maarten de Rijke, and Bhaskar Mitra. Neural networks for information re-

trieval (nn4ir). In Proc. SIGIR. ACM, 2017.

[25] Tom Kenter, Alexey Borisov, Christophe Van Gysel, Mostafa Dehghani,

Maarten de Rijke, and Bhaskar Mitra. Neural networks for information re-

trieval. In Proc. WSDM, pages 779–780. ACM, 2018.

[26] Tom Kenter, Alexey Borisov, Christophe Van Gysel, Mostafa Dehghani,

Maarten de Rijke, and Bhaskar Mitra. Neural networks for information re-

trieval. In Proc. ECIR, 2018.

[27] Bhaskar Mitra and Nick Craswell. Neural models for information retrieval.

arXiv preprint arXiv:1705.01509, 2017.

[28] Federico Nanni, Bhaskar Mitra, Matt Magnusson, and Laura Dietz. Bench-

mark for complex answer retrieval. In Proc. ICTIR, pages 293–296. ACM,

2017.

[29] Bhaskar Mitra and Nick Craswell. An updated duet model for passage re-

ranking. arXiv preprint arXiv:1903.07666, 2019.

[30] Bhaskar Mitra and Nick Craswell. Duet at trec 2019 deep learning track. In

Proc. TREC, 2019.

[31] Bhaskar Mitra, Corby Rosset, David Hawking, Nick Craswell, Fernando

Diaz, and Emine Yilmaz. Incorporating query term independence assump-

tion for efficient retrieval and ranking using deep neural networks. In Proc.

ACL, 2019.

[32] Fernando Diaz, Bhaskar Mitra, Michael D Ekstrand, Asia J Biega, and Ben

228 BIBLIOGRAPHY

Carterette. Evaluating stochastic rankings with expected exposure. In Proc.

CIKM, 2020.

[33] Bhaskar Mitra. Exploring session context using distributed representations

of queries and reformulations. In Proc. SIGIR, pages 3–12. ACM, 2015.

[34] Bhaskar Mitra and Nick Craswell. Query auto-completion for rare prefixes.

In Proc. CIKM. ACM, 2015.

[35] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos.

Overview of the trec 2019 deep learning track. In Proc. TREC, 2019.

[36] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos.

Overview of the trec 2020 deep learning track. In Proc. TREC, 2020.

[37] Ellen M Voorhees, Donna K Harman, et al. TREC: Experiment and evalua-

tion in information retrieval, volume 1. MIT press Cambridge, 2005.

[38] Ellen M Voorhees and Donna Harman. Overview of the eighth text retrieval

conference (trec-8). pages 1–24, 2000.

[39] Matthew Richardson, Christopher JC Burges, and Erin Renshaw. Mctest: A

challenge dataset for the open-domain machine comprehension of text. In

EMNLP, volume 3, page 4, 2013.

[40] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt,

Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read

and comprehend. In Proc. NIPS, pages 1693–1701, 2015.

[41] Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The goldilocks

principle: Reading children’s books with explicit memory representations.

arXiv preprint arXiv:1511.02301, 2015.

[42] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van

Merriënboer, Armand Joulin, and Tomas Mikolov. Towards ai-complete

question answering: A set of prerequisite toy tasks. arXiv preprint

arXiv:1502.05698, 2015.

[43] Ellen M Voorhees and Dawn M Tice. Building a question answering test

collection. In Proc. SIGIR, pages 200–207. ACM, 2000.

[44] Yi Yang, Wen-tau Yih, and Christopher Meek. Wikiqa: A challenge dataset

BIBLIOGRAPHY 229

for open-domain question answering. In EMNLP, pages 2013–2018. Citeseer,

2015.

[45] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:

100,000+ questions for machine comprehension of text. arXiv preprint

arXiv:1606.05250, 2016.

[46] Eugene Agichtein, David Carmel, Dan Pelleg, Yuval Pinter, and Donna Har-

man. Overview of the trec 2015 liveqa track. In TREC, 2015.

[47] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David

Gondek, Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric Ny-

berg, John Prager, et al. Building watson: An overview of the deepqa project.

AI magazine, 31(3):59–79, 2010.

[48] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xi-

aodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri

Nguyen, et al. Ms marco: A human generated machine reading compre-

hension dataset. arXiv preprint arXiv:1611.09268, 2016.

[49] Bhaskar Mitra, Grady Simon, Jianfeng Gao, Nick Craswell, and Li Deng. A

proposal for evaluating answer distillation from web data. In Proceedings of

the SIGIR 2016 WebQA Workshop, 2016.

[50] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma,

Jakob G Simonsen, and Jian-Yun Nie. A hierarchical recurrent encoder-

decoder for generative context-aware query suggestion. arXiv preprint

arXiv:1507.02221, 2015.

[51] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. Modeling

document novelty with neural tensor network for search result diversification.

In Proc. SIGIR, pages 395–404. ACM, 2016.

[52] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov. A

neural click model for web search. In Proc. WWW, pages 531–541. Proc.

WWW, 2016.

[53] Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. Learn-

230 BIBLIOGRAPHY

ing latent vector spaces for product search. In Proc. CIKM, pages 165–174.

ACM, 2016.

[54] Christophe Van Gysel, Maarten de Rijke, and Marcel Worring. Unsupervised,

efficient and semantic expertise retrieval. In Proc. WWW, pages 1069–1079.

International World Wide Web Conferences Steering Committee, 2016.

[55] Gia-Hung Nguyen, Lynda Tamine, Laure Soulier, and Nathalie Bricon-Souf.

Toward a deep neural approach for knowledge-based ir. arXiv preprint

arXiv:1606.07211, 2016.

[56] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi

Wang. Representation learning using multi-task deep neural networks for

semantic classification and information retrieval. Proc. NAACL, May 2015.

[57] Petri Luukkonen, Markus Koskela, and Patrik Floréen. Lstm-based predic-

tions for proactive information retrieval. arXiv preprint arXiv:1606.06137,

2016.

[58] Christophe Van Gysel, Bhaskar Mitra, Matteo Venanzi, Roy Rosemarin,

Grzegorz Kukla, Piotr Grudzien, and Nicola Cancedda. Reply with: Proac-

tive recommendation of email attachments. In Proc. CIKM, 2017.

[59] Amy Huyen Phuoc Nguyen, Bhaskar Mitra, Christophe Jacky Henri Van Gy-

sel, Grzegorz Stanislaw Kukla, Lynn Carter Ayres, Mark Rolland Knight,

Matteo Venanzi, Nicola Cancedda, Rachel Elizabeth Sirkin, Robin Michael

Thomas, et al. Intelligent query system for attachments, February 14 2019.

US Patent App. 15/672,095.

[60] Rui Yan, Yiping Song, and Hua Wu. Learning to respond with deep neural

networks for retrieval-based human-computer conversation system. In Proc.

SIGIR, pages 55–64. ACM, 2016.

[61] Xiangyang Zhou, Daxiang Dong, Hua Wu, Shiqi Zhao, R Yan, D Yu, Xuan

Liu, and H Tian. Multi-view response selection for human-computer conver-

sation. EMNLP16, 2016.

[62] Lin Ma, Zhengdong Lu, Lifeng Shang, and Hang Li. Multimodal convolu-

tional neural networks for matching image and sentence. In Proceedings of

BIBLIOGRAPHY 231

the IEEE International Conference on Computer Vision, pages 2623–2631,

2015.

[63] Laura A Granka, Thorsten Joachims, and Geri Gay. Eye-tracking analysis of

user behavior in www search. In Proc. SIGIR, pages 478–479. ACM, 2004.

[64] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri

Gay. Accurately interpreting clickthrough data as implicit feedback. In Proc.

SIGIR, pages 154–161. Acm, 2005.

[65] Zhiwei Guan and Edward Cutrell. An eye tracking study of the effect of

target rank on web search. In Proc. SIGCHI, pages 417–420. ACM, 2007.

[66] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, Filip

Radlinski, and Geri Gay. Evaluating the accuracy of implicit feedback from

clicks and query reformulations in web search. ACM Transactions on Infor-

mation Systems (TOIS), 25(2):7, 2007.

[67] Fernando Diaz, Ryen White, Georg Buscher, and Dan Liebling. Robust mod-

els of mouse movement on dynamic web search results pages. In Proc. CIKM,

pages 1451–1460. ACM, 2013.

[68] Bhaskar Mitra, Milad Shokouhi, Filip Radlinski, and Katja Hofmann. On

user interactions with query auto-completion. In Proc. SIGIR, pages 1055–

1058, 2014.

[69] Kajta Hofmann, Bhaskar Mitra, Filip Radlinski, and Milad Shokouhi. An

eye-tracking study of user interactions with query auto completion. In Proc.

CIKM, pages 549–558. ACM, 2014.

[70] Dmitry Lagun, Chih-Hung Hsieh, Dale Webster, and Vidhya Navalpakkam.

Towards better measurement of attention and satisfaction in mobile search.

In Proc. SIGIR, pages 113–122. ACM, 2014.

[71] Nick Craswell. Mean reciprocal rank. In Encyclopedia of Database Systems,

pages 1703–1703. Springer, 2009.

[72] Mu Zhu. Recall, precision and average precision. Department of Statistics

and Actuarial Science, University of Waterloo, Waterloo, 2:30, 2004.

[73] Stephen E Robertson, Evangelos Kanoulas, and Emine Yilmaz. Extending

232 BIBLIOGRAPHY

average precision to graded relevance judgments. In Proc. SIGIR, pages 603–

610. ACM, 2010.

[74] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation

of ir techniques. ACM Transactions on Information Systems (TOIS), 20(4):

422–446, 2002.

[75] Corby Rosset, Damien Jose, Gargi Ghosh, Bhaskar Mitra, and Saurabh Ti-

wary. Optimizing query evaluations using reinforcement learning for web

search. In Proc. SIGIR. ACM, 2018.

[76] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance frame-

work: Bm25 and beyond. Foundations and Trends® in Information Retrieval,

3(4):333–389, 2009.

[77] Hang Li, Jun Xu, et al. Semantic matching in search. Foundations and

Trends® in Information Retrieval, 7(5):343–469, 2014.

[78] Steven Levy. In the plex: How Google thinks, works, and shapes our lives.

Simon and Schuster, 2011.

[79] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search. In

Proc. InfoScale. ACM, 2006. ISBN 1-59593-428-6.

[80] Yinglian Xie and David O’Hallaron. Locality in search engine queries and

its implications for caching. In INFOCOM 2002. Twenty-First Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceed-

ings. IEEE, volume 3, pages 1238–1247. IEEE, 2002.

[81] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted document length

normalization. In Proc. SIGIR, pages 21–29. ACM, 1996.

[82] Irina Matveeva, Chris Burges, Timo Burkard, Andy Laucius, and Leon Wong.

High accuracy retrieval with multiple nested ranker. In Proc. SIGIR, pages

437–444. ACM, 2006.

[83] Lidan Wang, Jimmy Lin, and Donald Metzler. A cascade ranking model for

efficient ranked retrieval. In Proc. SIGIR, pages 105–114. ACM, 2011.

[84] Asia J. Biega, Krishna P. Gummadi, and Gerhard Weikum. Equity of atten-

tion: Amortizing individual fairness in rankings. In Proc. SIGIR, SIGIR

BIBLIOGRAPHY 233

’18, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5657-2. doi:

10.1145/3209978.3210063. URL http://doi.acm.org/10.1145/

3209978.3210063.

[85] Ashudeep Singh and Thorsten Joachims. Fairness of exposure in rankings.

In Proc. SIGKDD, KDD ’18, pages 2219–2228, New York, NY, USA, 2018.

ACM. ISBN 978-1-4503-5552-0. doi: 10.1145/3219819.3220088. URL

http://doi.acm.org/10.1145/3219819.3220088.

[86] Daniel J Liebling, Paul N Bennett, and Ryen W White. Anticipatory search:

using context to initiate search. In SIGIR, pages 1035–1036. ACM, 2012.

[87] Yang Song and Qi Guo. Query-less: Predicting task repetition for nextgen

proactive search and recommendation engines. In WWW, pages 543–553.

International World Wide Web Conferences Steering Committee, 2016.

[88] Jan R. Benetka, Krisztian Balog, and Kjetil Nørvåg. Anticipating informa-

tion needs based on check-in activity. In WSDM, pages 41–50. ACM, 2017.

[89] Milad Shokouhi and Qi Guo. From queries to cards: Re-ranking proactive

card recommendations based on reactive search history. In SIGIR, pages

695–704. ACM, 2015.

[90] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-

works. arXiv preprint arXiv:1312.6199, 2013.

[91] Fernando Diaz, Bhaskar Mitra, and Nick Craswell. Query expansion with

locally-trained word embeddings. In Proc. ACL, 2016.

[92] Bob L Sturm. A simple method to determine if a music information re-

trieval system is a horse. IEEE Transactions on Multimedia, 16(6):1636–

1644, 2014.

[93] Sebastian Hofstätter, Hamed Zamani, Bhaskar Mitra, Nick Craswell, and

Allan Hanbury. Local self-attention over long text for efficient document

retrieval. In Proc. SIGIR. ACM, 2020.

[94] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Inverted files

http://doi.acm.org/10.1145/3209978.3210063
http://doi.acm.org/10.1145/3209978.3210063
http://doi.acm.org/10.1145/3219819.3220088

234 BIBLIOGRAPHY

versus signature files for text indexing. ACM Transactions on Database Sys-

tems (TODS), 23(4):453–490, 1998.

[95] Surajit Chaudhuri and Raghav Kaushik. Extending autocompletion to toler-

ate errors. In Proc. SIGMOD, pages 707–718, 2009.

[96] Daniel Cohen, Bhaskar Mitra, Katja Hofmann, and Bruce Croft. Cross do-

main regularization for neural ranking models using adversarial learning. In

Proc. SIGIR. ACM, 2018.

[97] Corby Rosset, Bhaskar Mitra, Chenyan Xiong, Nick Craswell, Xia Song,

and Saurabh Tiwary. An axiomatic approach to regularizing neural ranking

models. In Proc. SIGIR, pages 981–984, 2019.

[98] Hugo Zaragoza, Nick Craswell, Michael J Taylor, Suchi Saria, and Stephen E

Robertson. Microsoft cambridge at trec 13: Web and hard tracks. In TREC,

volume 4, pages 1–1, 2004.

[99] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Simple bm25 ex-

tension to multiple weighted fields. In Proc. CIKM, pages 42–49. ACM,

2004.

[100] Jay M Ponte and W Bruce Croft. A language modeling approach to informa-

tion retrieval. In Proc. SIGIR, pages 275–281. ACM, 1998.

[101] Djoerd Hiemstra. Using language models for information retrieval. Taaluit-

geverij Neslia Paniculata, 2001.

[102] Chengxiang Zhai and John Lafferty. A study of smoothing methods for lan-

guage models applied to ad hoc information retrieval. In Proc. SIGIR, pages

334–342. ACM, 2001.

[103] Frederick Jelinek and Robert Mercer. Interpolated estimation of markov

source parameters from sparse data. In Proc. Workshop on Pattern Recog-

nition in Practice, 1980, 1980.

[104] David JC MacKay and Linda C Bauman Peto. A hierarchical dirichlet lan-

guage model. Natural language engineering, 1(3):289–308, 1995.

[105] Adam Berger and John Lafferty. Information retrieval as statistical transla-

tion. In Proc. SIGIR, pages 222–229. ACM, 1999.

BIBLIOGRAPHY 235

[106] Peter F Brown, John Cocke, Stephen A Della Pietra, Vincent J Della Pietra,

Fredrick Jelinek, John D Lafferty, Robert L Mercer, and Paul S Roossin. A

statistical approach to machine translation. Computational linguistics, 16(2):

79–85, 1990.

[107] Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L

Mercer. The mathematics of statistical machine translation: Parameter esti-

mation. Computational linguistics, 19(2):263–311, 1993.

[108] Guido Zuccon, Bevan Koopman, Peter Bruza, and Leif Azzopardi. Integrat-

ing and evaluating neural word embeddings in information retrieval. In Proc.

ADCS, page 12. ACM, 2015.

[109] Donald Metzler and W Bruce Croft. A markov random field model for term

dependencies. In Proc. SIGIR, pages 472–479. ACM, 2005.

[110] Trevor Strohman, Donald Metzler, Howard Turtle, and W Bruce Croft. Indri:

A language model-based search engine for complex queries. In Proceedings

of the International Conference on Intelligent Analysis, volume 2, pages 2–6.

Citeseer, 2005.

[111] Victor Lavrenko. A generative theory of relevance, volume 26. Springer

Science & Business Media, 2008.

[112] Victor Lavrenko and W Bruce Croft. Relevance based language models. In

Proc. SIGIR, pages 120–127. ACM, 2001.

[113] John Lafferty and Chengxiang Zhai. Document language models, query mod-

els, and risk minimization for information retrieval. In Proc. SIGIR, pages

111–119. ACM, 2001.

[114] Nasreen Abdul-Jaleel, James Allan, W Bruce Croft, Fernando Diaz, Leah

Larkey, Xiaoyan Li, Mark D Smucker, and Courtney Wade. Umass at trec

2004: Novelty and hard. 2004.

[115] Stephen E Robertson, Steve Walker, MM Beaulieu, Mike Gatford, and Ali-

son Payne. Okapi at trec-4. In Proc. TREC, volume 500, pages 73–97, 1996.

[116] Jun Miao, Jimmy Xiangji Huang, and Zheng Ye. Proximity-based rocchio’s

model for pseudo relevance. In Proc. SIGIR, pages 535–544. ACM, 2012.

236 BIBLIOGRAPHY

[117] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. A deep relevance

matching model for ad-hoc retrieval. In Proc. CIKM, pages 55–64. ACM,

2016.

[118] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry

Heck. Learning deep structured semantic models for web search using click-

through data. In Proc. CIKM, pages 2333–2338. ACM, 2013.

[119] Bhaskar Mitra, Eric Nalisnick, Nick Craswell, and Rich Caruana. A

dual embedding space model for document ranking. arXiv preprint

arXiv:1602.01137, 2016.

[120] Dwaipayan Roy, Debjyoti Paul, Mandar Mitra, and Utpal Garain. Us-

ing word embeddings for automatic query expansion. arXiv preprint

arXiv:1606.07608, 2016.

[121] Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv

preprint arXiv:1901.04085, 2019.

[122] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[123] John R Firth. A synopsis of linguistic theory, 1930-1955. 1957.

[124] Scott C. Deerwester, Susan T Dumais, Thomas K. Landauer, George W. Fur-

nas, and Richard A. Harshman. Indexing by latent semantic analysis. JASIS,

41(6):391–407, 1990.

[125] Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces

from lexical co-occurrence. Behavior Research Methods, Instruments, &

Computers, 28(2):203–208, 1996.

[126] Douglas LT Rohde, Laura M Gonnerman, and David C Plaut. An improved

model of semantic similarity based on lexical co-occurrence. Communica-

tions of the ACM, 8:627–633, 2006.

[127] John A Bullinaria and Joseph P Levy. Extracting semantic representations

from word co-occurrence statistics: A computational study. Behavior re-

search methods, 39(3):510–526, 2007.

[128] Omer Levy, Yoav Goldberg, and Israel Ramat-Gan. Linguistic regularities in

sparse and explicit word representations. CoNLL-2014, page 171, 2014.

BIBLIOGRAPHY 237

[129] Geoffrey E Hinton. Distributed representations. 1984.

[130] Omer Levy and Yoav Goldberg. Dependencybased word embeddings. In

Proc. ACL, volume 2, pages 302–308, 2014.

[131] Roland Barthes. Elements of semiology. Macmillan, 1977.

[132] Hinrich Schütze and Jan Pedersen. A vector model for syntagmatic and

paradigmatic relatedness. In Proceedings of the 9th Annual Conference of

the UW Centre for the New OED and Text Research, pages 104–113. Cite-

seer, 1993.

[133] Reinhard Rapp. Syntagmatic and paradigmatic associations in information

retrieval. In Between data science and applied data analysis, pages 473–482.

Springer, 2003.

[134] Isabella Peters and Katrin Weller. Paradigmatic and syntagmatic relations in

knowledge organization systems. Information Wissenschaft und Praxis, 59

(2):100, 2008.

[135] Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng. Learning word

representations by jointly modeling syntagmatic and paradigmatic relations.

In Proc. ACL, 2015.

[136] Ferdinand De Saussure. Cours de linguistique générale, publié par ch. Bally

et A. Sechehaye avec la collaboration de A. Riedlinger. Paris: Payot, 1916.

[137] Roy Harris. Saussure and his Interpreters. Edinburgh University Press, 2001.

[138] Daniel Chandler. Semiotics for beginners, 1994.

[139] Magnus Sahlgren. The Word-Space Model: Using distributional analysis

to represent syntagmatic and paradigmatic relations between words in high-

dimensional vector spaces. PhD thesis, Institutionen för lingvistik, 2006.

[140] Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space

models of semantics. Journal of artificial intelligence research, 37:141–188,

2010.

[141] Marco Baroni and Alessandro Lenci. Distributional memory: A general

framework for corpus-based semantics. Computational Linguistics, 36(4):

673–721, 2010.

238 BIBLIOGRAPHY

[142] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski.

Rand-walk: A latent variable model approach to word embeddings. arXiv

preprint arXiv:1502.03520, 2015.

[143] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

Press, 2016.

[144] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A

neural probabilistic language model. Journal of machine learning research,

3(Feb):1137–1155, 2003.

[145] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-

tion of word representations in vector space. arXiv preprint arXiv:1301.3781,

2013.

[146] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, pre-

dict! a systematic comparison of context-counting vs. context-predicting se-

mantic vectors. In Proc. ACL, volume 1, pages 238–247, 2014.

[147] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional simi-

larity with lessons learned from word embeddings. Transactions of the Asso-

ciation for Computational Linguistics, 3:211–225, 2015.

[148] Gene H Golub and Christian Reinsch. Singular value decomposition and

least squares solutions. Numerische mathematik, 14(5):403–420, 1970.

[149] Ivan Markovsky. Low rank approximation: algorithms, implementation, ap-

plications. Springer Science & Business Media, 2011.

[150] John A Bullinaria and Joseph P Levy. Extracting semantic representations

from word co-occurrence statistics: stop-lists, stemming, and svd. Behavior

research methods, 44(3):890–907, 2012.

[151] Rémi Lebret and Ronan Collobert. Word emdeddings through hellinger pca.

arXiv preprint arXiv:1312.5542, 2013.

[152] Thomas Hofmann. Probabilistic latent semantic indexing. In Proc. SIGIR,

pages 50–57. ACM, 1999.

[153] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood

BIBLIOGRAPHY 239

from incomplete data via the em algorithm. Journal of the royal statistical

society. Series B (methodological), pages 1–38, 1977.

[154] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet alloca-

tion. the Journal of machine Learning research, 3:993–1022, 2003.

[155] Naftali Tishby, Fernando C Pereira, and William Bialek. The information

bottleneck method. arXiv preprint physics/0004057, 2000.

[156] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:

Global vectors for word representation. Proc. EMNLP, 12:1532–1543, 2014.

[157] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

Distributed representations of words and phrases and their compositionality.

In Proc. NIPS, pages 3111–3119, 2013.

[158] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities

in continuous space word representations. In HLT-NAACL, pages 746–751.

Citeseer, 2013.

[159] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov

et al.’s negative-sampling word-embedding method. arXiv preprint

arXiv:1402.3722, 2014.

[160] Xin Rong. word2vec parameter learning explained. arXiv preprint

arXiv:1411.2738, 2014.

[161] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural net-

work language model. In Aistats, volume 5, pages 246–252. Citeseer, 2005.

[162] Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng. Sparse word

embeddings using l1 regularized online learning. In Proc. IJCAI, pages 2915–

2921, 2016.

[163] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning

Research, 12(Jul):2121–2159, 2011.

[164] Quoc V Le and Tomas Mikolov. Distributed representations of sentences and

documents. In ICML, volume 14, pages 1188–1196, 2014.

[165] Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavljevic, Fabrizio Silvestri,

240 BIBLIOGRAPHY

and Narayan Bhamidipati. Context-and content-aware embeddings for query

rewriting in sponsored search. In Proc. SIGIR, pages 383–392. ACM, 2015.

[166] Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavljevic, and Narayan

Bhamidipati. Search retargeting using directed query embeddings. In Proc.

WWW, pages 37–38. International World Wide Web Conferences Steering

Committee, 2015.

[167] Qingyao Ai, Liu Yang, Jiafeng Guo, and W Bruce Croft. Improving language

estimation with the paragraph vector model for ad-hoc retrieval. In Proc.

SIGIR, pages 869–872. ACM, 2016.

[168] Qingyao Ai, Liu Yang, Jiafeng Guo, and W Bruce Croft. Analysis of the

paragraph vector model for information retrieval. In Proc. ICTIR, pages 133–

142. ACM, 2016.

[169] Xiaohui Yan, Jiafeng Guo, Shenghua Liu, Xueqi Cheng, and Yanfeng Wang.

Learning topics in short texts by non-negative matrix factorization on term

correlation matrix. In Proceedings of the SIAM International Conference on

Data Mining, 2013.

[170] Ryan Kiros, Richard Zemel, and Ruslan R Salakhutdinov. A multiplicative

model for learning distributed text-based attribute representations. In Proc.

NIPS, pages 2348–2356, 2014.

[171] Ivan Vulić and Marie-Francine Moens. Monolingual and cross-lingual in-

formation retrieval models based on (bilingual) word embeddings. In Proc.

SIGIR, pages 363–372. ACM, 2015.

[172] Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and Rich Caruana. Improving

document ranking with dual word embeddings. In Proc. WWW, 2016.

[173] Tom Kenter, Alexey Borisov, and Maarten de Rijke. Siamese cbow: Op-

timizing word embeddings for sentence representations. arXiv preprint

arXiv:1606.04640, 2016.

[174] Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng. Semantic

regularities in document representations. arXiv preprint arXiv:1603.07603,

2016.

BIBLIOGRAPHY 241

[175] Stéphane Clinchant and Florent Perronnin. Aggregating continuous word

embeddings for information retrieval. In Proceedings of the Workshop on

Continuous Vector Space Models and their Compositionality, pages 100–109,

2013.

[176] Hamed Zamani and W Bruce Croft. Estimating embedding vectors for

queries. In Proc. ICTIR, pages 123–132. ACM, 2016.

[177] Debasis Ganguly, Dwaipayan Roy, Mandar Mitra, and Gareth JF Jones. Word

embedding based generalized language model for information retrieval. In

Proc. SIGIR, pages 795–798. ACM, 2015.

[178] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for distribu-

tions with applications to image databases. In Computer Vision, 1998. Sixth

International Conference on, pages 59–66. IEEE, 1998.

[179] Xiaojun Wan and Yuxin Peng. The earth mover’s distance as a semantic

measure for document similarity. In Proc. CIKM, pages 301–302. ACM,

2005.

[180] Xiaojun Wan. A novel document similarity measure based on earth movers

distance. Information Sciences, 177(18):3718–3730, 2007.

[181] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word

embeddings to document distances. In Proc. ICML, pages 957–966, 2015.

[182] Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei Sha, and Kilian Q

Weinberger. Supervised word mover’s distance. In Proc. NIPS, pages 4862–

4870, 2016.

[183] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. Semantic match-

ing by non-linear word transportation for information retrieval. In Proc.

CIKM, pages 701–710. ACM, 2016.

[184] Tom Kenter and Maarten de Rijke. Short text similarity with word embed-

dings. In Proc. CIKM, volume 15, page 115.

[185] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Gregoire Mesnil. A

latent semantic model with convolutional-pooling structure for information

retrieval. In Proc. CIKM, pages 101–110. ACM, 2014.

242 BIBLIOGRAPHY

[186] Hamed Zamani and W Bruce Croft. Embedding-based query language mod-

els. In Proc. ICTIR, pages 147–156. ACM, 2016.

[187] Guoqing Zheng and Jamie Callan. Learning to reweight terms with dis-

tributed representations. In Proc. SIGIR, pages 575–584. ACM, 2015.

[188] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A sup-

port vector method for optimizing average precision. In Proc. SIGIR, pages

271–278. ACM, 2007.

[189] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

Hamilton, and Greg Hullender. Learning to rank using gradient descent. In

Proc. ICML, pages 89–96. ACM, 2005.

[190] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao.

Adapting boosting for information retrieval measures. Information Retrieval,

13(3):254–270, 2010.

[191] Kezban Dilek Onal, Ye Zhang, Ismail Sengor Altingovde, Md Mustafizur

Rahman, Pinar Karagoz, Alex Braylan, Brandon Dang, Heng-Lu Chang,

Henna Kim, Quinten McNamara, et al. Neural information retrieval: At

the end of the early years. Information Retrieval Journal, 21(2-3):111–182,

2018.

[192] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng. A study of

matchpyramid models on ad-hoc retrieval. arXiv preprint arXiv:1606.04648,

2016.

[193] Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao.

Deep crossing: Web-scale modeling without manually crafted combinatorial

features. In Proc. SIGKDD, pages 255–262. ACM, 2016.

[194] David Cossock and Tong Zhang. Subset ranking using regression. In COLT,

volume 6, pages 605–619. Springer, 2006.

[195] Norbert Fuhr. Optimum polynomial retrieval functions based on the proba-

bility ranking principle. ACM Transactions on Information Systems (TOIS),

7(3):183–204, 1989.

[196] Ping Li, Qiang Wu, and Christopher J Burges. Mcrank: Learning to rank

BIBLIOGRAPHY 243

using multiple classification and gradient boosting. In Advances in neural

information processing systems, pages 897–904, 2008.

[197] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric

discriminatively, with application to face verification. In Computer Vision

and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Confer-

ence on, volume 1, pages 539–546. IEEE, 2005.

[198] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by

learning an invariant mapping. In Computer vision and pattern recognition,

2006 IEEE computer society conference on, volume 2, pages 1735–1742.

IEEE, 2006.

[199] Joshua Goodman. Classes for fast maximum entropy training. In Acoustics,

Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE

International Conference on, volume 1, pages 561–564. IEEE, 2001.

[200] Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical distributed lan-

guage model. In Advances in neural information processing systems, pages

1081–1088, 2009.

[201] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra,

and Jenifer C Lai. Class-based n-gram models of natural language. Compu-

tational linguistics, 18(4):467–479, 1992.

[202] Hai-Son Le, Ilya Oparin, Alexandre Allauzen, Jean-Luc Gauvain, and

François Yvon. Structured output layer neural network language model. In

Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International

Conference on, pages 5524–5527. IEEE, 2011.

[203] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Cernocky, and Sanjeev

Khudanpur. Extensions of recurrent neural network language model. In

Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International

Conference on, pages 5528–5531. IEEE, 2011.

[204] Geoffrey Zweig and Konstantin Makarychev. Speed regularization and op-

timality in word classing. In Acoustics, Speech and Signal Processing

244 BIBLIOGRAPHY

(ICASSP), 2013 IEEE International Conference on, pages 8237–8241. IEEE,

2013.

[205] Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and

Hervé Jégou. Efficient softmax approximation for gpus. arXiv preprint

arXiv:1609.04309, 2016.

[206] Jean-Sébastien Senécal and Yoshua Bengio. Adaptive importance sampling

to accelerate training of a neural probabilistic language model. Technical

report, Technical report, IDIAP, 2003.

[207] Yoshua Bengio, Jean-Sébastien Senécal, et al. Quick training of probabilistic

neural nets by importance sampling. In AISTATS, 2003.

[208] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio.

On using very large target vocabulary for neural machine translation. arXiv

preprint arXiv:1412.2007, 2014.

[209] Yoshua Bengio and Jean-Sébastien Senécal. Adaptive importance sampling

to accelerate training of a neural probabilistic language model. IEEE Trans-

actions on Neural Networks, 19(4):713–722, 2008.

[210] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and

Yonghui Wu. Exploring the limits of language modeling. arXiv preprint

arXiv:1602.02410, 2016.

[211] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A

new estimation principle for unnormalized statistical models. In AISTATS,

volume 1, page 6, 2010.

[212] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training

neural probabilistic language models. arXiv preprint arXiv:1206.6426, 2012.

[213] Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. De-

coding with large-scale neural language models improves translation. In

EMNLP, pages 1387–1392, 2013.

[214] Barret Zoph, Ashish Vaswani, Jonathan May, and Kevin Knight. Simple, fast

noise-contrastive estimation for large rnn vocabularies. In Proceedings of

NAACL-HLT, pages 1217–1222, 2016.

BIBLIOGRAPHY 245

[215] Shihao Ji, SVN Vishwanathan, Nadathur Satish, Michael J Anderson, and

Pradeep Dubey. Blackout: Speeding up recurrent neural network language

models with very large vocabularies. arXiv preprint arXiv:1511.06909, 2015.

[216] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks

from overfitting. The Journal of Machine Learning Research, 15(1):1929–

1958, 2014.

[217] Chris Dyer. Notes on noise contrastive estimation and negative sampling.

arXiv preprint arXiv:1410.8251, 2014.

[218] Welin Chen, David Grangier, and Michael Auli. Strategies for training large

vocabulary neural language models. arXiv preprint arXiv:1512.04906, 2015.

[219] Sebastian Ruder. Approximating the softmax for learning word

embeddings, 2016. URL http://sebastianruder.com/

word-embeddings-softmax/. Accessed June 7, 2017.

[220] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhi-Ming Ma, and Hang Li. Rank-

ing measures and loss functions in learning to rank. In Advances in Neural

Information Processing Systems, pages 315–323, 2009.

[221] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank

boundaries for ordinal regression. 2000.

[222] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In Proc. CVPR, pages

815–823, 2015.

[223] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient

boosting algorithm for combining preferences. Journal of machine learning

research, 4(Nov):933–969, 2003.

[224] Christopher JC Burges. From ranknet to lambdarank to lambdamart: An

overview. Learning, 11(23-581):81, 2010.

[225] Christopher JC Burges, Robert Ragno, and Quoc Viet Le. Learning to rank

with nonsmooth cost functions. In NIPS, volume 6, pages 193–200, 2006.

http://sebastianruder.com/word-embeddings-softmax/
http://sebastianruder.com/word-embeddings-softmax/

246 BIBLIOGRAPHY

[226] Pinar Donmez, Krysta M Svore, and Christopher JC Burges. On the local

optimality of lambdarank. In Proc. SIGIR, pages 460–467. ACM, 2009.

[227] Yisong Yue and Christopher Burges. On using simultaneous perturbation

stochastic approximation for ir measures, and the empirical optimality of

lambdarank. In NIPS Machine Learning for Web Search Workshop, 2007.

[228] R Duncan Luce. Individual choice behavior. 1959.

[229] Robin L Plackett. The analysis of permutations. Applied Statistics, pages

193–202, 1975.

[230] Colin L Mallows. Non-null ranking models. i. Biometrika, 44(1/2):114–130,

1957.

[231] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to

rank: from pairwise approach to listwise approach. In Proc. ICML, pages

129–136. ACM, 2007.

[232] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise

approach to learning to rank: theory and algorithm. In Proc. ICML, pages

1192–1199. ACM, 2008.

[233] KH Bhatia, PJ Jain, and M Varma. The extreme classification repository:

multi-label datasets & code, 2016. URL http://manikvarma.org/

downloads/XC/XMLRepository.html. Accessed June 7, 2017.

[234] Manik Varma and Moustapha Cisse. Extreme classification 2015: The nips

workshop on multi-class and multi-label learning in extremely large label

spaces, 2015. URL http://manikvarma.org/events/XC15/. Ac-

cessed June 7, 2017.

[235] Moustapha Cisse, Manik Varma, and Samy Bengio. Extreme classifica-

tion 2016: The nips workshop on multi-class and multi-label learning in

extremely large label spaces, 2016. URL http://manikvarma.org/

events/XC16/. Accessed June 7, 2017.

[236] Pascal Vincent, Alexandre de Brébisson, and Xavier Bouthillier. Exact gra-

dient updates in time independent of output size for the spherical loss family.

arXiv preprint arXiv:1606.08061, 2016.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/events/XC15/
http://manikvarma.org/events/XC16/
http://manikvarma.org/events/XC16/

BIBLIOGRAPHY 247

[237] Alexandre de Brébisson and Pascal Vincent. An exploration of soft-

max alternatives belonging to the spherical loss family. arXiv preprint

arXiv:1511.05042, 2015.

[238] Alexandre de Brébisson and Pascal Vincent. The z-loss: a shift and scale

invariant classification loss belonging to the spherical family. arXiv preprint

arXiv:1604.08859, 2016.

[239] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. Unbiased

learning-to-rank with biased feedback. In Proc. WSDM, pages 781–789.

ACM, 2017.

[240] Himanshu Jain, Yashoteja Prabhu, and Manik Varma. Extreme multi-label

loss functions for recommendation, tagging, ranking & other missing label

applications. In Proc. SIGKDD, pages 935–944. ACM, 2016.

[241] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and

W Bruce Croft. Neural ranking models with weak supervision. In Proc.

SIGIR, pages 65–74. ACM, 2017.

[242] Mostafa Dehghani, Aliaksei Severyn, Sascha Rothe, and Jaap Kamps. Learn-

ing to learn from weak supervision by full supervision. arXiv preprint

arXiv:1711.11383, 2017.

[243] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou

Wang, Peng Zhang, and Dell Zhang. Irgan: A minimax game for unifying

generative and discriminative information retrieval models. arXiv preprint

arXiv:1705.10513, 2017.

[244] Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J

Douglas, and H Sebastian Seung. Digital selection and analogue amplifica-

tion coexist in a cortex-inspired silicon circuit. Nature, 405(6789):947–951,

2000.

[245] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In Proc. ICML, pages 807–814, 2010.

[246] Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. What is the best multi-

248 BIBLIOGRAPHY

stage architecture for object recognition? In Computer Vision, 2009 IEEE

12th International Conference on, pages 2146–2153. IEEE, 2009.

[247] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85–117, 2015.

[248] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and

trends® in Machine Learning, 2(1):1–127, 2009.

[249] Robert Hecht-Nielsen et al. Theory of the backpropagation neural network.

Neural Networks, 1(Supplement-1):445–448, 1988.

[250] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-

ward networks are universal approximators. Neural networks, 2(5):359–366,

1989.

[251] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proc. CVPR, pages 770–778, 2016.

[252] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio.

On the number of linear regions of deep neural networks. In Proc. NIPS,

pages 2924–2932, 2014.

[253] Alex Graves. Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850, 2013.

[254] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with

recurrent neural networks. In Proc. ICML, pages 1017–1024, 2011.

[255] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-

aware neural language models. arXiv preprint arXiv:1508.06615, 2015.

[256] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi

Cheng. Text matching as image recognition. In Proc. AAAI, 2016.

[257] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional

neural network architectures for matching natural language sentences. In

Proc. NIPS, pages 2042–2050, 2014.

[258] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic

object recognition with invariance to pose and lighting. In Proc. CVPR, vol-

ume 2, pages II–104. IEEE, 2004.

BIBLIOGRAPHY 249

[259] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional net-

works and applications in vision. In Circuits and Systems (ISCAS), Proceed-

ings of 2010 IEEE International Symposium on, pages 253–256. IEEE, 2010.

[260] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernocky, and Sanjeev

Khudanpur. Recurrent neural network based language model. In Interspeech,

volume 2, page 3, 2010.

[261] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst

Bunke, and Jürgen Schmidhuber. A novel connectionist system for uncon-

strained handwriting recognition. IEEE transactions on pattern analysis and

machine intelligence, 31(5):855–868, 2009.

[262] Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long short-term

memory recurrent neural network architectures for large scale acoustic mod-

eling. In Interspeech, pages 338–342, 2014.

[263] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[264] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–

211, 1990.

[265] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.

Empirical evaluation of gated recurrent neural networks on sequence model-

ing. arXiv preprint arXiv:1412.3555, 2014.

[266] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua

Bengio. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv preprint arXiv:1409.1259, 2014.

[267] Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo, Liang Pang, and Xueqi

Cheng. Match-srnn: Modeling the recursive matching structure with spatial

rnn. arXiv preprint arXiv:1604.04378, 2016.

[268] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv

preprint arXiv:1410.3916, 2014.

[269] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory

networks. In Proc. NIPS, pages 2440–2448, 2015.

250 BIBLIOGRAPHY

[270] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-

scale simple question answering with memory networks. arXiv preprint

arXiv:1506.02075, 2015.

[271] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of

visual attention. In Proc. NIPS, pages 2204–2212, 2014.

[272] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Rus-

lan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell:

Neural image caption generation with visual attention. In International Con-

ference on Machine Learning, pages 2048–2057, 2015.

[273] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective

approaches to attention-based neural machine translation. arXiv preprint

arXiv:1508.04025, 2015.

[274] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho,

and Yoshua Bengio. Attention-based models for speech recognition. In Proc.

NIPS, pages 577–585, 2015.

[275] Christoph Goller and Andreas Kuchler. Learning task-dependent distributed

representations by backpropagation through structure. In Neural Networks,

1996., IEEE International Conference on, volume 1, pages 347–352. IEEE,

1996.

[276] Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and

Christopher D Manning. Semi-supervised recursive autoencoders for predict-

ing sentiment distributions. In Proc. EMNLP, pages 151–161. Association

for Computational Linguistics, 2011.

[277] Samuel R Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christo-

pher D Manning, and Christopher Potts. A fast unified model for parsing and

sentence understanding. arXiv preprint arXiv:1603.06021, 2016.

[278] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved

semantic representations from tree-structured long short-term memory net-

works. arXiv preprint arXiv:1503.00075, 2015.

[279] Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing

BIBLIOGRAPHY 251

natural scenes and natural language with recursive neural networks. In Proc.

ICML, pages 129–136, 2011.

[280] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you

need. In Advances in Neural Information Processing Systems, pages 5998–

6008, 2017.

[281] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805, 2018.

[282] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al.

Greedy layer-wise training of deep networks. Proc. NIPS, 19:153, 2007.

[283] Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann Le-

Cun. Efficient learning of sparse representations with an energy-based model.

In Proc. NIPS, pages 1137–1144. MIT Press, 2006.

[284] Pierre Baldi and Yves Chauvin. Neural networks for fingerprint recognition.

Neural Computation, 5(3):402–418, 1993.

[285] Jane Bromley, James W. Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun,

Cliff Moore, Eduard Säckinger, and Roopak Shah. Signature verification

using a "siamese" time delay neural network. IJPRAI, 7(4):669–688, 1993.

[286] Wen-tau Yih, Kristina Toutanova, John C Platt, and Christopher Meek. Learn-

ing discriminative projections for text similarity measures. In Proc. CoNLL,

pages 247–256. Association for Computational Linguistics, 2011.

[287] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In

Proc. ICLR, 2014.

[288] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic

backpropagation and approximate inference in deep generative models. In

Proc. ICML, 2014.

[289] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and

Daan Wierstra. Draw: A recurrent neural network for image generation.

arXiv preprint arXiv:1502.04623, 2015.

252 BIBLIOGRAPHY

[290] Hareesh Bahuleyan, Lili Mou, Olga Vechtomova, and Pascal Poupart.

Variational attention for sequence-to-sequence models. arXiv preprint

arXiv:1712.08207, 2017.

[291] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. In Proc. NIPS, pages 2672–2680, 2014.

[292] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan

Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convo-

lutional architecture for fast feature embedding. In Proceedings of the 22nd

ACM international conference on Multimedia, pages 675–678. ACM, 2014.

[293] Amit Agarwal, Eldar Akchurin, Chris Basoglu, Guoguo Chen, Scott Cyphers,

Jasha Droppo, Adam Eversole, Brian Guenter, Mark Hillebrand, Xuedong

Huang, Zhiheng Huang, Vladimir Ivanov, Alexey Kamenev, Philipp Kranen,

Oleksii Kuchaiev, Wolfgang Manousek, Avner May, Bhaskar Mitra, Olivier

Nano, Gaizka Navarro, Alexey Orlov, Marko Padmilac, Hari Parthasarathi,

Baolin Peng, Alexey Reznichenko, Frank Seide, Michael L Seltzer, Mal-

colm Slaney, Andreas Stolcke, Huaming Wang, Kaisheng Yao, Dong Yu,

Yu Zhang, and Geoffrey Zweig. An introduction to computational networks

and the computational network toolkit. Technical report, Microsoft Technical

Report MSR-TR-2014–112, 2014.

[294] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

et al. Tensorflow: Large-scale machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467, 2016.

[295] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A

matlab-like environment for machine learning. In BigLearn, NIPS Workshop,

number EPFL-CONF-192376, 2011.

[296] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tian-

jun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible

and efficient machine learning library for heterogeneous distributed systems.

BIBLIOGRAPHY 253

arXiv preprint arXiv:1512.01274, 2015.

[297] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller,

Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly

Belikov, Alexander Belopolsky, et al. Theano: A python framework for fast

computation of mathematical expressions. arXiv preprint arXiv:1605.02688,

2016.

[298] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-

generation open source framework for deep learning. In Proceedings of work-

shop on machine learning systems (LearningSys) in the twenty-ninth annual

conference on neural information processing systems (NIPS), 2015.

[299] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Am-

mar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel

Clothiaux, Trevor Cohn, et al. Dynet: The dynamic neural network toolkit.

arXiv preprint arXiv:1701.03980, 2017.

[300] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-

binovich. Going deeper with convolutions. In Proc. CVPR, pages 1–9, 2015.

[301] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Frac-

talnet: Ultra-deep neural networks without residuals. arXiv preprint

arXiv:1605.07648, 2016.

[302] Christophe Van Gysel, Evangelos Kanoulas, and Maarten de Rijke. Pyndri: a

python interface to the indri search engine. arXiv preprint arXiv:1701.00749,

2017.

[303] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Luandri: a clean lua

interface to the indri search engine. In Proc. SIGIR. ACM, 2017.

[304] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. Bench-

marking state-of-the-art deep learning software tools. arXiv preprint

arXiv:1608.07249, 2016.

[305] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol

254 BIBLIOGRAPHY

Vinyals. Understanding deep learning requires rethinking generalization.

arXiv preprint arXiv:1611.03530, 2016.

[306] Nick Craswell, Rosie Jones, Georges Dupret, and Evelyne Viegas. Proceed-

ings of the 2009 workshop on Web Search Click Data. ACM, 2009.

[307] Jamie Callan, Mark Hoy, Changkuk Yoo, and Le Zhao. Clueweb09 data set,

2009.

[308] Nick Craswell, David Hawking, Ross Wilkinson, and Mingfang Wu.

Overview of the trec 2002 web track. In TREC, volume 3, page 12th, 2003.

[309] Peter Bailey, Nick Craswell, and David Hawking. Engineering a multi-

purpose test collection for web retrieval experiments. Information Processing

& Management, 39(6):853–871, 2003.

[310] Tie-Yan Liu, Jun Xu, Tao Qin, Wenying Xiong, and Hang Li. Letor: Bench-

mark dataset for research on learning to rank for information retrieval. In

Proceedings of SIGIR 2007 workshop on learning to rank for information

retrieval, pages 3–10, 2007.

[311] Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. International

Journal of Approximate Reasoning, 50(7):969–978, 2009.

[312] Aliaksei Severyn and Alessandro Moschitti. Learning to rank short text pairs

with convolutional deep neural networks. In Proc. SIGIR, pages 373–382.

ACM, 2015.

[313] Daniel Cohen and W Bruce Croft. End to end long short term memory net-

works for non-factoid question answering. In Proc. ICTIR, pages 143–146.

ACM, 2016.

[314] Daniel Cohen, Qingyao Ai, and W Bruce Croft. Adaptability of neural

networks on varying granularity ir tasks. arXiv preprint arXiv:1606.07565,

2016.

[315] Donald Metzler, Susan Dumais, and Christopher Meek. Similarity measures

for short segments of text. In European Conference on Information Retrieval,

pages 16–27. Springer, 2007.

BIBLIOGRAPHY 255

[316] Suthee Chaidaroon and Yi Fang. Variational deep semantic hashing for text

documents. In Proc. SIGIR, 2017.

[317] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil.

Learning semantic representations using convolutional neural networks for

web search. In Proc. WWW, pages 373–374, 2014.

[318] Jianfeng Gao, Patrick Pantel, Michael Gamon, Xiaodong He, Li Deng, and

Yelong Shen. Modeling interestingness with deep neural networks. In Proc.

EMNLP, 2014.

[319] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu

Chen, Xinying Song, and Rabab Ward. Deep sentence embedding using the

long short term memory network: Analysis and application to information

retrieval. arXiv preprint arXiv:1502.06922, 2015.

[320] H Palangi, L Deng, Y Shen, J Gao, X He, J Chen, X Song, and R Ward.

Semantic modelling with long-short-term memory for information retrieval.

arXiv preprint arXiv:1412.6629, 2014.

[321] Zhengdong Lu and Hang Li. A deep architecture for matching short texts. In

Proc. NIPS, pages 1367–1375, 2013.

[322] Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. Abcnn:

Attention-based convolutional neural network for modeling sentence pairs.

arXiv preprint arXiv:1512.05193, 2015.

[323] Liu Yang, Qingyao Ai, Jiafeng Guo, and W Bruce Croft. anmm: Rank-

ing short answer texts with attention-based neural matching model. In Proc.

CIKM, pages 287–296. ACM, 2016.

[324] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi

Cheng. A deep architecture for semantic matching with multiple positional

sentence representations. arXiv preprint arXiv:1511.08277, 2015.

[325] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. Pacrr: A

position-aware neural ir model for relevance matching. In Proc. EMNLP,

pages 1049–1058, 2017.

[326] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. Co-pacrr:

256 BIBLIOGRAPHY

A context-aware neural ir model for ad-hoc retrieval. In Proc. WSDM, vol-

ume 18, page 2, 2018.

[327] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. Pretrained transformers

for text ranking: Bert and beyond. arXiv preprint arXiv:2010.06467, 2020.

[328] Nick Craswell, W Bruce Croft, Jiafeng Guo, Bhaskar Mitra, and Maarten

de Rijke. Report on the sigir 2016 workshop on neural information retrieval

(neu-ir). ACM Sigir forum, 50(2):96–103, 2016.

[329] Xing Wei and W Bruce Croft. Lda-based document models for ad-hoc re-

trieval. In Proc. SIGIR, pages 178–185. ACM, 2006.

[330] Yun Zhou and W Bruce Croft. Document quality models for web ad hoc

retrieval. In Proc. CIKM, pages 331–332. ACM, 2005.

[331] Laura Dietz and Ben Gamari. TREC CAR: A Data Set for Complex Answer

Retrieval. http://trec-car.cs.unh.edu, 2017. Version 1.4.

[332] Siddhartha Banerjee and Prasenjit Mitra. Wikikreator: Improving wikipedia

stubs automatically. In ACL (1), pages 867–877, 2015.

[333] Paolo Ferragina and Ugo Scaiella. Tagme: on-the-fly annotation of short text

fragments (by wikipedia entities). In Proc. CIKM, pages 1625–1628. ACM,

2010.

[334] Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for data

mining. In International Semantic Web Conference, pages 498–514. Springer,

2016.

[335] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-

ganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. The

semantic web, pages 722–735, 2007.

[336] Hang Li. Learning to rank for information retrieval and natural language

processing. Synthesis Lectures on Human Language Technologies, 7(3):1–

121, 2014.

[337] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Ben-

nett, Junaid Ahmed, and Arnold Overwijk. Approximate nearest neigh-

http://trec-car.cs.unh.edu

BIBLIOGRAPHY 257

bor negative contrastive learning for dense text retrieval. arXiv preprint

arXiv:2007.00808, 2020.

[338] Krishnan Kumaran, Dimitri Papageorgiou, Yutong Chang, Minhan Li, and

Martin Takáč. Active metric learning for supervised classification. arXiv

preprint arXiv:1803.10647, 2018.

[339] Liu Yang, Rong Jin, and Rahul Sukthankar. Bayesian active distance metric

learning. arXiv preprint arXiv:1206.5283, 2012.

[340] Sandra Ebert, Mario Fritz, and Bernt Schiele. Active metric learning for

object recognition. In Joint DAGM (German Association for Pattern Recog-

nition) and OAGM Symposium, pages 327–336. Springer, 2012.

[341] Christina Sauper and Regina Barzilay. Automatically generating wikipedia

articles: A structure-aware approach. In Proceedings of the Joint Conference

of the 47th Annual Meeting of the ACL and the 4th International Joint Con-

ference on Natural Language Processing of the AFNLP: Volume 1-Volume 1,

pages 208–216. Association for Computational Linguistics, 2009.

[342] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam

Lerer. Automatic differentiation in pytorch. 2017.

[343] Stephen Robertson. Understanding inverse document frequency: on theoret-

ical arguments for idf. Journal of documentation, 60(5):503–520, 2004.

[344] K Sparck Jones, Steve Walker, and Stephen E. Robertson. A probabilistic

model of information retrieval: development and comparative experiments:

Part 2. Information processing & management, 36(6):809–840, 2000.

[345] Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh Ti-

wary. Neural ranking models with multiple document fields. In Proc. WSDM,

2018.

[346] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier

neural networks. In Proceedings of the fourteenth international conference

on artificial intelligence and statistics, pages 315–323, 2011.

[347] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

258 BIBLIOGRAPHY

[348] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. Convolutional

neural networks for soft-matching n-grams in ad-hoc search. In Proceedings

of the eleventh ACM international conference on web search and data mining,

pages 126–134. ACM, 2018.

[349] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power.

End-to-end neural ad-hoc ranking with kernel pooling. In Proc. SIGIR, pages

55–64. ACM, 2017.

[350] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag

of tricks for efficient text classification. arXiv preprint arXiv:1607.01759,

2016.

[351] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[352] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,

Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards

story-like visual explanations by watching movies and reading books. In

Proceedings of the IEEE international conference on computer vision, pages

19–27, 2015.

[353] B Barla Cambazoglu, Vassilis Plachouras, and Ricardo Baeza-Yates. Quan-

tifying performance and quality gains in distributed web search engines. In

Proc. SIGIR, pages 411–418. ACM, 2009.

[354] Antal Van den Bosch, Toine Bogers, and Maurice De Kunder. Estimating

search engine index size variability: a 9-year longitudinal study. Scientomet-

rics, 107(2):839–856, 2016.

[355] Jaime Teevan, Kevyn Collins-Thompson, Ryen W White, Susan T Dumais,

and Yubin Kim. Slow search: Information retrieval without time constraints.

In Proc. HCIR, page 1. ACM, 2013.

[356] Jake Brutlag. Speed matters for google web search, 2009.

[357] Eric Schurman and Jake Brutlag. Performance related changes and their user

impact. In velocity web performance and operations conference, 2009.

BIBLIOGRAPHY 259

[358] W Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines: In-

formation retrieval in practice, volume 283. Addison-Wesley Reading, 2010.

[359] Ian H Witten, Alistair Moffat, and Timothy C Bell. Managing gigabytes:

compressing and indexing documents and images. Morgan Kaufmann, 1999.

[360] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM

computing surveys (CSUR), 38(2):6, 2006.

[361] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. Letor: A benchmark collec-

tion for research on learning to rank for information retrieval. Information

Retrieval, 13(4):346–374, 2010.

[362] Laura Dietz, Bhaskar Mitra, Jeremy Pickens, Hana Anber, Sandeep Avula,

Asia Biega, Adrian Boteanu, Shubham Chatterjee, Jeff Dalton, Shiri Dori-

Hacohen, et al. Report on the first hipstir workshop on the future of informa-

tion retrieval. ACM Sigir forum, 53(2):62–75, 2019.

[363] Leonid Boytsov, David Novak, Yury Malkov, and Eric Nyberg. Off the

beaten path: Let’s replace term-based retrieval with k-nn search. In Proc.

CIKM, pages 1099–1108. ACM, 2016.

[364] Yan Xiao, Jiafeng Guo, Yixing Fan, Yanyan Lan, Jun Xu, and Xueqi Cheng.

Beyond precision: A study on recall of initial retrieval with neural represen-

tations. arXiv preprint arXiv:1806.10869, 2018.

[365] Hamed Zamani, Mostafa Dehghani, W Bruce Croft, Erik Learned-Miller,

and Jaap Kamps. From neural re-ranking to neural ranking: Learning a sparse

representation for inverted indexing. In Proc. CIKM, pages 497–506. ACM,

2018.

[366] Vo Ngoc Anh, Owen de Kretser, and Alistair Moffat. Vector-space ranking

with effective early termination. In Proc. SIGIR, pages 35–42. ACM, 2001.

[367] Vo Ngoc Anh and Alistair Moffat. Simplified similarity scoring using term

ranks. In Proc. SIGIR, pages 226–233. ACM, 2005.

[368] Vo Ngoc Anh and Alistair Moffat. Pruned query evaluation using pre-

computed impacts. In Proc. SIGIR, pages 372–379. ACM, 2006.

[369] Bhaskar Mitra, Sebastian Hofstatter, Hamed Zamani, and Nick Craswell.

260 BIBLIOGRAPHY

Conformer-kernel with query term independence for document retrieval.

arXiv preprint arXiv:2007.10434, 2020.

[370] Bhaskar Mitra, Sebastian Hofstätter, Hamed Zamani, and Nick Craswell.

Conformer-kernel with query term independence at trec 2020 deep learning

track. In Proc. TREC, 2020.

[371] Zhuyun Dai and Jamie Callan. Context-aware term weighting for first stage

passage retrieval. In Proceedings of the 43rd International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, pages 1533–

1536, 2020.

[372] Jianfeng Gao, Kristina Toutanova, and Wen-tau Yih. Clickthrough-based la-

tent semantic models for web search. In Proc. SIGIR, pages 675–684. ACM,

2011.

[373] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-

benchmarks: A benchmarking tool for approximate nearest neighbor algo-

rithms. In International Conference on Similarity Search and Applications,

pages 34–49. Springer, 2017.

[374] Laura Dietz, Manisha Verma, Filip Radlinski, and Nick Craswell. Trec com-

plex answer retrieval overview. In Proceedings of TREC, 2017.

[375] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Rhinehart, Michael Collins,

Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Matthew

Kelcey, Jacob Devlin, et al. Natural questions: a benchmark for question

answering research. 2019.

[376] Zhiwei Guan and Edward Cutrell. An eye tracking study of the effect of

target rank on web search. In Proc. CHI, pages 417–420, 2007.

[377] Hamed Zamani, Bhaskar Mitra, Everest Chen, Gord Lueck, Fernando Diaz,

Paul Bennett, Nick Craswell, and Susan Dumais. Analyzing and learning

from user interactions for search clarification. In Proc. SIGIR. ACM, 2020.

[378] Robin Burke. Multisided fairness for recommendation. July 2017. URL

http://arxiv.org/abs/1707.00093.

[379] Tom Sühr, Asia J Biega, Meike Zehlike, Krishna P Gummadi, and Abhij-

http://arxiv.org/abs/1707.00093

BIBLIOGRAPHY 261

nan Chakraborty. Two-sided fairness for repeated matchings in two-sided

markets: A case study of a ride-hailing platform. In Proc. SIGKDD, pages

3082–3092. ACM, 2019.

[380] Eli Pariser. The filter bubble: What the Internet is hiding from you. Penguin

UK, 2011.

[381] Sebastian Bruch, Shuguang Han, Mike Bendersky, and Marc Najork. A

stochastic treatment of learning to rank scoring functions. In Proc. WSDM,

2020.

[382] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribu-

tion: A continuous relaxation of discrete random variables. arXiv preprint

arXiv:1611.00712, 2016.

[383] Tao Qin, Tie-Yan Liu, and Hang Li. A general approximation framework for

direct optimization of information retrieval measures. Information retrieval,

13(4):375–397, 2010.

[384] Mingrui Wu, Yi Chang, Zhaohui Zheng, and Hongyuan Zha. Smoothing dcg

for learning to rank: A novel approach using smoothed hinge functions. In

Proc. CIKM, pages 1923–1926. ACM, 2009.

[385] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. Click models for

web search. Synthesis lectures on information concepts, retrieval, and ser-

vices, 7(3):1–115, 2015.

[386] Alistair Moffat and Justin Zobel. Rank-biased precision for measurement of

retrieval effectiveness. ACM Trans. Inf. Syst., 27:2:1–2:27, December 2008.

ISSN 1046-8188. doi: http://doi.acm.org/10.1145/1416950.1416952. URL

http://doi.acm.org/10.1145/1416950.1416952.

[387] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental compar-

ison of click position-bias models. In Proc. WSDM, pages 87–94, 2008.

[388] Sebastian Bruch, Masrour Zoghi, Michael Bendersky, and Marc Najork. Re-

visiting approximate metric optimization in the age of deep neural networks.

In Proc. SIGIR, pages 1241–1244, 2019.

[389] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or prop-

http://doi.acm.org/10.1145/1416950.1416952

262 BIBLIOGRAPHY

agating gradients through stochastic neurons for conditional computation.

arXiv preprint arXiv:1308.3432, 2013.

[390] Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. CoRR,

abs/1306.2597, 2013. URL http://arxiv.org/abs/1306.2597.

[391] Jaime Teevan. The re: search engine: simultaneous support for finding and

re-finding. In Proceedings of the 20th annual ACM symposium on User in-

terface software and technology, pages 23–32, 2007.

[392] Ziv Bar-Yossef and Naama Kraus. Context-sensitive query auto-completion.

In Proc. WWW, pages 107–116, 2011.

[393] John J. Darragh, Ian H. Witten, and Mark L. James. The reactive keyboard:

A predictive typing aid. Computer, 23:41–49, November 1990.

[394] Korinna Grabski and Tobias Scheffer. Sentence completion. In Proc. SIGIR,

pages 433–439, 2004.

[395] Arnab Nandi and H. V. Jagadish. Effective phrase prediction. In Proc. VLDB,

pages 219–230, Vienna, Austria, 2007.

[396] Steffen Bickel, Peter Haider, and Tobias Scheffer. Learning to complete sen-

tences. In Proc. ECML, pages 497–504. Springer, 2005.

[397] Ryen W. White and Gary Marchionini. Examining the effectiveness of real-

time query expansion. Inf. Process. Manage., 43:685–704, May 2007.

[398] Ju Fan, Hao Wu, Guoliang Li, and Lizhu Zhou. Suggesting topic-based query

terms as you type. In Proc. APWEB, pages 61–67, 2010.

[399] Sumit Bhatia, Debapriyo Majumdar, and Prasenjit Mitra. Query suggestions

in the absence of query logs. In Proc. SIGIR, pages 795–804, 2011.

[400] Huizhong Duan and Bo-June (Paul) Hsu. Online spelling correction for query

completion. In WWW ’11, pages 117–126, 2011.

[401] David Hawking and Kathy Griffiths. An enterprise search paradigm based

on extended query auto-completion. do we still need search and navigation?

In Proc. ADCS, pages 18–25, 2013.

[402] Milad Shokouhi. Learning to personalize query auto-completion. In Proc.

SIGIR, pages 103–112, 2013.

http://arxiv.org/abs/1306.2597

BIBLIOGRAPHY 263

[403] Q. Wu, C.J.C. Burges, K. Svore, and J. Gao. Adapting boosting for informa-

tion retrieval measures. Journal of Information Retrieval, 13:254–270, 2009.

[404] Paul N. Bennett, Ryen W. White, Wei Chu, Susan T. Dumais, Peter Bailey,

Fedor Borisyuk, and Xiaoyuan Cui. Modeling the impact of short- and long-

term behavior on search personalization. In Proc. SIGIR, pages 185–194,

2012.

[405] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Context-sensitive information

retrieval using implicit feedback. In Proc. SIGIR, pages 43–50. ACM, 2005.

[406] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and

Hang Li. Context-aware query suggestion by mining click-through and ses-

sion data. In Proc. SIGKDD, pages 875–883, 2008.

[407] Jeff Huang and Efthimis N Efthimiadis. Analyzing and evaluating query

reformulation strategies in web search logs. In Proc. CIKM, pages 77–86.

ACM, 2009.

[408] Chang Liu, Jacek Gwizdka, Jingjing Liu, Tao Xu, and Nicholas J Belkin.

Analysis and evaluation of query reformulations in different task types. Pro-

ceedings of the American Society for Information Science and Technology,

47(1):1–9, 2010.

[409] Dongyi Guan, Sicong Zhang, and Hui Yang. Utilizing query change for

session search. In Proc. SIGIR, pages 453–462. ACM, 2013.

[410] Xiujun Li, Chenlei Guo, Wei Chu, Ye-Yi Wang, and Jude Shavlik. Deep

learning powered in-session contextual ranking using clickthrough data. In

Workshop on Personalization: Methods and Applications, at Neural Informa-

tion Processing Systems (NIPS)., 2014.

[411] Xiaohui Yan, Jiafeng Guo, and Xueqi Cheng. Context-aware query recom-

mendation by learning high-order relation in query logs. In Proc. CIKM,

pages 2073–2076. ACM, 2011.

[412] Zhen Liao, Daxin Jiang, Enhong Chen, Jian Pei, Huanhuan Cao, and Hang

Li. Mining concept sequences from large-scale search logs for context-aware

264 BIBLIOGRAPHY

query suggestion. ACM Trans. on Intelligent Systems and Technology, 3(1):

17:1–17:40, October 2011.

[413] Jiafeng Guo, Xueqi Cheng, Gu Xu, and Xiaofei Zhu. Intent-aware query

similarity. In Proc. CIKM, pages 259–268, 2011.

[414] Yuchen Zhang, Weizhu Chen, Dong Wang, and Qiang Yang. User-click mod-

eling for understanding and predicting search-behavior. In Proc. SIGKDD,

pages 1388–1396. ACM, 2011.

[415] Huanhuan Cao, Daxin Jiang, Jian Pei, Enhong Chen, and Hang Li. Towards

context-aware search by learning a very large variable length hidden markov

model from search logs. In Proc. WWW, pages 191–200. ACM, 2009.

[416] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, and Sebas-

tiano Vigna. Query suggestions using query-flow graphs. In Proceedings of

the 2009 workshop on Web Search Click Data, pages 56–63. ACM, 2009.

[417] Paolo Boldi, Francesco Bonchi, Carlos Castillo, and Sebastiano Vigna.

Query reformulation mining: models, patterns, and applications. Informa-

tion retrieval, 14(3):257–289, 2011.

[418] Vera Hollink, Jiyin He, and Arjen de Vries. Explaining query modifications.

In Advances in Information Retrieval, pages 1–12. Springer, 2012.

[419] Biao Xiang, Daxin Jiang, Jian Pei, Xiaohui Sun, Enhong Chen, and Hang Li.

Context-aware ranking in web search. In Proc. SIGIR, pages 451–458, 2010.

[420] Jyun-Yu Jiang, Yen-Yu Ke, Pao-Yu Chien, and Pu-Jen Cheng. Learning user

reformulation behavior for query auto-completion. In Proc. SIGIR, pages

445–454. ACM, 2014.

[421] Ingmar Weber and Carlos Castillo. The demographics of web search. In

Proc. SIGIR, pages 523–530, 2010.

[422] Milad Shokouhi and Kira Radinsky. Time-sensitive query auto-completion.

In Proc. SIGIR, pages 601–610, 2012.

[423] Stewart Whiting and Joemon M Jose. Recent and robust query auto-

completion. In Proc. WWW, pages 971–982. International World Wide Web

Conferences Steering Committee, 2014.

BIBLIOGRAPHY 265

[424] Eugene Kharitonov, Craig Macdonald, Pavel Serdyukov, and Iadh Ounis. In-

tent models for contextualising and diversifying query suggestions. In Proc.

CIKM, pages 2303–2308. ACM, 2013.

[425] C.J.C. Burges, R. Ragno, and Q.V. Le. Learning to rank with non-smooth

cost functions. In Proc. NIPS, 2006.

[426] Olivier Chapelle, Yi Chang, and Tie-Yan Liu. The yahoo! learning to rank

challenge, 2010. URL http://learningtorankchallenge. yahoo. com.

[427] Bernard J. Jansen, Amanda H. Spink, Chris Blakely, and Sherry Koshman.

Defining a session on web search engines. Journal of the American Society

for Information Science and Technology, 58(6):862–871, 2007.

[428] Doug Downey, Susan Dumais, Dan Liebling, and Eric Horvitz. Understand-

ing the relationship between searchers’ queries and information goals. In

Proc. CIKM, pages 449–458. ACM, 2008.

[429] Ahmed Hassan, Ryen W White, Susan T Dumais, and Yi-Min Wang. Strug-

gling or exploring?: disambiguating long search sessions. In Proc. WSDM,

pages 53–62. ACM, 2014.

[430] Ryen W White and Jeff Huang. Assessing the scenic route: measuring the

value of search trails in web logs. In Proc. SIGIR, pages 587–594. ACM,

2010.

[431] Yanen Li, Anlei Dong, Hongning Wang, Hongbo Deng, Yi Chang, and

ChengXiang Zhai. A two-dimensional click model for query auto-

completion. In Proc. SIGIR, pages 455–464. ACM, 2014.

[432] Nick Craswell, W Bruce Croft, Jiafeng Guo, Bhaskar Mitra, and Maarten

de Rijke. Neu-ir: The sigir 2016 workshop on neural information retrieval.

2016.

[433] Nick Craswell, W Bruce Croft, Maarten de Rijke, Jiafeng Guo, and Bhaskar

Mitra. Neural information retrieval: introduction to the special issue. Infor-

mation Retrieval Journal, 21(2-3):107–110, 2018.

[434] Nick Craswell, W Bruce Croft, Maarten de Rijke, Jiafeng Guo, and Bhaskar

266 BIBLIOGRAPHY

Mitra. Sigir 2017 workshop on neural information retrieval (neu-ir’17). In

Proc. SIGIR, pages 1431–1432, 2017.

[435] Nick Craswell, W Bruce Croft, Maarten de Rijke, Jiafeng Guo, and Bhaskar

Mitra. Neu-ir’17: Neural information retrieval. In Proc. SIGIR. ACM, 2017.

[436] Nick Craswell, W Bruce Croft, Maarten de Rijke, Jiafeng Guo, and Bhaskar

Mitra. Report on the second sigir workshop on neural information retrieval

(neu-ir’17). In ACM SIGIR Forum, volume 51, pages 152–158. ACM, 2018.

[437] Hang Li and Zhengdong Lu. Deep learning for information retrieval.

[438] Christopher Manning. Understanding human language: Can nlp and deep

learning help? In Proc. SIGIR, pages 1–1. ACM, 2016.

[439] Nick Craswell. Neural models for full text search. In Proc. WSDM, pages

251–251. ACM, 2017.

[440] Wei Yang, Kuang Lu, Peilin Yang, and Jimmy Lin. Critically examining the

“neural hype”: Weak baselines and the additivity of effectiveness gains from

neural ranking models. In Proc. SIGIR, pages 1129–1132. ACM, 2019.

[441] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhut-

dinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for

language understanding. arXiv preprint arXiv:1906.08237, 2019.

[442] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[443] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. Document

expansion by query prediction. arXiv preprint arXiv:1904.08375, 2019.

[444] Alan F Smeaton. Information retrieval: Still butting heads with natural lan-

guage processing? In International Summer School on Information Extrac-

tion, pages 115–138. Springer, 1997.

[445] Karen Sparck Jones. What is the role of nlp in text retrieval? In Natural

language information retrieval, pages 1–24. Springer, 1999.

[446] Ellen M Voorhees. Natural language processing and information retrieval.

In International summer school on information extraction, pages 32–48.

Springer, 1999.

BIBLIOGRAPHY 267

[447] Alan F Smeaton. Using nlp or nlp resources for information retrieval tasks.

In Natural language information retrieval, pages 99–111. Springer, 1999.

[448] Ricardo Baeza-Yates. Challenges in the interaction of information retrieval

and natural language processing. In International Conference on Intelligent

Text Processing and Computational Linguistics, pages 445–456. Springer,

2004.

[449] Han Zhao, Zhengdong Lu, and Pascal Poupart. Self-adaptive hierarchical

sentence model. arXiv preprint arXiv:1504.05070, 2015.

[450] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional

neural network for modelling sentences. arXiv preprint arXiv:1404.2188,

2014.

[451] Misha Denil, Alban Demiraj, Nal Kalchbrenner, Phil Blunsom, and Nando

de Freitas. Modelling, visualising and summarising documents with a single

convolutional neural network. arXiv preprint arXiv:1406.3830, 2014.

[452] Yoon Kim. Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882, 2014.

[453] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray

Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from

scratch. The Journal of Machine Learning Research, 12:2493–2537, 2011.

[454] Rodrigo Nogueira and Kyunghyun Cho. Task-oriented query reformulation

with reinforcement learning. In Proc. EMNLP, pages 574–583, 2017.

[455] Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Andrea Gesmundo,

Neil Houlsby, Wojciech Gajewski, and Wei Wang. Ask the right questions:

Active question reformulation with reinforcement learning. arXiv preprint

arXiv:1705.07830, 2017.

[456] Gregory Koch. Siamese neural networks for one-shot image recognition.

PhD thesis, University of Toronto, 2015.

[457] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Match-

ing networks for one shot learning. In Proc. NIPS, pages 3630–3638, 2016.

[458] Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jian-

268 BIBLIOGRAPHY

feng Gao, Wen-tau Yih, and Michel Galley. A knowledge-grounded neural

conversation model. arXiv preprint arXiv:1702.01932, 2017.

[459] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-

stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[460] Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael Noseworthy, Laurent

Charlin, and Joelle Pineau. How not to evaluate your dialogue system: An

empirical study of unsupervised evaluation metrics for dialogue response

generation. arXiv preprint arXiv:1603.08023, 2016.

[461] Michel Galley, Chris Brockett, Alessandro Sordoni, Yangfeng Ji, Michael

Auli, Chris Quirk, Margaret Mitchell, Jianfeng Gao, and Bill Dolan.

deltableu: A discriminative metric for generation tasks with intrinsically di-

verse targets. arXiv preprint arXiv:1506.06863, 2015.

[462] Jaime Arguello, Adam Ferguson, Emery Fine, Bhaskar Mitra, Hamed Za-

mani, and Fernando Diaz. Tip of the tongue known-item retrieval: A case

study in movie identification. In Proc. CHIIR, 2021.

[463] Emine Yilmaz, Nick Craswell, Bhaskar Mitra, and Daniel Campos. On the

reliability of test collections to evaluating systems of different types. In Proc.

SIGIR. ACM, 2020.

[464] Nick Craswell, Daniel Campos, Bhaskar Mitra, Emine Yilmaz, and Bodo

Billerbeck. Orcas: 18 million clicked query-document pairs for analyzing

search. In Proc. CIKM, page 29832989, 2020.

[465] Surya Kallumadi, Bhaskar Mitra, and Tereza Iofciu. A line in the sand: Rec-

ommendation or ad-hoc retrieval? overview of recsys challenge 2018 sub-

mission by team bachpropagate. In Proceedings of the ACM Recommender

Systems Challenge 2018, pages 1–6. 2018.

[466] Navid Rekabsaz, Bhaskar Mitra, Mihai Lupu, and Allan Hanbury. Toward

BIBLIOGRAPHY 269

incorporation of relevant documents in word2vec. In Proc. Second Neu-IR

workshop (SIGIR), 2017.

	Introduction
	Contributions
	Evaluation tasks
	Ad hoc retrieval
	Question-answering

	Notation
	Metrics

	Motivation
	Desiderata of IR models
	Semantic matching
	Robustness to rare inputs
	Robustness to variable length text
	Efficiency
	Parity of exposure
	Sensitivity to context
	Robustness to corpus variance

	Designing neural models for IR

	Background
	IR Models
	Traditional IR models
	Anatomy of neural IR models

	Unsupervised learning of term representations
	A tale of two representations
	Notions of similarity
	Observed feature spaces
	Embeddings

	Term embeddings for IR
	Query-document matching
	Query expansion

	Supervised learning to rank
	Input features
	Loss functions

	Deep neural networks
	Input text representations
	Architectures
	Neural toolkits

	Deep neural models for IR
	Document auto-encoders
	Siamese networks
	Interaction-based networks
	Lexical matching networks
	BERT

	Conclusion

	Learning to rank with Duet networks
	The Duet network
	Local subnetwork
	Distributed subnetwork
	Optimization

	Experiments
	Data
	Training
	Baselines
	Evaluation

	Results
	Further improvements
	Duet on MS MARCO
	Duet on TREC Deep Learning track

	Discussion
	Conclusion

	Retrieve, not just rerank, using deep neural networks
	Query term independence assumption
	Related work
	Model
	Experiments
	Task description
	Baseline models

	Results
	Conclusion

	Stochastic learning to rank for target exposure
	Related work
	Expected exposure metrics
	Optimizing for target exposure
	Individual exposure parity
	Group exposure parity

	Experiments
	Models
	Data
	Evaluation

	Results
	Conclusion

	Learning to Rank for Query Auto-Completion
	Query Auto-Completion for Rare Prefixes
	Related work
	Model
	Method
	Experiments
	Results
	Conclusion

	Session Context Modelling for Query Auto-Completion
	Related work
	Model
	Experiments
	Features
	Results
	Discussion
	Conclusion

	Benchmarking for neural IR
	TREC Deep Learning track
	Datasets
	Results and analysis
	Conclusion

	General Conclusions
	A summary of our contributions
	The Future of neural IR

	Appendices
	Published work
	Bibliography

